blob: 9a186350664fa2536f44d28462a975a84cb5b921 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Implementation file of the dexdump utility.
*
* This is a re-implementation of the original dexdump utility that was
* based on Dalvik functions in libdex into a new dexdump that is now
* based on Art functions in libart instead. The output is identical to
* the original for correct DEX files. Error messages may differ, however.
* Also, ODEX files are no longer supported.
*
* The dexdump tool is intended to mimic objdump. When possible, use
* similar command-line arguments.
*
* Differences between XML output and the "current.xml" file:
* - classes in same package are not all grouped together; nothing is sorted
* - no "deprecated" on fields and methods
* - no parameter names
* - no generic signatures on parameters, e.g. type="java.lang.Class<?>"
* - class shows declared fields and methods; does not show inherited fields
*/
#include "dexdump.h"
#include <inttypes.h>
#include <stdio.h>
#include <iostream>
#include <memory>
#include <sstream>
#include <vector>
#include "dex_file-inl.h"
#include "dex_instruction-inl.h"
#include "utils.h"
namespace art {
/*
* Options parsed in main driver.
*/
struct Options gOptions;
/*
* Output file. Defaults to stdout.
*/
FILE* gOutFile = stdout;
/*
* Data types that match the definitions in the VM specification.
*/
typedef uint8_t u1;
typedef uint16_t u2;
typedef uint32_t u4;
typedef uint64_t u8;
typedef int32_t s4;
typedef int64_t s8;
/*
* Basic information about a field or a method.
*/
struct FieldMethodInfo {
const char* classDescriptor;
const char* name;
const char* signature;
};
/*
* Flags for use with createAccessFlagStr().
*/
enum AccessFor {
kAccessForClass = 0, kAccessForMethod = 1, kAccessForField = 2, kAccessForMAX
};
const int kNumFlags = 18;
/*
* Gets 2 little-endian bytes.
*/
static inline u2 get2LE(unsigned char const* pSrc) {
return pSrc[0] | (pSrc[1] << 8);
}
/*
* Converts a single-character primitive type into human-readable form.
*/
static const char* primitiveTypeLabel(char typeChar) {
switch (typeChar) {
case 'B': return "byte";
case 'C': return "char";
case 'D': return "double";
case 'F': return "float";
case 'I': return "int";
case 'J': return "long";
case 'S': return "short";
case 'V': return "void";
case 'Z': return "boolean";
default: return "UNKNOWN";
} // switch
}
/*
* Converts a type descriptor to human-readable "dotted" form. For
* example, "Ljava/lang/String;" becomes "java.lang.String", and
* "[I" becomes "int[]". Also converts '$' to '.', which means this
* form can't be converted back to a descriptor.
*/
static char* descriptorToDot(const char* str) {
int targetLen = strlen(str);
int offset = 0;
// Strip leading [s; will be added to end.
while (targetLen > 1 && str[offset] == '[') {
offset++;
targetLen--;
} // while
const int arrayDepth = offset;
if (targetLen == 1) {
// Primitive type.
str = primitiveTypeLabel(str[offset]);
offset = 0;
targetLen = strlen(str);
} else {
// Account for leading 'L' and trailing ';'.
if (targetLen >= 2 && str[offset] == 'L' &&
str[offset + targetLen - 1] == ';') {
targetLen -= 2;
offset++;
}
}
// Copy class name over.
char* newStr = reinterpret_cast<char*>(
malloc(targetLen + arrayDepth * 2 + 1));
int i = 0;
for (; i < targetLen; i++) {
const char ch = str[offset + i];
newStr[i] = (ch == '/' || ch == '$') ? '.' : ch;
} // for
// Add the appropriate number of brackets for arrays.
for (int j = 0; j < arrayDepth; j++) {
newStr[i++] = '[';
newStr[i++] = ']';
} // for
newStr[i] = '\0';
return newStr;
}
/*
* Converts the class name portion of a type descriptor to human-readable
* "dotted" form.
*
* Returns a newly-allocated string.
*/
static char* descriptorClassToDot(const char* str) {
// Reduce to just the class name, trimming trailing ';'.
const char* lastSlash = strrchr(str, '/');
if (lastSlash == nullptr) {
lastSlash = str + 1; // start past 'L'
} else {
lastSlash++; // start past '/'
}
char* newStr = strdup(lastSlash);
newStr[strlen(lastSlash) - 1] = '\0';
for (char* cp = newStr; *cp != '\0'; cp++) {
if (*cp == '$') {
*cp = '.';
}
} // for
return newStr;
}
/*
* Returns a quoted string representing the boolean value.
*/
static const char* quotedBool(bool val) {
return val ? "\"true\"" : "\"false\"";
}
/*
* Returns a quoted string representing the access flags.
