blob: b500d9b5929cc1d096ff6ff59ed8ab4285235bef [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "art_method.h"
#include <algorithm>
#include <cstddef>
#include "android-base/stringprintf.h"
#include "arch/context.h"
#include "art_method-inl.h"
#include "base/enums.h"
#include "base/stl_util.h"
#include "class_linker-inl.h"
#include "class_root-inl.h"
#include "debugger.h"
#include "dex/class_accessor-inl.h"
#include "dex/descriptors_names.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_file_exception_helpers.h"
#include "dex/dex_instruction.h"
#include "dex/signature-inl.h"
#include "entrypoints/runtime_asm_entrypoints.h"
#include "gc/accounting/card_table-inl.h"
#include "hidden_api.h"
#include "interpreter/interpreter.h"
#include "jit/jit.h"
#include "jit/jit_code_cache.h"
#include "jit/profiling_info.h"
#include "jni/jni_internal.h"
#include "mirror/class-inl.h"
#include "mirror/class_ext-inl.h"
#include "mirror/executable.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/string.h"
#include "oat_file-inl.h"
#include "quicken_info.h"
#include "runtime_callbacks.h"
#include "scoped_thread_state_change-inl.h"
#include "vdex_file.h"
namespace art {
using android::base::StringPrintf;
extern "C" void art_quick_invoke_stub(ArtMethod*, uint32_t*, uint32_t, Thread*, JValue*,
const char*);
extern "C" void art_quick_invoke_static_stub(ArtMethod*, uint32_t*, uint32_t, Thread*, JValue*,
const char*);
// Enforce that we have the right index for runtime methods.
static_assert(ArtMethod::kRuntimeMethodDexMethodIndex == dex::kDexNoIndex,
"Wrong runtime-method dex method index");
ArtMethod* ArtMethod::GetCanonicalMethod(PointerSize pointer_size) {
if (LIKELY(!IsCopied())) {
return this;
} else {
ObjPtr<mirror::Class> declaring_class = GetDeclaringClass();
DCHECK(declaring_class->IsInterface());
ArtMethod* ret = declaring_class->FindInterfaceMethod(GetDexCache(),
GetDexMethodIndex(),
pointer_size);
DCHECK(ret != nullptr);
return ret;
}
}
ArtMethod* ArtMethod::GetNonObsoleteMethod() {
if (LIKELY(!IsObsolete())) {
return this;
}
DCHECK_EQ(kRuntimePointerSize, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
if (IsDirect()) {
return &GetDeclaringClass()->GetDirectMethodsSlice(kRuntimePointerSize)[GetMethodIndex()];
} else {
return GetDeclaringClass()->GetVTableEntry(GetMethodIndex(), kRuntimePointerSize);
}
}
ArtMethod* ArtMethod::GetSingleImplementation(PointerSize pointer_size) {
if (IsInvokable()) {
// An invokable method single implementation is itself.
return this;
}
DCHECK(!IsDefaultConflicting());
ArtMethod* m = reinterpret_cast<ArtMethod*>(GetDataPtrSize(pointer_size));
CHECK(m == nullptr || !m->IsDefaultConflicting());
return m;
}
ArtMethod* ArtMethod::FromReflectedMethod(const ScopedObjectAccessAlreadyRunnable& soa,
jobject jlr_method) {
ObjPtr<mirror::Executable> executable = soa.Decode<mirror::Executable>(jlr_method);
DCHECK(executable != nullptr);
return executable->GetArtMethod();
}
template <ReadBarrierOption kReadBarrierOption>
ObjPtr<mirror::DexCache> ArtMethod::GetObsoleteDexCache() {
// Note: The class redefinition happens with GC disabled, so at the point where we
// create obsolete methods, the `ClassExt` and its obsolete methods and dex caches
// members are reachable without a read barrier. If we start a GC later, and we
// look at these objects without read barriers (`kWithoutReadBarrier`), the method
// pointers shall be the same in from-space array as in to-space array (if these
// arrays are different) and the dex cache array entry can point to from-space or
// to-space `DexCache` but either is a valid result for `kWithoutReadBarrier`.
ScopedAssertNoThreadSuspension ants(__FUNCTION__);
std::optional<ScopedDebugDisallowReadBarriers> sddrb(std::nullopt);
if (kIsDebugBuild && kReadBarrierOption == kWithoutReadBarrier) {
sddrb.emplace(Thread::Current());
}
PointerSize pointer_size = kRuntimePointerSize;
DCHECK(!Runtime::Current()->IsAotCompiler()) << PrettyMethod();
DCHECK(IsObsolete());
ObjPtr<mirror::Class> declaring_class = GetDeclaringClass<kReadBarrierOption>();
ObjPtr<mirror::ClassExt> ext =
declaring_class->GetExtData<kDefaultVerifyFlags, kReadBarrierOption>();
ObjPtr<mirror::PointerArray> obsolete_methods(
ext.IsNull() ? nullptr : ext->GetObsoleteMethods<kDefaultVerifyFlags, kReadBarrierOption>());
int32_t len = 0;
ObjPtr<mirror::ObjectArray<mirror::DexCache>> obsolete_dex_caches = nullptr;
if (!obsolete_methods.IsNull()) {
len = obsolete_methods->GetLength();
obsolete_dex_caches = ext->GetObsoleteDexCaches<kDefaultVerifyFlags, kReadBarrierOption>();
// FIXME: `ClassExt::SetObsoleteArrays()` is not atomic, so one of the arrays we see here
// could be extended for a new class redefinition while the other may be shorter.
