| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_ |
| #define ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_ |
| |
| #include "interpreter.h" |
| |
| #include <math.h> |
| |
| #include <iostream> |
| #include <sstream> |
| |
| #include "art_field-inl.h" |
| #include "art_method-inl.h" |
| #include "base/logging.h" |
| #include "base/macros.h" |
| #include "class_linker-inl.h" |
| #include "common_throws.h" |
| #include "dex_file-inl.h" |
| #include "dex_instruction-inl.h" |
| #include "entrypoints/entrypoint_utils-inl.h" |
| #include "handle_scope-inl.h" |
| #include "lambda/art_lambda_method.h" |
| #include "lambda/box_table.h" |
| #include "lambda/closure.h" |
| #include "lambda/closure_builder-inl.h" |
| #include "lambda/leaking_allocator.h" |
| #include "lambda/shorty_field_type.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/method.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/string-inl.h" |
| #include "stack.h" |
| #include "thread.h" |
| #include "well_known_classes.h" |
| |
| using ::art::ArtMethod; |
| using ::art::mirror::Array; |
| using ::art::mirror::BooleanArray; |
| using ::art::mirror::ByteArray; |
| using ::art::mirror::CharArray; |
| using ::art::mirror::Class; |
| using ::art::mirror::ClassLoader; |
| using ::art::mirror::IntArray; |
| using ::art::mirror::LongArray; |
| using ::art::mirror::Object; |
| using ::art::mirror::ObjectArray; |
| using ::art::mirror::ShortArray; |
| using ::art::mirror::String; |
| using ::art::mirror::Throwable; |
| |
| namespace art { |
| namespace interpreter { |
| |
| // External references to both interpreter implementations. |
| |
| template<bool do_access_check, bool transaction_active> |
| extern JValue ExecuteSwitchImpl(Thread* self, const DexFile::CodeItem* code_item, |
| ShadowFrame& shadow_frame, JValue result_register); |
| |
| template<bool do_access_check, bool transaction_active> |
| extern JValue ExecuteGotoImpl(Thread* self, const DexFile::CodeItem* code_item, |
| ShadowFrame& shadow_frame, JValue result_register); |
| |
| void ThrowNullPointerExceptionFromInterpreter() |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| template <bool kMonitorCounting> |
| static inline void DoMonitorEnter(Thread* self, |
| ShadowFrame* frame, |
| Object* ref) |
| NO_THREAD_SAFETY_ANALYSIS |
| REQUIRES(!Roles::uninterruptible_) { |
| StackHandleScope<1> hs(self); |
| Handle<Object> h_ref(hs.NewHandle(ref)); |
| h_ref->MonitorEnter(self); |
| frame->GetLockCountData().AddMonitor<kMonitorCounting>(self, h_ref.Get()); |
| } |
| |
| template <bool kMonitorCounting> |
| static inline void DoMonitorExit(Thread* self, |
| ShadowFrame* frame, |
| Object* ref) |
| NO_THREAD_SAFETY_ANALYSIS |
| REQUIRES(!Roles::uninterruptible_) { |
| StackHandleScope<1> hs(self); |
| Handle<Object> h_ref(hs.NewHandle(ref)); |
| h_ref->MonitorExit(self); |
| frame->GetLockCountData().RemoveMonitorOrThrow<kMonitorCounting>(self, h_ref.Get()); |
| } |
| |
| void AbortTransactionF(Thread* self, const char* fmt, ...) |
| __attribute__((__format__(__printf__, 2, 3))) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| void AbortTransactionV(Thread* self, const char* fmt, va_list args) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| void RecordArrayElementsInTransaction(mirror::Array* array, int32_t count) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Invokes the given method. This is part of the invocation support and is used by DoInvoke and |
| // DoInvokeVirtualQuick functions. |
| // Returns true on success, otherwise throws an exception and returns false. |
| template<bool is_range, bool do_assignability_check> |
| bool DoCall(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame, |
| const Instruction* inst, uint16_t inst_data, JValue* result); |
| |
| // Invokes the given lambda closure. This is part of the invocation support and is used by |
| // DoLambdaInvoke functions. |
| // Returns true on success, otherwise throws an exception and returns false. |
| template<bool is_range, bool do_assignability_check> |
| bool DoLambdaCall(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame, |
| const Instruction* inst, uint16_t inst_data, JValue* result); |
| |
| // Validates that the art method corresponding to a lambda method target |
| // is semantically valid: |
| // |
| // Must be ACC_STATIC and ACC_LAMBDA. Must be a concrete managed implementation |
| // (i.e. not native, not proxy, not abstract, ...). |
| // |
| // If the validation fails, return false and raise an exception. |
| static inline bool IsValidLambdaTargetOrThrow(ArtMethod* called_method) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| bool success = false; |
| |
| if (UNLIKELY(called_method == nullptr)) { |
| // The shadow frame should already be pushed, so we don't need to update it. |
| } else if (UNLIKELY(!called_method->IsInvokable())) { |
| called_method->ThrowInvocationTimeError(); |
| // We got an error. |
| // TODO(iam): Also handle the case when the method is non-static, what error do we throw? |
| // TODO(iam): Also make sure that ACC_LAMBDA is set. |
| } else if (UNLIKELY(called_method->GetCodeItem() == nullptr)) { |
| // Method could be native, proxy method, etc. Lambda targets have to be concrete impls, |
| // so don't allow this. |
| } else { |
| success = true; |
| } |
| |
| return success; |
| } |
| |
| // Write out the 'Closure*' into vreg and vreg+1, as if it was a jlong. |
| static inline void WriteLambdaClosureIntoVRegs(ShadowFrame& shadow_frame, |
| const lambda::Closure& lambda_closure, |
| uint32_t vreg) { |
| // Split the method into a lo and hi 32 bits so we can encode them into 2 virtual registers. |