*/
static const char* quotedVisibility(u4 accessFlags) {
if (accessFlags & kAccPublic) {
return "\"public\"";
} else if (accessFlags & kAccProtected) {
return "\"protected\"";
} else if (accessFlags & kAccPrivate) {
return "\"private\"";
} else {
return "\"package\"";
}
}
/*
* Counts the number of '1' bits in a word.
*/
static int countOnes(u4 val) {
val = val - ((val >> 1) & 0x55555555);
val = (val & 0x33333333) + ((val >> 2) & 0x33333333);
return (((val + (val >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24;
}
/*
* Creates a new string with human-readable access flags.
*
* In the base language the access_flags fields are type u2; in Dalvik
* they're u4.
*/
static char* createAccessFlagStr(u4 flags, AccessFor forWhat) {
static const char* kAccessStrings[kAccessForMAX][kNumFlags] = {
{
"PUBLIC", /* 0x00001 */
"PRIVATE", /* 0x00002 */
"PROTECTED", /* 0x00004 */
"STATIC", /* 0x00008 */
"FINAL", /* 0x00010 */
"?", /* 0x00020 */
"?", /* 0x00040 */
"?", /* 0x00080 */
"?", /* 0x00100 */
"INTERFACE", /* 0x00200 */
"ABSTRACT", /* 0x00400 */
"?", /* 0x00800 */
"SYNTHETIC", /* 0x01000 */
"ANNOTATION", /* 0x02000 */
"ENUM", /* 0x04000 */
"?", /* 0x08000 */
"VERIFIED", /* 0x10000 */
"OPTIMIZED", /* 0x20000 */
}, {
"PUBLIC", /* 0x00001 */
"PRIVATE", /* 0x00002 */
"PROTECTED", /* 0x00004 */
"STATIC", /* 0x00008 */
"FINAL", /* 0x00010 */
"SYNCHRONIZED", /* 0x00020 */
"BRIDGE", /* 0x00040 */
"VARARGS", /* 0x00080 */
"NATIVE", /* 0x00100 */
"?", /* 0x00200 */
"ABSTRACT", /* 0x00400 */
"STRICT", /* 0x00800 */
"SYNTHETIC", /* 0x01000 */
"?", /* 0x02000 */
"?", /* 0x04000 */
"MIRANDA", /* 0x08000 */
"CONSTRUCTOR", /* 0x10000 */
"DECLARED_SYNCHRONIZED", /* 0x20000 */
}, {
"PUBLIC", /* 0x00001 */
"PRIVATE", /* 0x00002 */
"PROTECTED", /* 0x00004 */
"STATIC", /* 0x00008 */
"FINAL", /* 0x00010 */
"?", /* 0x00020 */
"VOLATILE", /* 0x00040 */
"TRANSIENT", /* 0x00080 */
"?", /* 0x00100 */
"?", /* 0x00200 */
"?", /* 0x00400 */
"?", /* 0x00800 */
"SYNTHETIC", /* 0x01000 */
"?", /* 0x02000 */
"ENUM", /* 0x04000 */
"?", /* 0x08000 */
"?", /* 0x10000 */
"?", /* 0x20000 */
},
};
// Allocate enough storage to hold the expected number of strings,
// plus a space between each. We over-allocate, using the longest
// string above as the base metric.
const int kLongest = 21; // The strlen of longest string above.
const int count = countOnes(flags);
char* str;
char* cp;
cp = str = reinterpret_cast<char*>(malloc(count * (kLongest + 1) + 1));
for (int i = 0; i < kNumFlags; i++) {
if (flags & 0x01) {
const char* accessStr = kAccessStrings[forWhat][i];
const int len = strlen(accessStr);
if (cp != str) {
*cp++ = ' ';
}
memcpy(cp, accessStr, len);
cp += len;
}
flags >>= 1;
} // for
*cp = '\0';
return str;
}
/*
* Copies character data from "data" to "out", converting non-ASCII values
* to fprintf format chars or an ASCII filler ('.' or '?').
*
* The output buffer must be able to hold (2*len)+1 bytes. The result is
* NULL-terminated.
*/
static void asciify(char* out, const unsigned char* data, size_t len) {
while (len--) {
if (*data < 0x20) {
// Could do more here, but we don't need them yet.
switch (*data) {
case '\0':
*out++ = '\\';
*out++ = '0';
break;
case '\n':
*out++ = '\\';
*out++ = 'n';
break;
default:
*out++ = '.';
break;
} // switch
} else if (*data >= 0x80) {
*out++ = '?';
} else {
*out++ = *data;
}
data++;
} // while
*out = '\0';
}
/*
* Dumps the file header.
*
* Note that some of the : are misaligned on purpose to preserve
* the exact output of the original Dalvik dexdump.