// Furthermore, there is no synchronization to ensure that copied contents of an old
// obsolete array are visible to a thread reading the new array.
DCHECK_EQ(len, obsolete_dex_caches->GetLength())
<< " ext->GetObsoleteDexCaches()=" << obsolete_dex_caches;
}
// Using kRuntimePointerSize (instead of using the image's pointer size) is fine since images
// should never have obsolete methods in them so they should always be the same.
DCHECK_EQ(pointer_size, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
for (int32_t i = 0; i < len; i++) {
if (this == obsolete_methods->GetElementPtrSize<ArtMethod*>(i, pointer_size)) {
return obsolete_dex_caches->GetWithoutChecks<kDefaultVerifyFlags, kReadBarrierOption>(i);
}
}
CHECK(declaring_class->IsObsoleteObject())
<< "This non-structurally obsolete method does not appear in the obsolete map of its class: "
<< declaring_class->PrettyClass() << " Searched " << len << " caches.";
CHECK_EQ(this,
std::clamp(this,
&(*declaring_class->GetMethods(pointer_size).begin()),
&(*declaring_class->GetMethods(pointer_size).end())))
<< "class is marked as structurally obsolete method but not found in normal obsolete-map "
<< "despite not being the original method pointer for " << GetDeclaringClass()->PrettyClass();
return declaring_class->template GetDexCache<kDefaultVerifyFlags, kReadBarrierOption>();
}
template ObjPtr<mirror::DexCache> ArtMethod::GetObsoleteDexCache<kWithReadBarrier>();
template ObjPtr<mirror::DexCache> ArtMethod::GetObsoleteDexCache<kWithoutReadBarrier>();
uint16_t ArtMethod::FindObsoleteDexClassDefIndex() {
DCHECK(!Runtime::Current()->IsAotCompiler()) << PrettyMethod();
DCHECK(IsObsolete());
const DexFile* dex_file = GetDexFile();
const dex::TypeIndex declaring_class_type = dex_file->GetMethodId(GetDexMethodIndex()).class_idx_;
const dex::ClassDef* class_def = dex_file->FindClassDef(declaring_class_type);
CHECK(class_def != nullptr);
return dex_file->GetIndexForClassDef(*class_def);
}
void ArtMethod::ThrowInvocationTimeError(ObjPtr<mirror::Object> receiver) {
DCHECK(!IsInvokable());
if (IsDefaultConflicting()) {
ThrowIncompatibleClassChangeErrorForMethodConflict(this);
} else if (GetDeclaringClass()->IsInterface() && receiver != nullptr) {
// If this was an interface call, check whether there is a method in the
// superclass chain that isn't public. In this situation, we should throw an
// IllegalAccessError.
DCHECK(IsAbstract());
ObjPtr<mirror::Class> current = receiver->GetClass();
while (current != nullptr) {
for (ArtMethod& method : current->GetDeclaredMethodsSlice(kRuntimePointerSize)) {
ArtMethod* np_method = method.GetInterfaceMethodIfProxy(kRuntimePointerSize);
if (!np_method->IsStatic() &&
np_method->GetNameView() == GetNameView() &&
np_method->GetSignature() == GetSignature()) {
if (!np_method->IsPublic()) {
ThrowIllegalAccessErrorForImplementingMethod(receiver->GetClass(), np_method, this);
return;
} else if (np_method->IsAbstract()) {
ThrowAbstractMethodError(this);
return;
}
}
}
current = current->GetSuperClass();
}
ThrowAbstractMethodError(this);
} else {
DCHECK(IsAbstract());
ThrowAbstractMethodError(this);
}
}
InvokeType ArtMethod::GetInvokeType() {
// TODO: kSuper?
if (IsStatic()) {
return kStatic;
} else if (GetDeclaringClass()->IsInterface()) {
return kInterface;
} else if (IsDirect()) {
return kDirect;
} else if (IsSignaturePolymorphic()) {
return kPolymorphic;
} else {
return kVirtual;
}
}
size_t ArtMethod::NumArgRegisters(const char* shorty) {
CHECK_NE(shorty[0], '\0');
uint32_t num_registers = 0;
for (const char* s = shorty + 1; *s != '\0'; ++s) {
if (*s == 'D' || *s == 'J') {
num_registers += 2;
} else {
num_registers += 1;
}
}
return num_registers;
}
bool ArtMethod::HasSameNameAndSignature(ArtMethod* other) {
ScopedAssertNoThreadSuspension ants("HasSameNameAndSignature");
const DexFile* dex_file = GetDexFile();
const dex::MethodId& mid = dex_file->GetMethodId(GetDexMethodIndex());
if (GetDexCache() == other->GetDexCache()) {
const dex::MethodId& mid2 = dex_file->GetMethodId(other->GetDexMethodIndex());
return mid.name_idx_ == mid2.name_idx_ && mid.proto_idx_ == mid2.proto_idx_;
}
const DexFile* dex_file2 = other->GetDexFile();
const dex::MethodId& mid2 = dex_file2->GetMethodId(other->GetDexMethodIndex());
if (!DexFile::StringEquals(dex_file, mid.name_idx_, dex_file2, mid2.name_idx_)) {
return false; // Name mismatch.