| uint32_t closure_lo = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(&lambda_closure)); |
| uint32_t closure_hi = static_cast<uint32_t>(reinterpret_cast<uint64_t>(&lambda_closure) |
| >> BitSizeOf<uint32_t>()); |
| // Use uint64_t instead of uintptr_t to allow shifting past the max on 32-bit. |
| static_assert(sizeof(uint64_t) >= sizeof(uintptr_t), "Impossible"); |
| |
| DCHECK_NE(closure_lo | closure_hi, 0u); |
| |
| shadow_frame.SetVReg(vreg, closure_lo); |
| shadow_frame.SetVReg(vreg + 1, closure_hi); |
| } |
| |
| // Handles create-lambda instructions. |
| // Returns true on success, otherwise throws an exception and returns false. |
| // (Exceptions are thrown by creating a new exception and then being put in the thread TLS) |
| // |
| // The closure must be allocated big enough to hold the data, and should not be |
| // pre-initialized. It is initialized with the actual captured variables as a side-effect, |
| // although this should be unimportant to the caller since this function also handles storing it to |
| // the ShadowFrame. |
| // |
| // As a work-in-progress implementation, this shoves the ArtMethod object corresponding |
| // to the target dex method index into the target register vA and vA + 1. |
| template<bool do_access_check> |
| static inline bool DoCreateLambda(Thread* self, |
| const Instruction* inst, |
| /*inout*/ShadowFrame& shadow_frame, |
| /*inout*/lambda::ClosureBuilder* closure_builder, |
| /*inout*/lambda::Closure* uninitialized_closure) { |
| DCHECK(closure_builder != nullptr); |
| DCHECK(uninitialized_closure != nullptr); |
| DCHECK_ALIGNED(uninitialized_closure, alignof(lambda::Closure)); |
| |
| using lambda::ArtLambdaMethod; |
| using lambda::LeakingAllocator; |
| |
| /* |
| * create-lambda is opcode 0x21c |
| * - vA is the target register where the closure will be stored into |
| * (also stores into vA + 1) |
| * - vB is the method index which will be the target for a later invoke-lambda |
| */ |
| const uint32_t method_idx = inst->VRegB_21c(); |
| mirror::Object* receiver = nullptr; // Always static. (see 'kStatic') |
| ArtMethod* sf_method = shadow_frame.GetMethod(); |
| ArtMethod* const called_method = FindMethodFromCode<kStatic, do_access_check>( |
| method_idx, &receiver, sf_method, self); |
| |
| uint32_t vreg_dest_closure = inst->VRegA_21c(); |
| |
| if (UNLIKELY(!IsValidLambdaTargetOrThrow(called_method))) { |
| CHECK(self->IsExceptionPending()); |
| shadow_frame.SetVReg(vreg_dest_closure, 0u); |
| shadow_frame.SetVReg(vreg_dest_closure + 1, 0u); |
| return false; |
| } |
| |
| ArtLambdaMethod* initialized_lambda_method; |
| // Initialize the ArtLambdaMethod with the right data. |
| { |
| // Allocate enough memory to store a well-aligned ArtLambdaMethod. |
| // This is not the final type yet since the data starts out uninitialized. |
| LeakingAllocator::AlignedMemoryStorage<ArtLambdaMethod>* uninitialized_lambda_method = |
| LeakingAllocator::AllocateMemory<ArtLambdaMethod>(self); |
| |
| std::string captured_variables_shorty = closure_builder->GetCapturedVariableShortyTypes(); |
| std::string captured_variables_long_type_desc; |
| |
| // Synthesize a long type descriptor from the short one. |
| for (char shorty : captured_variables_shorty) { |
| lambda::ShortyFieldType shorty_field_type(shorty); |
| if (shorty_field_type.IsObject()) { |
| // Not the true type, but good enough until we implement verifier support. |
| captured_variables_long_type_desc += "Ljava/lang/Object;"; |
| UNIMPLEMENTED(FATAL) << "create-lambda with an object captured variable"; |
| } else if (shorty_field_type.IsLambda()) { |
| // Not the true type, but good enough until we implement verifier support. |
| captured_variables_long_type_desc += "Ljava/lang/Runnable;"; |
| UNIMPLEMENTED(FATAL) << "create-lambda with a lambda captured variable"; |
| } else { |
| // The primitive types have the same length shorty or not, so this is always correct. |
| DCHECK(shorty_field_type.IsPrimitive()); |
| captured_variables_long_type_desc += shorty_field_type; |
| } |
| } |
| |
| // Copy strings to dynamically allocated storage. This leaks, but that's ok. Fix it later. |
| // TODO: Strings need to come from the DexFile, so they won't need their own allocations. |
| char* captured_variables_type_desc = LeakingAllocator::MakeFlexibleInstance<char>( |
| self, |
| captured_variables_long_type_desc.size() + 1); |
| strcpy(captured_variables_type_desc, captured_variables_long_type_desc.c_str()); |
| char* captured_variables_shorty_copy = LeakingAllocator::MakeFlexibleInstance<char>( |
| self, |
| captured_variables_shorty.size() + 1); |
| strcpy(captured_variables_shorty_copy, captured_variables_shorty.c_str()); |
| |
| // After initialization, the object at the storage is well-typed. Use strong type going forward. |
| initialized_lambda_method = |
| new (uninitialized_lambda_method) ArtLambdaMethod(called_method, |
| captured_variables_type_desc, |
| captured_variables_shorty_copy, |
| true); // innate lambda |
| } |
| |
| // Write all the closure captured variables and the closure header into the closure. |
| lambda::Closure* initialized_closure = |
| closure_builder->CreateInPlace(uninitialized_closure, initialized_lambda_method); |
| |
| WriteLambdaClosureIntoVRegs(/*inout*/shadow_frame, *initialized_closure, vreg_dest_closure); |
| return true; |
| } |
| |
| // Reads out the 'ArtMethod*' stored inside of vreg and vreg+1 |
| // |
| // Validates that the art method points to a valid lambda function, otherwise throws |
| // an exception and returns null. |
| // (Exceptions are thrown by creating a new exception and then being put in the thread TLS) |