*/
static void dumpFileHeader(const DexFile* pDexFile) {
const DexFile::Header& pHeader = pDexFile->GetHeader();
char sanitized[sizeof(pHeader.magic_) * 2 + 1];
fprintf(gOutFile, "DEX file header:\n");
asciify(sanitized, pHeader.magic_, sizeof(pHeader.magic_));
fprintf(gOutFile, "magic : '%s'\n", sanitized);
fprintf(gOutFile, "checksum : %08x\n", pHeader.checksum_);
fprintf(gOutFile, "signature : %02x%02x...%02x%02x\n",
pHeader.signature_[0], pHeader.signature_[1],
pHeader.signature_[DexFile::kSha1DigestSize - 2],
pHeader.signature_[DexFile::kSha1DigestSize - 1]);
fprintf(gOutFile, "file_size : %d\n", pHeader.file_size_);
fprintf(gOutFile, "header_size : %d\n", pHeader.header_size_);
fprintf(gOutFile, "link_size : %d\n", pHeader.link_size_);
fprintf(gOutFile, "link_off : %d (0x%06x)\n",
pHeader.link_off_, pHeader.link_off_);
fprintf(gOutFile, "string_ids_size : %d\n", pHeader.string_ids_size_);
fprintf(gOutFile, "string_ids_off : %d (0x%06x)\n",
pHeader.string_ids_off_, pHeader.string_ids_off_);
fprintf(gOutFile, "type_ids_size : %d\n", pHeader.type_ids_size_);
fprintf(gOutFile, "type_ids_off : %d (0x%06x)\n",
pHeader.type_ids_off_, pHeader.type_ids_off_);
fprintf(gOutFile, "proto_ids_size : %d\n", pHeader.proto_ids_size_);
fprintf(gOutFile, "proto_ids_off : %d (0x%06x)\n",
pHeader.proto_ids_off_, pHeader.proto_ids_off_);
fprintf(gOutFile, "field_ids_size : %d\n", pHeader.field_ids_size_);
fprintf(gOutFile, "field_ids_off : %d (0x%06x)\n",
pHeader.field_ids_off_, pHeader.field_ids_off_);
fprintf(gOutFile, "method_ids_size : %d\n", pHeader.method_ids_size_);
fprintf(gOutFile, "method_ids_off : %d (0x%06x)\n",
pHeader.method_ids_off_, pHeader.method_ids_off_);
fprintf(gOutFile, "class_defs_size : %d\n", pHeader.class_defs_size_);
fprintf(gOutFile, "class_defs_off : %d (0x%06x)\n",
pHeader.class_defs_off_, pHeader.class_defs_off_);
fprintf(gOutFile, "data_size : %d\n", pHeader.data_size_);
fprintf(gOutFile, "data_off : %d (0x%06x)\n\n",
pHeader.data_off_, pHeader.data_off_);
}
/*
* Dumps a class_def_item.
*/
static void dumpClassDef(const DexFile* pDexFile, int idx) {
// General class information.
const DexFile::ClassDef& pClassDef = pDexFile->GetClassDef(idx);
fprintf(gOutFile, "Class #%d header:\n", idx);
fprintf(gOutFile, "class_idx : %d\n", pClassDef.class_idx_);
fprintf(gOutFile, "access_flags : %d (0x%04x)\n",
pClassDef.access_flags_, pClassDef.access_flags_);
fprintf(gOutFile, "superclass_idx : %d\n", pClassDef.superclass_idx_);
fprintf(gOutFile, "interfaces_off : %d (0x%06x)\n",
pClassDef.interfaces_off_, pClassDef.interfaces_off_);
fprintf(gOutFile, "source_file_idx : %d\n", pClassDef.source_file_idx_);
fprintf(gOutFile, "annotations_off : %d (0x%06x)\n",
pClassDef.annotations_off_, pClassDef.annotations_off_);
fprintf(gOutFile, "class_data_off : %d (0x%06x)\n",
pClassDef.class_data_off_, pClassDef.class_data_off_);
// Fields and methods.
const u1* pEncodedData = pDexFile->GetClassData(pClassDef);
if (pEncodedData != nullptr) {
ClassDataItemIterator pClassData(*pDexFile, pEncodedData);
fprintf(gOutFile, "static_fields_size : %d\n", pClassData.NumStaticFields());
fprintf(gOutFile, "instance_fields_size: %d\n", pClassData.NumInstanceFields());
fprintf(gOutFile, "direct_methods_size : %d\n", pClassData.NumDirectMethods());
fprintf(gOutFile, "virtual_methods_size: %d\n", pClassData.NumVirtualMethods());
} else {
fprintf(gOutFile, "static_fields_size : 0\n");
fprintf(gOutFile, "instance_fields_size: 0\n");
fprintf(gOutFile, "direct_methods_size : 0\n");
fprintf(gOutFile, "virtual_methods_size: 0\n");
}
fprintf(gOutFile, "\n");
}
/*
* Dumps an interface that a class declares to implement.