}
return dex_file->GetMethodSignature(mid) == dex_file2->GetMethodSignature(mid2);
}
ArtMethod* ArtMethod::FindOverriddenMethod(PointerSize pointer_size) {
if (IsStatic()) {
return nullptr;
}
ObjPtr<mirror::Class> declaring_class = GetDeclaringClass();
ObjPtr<mirror::Class> super_class = declaring_class->GetSuperClass();
uint16_t method_index = GetMethodIndex();
ArtMethod* result = nullptr;
// Did this method override a super class method? If so load the result from the super class'
// vtable
if (super_class->HasVTable() && method_index < super_class->GetVTableLength()) {
result = super_class->GetVTableEntry(method_index, pointer_size);
} else {
// Method didn't override superclass method so search interfaces
if (IsProxyMethod()) {
result = GetInterfaceMethodIfProxy(pointer_size);
DCHECK(result != nullptr);
} else {
ObjPtr<mirror::IfTable> iftable = GetDeclaringClass()->GetIfTable();
for (size_t i = 0; i < iftable->Count() && result == nullptr; i++) {
ObjPtr<mirror::Class> interface = iftable->GetInterface(i);
for (ArtMethod& interface_method : interface->GetVirtualMethods(pointer_size)) {
if (HasSameNameAndSignature(interface_method.GetInterfaceMethodIfProxy(pointer_size))) {
result = &interface_method;
break;
}
}
}
}
}
DCHECK(result == nullptr ||
GetInterfaceMethodIfProxy(pointer_size)->HasSameNameAndSignature(
result->GetInterfaceMethodIfProxy(pointer_size)));
return result;
}
uint32_t ArtMethod::FindDexMethodIndexInOtherDexFile(const DexFile& other_dexfile,
uint32_t name_and_signature_idx) {
const DexFile* dexfile = GetDexFile();
const uint32_t dex_method_idx = GetDexMethodIndex();
const dex::MethodId& mid = dexfile->GetMethodId(dex_method_idx);
const dex::MethodId& name_and_sig_mid = other_dexfile.GetMethodId(name_and_signature_idx);
DCHECK_STREQ(dexfile->GetMethodName(mid), other_dexfile.GetMethodName(name_and_sig_mid));
DCHECK_EQ(dexfile->GetMethodSignature(mid), other_dexfile.GetMethodSignature(name_and_sig_mid));
if (dexfile == &other_dexfile) {
return dex_method_idx;
}
const char* mid_declaring_class_descriptor = dexfile->StringByTypeIdx(mid.class_idx_);
const dex::TypeId* other_type_id = other_dexfile.FindTypeId(mid_declaring_class_descriptor);
if (other_type_id != nullptr) {
const dex::MethodId* other_mid = other_dexfile.FindMethodId(
*other_type_id, other_dexfile.GetStringId(name_and_sig_mid.name_idx_),
other_dexfile.GetProtoId(name_and_sig_mid.proto_idx_));
if (other_mid != nullptr) {
return other_dexfile.GetIndexForMethodId(*other_mid);
}
}
return dex::kDexNoIndex;
}
uint32_t ArtMethod::FindCatchBlock(Handle<mirror::Class> exception_type,
uint32_t dex_pc, bool* has_no_move_exception) {
// Set aside the exception while we resolve its type.
Thread* self = Thread::Current();
StackHandleScope<1> hs(self);
Handle<mirror::Throwable> exception(hs.NewHandle(self->GetException()));
self->ClearException();
// Default to handler not found.
uint32_t found_dex_pc = dex::kDexNoIndex;
// Iterate over the catch handlers associated with dex_pc.
CodeItemDataAccessor accessor(DexInstructionData());
for (CatchHandlerIterator it(accessor, dex_pc); it.HasNext(); it.Next()) {
dex::TypeIndex iter_type_idx = it.GetHandlerTypeIndex();
// Catch all case
if (!iter_type_idx.IsValid()) {
found_dex_pc = it.GetHandlerAddress();
break;
}
// Does this catch exception type apply?
ObjPtr<mirror::Class> iter_exception_type = ResolveClassFromTypeIndex(iter_type_idx);
if (UNLIKELY(iter_exception_type == nullptr)) {
// Now have a NoClassDefFoundError as exception. Ignore in case the exception class was
// removed by a pro-guard like tool.