| static inline lambda::Closure* ReadLambdaClosureFromVRegsOrThrow(ShadowFrame& shadow_frame, |
| uint32_t vreg) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| // Lambda closures take up a consecutive pair of 2 virtual registers. |
| // On 32-bit the high bits are always 0. |
| uint32_t vc_value_lo = shadow_frame.GetVReg(vreg); |
| uint32_t vc_value_hi = shadow_frame.GetVReg(vreg + 1); |
| |
| uint64_t vc_value_ptr = (static_cast<uint64_t>(vc_value_hi) << BitSizeOf<uint32_t>()) |
| | vc_value_lo; |
| |
| // Use uint64_t instead of uintptr_t to allow left-shifting past the max on 32-bit. |
| static_assert(sizeof(uint64_t) >= sizeof(uintptr_t), "Impossible"); |
| lambda::Closure* const lambda_closure = reinterpret_cast<lambda::Closure*>(vc_value_ptr); |
| DCHECK_ALIGNED(lambda_closure, alignof(lambda::Closure)); |
| |
| // Guard against the user passing a null closure, which is odd but (sadly) semantically valid. |
| if (UNLIKELY(lambda_closure == nullptr)) { |
| ThrowNullPointerExceptionFromInterpreter(); |
| return nullptr; |
| } else if (UNLIKELY(!IsValidLambdaTargetOrThrow(lambda_closure->GetTargetMethod()))) { |
| // Sanity check against data corruption. |
| return nullptr; |
| } |
| |
| return lambda_closure; |
| } |
| |
| // Forward declaration for lock annotations. See below for documentation. |
| template <bool do_access_check> |
| static inline const char* GetStringDataByDexStringIndexOrThrow(ShadowFrame& shadow_frame, |
| uint32_t string_idx) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Find the c-string data corresponding to a dex file's string index. |
| // Otherwise, returns null if not found and throws a VerifyError. |
| // |
| // Note that with do_access_check=false, we never return null because the verifier |
| // must guard against invalid string indices. |
| // (Exceptions are thrown by creating a new exception and then being put in the thread TLS) |
| template <bool do_access_check> |
| static inline const char* GetStringDataByDexStringIndexOrThrow(ShadowFrame& shadow_frame, |
| uint32_t string_idx) { |
| ArtMethod* method = shadow_frame.GetMethod(); |
| const DexFile* dex_file = method->GetDexFile(); |
| |
| mirror::Class* declaring_class = method->GetDeclaringClass(); |
| if (!do_access_check) { |
| // MethodVerifier refuses methods with string_idx out of bounds. |
| DCHECK_LT(string_idx, declaring_class->GetDexCache()->NumStrings()); |
| } else { |
| // Access checks enabled: perform string index bounds ourselves. |
| if (string_idx >= dex_file->GetHeader().string_ids_size_) { |
| ThrowVerifyError(declaring_class, "String index '%" PRIu32 "' out of bounds", |
| string_idx); |
| return nullptr; |
| } |
| } |
| |
| const char* type_string = dex_file->StringDataByIdx(string_idx); |
| |
| if (UNLIKELY(type_string == nullptr)) { |
| CHECK_EQ(false, do_access_check) |
| << " verifier should've caught invalid string index " << string_idx; |
| CHECK_EQ(true, do_access_check) |
| << " string idx size check should've caught invalid string index " << string_idx; |
| } |
| |
| return type_string; |
| } |
| |
| // Handles capture-variable instructions. |
| // Returns true on success, otherwise throws an exception and returns false. |
| // (Exceptions are thrown by creating a new exception and then being put in the thread TLS) |
| template<bool do_access_check> |
| static inline bool DoCaptureVariable(Thread* self, |
| const Instruction* inst, |
| /*inout*/ShadowFrame& shadow_frame, |
| /*inout*/lambda::ClosureBuilder* closure_builder) { |
| DCHECK(closure_builder != nullptr); |
| using lambda::ShortyFieldType; |
| /* |
| * capture-variable is opcode 0xf6, fmt 0x21c |
| * - vA is the source register of the variable that will be captured |
| * - vB is the string ID of the variable's type that will be captured |
| */ |
| const uint32_t source_vreg = inst->VRegA_21c(); |
| const uint32_t string_idx = inst->VRegB_21c(); |
| // TODO: this should be a proper [type id] instead of a [string ID] pointing to a type. |
| |
| const char* type_string = GetStringDataByDexStringIndexOrThrow<do_access_check>(shadow_frame, |
| string_idx); |
| if (UNLIKELY(type_string == nullptr)) { |
| CHECK(self->IsExceptionPending()); |
| return false; |
| } |
| |
| char type_first_letter = type_string[0]; |
| ShortyFieldType shorty_type; |
| if (do_access_check && |
| UNLIKELY(!ShortyFieldType::MaybeCreate(type_first_letter, /*out*/&shorty_type))) { // NOLINT: [whitespace/comma] [3] |
| ThrowVerifyError(shadow_frame.GetMethod()->GetDeclaringClass(), |
| "capture-variable vB must be a valid type"); |
| return false; |
| } else { |
| // Already verified that the type is valid. |
| shorty_type = ShortyFieldType(type_first_letter); |
| } |
| |
| const size_t captured_variable_count = closure_builder->GetCaptureCount(); |
| |
| // Note: types are specified explicitly so that the closure is packed tightly. |
| switch (shorty_type) { |
| case ShortyFieldType::kBoolean: { |
| uint32_t primitive_narrow_value = shadow_frame.GetVReg(source_vreg); |
| closure_builder->CaptureVariablePrimitive<bool>(primitive_narrow_value); |
| break; |
| } |
| case ShortyFieldType::kByte: { |
| uint32_t primitive_narrow_value = shadow_frame.GetVReg(source_vreg); |
| closure_builder->CaptureVariablePrimitive<int8_t>(primitive_narrow_value); |
| break; |
| } |
| case ShortyFieldType::kChar: { |
| uint32_t primitive_narrow_value = shadow_frame.GetVReg(source_vreg); |
| closure_builder->CaptureVariablePrimitive<uint16_t>(primitive_narrow_value); |
| break; |
| } |
| case ShortyFieldType::kShort: { |
| uint32_t primitive_narrow_value = shadow_frame.GetVReg(source_vreg); |