*/
static void dumpInterface(const DexFile* pDexFile, const DexFile::TypeItem& pTypeItem, int i) {
const char* interfaceName = pDexFile->StringByTypeIdx(pTypeItem.type_idx_);
if (gOptions.outputFormat == OUTPUT_PLAIN) {
fprintf(gOutFile, " #%d : '%s'\n", i, interfaceName);
} else {
char* dotted = descriptorToDot(interfaceName);
fprintf(gOutFile, "<implements name=\"%s\">\n</implements>\n", dotted);
free(dotted);
}
}
/*
* Dumps the catches table associated with the code.
*/
static void dumpCatches(const DexFile* pDexFile, const DexFile::CodeItem* pCode) {
const u4 triesSize = pCode->tries_size_;
// No catch table.
if (triesSize == 0) {
fprintf(gOutFile, " catches : (none)\n");
return;
}
// Dump all table entries.
fprintf(gOutFile, " catches : %d\n", triesSize);
for (u4 i = 0; i < triesSize; i++) {
const DexFile::TryItem* pTry = pDexFile->GetTryItems(*pCode, i);
const u4 start = pTry->start_addr_;
const u4 end = start + pTry->insn_count_;
fprintf(gOutFile, " 0x%04x - 0x%04x\n", start, end);
for (CatchHandlerIterator it(*pCode, *pTry); it.HasNext(); it.Next()) {
const u2 tidx = it.GetHandlerTypeIndex();
const char* descriptor =
(tidx == DexFile::kDexNoIndex16) ? "<any>" : pDexFile->StringByTypeIdx(tidx);
fprintf(gOutFile, " %s -> 0x%04x\n", descriptor, it.GetHandlerAddress());
} // for
} // for
}
/*
* Callback for dumping each positions table entry.
*/
static bool dumpPositionsCb(void* /*context*/, u4 address, u4 lineNum) {
fprintf(gOutFile, " 0x%04x line=%d\n", address, lineNum);
return false;
}
/*
* Callback for dumping locals table entry.
*/
static void dumpLocalsCb(void* /*context*/, u2 slot, u4 startAddress, u4 endAddress,
const char* name, const char* descriptor, const char* signature) {
fprintf(gOutFile, " 0x%04x - 0x%04x reg=%d %s %s %s\n",
startAddress, endAddress, slot, name, descriptor, signature);
}
/*
* Helper for dumpInstruction(), which builds the string
* representation for the index in the given instruction. This will
* first try to use the given buffer, but if the result won't fit,
* then this will allocate a new buffer to hold the result. A pointer
* to the buffer which holds the full result is always returned, and
* this can be compared with the one passed in, to see if the result
* needs to be free()d.
*/
static char* indexString(const DexFile* pDexFile,
const Instruction* pDecInsn, char* buf, size_t bufSize) {
// Determine index and width of the string.
u4 index = 0;
u4 width = 4;
switch (Instruction::FormatOf(pDecInsn->Opcode())) {
// SOME NOT SUPPORTED:
// case Instruction::k20bc:
case Instruction::k21c:
case Instruction::k35c:
// case Instruction::k35ms:
case Instruction::k3rc:
// case Instruction::k3rms:
// case Instruction::k35mi:
// case Instruction::k3rmi:
index = pDecInsn->VRegB();
width = 4;
break;
case Instruction::k31c:
index = pDecInsn->VRegB();
width = 8;
break;
case Instruction::k22c:
// case Instruction::k22cs:
index = pDecInsn->VRegC();
width = 4;
break;
default:
break;
} // switch
// Determine index type.
size_t outSize = 0;
switch (Instruction::IndexTypeOf(pDecInsn->Opcode())) {
case Instruction::kIndexUnknown:
// This function should never get called for this type, but do
// something sensible here, just to help with debugging.
outSize = snprintf(buf, bufSize, "<unknown-index>");
break;
case Instruction::kIndexNone:
// This function should never get called for this type, but do
// something sensible here, just to help with debugging.