// Note: this is not RI behavior. RI would have failed when loading the class.
self->ClearException();
// Delete any long jump context as this routine is called during a stack walk which will
// release its in use context at the end.
delete self->GetLongJumpContext();
LOG(WARNING) << "Unresolved exception class when finding catch block: "
<< DescriptorToDot(GetTypeDescriptorFromTypeIdx(iter_type_idx));
} else if (iter_exception_type->IsAssignableFrom(exception_type.Get())) {
found_dex_pc = it.GetHandlerAddress();
break;
}
}
if (found_dex_pc != dex::kDexNoIndex) {
const Instruction& first_catch_instr = accessor.InstructionAt(found_dex_pc);
*has_no_move_exception = (first_catch_instr.Opcode() != Instruction::MOVE_EXCEPTION);
}
// Put the exception back.
if (exception != nullptr) {
self->SetException(exception.Get());
}
return found_dex_pc;
}
NO_STACK_PROTECTOR
void ArtMethod::Invoke(Thread* self, uint32_t* args, uint32_t args_size, JValue* result,
const char* shorty) {
if (UNLIKELY(__builtin_frame_address(0) < self->GetStackEnd())) {
ThrowStackOverflowError(self);
return;
}
if (kIsDebugBuild) {
self->AssertThreadSuspensionIsAllowable();
CHECK_EQ(ThreadState::kRunnable, self->GetState());
CHECK_STREQ(GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(), shorty);
}
// Push a transition back into managed code onto the linked list in thread.
ManagedStack fragment;
self->PushManagedStackFragment(&fragment);
Runtime* runtime = Runtime::Current();
// Call the invoke stub, passing everything as arguments.
// If the runtime is not yet started or it is required by the debugger, then perform the
// Invocation by the interpreter, explicitly forcing interpretation over JIT to prevent
// cycling around the various JIT/Interpreter methods that handle method invocation.
if (UNLIKELY(!runtime->IsStarted() ||
(self->IsForceInterpreter() && !IsNative() && !IsProxyMethod() && IsInvokable()))) {
if (IsStatic()) {
art::interpreter::EnterInterpreterFromInvoke(
self, this, nullptr, args, result, /*stay_in_interpreter=*/ true);
} else {
mirror::Object* receiver =
reinterpret_cast<StackReference<mirror::Object>*>(&args[0])->AsMirrorPtr();
art::interpreter::EnterInterpreterFromInvoke(
self, this, receiver, args + 1, result, /*stay_in_interpreter=*/ true);
}
} else {
DCHECK_EQ(runtime->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
constexpr bool kLogInvocationStartAndReturn = false;
bool have_quick_code = GetEntryPointFromQuickCompiledCode() != nullptr;
if (LIKELY(have_quick_code)) {
if (kLogInvocationStartAndReturn) {
LOG(INFO) << StringPrintf(
"Invoking '%s' quick code=%p static=%d", PrettyMethod().c_str(),
GetEntryPointFromQuickCompiledCode(), static_cast<int>(IsStatic() ? 1 : 0));
}
// Ensure that we won't be accidentally calling quick compiled code when -Xint.
if (kIsDebugBuild && runtime->GetInstrumentation()->IsForcedInterpretOnly()) {
CHECK(!runtime->UseJitCompilation());
const void* oat_quick_code =
(IsNative() || !IsInvokable() || IsProxyMethod() || IsObsolete())
? nullptr
: GetOatMethodQuickCode(runtime->GetClassLinker()->GetImagePointerSize());
CHECK(oat_quick_code == nullptr || oat_quick_code != GetEntryPointFromQuickCompiledCode())
<< "Don't call compiled code when -Xint " << PrettyMethod();
}
if (!IsStatic()) {
(*art_quick_invoke_stub)(this, args, args_size, self, result, shorty);
} else {
(*art_quick_invoke_static_stub)(this, args, args_size, self, result, shorty);
}
if (UNLIKELY(self->GetException() == Thread::GetDeoptimizationException())) {
// Unusual case where we were running generated code and an
// exception was thrown to force the activations to be removed from the
// stack. Continue execution in the interpreter.
self->DeoptimizeWithDeoptimizationException(result);
}
if (kLogInvocationStartAndReturn) {
LOG(INFO) << StringPrintf("Returned '%s' quick code=%p", PrettyMethod().c_str(),
GetEntryPointFromQuickCompiledCode());
}
} else {
LOG(INFO) << "Not invoking '" << PrettyMethod() << "' code=null";
if (result != nullptr) {
result->SetJ(0);
}
}
}
// Pop transition.
self->PopManagedStackFragment(fragment);
}
bool ArtMethod::IsSignaturePolymorphic() {
// Methods with a polymorphic signature have constraints that they
// are native and varargs and belong to either MethodHandle or VarHandle.