| closure_builder->CaptureVariablePrimitive<int16_t>(primitive_narrow_value); |
| break; |
| } |
| case ShortyFieldType::kInt: { |
| uint32_t primitive_narrow_value = shadow_frame.GetVReg(source_vreg); |
| closure_builder->CaptureVariablePrimitive<int32_t>(primitive_narrow_value); |
| break; |
| } |
| case ShortyFieldType::kDouble: { |
| closure_builder->CaptureVariablePrimitive(shadow_frame.GetVRegDouble(source_vreg)); |
| break; |
| } |
| case ShortyFieldType::kFloat: { |
| closure_builder->CaptureVariablePrimitive(shadow_frame.GetVRegFloat(source_vreg)); |
| break; |
| } |
| case ShortyFieldType::kLambda: { |
| UNIMPLEMENTED(FATAL) << " capture-variable with type kLambda"; |
| // TODO: Capturing lambdas recursively will be done at a later time. |
| UNREACHABLE(); |
| } |
| case ShortyFieldType::kLong: { |
| closure_builder->CaptureVariablePrimitive(shadow_frame.GetVRegLong(source_vreg)); |
| break; |
| } |
| case ShortyFieldType::kObject: { |
| closure_builder->CaptureVariableObject(shadow_frame.GetVRegReference(source_vreg)); |
| UNIMPLEMENTED(FATAL) << " capture-variable with type kObject"; |
| // TODO: finish implementing this. disabled for now since we can't track lambda refs for GC. |
| UNREACHABLE(); |
| } |
| |
| default: |
| LOG(FATAL) << "Invalid shorty type value " << shorty_type; |
| UNREACHABLE(); |
| } |
| |
| DCHECK_EQ(captured_variable_count + 1, closure_builder->GetCaptureCount()); |
| |
| return true; |
| } |
| |
| // Handles capture-variable instructions. |
| // Returns true on success, otherwise throws an exception and returns false. |
| // (Exceptions are thrown by creating a new exception and then being put in the thread TLS) |
| template<bool do_access_check> |
| static inline bool DoLiberateVariable(Thread* self, |
| const Instruction* inst, |
| size_t captured_variable_index, |
| /*inout*/ShadowFrame& shadow_frame) { |
| using lambda::ShortyFieldType; |
| /* |
| * liberate-variable is opcode 0xf7, fmt 0x22c |
| * - vA is the destination register |
| * - vB is the register with the lambda closure in it |
| * - vC is the string ID which needs to be a valid field type descriptor |
| */ |
| |
| const uint32_t dest_vreg = inst->VRegA_22c(); |
| const uint32_t closure_vreg = inst->VRegB_22c(); |
| const uint32_t string_idx = inst->VRegC_22c(); |
| // TODO: this should be a proper [type id] instead of a [string ID] pointing to a type. |
| |
| |
| // Synthesize a long type descriptor from a shorty type descriptor list. |
| // TODO: Fix the dex encoding to contain the long and short type descriptors. |
| const char* type_string = GetStringDataByDexStringIndexOrThrow<do_access_check>(shadow_frame, |
| string_idx); |
| if (UNLIKELY(do_access_check && type_string == nullptr)) { |
| CHECK(self->IsExceptionPending()); |
| shadow_frame.SetVReg(dest_vreg, 0); |
| return false; |
| } |
| |
| char type_first_letter = type_string[0]; |
| ShortyFieldType shorty_type; |
| if (do_access_check && |
| UNLIKELY(!ShortyFieldType::MaybeCreate(type_first_letter, /*out*/&shorty_type))) { // NOLINT: [whitespace/comma] [3] |
| ThrowVerifyError(shadow_frame.GetMethod()->GetDeclaringClass(), |
| "liberate-variable vC must be a valid type"); |
| shadow_frame.SetVReg(dest_vreg, 0); |
| return false; |
| } else { |
| // Already verified that the type is valid. |
| shorty_type = ShortyFieldType(type_first_letter); |
| } |
| |
| // Check for closure being null *after* the type check. |
| // This way we can access the type info in case we fail later, to know how many vregs to clear. |
| const lambda::Closure* lambda_closure = |
| ReadLambdaClosureFromVRegsOrThrow(/*inout*/shadow_frame, closure_vreg); |
| |
| // Failed lambda target runtime check, an exception was raised. |
| if (UNLIKELY(lambda_closure == nullptr)) { |
| CHECK(self->IsExceptionPending()); |
| |
| // Clear the destination vreg(s) to be safe. |
| shadow_frame.SetVReg(dest_vreg, 0); |
| if (shorty_type.IsPrimitiveWide() || shorty_type.IsLambda()) { |
| shadow_frame.SetVReg(dest_vreg + 1, 0); |
| } |
| return false; |
| } |
| |
| if (do_access_check && |
| UNLIKELY(captured_variable_index >= lambda_closure->GetNumberOfCapturedVariables())) { |
| ThrowVerifyError(shadow_frame.GetMethod()->GetDeclaringClass(), |
| "liberate-variable captured variable index %zu out of bounds", |
| lambda_closure->GetNumberOfCapturedVariables()); |
| // Clear the destination vreg(s) to be safe. |
| shadow_frame.SetVReg(dest_vreg, 0); |
| if (shorty_type.IsPrimitiveWide() || shorty_type.IsLambda()) { |
| shadow_frame.SetVReg(dest_vreg + 1, 0); |
| } |
| return false; |
| } |
| |
| // Verify that the runtime type of the captured-variable matches the requested dex type. |
| if (do_access_check) { |
| ShortyFieldType actual_type = lambda_closure->GetCapturedShortyType(captured_variable_index); |
| if (actual_type != shorty_type) { |
| ThrowVerifyError(shadow_frame.GetMethod()->GetDeclaringClass(), |
| "cannot liberate-variable of runtime type '%c' to dex type '%c'", |
| static_cast<char>(actual_type), |
| static_cast<char>(shorty_type)); |
| |
| shadow_frame.SetVReg(dest_vreg, 0); |
| if (shorty_type.IsPrimitiveWide() || shorty_type.IsLambda()) { |
| shadow_frame.SetVReg(dest_vreg + 1, 0); |
| } |
| return false; |
| } |
| |
| if (actual_type.IsLambda() || actual_type.IsObject()) { |
| UNIMPLEMENTED(FATAL) << "liberate-variable type checks needs to " |
| << "parse full type descriptor for objects and lambdas"; |
| } |
| } |
| |
| // Unpack the captured variable from the closure into the correct type, then save it to the vreg. |
| if (shorty_type.IsPrimitiveNarrow()) { |
| uint32_t primitive_narrow_value = |