outSize = snprintf(buf, bufSize, "<no-index>");
break;
case Instruction::kIndexTypeRef:
if (index < pDexFile->GetHeader().type_ids_size_) {
const char* tp = pDexFile->StringByTypeIdx(index);
outSize = snprintf(buf, bufSize, "%s // type@%0*x", tp, width, index);
} else {
outSize = snprintf(buf, bufSize, "<type?> // type@%0*x", width, index);
}
break;
case Instruction::kIndexStringRef:
if (index < pDexFile->GetHeader().string_ids_size_) {
const char* st = pDexFile->StringDataByIdx(index);
outSize = snprintf(buf, bufSize, "\"%s\" // string@%0*x", st, width, index);
} else {
outSize = snprintf(buf, bufSize, "<string?> // string@%0*x", width, index);
}
break;
case Instruction::kIndexMethodRef:
if (index < pDexFile->GetHeader().method_ids_size_) {
const DexFile::MethodId& pMethodId = pDexFile->GetMethodId(index);
const char* name = pDexFile->StringDataByIdx(pMethodId.name_idx_);
const Signature signature = pDexFile->GetMethodSignature(pMethodId);
const char* backDescriptor = pDexFile->StringByTypeIdx(pMethodId.class_idx_);
outSize = snprintf(buf, bufSize, "%s.%s:%s // method@%0*x",
backDescriptor, name, signature.ToString().c_str(), width, index);
} else {
outSize = snprintf(buf, bufSize, "<method?> // method@%0*x", width, index);
}
break;
case Instruction::kIndexFieldRef:
if (index < pDexFile->GetHeader().field_ids_size_) {
const DexFile::FieldId& pFieldId = pDexFile->GetFieldId(index);
const char* name = pDexFile->StringDataByIdx(pFieldId.name_idx_);
const char* typeDescriptor = pDexFile->StringByTypeIdx(pFieldId.type_idx_);
const char* backDescriptor = pDexFile->StringByTypeIdx(pFieldId.class_idx_);
outSize = snprintf(buf, bufSize, "%s.%s:%s // field@%0*x",
backDescriptor, name, typeDescriptor, width, index);
} else {
outSize = snprintf(buf, bufSize, "<field?> // field@%0*x", width, index);
}
break;
case Instruction::kIndexVtableOffset:
outSize = snprintf(buf, bufSize, "[%0*x] // vtable #%0*x",
width, index, width, index);
break;
case Instruction::kIndexFieldOffset:
outSize = snprintf(buf, bufSize, "[obj+%0*x]", width, index);
break;
// SOME NOT SUPPORTED:
// case Instruction::kIndexVaries:
// case Instruction::kIndexInlineMethod:
default:
outSize = snprintf(buf, bufSize, "<?>");
break;
} // switch
// Determine success of string construction.
if (outSize >= bufSize) {
// The buffer wasn't big enough; allocate and retry. Note:
// snprintf() doesn't count the '\0' as part of its returned
// size, so we add explicit space for it here.
outSize++;
buf = reinterpret_cast<char*>(malloc(outSize));
if (buf == nullptr) {
return nullptr;
}
return indexString(pDexFile, pDecInsn, buf, outSize);
}
return buf;
}
/*
* Dumps a single instruction.
*/
static void dumpInstruction(const DexFile* pDexFile,
const DexFile::CodeItem* pCode,
u4 codeOffset, u4 insnIdx, u4 insnWidth,
const Instruction* pDecInsn) {
// Address of instruction (expressed as byte offset).
fprintf(gOutFile, "%06x:", codeOffset + 0x10 + insnIdx * 2);
// Dump (part of) raw bytes.
const u2* insns = pCode->insns_;
for (u4 i = 0; i < 8; i++) {
if (i < insnWidth) {
if (i == 7) {
fprintf(gOutFile, " ... ");
} else {
// Print 16-bit value in little-endian order.
const u1* bytePtr = (const u1*) &insns[insnIdx + i];
fprintf(gOutFile, " %02x%02x", bytePtr[0], bytePtr[1]);
}
} else {
fputs(" ", gOutFile);
}
} // for
// Dump pseudo-instruction or opcode.
if (pDecInsn->Opcode() == Instruction::NOP) {
const u2 instr = get2LE((const u1*) &insns[insnIdx]);
if (instr == Instruction::kPackedSwitchSignature) {
fprintf(gOutFile, "|%04x: packed-switch-data (%d units)", insnIdx, insnWidth);
} else if (instr == Instruction::kSparseSwitchSignature) {
fprintf(gOutFile, "|%04x: sparse-switch-data (%d units)", insnIdx, insnWidth);
} else if (instr == Instruction::kArrayDataSignature) {
fprintf(gOutFile, "|%04x: array-data (%d units)", insnIdx, insnWidth);
} else {
fprintf(gOutFile, "|%04x: nop // spacer", insnIdx);
}
} else {
fprintf(gOutFile, "|%04x: %s", insnIdx, pDecInsn->Name());
}
// Set up additional argument.
char indexBufChars[200];
char *indexBuf = indexBufChars;
if (Instruction::IndexTypeOf(pDecInsn->Opcode()) != Instruction::kIndexNone) {
indexBuf = indexString(pDexFile, pDecInsn,
indexBufChars, sizeof(indexBufChars));
}
// Dump the instruction.
//
// NOTE: pDecInsn->DumpString(pDexFile) differs too much from original.