if (!IsNative() || !IsVarargs()) {
return false;
}
ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
Runtime::Current()->GetClassLinker()->GetClassRoots();
ObjPtr<mirror::Class> cls = GetDeclaringClass();
return (cls == GetClassRoot<mirror::MethodHandle>(class_roots) ||
cls == GetClassRoot<mirror::VarHandle>(class_roots));
}
static uint32_t GetOatMethodIndexFromMethodIndex(const DexFile& dex_file,
uint16_t class_def_idx,
uint32_t method_idx) {
ClassAccessor accessor(dex_file, class_def_idx);
uint32_t class_def_method_index = 0u;
for (const ClassAccessor::Method& method : accessor.GetMethods()) {
if (method.GetIndex() == method_idx) {
return class_def_method_index;
}
class_def_method_index++;
}
LOG(FATAL) << "Failed to find method index " << method_idx << " in " << dex_file.GetLocation();
UNREACHABLE();
}
// We use the method's DexFile and declaring class name to find the OatMethod for an obsolete
// method. This is extremely slow but we need it if we want to be able to have obsolete native
// methods since we need this to find the size of its stack frames.
//
// NB We could (potentially) do this differently and rely on the way the transformation is applied
// in order to use the entrypoint to find this information. However, for debugging reasons (most
// notably making sure that new invokes of obsolete methods fail) we choose to instead get the data
// directly from the dex file.
static const OatFile::OatMethod FindOatMethodFromDexFileFor(ArtMethod* method, bool* found)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(method->IsObsolete() && method->IsNative());
const DexFile* dex_file = method->GetDexFile();
// recreate the class_def_index from the descriptor.
std::string descriptor_storage;
const dex::TypeId* declaring_class_type_id =
dex_file->FindTypeId(method->GetDeclaringClass()->GetDescriptor(&descriptor_storage));
CHECK(declaring_class_type_id != nullptr);
dex::TypeIndex declaring_class_type_index = dex_file->GetIndexForTypeId(*declaring_class_type_id);
const dex::ClassDef* declaring_class_type_def =
dex_file->FindClassDef(declaring_class_type_index);
CHECK(declaring_class_type_def != nullptr);
uint16_t declaring_class_def_index = dex_file->GetIndexForClassDef(*declaring_class_type_def);
size_t oat_method_index = GetOatMethodIndexFromMethodIndex(*dex_file,
declaring_class_def_index,
method->GetDexMethodIndex());
OatFile::OatClass oat_class = OatFile::FindOatClass(*dex_file,
declaring_class_def_index,
found);
if (!(*found)) {
return OatFile::OatMethod::Invalid();
}
return oat_class.GetOatMethod(oat_method_index);
}
static const OatFile::OatMethod FindOatMethodFor(ArtMethod* method,
PointerSize pointer_size,
bool* found)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (UNLIKELY(method->IsObsolete())) {
// We shouldn't be calling this with obsolete methods except for native obsolete methods for
// which we need to use the oat method to figure out how large the quick frame is.
DCHECK(method->IsNative()) << "We should only be finding the OatMethod of obsolete methods in "
<< "order to allow stack walking. Other obsolete methods should "
<< "never need to access this information.";
DCHECK_EQ(pointer_size, kRuntimePointerSize) << "Obsolete method in compiler!";
return FindOatMethodFromDexFileFor(method, found);
}
// Although we overwrite the trampoline of non-static methods, we may get here via the resolution
// method for direct methods (or virtual methods made direct).
ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass();
size_t oat_method_index;
if (method->IsStatic() || method->IsDirect()) {
// Simple case where the oat method index was stashed at load time.
oat_method_index = method->GetMethodIndex();
} else {
// Compute the oat_method_index by search for its position in the declared virtual methods.
oat_method_index = declaring_class->NumDirectMethods();
bool found_virtual = false;
for (ArtMethod& art_method : declaring_class->GetVirtualMethods(pointer_size)) {
// Check method index instead of identity in case of duplicate method definitions.
if (method->GetDexMethodIndex() == art_method.GetDexMethodIndex()) {
found_virtual = true;
break;
}
oat_method_index++;
}
CHECK(found_virtual) << "Didn't find oat method index for virtual method: "
<< method->PrettyMethod();
}
DCHECK_EQ(oat_method_index,
GetOatMethodIndexFromMethodIndex(declaring_class->GetDexFile(),
method->GetDeclaringClass()->GetDexClassDefIndex(),
method->GetDexMethodIndex()));
OatFile::OatClass oat_class = OatFile::FindOatClass(declaring_class->GetDexFile(),
declaring_class->GetDexClassDefIndex(),
found);
if (!(*found)) {
return OatFile::OatMethod::Invalid();
}
return oat_class.GetOatMethod(oat_method_index);
}
bool ArtMethod::EqualParameters(Handle<mirror::ObjectArray<mirror::Class>> params) {
const DexFile* dex_file = GetDexFile();
const auto& method_id = dex_file->GetMethodId(GetDexMethodIndex());
const auto& proto_id = dex_file->GetMethodPrototype(method_id);
const dex::TypeList* proto_params = dex_file->GetProtoParameters(proto_id);
auto count = proto_params != nullptr ? proto_params->Size() : 0u;
auto param_len = params != nullptr ? params->GetLength() : 0u;
if (param_len != count) {
return false;
}
auto* cl = Runtime::Current()->GetClassLinker();
for (size_t i = 0; i < count; ++i) {
dex::TypeIndex type_idx = proto_params->GetTypeItem(i).type_idx_;
ObjPtr<mirror::Class> type = cl->ResolveType(type_idx, this);
if (type == nullptr) {
Thread::Current()->AssertPendingException();
return false;
}
if (type != params->GetWithoutChecks(i)) {
return false;
}
}
return true;
}
const OatQuickMethodHeader* ArtMethod::GetOatQuickMethodHeader(uintptr_t pc) {
if (IsRuntimeMethod()) {
return nullptr;
}
Runtime* runtime = Runtime::Current();
const void* existing_entry_point = GetEntryPointFromQuickCompiledCode();
CHECK(existing_entry_point != nullptr) << PrettyMethod() << "@" << this;
ClassLinker* class_linker = runtime->GetClassLinker();
if (existing_entry_point == GetQuickProxyInvokeHandler()) {
DCHECK(IsProxyMethod() && !IsConstructor());
// The proxy entry point does not have any method header.