| lambda_closure->GetCapturedPrimitiveNarrow(captured_variable_index); |
| shadow_frame.SetVReg(dest_vreg, primitive_narrow_value); |
| } else if (shorty_type.IsPrimitiveWide()) { |
| uint64_t primitive_wide_value = |
| lambda_closure->GetCapturedPrimitiveWide(captured_variable_index); |
| shadow_frame.SetVRegLong(dest_vreg, static_cast<int64_t>(primitive_wide_value)); |
| } else if (shorty_type.IsObject()) { |
| mirror::Object* unpacked_object = |
| lambda_closure->GetCapturedObject(captured_variable_index); |
| shadow_frame.SetVRegReference(dest_vreg, unpacked_object); |
| |
| UNIMPLEMENTED(FATAL) << "liberate-variable cannot unpack objects yet"; |
| } else if (shorty_type.IsLambda()) { |
| UNIMPLEMENTED(FATAL) << "liberate-variable cannot unpack lambdas yet"; |
| } else { |
| LOG(FATAL) << "unreachable"; |
| UNREACHABLE(); |
| } |
| |
| return true; |
| } |
| |
| template<bool do_access_check> |
| static inline bool DoInvokeLambda(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, |
| uint16_t inst_data, JValue* result) { |
| /* |
| * invoke-lambda is opcode 0x25 |
| * |
| * - vC is the closure register (both vC and vC + 1 will be used to store the closure). |
| * - vB is the number of additional registers up to |{vD,vE,vF,vG}| (4) |
| * - the rest of the registers are always var-args |
| * |
| * - reading var-args for 0x25 gets us vD,vE,vF,vG (but not vB) |
| */ |
| uint32_t vreg_closure = inst->VRegC_25x(); |
| const lambda::Closure* lambda_closure = |
| ReadLambdaClosureFromVRegsOrThrow(shadow_frame, vreg_closure); |
| |
| // Failed lambda target runtime check, an exception was raised. |
| if (UNLIKELY(lambda_closure == nullptr)) { |
| CHECK(self->IsExceptionPending()); |
| result->SetJ(0); |
| return false; |
| } |
| |
| ArtMethod* const called_method = lambda_closure->GetTargetMethod(); |
| // Invoke a non-range lambda |
| return DoLambdaCall<false, do_access_check>(called_method, self, shadow_frame, inst, inst_data, |
| result); |
| } |
| |
| // Handles invoke-XXX/range instructions (other than invoke-lambda[-range]). |
| // Returns true on success, otherwise throws an exception and returns false. |
| template<InvokeType type, bool is_range, bool do_access_check> |
| static inline bool DoInvoke(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, |
| uint16_t inst_data, JValue* result) { |
| const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); |
| const uint32_t vregC = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c(); |
| Object* receiver = (type == kStatic) ? nullptr : shadow_frame.GetVRegReference(vregC); |
| ArtMethod* sf_method = shadow_frame.GetMethod(); |
| ArtMethod* const called_method = FindMethodFromCode<type, do_access_check>( |
| method_idx, &receiver, sf_method, self); |
| // The shadow frame should already be pushed, so we don't need to update it. |
| if (UNLIKELY(called_method == nullptr)) { |
| CHECK(self->IsExceptionPending()); |
| result->SetJ(0); |
| return false; |
| } else if (UNLIKELY(!called_method->IsInvokable())) { |
| called_method->ThrowInvocationTimeError(); |
| result->SetJ(0); |
| return false; |
| } else { |
| if (type == kVirtual || type == kInterface) { |
| instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); |
| if (UNLIKELY(instrumentation->HasInvokeVirtualOrInterfaceListeners())) { |
| instrumentation->InvokeVirtualOrInterface( |
| self, receiver, sf_method, shadow_frame.GetDexPC(), called_method); |
| } |
| } |
| return DoCall<is_range, do_access_check>(called_method, self, shadow_frame, inst, inst_data, |
| result); |
| } |
| } |
| |
| // Handles invoke-virtual-quick and invoke-virtual-quick-range instructions. |
| // Returns true on success, otherwise throws an exception and returns false. |
| template<bool is_range> |
| static inline bool DoInvokeVirtualQuick(Thread* self, ShadowFrame& shadow_frame, |
| const Instruction* inst, uint16_t inst_data, |
| JValue* result) { |
| const uint32_t vregC = (is_range) ? inst->VRegC_3rc() : inst->VRegC_35c(); |
| Object* const receiver = shadow_frame.GetVRegReference(vregC); |
| if (UNLIKELY(receiver == nullptr)) { |
| // We lost the reference to the method index so we cannot get a more |
| // precised exception message. |
| ThrowNullPointerExceptionFromDexPC(); |
| return false; |
| } |
| const uint32_t vtable_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c(); |
| CHECK(receiver->GetClass()->ShouldHaveEmbeddedImtAndVTable()); |
| ArtMethod* const called_method = receiver->GetClass()->GetEmbeddedVTableEntry( |
| vtable_idx, sizeof(void*)); |
| if (UNLIKELY(called_method == nullptr)) { |
| CHECK(self->IsExceptionPending()); |
| result->SetJ(0); |
| return false; |
| } else if (UNLIKELY(!called_method->IsInvokable())) { |
| called_method->ThrowInvocationTimeError(); |
| result->SetJ(0); |
| return false; |
| } else { |
| instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); |
| if (UNLIKELY(instrumentation->HasInvokeVirtualOrInterfaceListeners())) { |
| instrumentation->InvokeVirtualOrInterface( |
| self, receiver, shadow_frame.GetMethod(), shadow_frame.GetDexPC(), called_method); |
| } |
| // No need to check since we've been quickened. |
| return DoCall<is_range, false>(called_method, self, shadow_frame, inst, inst_data, result); |
| } |
| } |
| |
| // Handles iget-XXX and sget-XXX instructions. |
| // Returns true on success, otherwise throws an exception and returns false. |
| template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check> |
| bool DoFieldGet(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, |
| uint16_t inst_data) SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Handles iget-quick, iget-wide-quick and iget-object-quick instructions. |