//
switch (Instruction::FormatOf(pDecInsn->Opcode())) {
case Instruction::k10x: // op
break;
case Instruction::k12x: // op vA, vB
fprintf(gOutFile, " v%d, v%d", pDecInsn->VRegA(), pDecInsn->VRegB());
break;
case Instruction::k11n: // op vA, #+B
fprintf(gOutFile, " v%d, #int %d // #%x",
pDecInsn->VRegA(), (s4) pDecInsn->VRegB(), (u1)pDecInsn->VRegB());
break;
case Instruction::k11x: // op vAA
fprintf(gOutFile, " v%d", pDecInsn->VRegA());
break;
case Instruction::k10t: // op +AA
case Instruction::k20t: // op +AAAA
{
const s4 targ = (s4) pDecInsn->VRegA();
fprintf(gOutFile, " %04x // %c%04x",
insnIdx + targ,
(targ < 0) ? '-' : '+',
(targ < 0) ? -targ : targ);
}
break;
case Instruction::k22x: // op vAA, vBBBB
fprintf(gOutFile, " v%d, v%d", pDecInsn->VRegA(), pDecInsn->VRegB());
break;
case Instruction::k21t: // op vAA, +BBBB
{
const s4 targ = (s4) pDecInsn->VRegB();
fprintf(gOutFile, " v%d, %04x // %c%04x", pDecInsn->VRegA(),
insnIdx + targ,
(targ < 0) ? '-' : '+',
(targ < 0) ? -targ : targ);
}
break;
case Instruction::k21s: // op vAA, #+BBBB
fprintf(gOutFile, " v%d, #int %d // #%x",
pDecInsn->VRegA(), (s4) pDecInsn->VRegB(), (u2)pDecInsn->VRegB());
break;
case Instruction::k21h: // op vAA, #+BBBB0000[00000000]
// The printed format varies a bit based on the actual opcode.
if (pDecInsn->Opcode() == Instruction::CONST_HIGH16) {
const s4 value = pDecInsn->VRegB() << 16;
fprintf(gOutFile, " v%d, #int %d // #%x",
pDecInsn->VRegA(), value, (u2) pDecInsn->VRegB());
} else {
const s8 value = ((s8) pDecInsn->VRegB()) << 48;
fprintf(gOutFile, " v%d, #long %" PRId64 " // #%x",
pDecInsn->VRegA(), value, (u2) pDecInsn->VRegB());
}
break;
case Instruction::k21c: // op vAA, thing@BBBB
case Instruction::k31c: // op vAA, thing@BBBBBBBB
fprintf(gOutFile, " v%d, %s", pDecInsn->VRegA(), indexBuf);
break;
case Instruction::k23x: // op vAA, vBB, vCC
fprintf(gOutFile, " v%d, v%d, v%d",
pDecInsn->VRegA(), pDecInsn->VRegB(), pDecInsn->VRegC());
break;
case Instruction::k22b: // op vAA, vBB, #+CC
fprintf(gOutFile, " v%d, v%d, #int %d // #%02x",
pDecInsn->VRegA(), pDecInsn->VRegB(),
(s4) pDecInsn->VRegC(), (u1) pDecInsn->VRegC());
break;
case Instruction::k22t: // op vA, vB, +CCCC
{
const s4 targ = (s4) pDecInsn->VRegC();
fprintf(gOutFile, " v%d, v%d, %04x // %c%04x",
pDecInsn->VRegA(), pDecInsn->VRegB(),
insnIdx + targ,
(targ < 0) ? '-' : '+',
(targ < 0) ? -targ : targ);
}
break;
case Instruction::k22s: // op vA, vB, #+CCCC
fprintf(gOutFile, " v%d, v%d, #int %d // #%04x",
pDecInsn->VRegA(), pDecInsn->VRegB(),
(s4) pDecInsn->VRegC(), (u2) pDecInsn->VRegC());
break;
case Instruction::k22c: // op vA, vB, thing@CCCC
// NOT SUPPORTED:
// case Instruction::k22cs: // [opt] op vA, vB, field offset CCCC
fprintf(gOutFile, " v%d, v%d, %s",
pDecInsn->VRegA(), pDecInsn->VRegB(), indexBuf);
break;
case Instruction::k30t:
fprintf(gOutFile, " #%08x", pDecInsn->VRegA());
break;
case Instruction::k31i: // op vAA, #+BBBBBBBB
{
// This is often, but not always, a float.