return nullptr;
}
// We should not reach here with a pc of 0. pc can be 0 for downcalls when walking the stack.
// For native methods this case is handled by the caller by checking the quick frame tag. See
// StackVisitor::WalkStack for more details. For non-native methods pc can be 0 only for runtime
// methods or proxy invoke handlers which are handled earlier.
DCHECK_NE(pc, 0u) << "PC 0 for " << PrettyMethod();
// Check whether the current entry point contains this pc.
if (!class_linker->IsQuickGenericJniStub(existing_entry_point) &&
!class_linker->IsQuickResolutionStub(existing_entry_point) &&
!class_linker->IsQuickToInterpreterBridge(existing_entry_point) &&
existing_entry_point != GetInvokeObsoleteMethodStub()) {
OatQuickMethodHeader* method_header =
OatQuickMethodHeader::FromEntryPoint(existing_entry_point);
if (method_header->Contains(pc)) {
return method_header;
}
}
if (OatQuickMethodHeader::IsNterpPc(pc)) {
return OatQuickMethodHeader::NterpMethodHeader;
}
// Check whether the pc is in the JIT code cache.
jit::Jit* jit = runtime->GetJit();
if (jit != nullptr) {
jit::JitCodeCache* code_cache = jit->GetCodeCache();
OatQuickMethodHeader* method_header = code_cache->LookupMethodHeader(pc, this);
if (method_header != nullptr) {
DCHECK(method_header->Contains(pc));
return method_header;
} else {
DCHECK(!code_cache->ContainsPc(reinterpret_cast<const void*>(pc)))
<< PrettyMethod()
<< ", pc=" << std::hex << pc
<< ", entry_point=" << std::hex << reinterpret_cast<uintptr_t>(existing_entry_point)
<< ", copy=" << std::boolalpha << IsCopied()
<< ", proxy=" << std::boolalpha << IsProxyMethod();
}
}
// The code has to be in an oat file.
bool found;
OatFile::OatMethod oat_method =
FindOatMethodFor(this, class_linker->GetImagePointerSize(), &found);
if (!found) {
CHECK(IsNative());
// We are running the GenericJNI stub. The entrypoint may point
// to different entrypoints or to a JIT-compiled JNI stub.
DCHECK(class_linker->IsQuickGenericJniStub(existing_entry_point) ||
class_linker->IsQuickResolutionStub(existing_entry_point) ||
(jit != nullptr && jit->GetCodeCache()->ContainsPc(existing_entry_point)))
<< " entrypoint: " << existing_entry_point
<< " size: " << OatQuickMethodHeader::FromEntryPoint(existing_entry_point)->GetCodeSize()
<< " pc: " << reinterpret_cast<const void*>(pc);
return nullptr;
}
const void* oat_entry_point = oat_method.GetQuickCode();
if (oat_entry_point == nullptr || class_linker->IsQuickGenericJniStub(oat_entry_point)) {
DCHECK(IsNative()) << PrettyMethod();
return nullptr;
}
OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromEntryPoint(oat_entry_point);
// We could have existing Oat code for native methods but we may not use it if the runtime is java
// debuggable or when profiling boot class path. There is no easy way to check if the pc
// corresponds to QuickGenericJniStub. Since we have eliminated all the other cases, if the pc
// doesn't correspond to the AOT code then we must be running QuickGenericJniStub.
if (IsNative() && !method_header->Contains(pc)) {
DCHECK_NE(pc, 0u) << "PC 0 for " << PrettyMethod();
return nullptr;
}
DCHECK(method_header->Contains(pc))
<< PrettyMethod()
<< " " << std::hex << pc << " " << oat_entry_point
<< " " << (uintptr_t)(method_header->GetCode() + method_header->GetCodeSize());
return method_header;
}
const void* ArtMethod::GetOatMethodQuickCode(PointerSize pointer_size) {
bool found;
OatFile::OatMethod oat_method = FindOatMethodFor(this, pointer_size, &found);
if (found) {
return oat_method.GetQuickCode();
}
return nullptr;
}
bool ArtMethod::HasAnyCompiledCode() {
if (IsNative() || !IsInvokable() || IsProxyMethod()) {
return false;
}
// Check whether the JIT has compiled it.