| // Returns true on success, otherwise throws an exception and returns false. |
| template<Primitive::Type field_type> |
| bool DoIGetQuick(ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Handles iput-XXX and sput-XXX instructions. |
| // Returns true on success, otherwise throws an exception and returns false. |
| template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check, |
| bool transaction_active> |
| bool DoFieldPut(Thread* self, const ShadowFrame& shadow_frame, const Instruction* inst, |
| uint16_t inst_data) SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| // Handles iput-quick, iput-wide-quick and iput-object-quick instructions. |
| // Returns true on success, otherwise throws an exception and returns false. |
| template<Primitive::Type field_type, bool transaction_active> |
| bool DoIPutQuick(const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| |
| // Handles string resolution for const-string and const-string-jumbo instructions. Also ensures the |
| // java.lang.String class is initialized. |
| static inline String* ResolveString(Thread* self, ShadowFrame& shadow_frame, uint32_t string_idx) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| Class* java_lang_string_class = String::GetJavaLangString(); |
| if (UNLIKELY(!java_lang_string_class->IsInitialized())) { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Class> h_class(hs.NewHandle(java_lang_string_class)); |
| if (UNLIKELY(!class_linker->EnsureInitialized(self, h_class, true, true))) { |
| DCHECK(self->IsExceptionPending()); |
| return nullptr; |
| } |
| } |
| ArtMethod* method = shadow_frame.GetMethod(); |
| mirror::Class* declaring_class = method->GetDeclaringClass(); |
| // MethodVerifier refuses methods with string_idx out of bounds. |
| DCHECK_LT(string_idx, declaring_class->GetDexCache()->NumStrings()); |
| mirror::String* s = declaring_class->GetDexCacheStrings()[string_idx].Read(); |
| if (UNLIKELY(s == nullptr)) { |
| StackHandleScope<1> hs(self); |
| Handle<mirror::DexCache> dex_cache(hs.NewHandle(declaring_class->GetDexCache())); |
| s = Runtime::Current()->GetClassLinker()->ResolveString(*method->GetDexFile(), string_idx, |
| dex_cache); |
| } |
| return s; |
| } |
| |
| // Handles div-int, div-int/2addr, div-int/li16 and div-int/lit8 instructions. |
| // Returns true on success, otherwise throws a java.lang.ArithmeticException and return false. |
| static inline bool DoIntDivide(ShadowFrame& shadow_frame, size_t result_reg, |
| int32_t dividend, int32_t divisor) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| constexpr int32_t kMinInt = std::numeric_limits<int32_t>::min(); |
| if (UNLIKELY(divisor == 0)) { |
| ThrowArithmeticExceptionDivideByZero(); |
| return false; |
| } |
| if (UNLIKELY(dividend == kMinInt && divisor == -1)) { |
| shadow_frame.SetVReg(result_reg, kMinInt); |
| } else { |
| shadow_frame.SetVReg(result_reg, dividend / divisor); |
| } |
| return true; |
| } |
| |
| // Handles rem-int, rem-int/2addr, rem-int/li16 and rem-int/lit8 instructions. |
| // Returns true on success, otherwise throws a java.lang.ArithmeticException and return false. |
| static inline bool DoIntRemainder(ShadowFrame& shadow_frame, size_t result_reg, |
| int32_t dividend, int32_t divisor) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| constexpr int32_t kMinInt = std::numeric_limits<int32_t>::min(); |
| if (UNLIKELY(divisor == 0)) { |
| ThrowArithmeticExceptionDivideByZero(); |
| return false; |
| } |
| if (UNLIKELY(dividend == kMinInt && divisor == -1)) { |
| shadow_frame.SetVReg(result_reg, 0); |
| } else { |
| shadow_frame.SetVReg(result_reg, dividend % divisor); |
| } |
| return true; |
| } |
| |
| // Handles div-long and div-long-2addr instructions. |
| // Returns true on success, otherwise throws a java.lang.ArithmeticException and return false. |
| static inline bool DoLongDivide(ShadowFrame& shadow_frame, size_t result_reg, |
| int64_t dividend, int64_t divisor) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| const int64_t kMinLong = std::numeric_limits<int64_t>::min(); |
| if (UNLIKELY(divisor == 0)) { |
| ThrowArithmeticExceptionDivideByZero(); |
| return false; |
| } |
| if (UNLIKELY(dividend == kMinLong && divisor == -1)) { |
| shadow_frame.SetVRegLong(result_reg, kMinLong); |
| } else { |
| shadow_frame.SetVRegLong(result_reg, dividend / divisor); |
| } |
| return true; |
| } |
| |
| // Handles rem-long and rem-long-2addr instructions. |
| // Returns true on success, otherwise throws a java.lang.ArithmeticException and return false. |
| static inline bool DoLongRemainder(ShadowFrame& shadow_frame, size_t result_reg, |
| int64_t dividend, int64_t divisor) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| const int64_t kMinLong = std::numeric_limits<int64_t>::min(); |
| if (UNLIKELY(divisor == 0)) { |
| ThrowArithmeticExceptionDivideByZero(); |
| return false; |
| } |
| if (UNLIKELY(dividend == kMinLong && divisor == -1)) { |
| shadow_frame.SetVRegLong(result_reg, 0); |
| } else { |
| shadow_frame.SetVRegLong(result_reg, dividend % divisor); |
| } |
| return true; |
| } |
| |
| // Handles filled-new-array and filled-new-array-range instructions. |
| // Returns true on success, otherwise throws an exception and returns false. |
| template <bool is_range, bool do_access_check, bool transaction_active> |
| bool DoFilledNewArray(const Instruction* inst, const ShadowFrame& shadow_frame, |
| Thread* self, JValue* result); |
| |
| // Handles packed-switch instruction. |
| // Returns the branch offset to the next instruction to execute. |
| static inline int32_t DoPackedSwitch(const Instruction* inst, const ShadowFrame& shadow_frame, |