union {
float f;
u4 i;
} conv;
conv.i = pDecInsn->VRegB();
fprintf(gOutFile, " v%d, #float %f // #%08x",
pDecInsn->VRegA(), conv.f, pDecInsn->VRegB());
}
break;
case Instruction::k31t: // op vAA, offset +BBBBBBBB
fprintf(gOutFile, " v%d, %08x // +%08x",
pDecInsn->VRegA(), insnIdx + pDecInsn->VRegB(), pDecInsn->VRegB());
break;
case Instruction::k32x: // op vAAAA, vBBBB
fprintf(gOutFile, " v%d, v%d", pDecInsn->VRegA(), pDecInsn->VRegB());
break;
case Instruction::k35c: // op {vC, vD, vE, vF, vG}, thing@BBBB
// NOT SUPPORTED:
// case Instruction::k35ms: // [opt] invoke-virtual+super
// case Instruction::k35mi: // [opt] inline invoke
{
u4 arg[Instruction::kMaxVarArgRegs];
pDecInsn->GetVarArgs(arg);
fputs(" {", gOutFile);
for (int i = 0, n = pDecInsn->VRegA(); i < n; i++) {
if (i == 0) {
fprintf(gOutFile, "v%d", arg[i]);
} else {
fprintf(gOutFile, ", v%d", arg[i]);
}
} // for
fprintf(gOutFile, "}, %s", indexBuf);
}
break;
case Instruction::k25x: // op vC, {vD, vE, vF, vG} (B: count)
{
u4 arg[Instruction::kMaxVarArgRegs25x];
pDecInsn->GetAllArgs25x(arg);
fprintf(gOutFile, " v%d, {", arg[0]);
for (int i = 0, n = pDecInsn->VRegB(); i < n; i++) {
if (i == 0) {
fprintf(gOutFile, "v%d", arg[Instruction::kLambdaVirtualRegisterWidth + i]);
} else {
fprintf(gOutFile, ", v%d", arg[Instruction::kLambdaVirtualRegisterWidth + i]);
}
} // for
fputc('}', gOutFile);
}
break;
case Instruction::k3rc: // op {vCCCC .. v(CCCC+AA-1)}, thing@BBBB
// NOT SUPPORTED:
// case Instruction::k3rms: // [opt] invoke-virtual+super/range
// case Instruction::k3rmi: // [opt] execute-inline/range
{
// This doesn't match the "dx" output when some of the args are
// 64-bit values -- dx only shows the first register.
fputs(" {", gOutFile);
for (int i = 0, n = pDecInsn->VRegA(); i < n; i++) {
if (i == 0) {
fprintf(gOutFile, "v%d", pDecInsn->VRegC() + i);
} else {
fprintf(gOutFile, ", v%d", pDecInsn->VRegC() + i);
}
} // for
fprintf(gOutFile, "}, %s", indexBuf);
}
break;
case Instruction::k51l: // op vAA, #+BBBBBBBBBBBBBBBB
{
// This is often, but not always, a double.
union {
double d;
u8 j;
} conv;
conv.j = pDecInsn->WideVRegB();
fprintf(gOutFile, " v%d, #double %f // #%016" PRIx64,
pDecInsn->VRegA(), conv.d, pDecInsn->WideVRegB());
}
break;
// NOT SUPPORTED:
// case Instruction::k00x: // unknown op or breakpoint
// break;
default:
fprintf(gOutFile, " ???");
break;
} // switch
fputc('\n', gOutFile);
if (indexBuf != indexBufChars) {
free(indexBuf);
}
}
/*
* Dumps a bytecode disassembly.
*/
static void dumpBytecodes(const DexFile* pDexFile, u4 idx,
const DexFile::CodeItem* pCode, u4 codeOffset) {
const DexFile::MethodId& pMethodId = pDexFile->GetMethodId(idx);
const char* name = pDexFile->StringDataByIdx(pMethodId.name_idx_);
const Signature signature = pDexFile->GetMethodSignature(pMethodId);
const char* backDescriptor = pDexFile->StringByTypeIdx(pMethodId.class_idx_);
// Generate header.
char* tmp = descriptorToDot(backDescriptor);
fprintf(gOutFile, "%06x: "
"|[%06x] %s.%s:%s\n",
codeOffset, codeOffset, tmp, name, signature.ToString().c_str());
free(tmp);
// Iterate over all instructions.
const u2* insns = pCode->insns_;
for (u4 insnIdx = 0; insnIdx < pCode->insns_size_in_code_units_;) {
const Instruction* instruction = Instruction::At(&insns[insnIdx]);
const u4 insnWidth = instruction->SizeInCodeUnits();
if (insnWidth == 0) {
fprintf(stderr, "GLITCH: zero-width instruction at idx=0x%04x\n", insnIdx);
break;
}
dumpInstruction(pDexFile, pCode, codeOffset, insnIdx, insnWidth, instruction);
insnIdx += insnWidth;
} // for
}
/*
* Dumps code of a method.
*/
static void dumpCode(const DexFile* pDexFile, u4 idx, u4 flags,
const DexFile::CodeItem* pCode, u4 codeOffset) {
fprintf(gOutFile, " registers : %d\n", pCode->registers_size_);
fprintf(gOutFile, " ins : %d\n", pCode->ins_size_);
fprintf(gOutFile, " outs : %d\n", pCode->outs_size_);
fprintf(gOutFile, " insns size : %d 16-bit code units\n",
pCode->insns_size_in_code_units_);
// Bytecode disassembly, if requested.
if (gOptions.disassemble) {
dumpBytecodes(pDexFile, idx, pCode, codeOffset);
}
// Try-catch blocks.
dumpCatches(pDexFile, pCode);
// Positions and locals table in the debug info.
bool is_static = (flags & kAccStatic) != 0;
fprintf(gOutFile, " positions : \n");
pDexFile->DecodeDebugInfo(
pCode, is_static, idx, dumpPositionsCb, nullptr, nullptr);
fprintf(gOutFile, " locals : \n");
pDexFile->DecodeDebugInfo(
pCode, is_static, idx, nullptr, dumpLocalsCb, nullptr);
}
/*
* Dumps a method.