Runtime* runtime = Runtime::Current();
jit::Jit* jit = runtime->GetJit();
if (jit != nullptr && jit->GetCodeCache()->ContainsMethod(this)) {
return true;
}
// Check whether we have AOT code.
return GetOatMethodQuickCode(runtime->GetClassLinker()->GetImagePointerSize()) != nullptr;
}
void ArtMethod::SetIntrinsic(uint32_t intrinsic) {
// Currently we only do intrinsics for static/final methods or methods of final
// classes. We don't set kHasSingleImplementation for those methods.
DCHECK(IsStatic() || IsFinal() || GetDeclaringClass()->IsFinal()) <<
"Potential conflict with kAccSingleImplementation";
static const int kAccFlagsShift = CTZ(kAccIntrinsicBits);
DCHECK_LE(intrinsic, kAccIntrinsicBits >> kAccFlagsShift);
uint32_t intrinsic_bits = intrinsic << kAccFlagsShift;
uint32_t new_value = (GetAccessFlags() & ~kAccIntrinsicBits) | kAccIntrinsic | intrinsic_bits;
if (kIsDebugBuild) {
uint32_t java_flags = (GetAccessFlags() & kAccJavaFlagsMask);
bool is_constructor = IsConstructor();
bool is_synchronized = IsSynchronized();
bool skip_access_checks = SkipAccessChecks();
bool is_fast_native = IsFastNative();
bool is_critical_native = IsCriticalNative();
bool is_copied = IsCopied();
bool is_miranda = IsMiranda();
bool is_default = IsDefault();
bool is_default_conflict = IsDefaultConflicting();
bool is_compilable = IsCompilable();
bool must_count_locks = MustCountLocks();
// Recompute flags instead of getting them from the current access flags because
// access flags may have been changed to deduplicate warning messages (b/129063331).
uint32_t hiddenapi_flags = hiddenapi::CreateRuntimeFlags(this);
SetAccessFlags(new_value);
DCHECK_EQ(java_flags, (GetAccessFlags() & kAccJavaFlagsMask));
DCHECK_EQ(is_constructor, IsConstructor());
DCHECK_EQ(is_synchronized, IsSynchronized());
DCHECK_EQ(skip_access_checks, SkipAccessChecks());
DCHECK_EQ(is_fast_native, IsFastNative());
DCHECK_EQ(is_critical_native, IsCriticalNative());
DCHECK_EQ(is_copied, IsCopied());
DCHECK_EQ(is_miranda, IsMiranda());
DCHECK_EQ(is_default, IsDefault());
DCHECK_EQ(is_default_conflict, IsDefaultConflicting());
DCHECK_EQ(is_compilable, IsCompilable());
DCHECK_EQ(must_count_locks, MustCountLocks());
// Only DCHECK that we have preserved the hidden API access flags if the
// original method was not in the SDK list. This is because the core image
// does not have the access flags set (b/77733081).
if ((hiddenapi_flags & kAccHiddenapiBits) != kAccPublicApi) {
DCHECK_EQ(hiddenapi_flags, hiddenapi::GetRuntimeFlags(this)) << PrettyMethod();
}
} else {
SetAccessFlags(new_value);
}
}
void ArtMethod::SetNotIntrinsic() {
if (!IsIntrinsic()) {
return;
}
// Read the existing hiddenapi flags.
uint32_t hiddenapi_runtime_flags = hiddenapi::GetRuntimeFlags(this);
// Clear intrinsic-related access flags.
ClearAccessFlags(kAccIntrinsic | kAccIntrinsicBits);
// Re-apply hidden API access flags now that the method is not an intrinsic.
SetAccessFlags(GetAccessFlags() | hiddenapi_runtime_flags);
DCHECK_EQ(hiddenapi_runtime_flags, hiddenapi::GetRuntimeFlags(this));
}
void ArtMethod::CopyFrom(ArtMethod* src, PointerSize image_pointer_size) {
memcpy(reinterpret_cast<void*>(this), reinterpret_cast<const void*>(src),
Size(image_pointer_size));
declaring_class_ = GcRoot<mirror::Class>(const_cast<ArtMethod*>(src)->GetDeclaringClass());
// If the entry point of the method we are copying from is from JIT code, we just
// put the entry point of the new method to interpreter or GenericJNI. We could set
// the entry point to the JIT code, but this would require taking the JIT code cache
// lock to notify it, which we do not want at this level.
Runtime* runtime = Runtime::Current();
const void* entry_point = GetEntryPointFromQuickCompiledCodePtrSize(image_pointer_size);
if (runtime->UseJitCompilation()) {
if (runtime->GetJit()->GetCodeCache()->ContainsPc(entry_point)) {
SetEntryPointFromQuickCompiledCodePtrSize(
src->IsNative() ? GetQuickGenericJniStub() : GetQuickToInterpreterBridge(),
image_pointer_size);
}
}
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
if (interpreter::IsNterpSupported() && class_linker->IsNterpEntryPoint(entry_point)) {
// If the entrypoint is nterp, it's too early to check if the new method
// will support it. So for simplicity, use the interpreter bridge.