| uint16_t inst_data) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| DCHECK(inst->Opcode() == Instruction::PACKED_SWITCH); |
| const uint16_t* switch_data = reinterpret_cast<const uint16_t*>(inst) + inst->VRegB_31t(); |
| int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t(inst_data)); |
| DCHECK_EQ(switch_data[0], static_cast<uint16_t>(Instruction::kPackedSwitchSignature)); |
| uint16_t size = switch_data[1]; |
| if (size == 0) { |
| // Empty packed switch, move forward by 3 (size of PACKED_SWITCH). |
| return 3; |
| } |
| const int32_t* keys = reinterpret_cast<const int32_t*>(&switch_data[2]); |
| DCHECK_ALIGNED(keys, 4); |
| int32_t first_key = keys[0]; |
| const int32_t* targets = reinterpret_cast<const int32_t*>(&switch_data[4]); |
| DCHECK_ALIGNED(targets, 4); |
| int32_t index = test_val - first_key; |
| if (index >= 0 && index < size) { |
| return targets[index]; |
| } else { |
| // No corresponding value: move forward by 3 (size of PACKED_SWITCH). |
| return 3; |
| } |
| } |
| |
| // Handles sparse-switch instruction. |
| // Returns the branch offset to the next instruction to execute. |
| static inline int32_t DoSparseSwitch(const Instruction* inst, const ShadowFrame& shadow_frame, |
| uint16_t inst_data) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| DCHECK(inst->Opcode() == Instruction::SPARSE_SWITCH); |
| const uint16_t* switch_data = reinterpret_cast<const uint16_t*>(inst) + inst->VRegB_31t(); |
| int32_t test_val = shadow_frame.GetVReg(inst->VRegA_31t(inst_data)); |
| DCHECK_EQ(switch_data[0], static_cast<uint16_t>(Instruction::kSparseSwitchSignature)); |
| uint16_t size = switch_data[1]; |
| // Return length of SPARSE_SWITCH if size is 0. |
| if (size == 0) { |
| return 3; |
| } |
| const int32_t* keys = reinterpret_cast<const int32_t*>(&switch_data[2]); |
| DCHECK_ALIGNED(keys, 4); |
| const int32_t* entries = keys + size; |
| DCHECK_ALIGNED(entries, 4); |
| int lo = 0; |
| int hi = size - 1; |
| while (lo <= hi) { |
| int mid = (lo + hi) / 2; |
| int32_t foundVal = keys[mid]; |
| if (test_val < foundVal) { |
| hi = mid - 1; |
| } else if (test_val > foundVal) { |
| lo = mid + 1; |
| } else { |
| return entries[mid]; |
| } |
| } |
| // No corresponding value: move forward by 3 (size of SPARSE_SWITCH). |
| return 3; |
| } |
| |
| template <bool _do_check> |
| static inline bool DoBoxLambda(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, |
| uint16_t inst_data) SHARED_REQUIRES(Locks::mutator_lock_) { |
| /* |
| * box-lambda vA, vB /// opcode 0xf8, format 22x |
| * - vA is the target register where the Object representation of the closure will be stored into |
| * - vB is a closure (made by create-lambda) |
| * (also reads vB + 1) |
| */ |
| uint32_t vreg_target_object = inst->VRegA_22x(inst_data); |
| uint32_t vreg_source_closure = inst->VRegB_22x(); |
| |
| lambda::Closure* lambda_closure = ReadLambdaClosureFromVRegsOrThrow(shadow_frame, |
| vreg_source_closure); |
| |
| // Failed lambda target runtime check, an exception was raised. |
| if (UNLIKELY(lambda_closure == nullptr)) { |
| CHECK(self->IsExceptionPending()); |
| return false; |
| } |
| |
| mirror::Object* closure_as_object = |
| Runtime::Current()->GetLambdaBoxTable()->BoxLambda(lambda_closure); |
| |
| // Failed to box the lambda, an exception was raised. |
| if (UNLIKELY(closure_as_object == nullptr)) { |
| CHECK(self->IsExceptionPending()); |
| return false; |
| } |
| |
| shadow_frame.SetVRegReference(vreg_target_object, closure_as_object); |
| return true; |
| } |
| |
| template <bool _do_check> SHARED_REQUIRES(Locks::mutator_lock_) |
| static inline bool DoUnboxLambda(Thread* self, |
| ShadowFrame& shadow_frame, |
| const Instruction* inst, |
| uint16_t inst_data) { |
| /* |
| * unbox-lambda vA, vB, [type id] /// opcode 0xf9, format 22c |
| * - vA is the target register where the closure will be written into |
| * (also writes vA + 1) |
| * - vB is the Object representation of the closure (made by box-lambda) |
| */ |
| uint32_t vreg_target_closure = inst->VRegA_22c(inst_data); |
| uint32_t vreg_source_object = inst->VRegB_22c(); |
| |
| // Raise NullPointerException if object is null |
| mirror::Object* boxed_closure_object = shadow_frame.GetVRegReference(vreg_source_object); |
| if (UNLIKELY(boxed_closure_object == nullptr)) { |
| ThrowNullPointerExceptionFromInterpreter(); |
| return false; |
| } |
| |
| lambda::Closure* unboxed_closure = nullptr; |
| // Raise an exception if unboxing fails. |
| if (!Runtime::Current()->GetLambdaBoxTable()->UnboxLambda(boxed_closure_object, |
| /*out*/&unboxed_closure)) { |
| CHECK(self->IsExceptionPending()); |
| return false; |
| } |
| |
| DCHECK(unboxed_closure != nullptr); |
| WriteLambdaClosureIntoVRegs(/*inout*/shadow_frame, *unboxed_closure, vreg_target_closure); |
| return true; |
| } |
| |
| uint32_t FindNextInstructionFollowingException(Thread* self, ShadowFrame& shadow_frame, |
| uint32_t dex_pc, const instrumentation::Instrumentation* instrumentation) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| NO_RETURN void UnexpectedOpcode(const Instruction* inst, const ShadowFrame& shadow_frame) |
| __attribute__((cold)) |
| SHARED_REQUIRES(Locks::mutator_lock_); |
| |
| static inline void TraceExecution(const ShadowFrame& shadow_frame, const Instruction* inst, |
| const uint32_t dex_pc) |
| SHARED_REQUIRES(Locks::mutator_lock_) { |
| constexpr bool kTracing = false; |
| if (kTracing) { |
| #define TRACE_LOG std::cerr |
| std::ostringstream oss; |
| oss << PrettyMethod(shadow_frame.GetMethod()) |
| << StringPrintf("\n0x%x: ", dex_pc) |
| << inst->DumpString(shadow_frame.GetMethod()->GetDexFile()) << "\n"; |