SetEntryPointFromQuickCompiledCodePtrSize(GetQuickToInterpreterBridge(), image_pointer_size);
}
// Clear the data pointer, it will be set if needed by the caller.
if (!src->HasCodeItem() && !src->IsNative()) {
SetDataPtrSize(nullptr, image_pointer_size);
}
// Clear hotness to let the JIT properly decide when to compile this method.
ResetCounter(runtime->GetJITOptions()->GetWarmupThreshold());
}
bool ArtMethod::IsImagePointerSize(PointerSize pointer_size) {
// Hijack this function to get access to PtrSizedFieldsOffset.
//
// Ensure that PrtSizedFieldsOffset is correct. We rely here on usually having both 32-bit and
// 64-bit builds.
static_assert(std::is_standard_layout<ArtMethod>::value, "ArtMethod is not standard layout.");
static_assert(
(sizeof(void*) != 4) ||
(offsetof(ArtMethod, ptr_sized_fields_) == PtrSizedFieldsOffset(PointerSize::k32)),
"Unexpected 32-bit class layout.");
static_assert(
(sizeof(void*) != 8) ||
(offsetof(ArtMethod, ptr_sized_fields_) == PtrSizedFieldsOffset(PointerSize::k64)),
"Unexpected 64-bit class layout.");
Runtime* runtime = Runtime::Current();
if (runtime == nullptr) {
return true;
}
return runtime->GetClassLinker()->GetImagePointerSize() == pointer_size;
}
std::string ArtMethod::PrettyMethod(ArtMethod* m, bool with_signature) {
if (m == nullptr) {
return "null";
}
return m->PrettyMethod(with_signature);
}
std::string ArtMethod::PrettyMethod(bool with_signature) {
if (UNLIKELY(IsRuntimeMethod())) {
std::string result = GetDeclaringClassDescriptor();
result += '.';
result += GetName();
// Do not add "<no signature>" even if `with_signature` is true.
return result;
}
ArtMethod* m =
GetInterfaceMethodIfProxy(Runtime::Current()->GetClassLinker()->GetImagePointerSize());
std::string res(m->GetDexFile()->PrettyMethod(m->GetDexMethodIndex(), with_signature));
if (with_signature && m->IsObsolete()) {
return "<OBSOLETE> " + res;
} else {
return res;
}
}
std::string ArtMethod::JniShortName() {
return GetJniShortName(GetDeclaringClassDescriptor(), GetName());
}
std::string ArtMethod::JniLongName() {
std::string long_name;
long_name += JniShortName();
long_name += "__";
std::string signature(GetSignature().ToString());
signature.erase(0, 1);
signature.erase(signature.begin() + signature.find(')'), signature.end());
long_name += MangleForJni(signature);
return long_name;
}
const char* ArtMethod::GetRuntimeMethodName() {
Runtime* const runtime = Runtime::Current();
if (this == runtime->GetResolutionMethod()) {
return "<runtime internal resolution method>";
} else if (this == runtime->GetImtConflictMethod()) {
return "<runtime internal imt conflict method>";
} else if (this == runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves)) {
return "<runtime internal callee-save all registers method>";
} else if (this == runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly)) {
return "<runtime internal callee-save reference registers method>";
} else if (this == runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs)) {
return "<runtime internal callee-save reference and argument registers method>";
} else if (this == runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything)) {
return "<runtime internal save-every-register method>";
} else if (this == runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit)) {
return "<runtime internal save-every-register method for clinit>";
} else if (this == runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck)) {
return "<runtime internal save-every-register method for suspend check>";
} else {
return "<unknown runtime internal method>";
}
}
void ArtMethod::SetCodeItem(const dex::CodeItem* code_item, bool is_compact_dex_code_item) {
DCHECK(HasCodeItem());
// We mark the lowest bit for the interpreter to know whether it's executing a
// method in a compact or standard dex file.
uintptr_t data =
reinterpret_cast<uintptr_t>(code_item) | (is_compact_dex_code_item ? 1 : 0);
SetDataPtrSize(reinterpret_cast<void*>(data), kRuntimePointerSize);
}
// AssertSharedHeld doesn't work in GetAccessFlags, so use a NO_THREAD_SAFETY_ANALYSIS helper.
// TODO: Figure out why ASSERT_SHARED_CAPABILITY doesn't work.
template <ReadBarrierOption kReadBarrierOption>
ALWAYS_INLINE static inline void DoGetAccessFlagsHelper(ArtMethod* method)
NO_THREAD_SAFETY_ANALYSIS {
CHECK(method->IsRuntimeMethod() ||
method->GetDeclaringClass<kReadBarrierOption>()->IsIdxLoaded() ||
method->GetDeclaringClass<kReadBarrierOption>()->IsErroneous());
}
} // namespace art