| for (uint32_t i = 0; i < shadow_frame.NumberOfVRegs(); ++i) { |
| uint32_t raw_value = shadow_frame.GetVReg(i); |
| Object* ref_value = shadow_frame.GetVRegReference(i); |
| oss << StringPrintf(" vreg%u=0x%08X", i, raw_value); |
| if (ref_value != nullptr) { |
| if (ref_value->GetClass()->IsStringClass() && |
| ref_value->AsString()->GetValue() != nullptr) { |
| oss << "/java.lang.String \"" << ref_value->AsString()->ToModifiedUtf8() << "\""; |
| } else { |
| oss << "/" << PrettyTypeOf(ref_value); |
| } |
| } |
| } |
| TRACE_LOG << oss.str() << "\n"; |
| #undef TRACE_LOG |
| } |
| } |
| |
| static inline bool IsBackwardBranch(int32_t branch_offset) { |
| return branch_offset <= 0; |
| } |
| |
| // Explicitly instantiate all DoInvoke functions. |
| #define EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, _is_range, _do_check) \ |
| template SHARED_REQUIRES(Locks::mutator_lock_) \ |
| bool DoInvoke<_type, _is_range, _do_check>(Thread* self, ShadowFrame& shadow_frame, \ |
| const Instruction* inst, uint16_t inst_data, \ |
| JValue* result) |
| |
| #define EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(_type) \ |
| EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, false, false); \ |
| EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, false, true); \ |
| EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, true, false); \ |
| EXPLICIT_DO_INVOKE_TEMPLATE_DECL(_type, true, true); |
| |
| EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kStatic) // invoke-static/range. |
| EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kDirect) // invoke-direct/range. |
| EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kVirtual) // invoke-virtual/range. |
| EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kSuper) // invoke-super/range. |
| EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL(kInterface) // invoke-interface/range. |
| #undef EXPLICIT_DO_INVOKE_ALL_TEMPLATE_DECL |
| #undef EXPLICIT_DO_INVOKE_TEMPLATE_DECL |
| |
| // Explicitly instantiate all DoInvokeVirtualQuick functions. |
| #define EXPLICIT_DO_INVOKE_VIRTUAL_QUICK_TEMPLATE_DECL(_is_range) \ |
| template SHARED_REQUIRES(Locks::mutator_lock_) \ |
| bool DoInvokeVirtualQuick<_is_range>(Thread* self, ShadowFrame& shadow_frame, \ |
| const Instruction* inst, uint16_t inst_data, \ |
| JValue* result) |
| |
| EXPLICIT_DO_INVOKE_VIRTUAL_QUICK_TEMPLATE_DECL(false); // invoke-virtual-quick. |
| EXPLICIT_DO_INVOKE_VIRTUAL_QUICK_TEMPLATE_DECL(true); // invoke-virtual-quick-range. |
| #undef EXPLICIT_INSTANTIATION_DO_INVOKE_VIRTUAL_QUICK |
| |
| // Explicitly instantiate all DoCreateLambda functions. |
| #define EXPLICIT_DO_CREATE_LAMBDA_DECL(_do_check) \ |
| template SHARED_REQUIRES(Locks::mutator_lock_) \ |
| bool DoCreateLambda<_do_check>(Thread* self, \ |
| const Instruction* inst, \ |
| /*inout*/ShadowFrame& shadow_frame, \ |
| /*inout*/lambda::ClosureBuilder* closure_builder, \ |
| /*inout*/lambda::Closure* uninitialized_closure); |
| |
| EXPLICIT_DO_CREATE_LAMBDA_DECL(false); // create-lambda |
| EXPLICIT_DO_CREATE_LAMBDA_DECL(true); // create-lambda |
| #undef EXPLICIT_DO_CREATE_LAMBDA_DECL |
| |
| // Explicitly instantiate all DoInvokeLambda functions. |
| #define EXPLICIT_DO_INVOKE_LAMBDA_DECL(_do_check) \ |
| template SHARED_REQUIRES(Locks::mutator_lock_) \ |
| bool DoInvokeLambda<_do_check>(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, \ |
| uint16_t inst_data, JValue* result); |
| |
| EXPLICIT_DO_INVOKE_LAMBDA_DECL(false); // invoke-lambda |
| EXPLICIT_DO_INVOKE_LAMBDA_DECL(true); // invoke-lambda |
| #undef EXPLICIT_DO_INVOKE_LAMBDA_DECL |
| |
| // Explicitly instantiate all DoBoxLambda functions. |
| #define EXPLICIT_DO_BOX_LAMBDA_DECL(_do_check) \ |
| template SHARED_REQUIRES(Locks::mutator_lock_) \ |
| bool DoBoxLambda<_do_check>(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, \ |
| uint16_t inst_data); |
| |
| EXPLICIT_DO_BOX_LAMBDA_DECL(false); // box-lambda |
| EXPLICIT_DO_BOX_LAMBDA_DECL(true); // box-lambda |
| #undef EXPLICIT_DO_BOX_LAMBDA_DECL |
| |
| // Explicitly instantiate all DoUnBoxLambda functions. |
| #define EXPLICIT_DO_UNBOX_LAMBDA_DECL(_do_check) \ |
| template SHARED_REQUIRES(Locks::mutator_lock_) \ |
| bool DoUnboxLambda<_do_check>(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, \ |
| uint16_t inst_data); |
| |
| EXPLICIT_DO_UNBOX_LAMBDA_DECL(false); // unbox-lambda |
| EXPLICIT_DO_UNBOX_LAMBDA_DECL(true); // unbox-lambda |
| #undef EXPLICIT_DO_BOX_LAMBDA_DECL |
| |
| // Explicitly instantiate all DoCaptureVariable functions. |
| #define EXPLICIT_DO_CAPTURE_VARIABLE_DECL(_do_check) \ |
| template SHARED_REQUIRES(Locks::mutator_lock_) \ |
| bool DoCaptureVariable<_do_check>(Thread* self, \ |
| const Instruction* inst, \ |
| ShadowFrame& shadow_frame, \ |
| lambda::ClosureBuilder* closure_builder); |
| |
| EXPLICIT_DO_CAPTURE_VARIABLE_DECL(false); // capture-variable |
| EXPLICIT_DO_CAPTURE_VARIABLE_DECL(true); // capture-variable |
| #undef EXPLICIT_DO_CREATE_LAMBDA_DECL |
| |
| // Explicitly instantiate all DoLiberateVariable functions. |
| #define EXPLICIT_DO_LIBERATE_VARIABLE_DECL(_do_check) \ |
| template SHARED_REQUIRES(Locks::mutator_lock_) \ |
| bool DoLiberateVariable<_do_check>(Thread* self, \ |
| const Instruction* inst, \ |
| size_t captured_variable_index, \ |
| ShadowFrame& shadow_frame); \ |
| |
| EXPLICIT_DO_LIBERATE_VARIABLE_DECL(false); // liberate-variable |
| EXPLICIT_DO_LIBERATE_VARIABLE_DECL(true); // liberate-variable |
| #undef EXPLICIT_DO_LIBERATE_LAMBDA_DECL |
| } // namespace interpreter |
| } // namespace art |
| |
| #endif // ART_RUNTIME_INTERPRETER_INTERPRETER_COMMON_H_ |