*/
static void dumpMethod(const DexFile* pDexFile, u4 idx, u4 flags,
const DexFile::CodeItem* pCode, u4 codeOffset, int i) {
// Bail for anything private if export only requested.
if (gOptions.exportsOnly && (flags & (kAccPublic | kAccProtected)) == 0) {
return;
}
const DexFile::MethodId& pMethodId = pDexFile->GetMethodId(idx);
const char* name = pDexFile->StringDataByIdx(pMethodId.name_idx_);
const Signature signature = pDexFile->GetMethodSignature(pMethodId);
char* typeDescriptor = strdup(signature.ToString().c_str());
const char* backDescriptor = pDexFile->StringByTypeIdx(pMethodId.class_idx_);
char* accessStr = createAccessFlagStr(flags, kAccessForMethod);
if (gOptions.outputFormat == OUTPUT_PLAIN) {
fprintf(gOutFile, " #%d : (in %s)\n", i, backDescriptor);
fprintf(gOutFile, " name : '%s'\n", name);
fprintf(gOutFile, " type : '%s'\n", typeDescriptor);
fprintf(gOutFile, " access : 0x%04x (%s)\n", flags, accessStr);
if (pCode == nullptr) {
fprintf(gOutFile, " code : (none)\n");
} else {
fprintf(gOutFile, " code -\n");
dumpCode(pDexFile, idx, flags, pCode, codeOffset);
}
if (gOptions.disassemble) {
fputc('\n', gOutFile);
}
} else if (gOptions.outputFormat == OUTPUT_XML) {
const bool constructor = (name[0] == '<');
// Method name and prototype.
if (constructor) {
char* tmp = descriptorClassToDot(backDescriptor);
fprintf(gOutFile, "<constructor name=\"%s\"\n", tmp);
free(tmp);
tmp = descriptorToDot(backDescriptor);
fprintf(gOutFile, " type=\"%s\"\n", tmp);
free(tmp);
} else {
fprintf(gOutFile, "<method name=\"%s\"\n", name);
const char* returnType = strrchr(typeDescriptor, ')');
if (returnType == nullptr) {
fprintf(stderr, "bad method type descriptor '%s'\n", typeDescriptor);
goto bail;
}
char* tmp = descriptorToDot(returnType+1);
fprintf(gOutFile, " return=\"%s\"\n", tmp);
free(tmp);
fprintf(gOutFile, " abstract=%s\n", quotedBool((flags & kAccAbstract) != 0));
fprintf(gOutFile, " native=%s\n", quotedBool((flags & kAccNative) != 0));
fprintf(gOutFile, " synchronized=%s\n", quotedBool(
(flags & (kAccSynchronized | kAccDeclaredSynchronized)) != 0));
}
// Additional method flags.
fprintf(gOutFile, " static=%s\n", quotedBool((flags & kAccStatic) != 0));
fprintf(gOutFile, " final=%s\n", quotedBool((flags & kAccFinal) != 0));
// The "deprecated=" not knowable w/o parsing annotations.
fprintf(gOutFile, " visibility=%s\n>\n", quotedVisibility(flags));
// Parameters.
if (typeDescriptor[0] != '(') {
fprintf(stderr, "ERROR: bad descriptor '%s'\n", typeDescriptor);
goto bail;
}
char* tmpBuf = reinterpret_cast<char*>(malloc(strlen(typeDescriptor) + 1));
const char* base = typeDescriptor + 1;
int argNum = 0;
while (*base != ')') {
char* cp = tmpBuf;
while (*base == '[') {
*cp++ = *base++;
}
if (*base == 'L') {
// Copy through ';'.
do {
*cp = *base++;
} while (*cp++ != ';');
} else {
// Primitive char, copy it.
if (strchr("ZBCSIFJD", *base) == NULL) {
fprintf(stderr, "ERROR: bad method signature '%s'\n", base);
goto bail;
}
*cp++ = *base++;
}
// Null terminate and display.
*cp++ = '\0';
char* tmp = descriptorToDot(tmpBuf);
fprintf(gOutFile, "<parameter name=\"arg%d\" type=\"%s\">\n"
"</parameter>\n", argNum++, tmp);
free(tmp);
} // while
free(tmpBuf);
if (constructor) {
fprintf(gOutFile, "</constructor>\n");
} else {
fprintf(gOutFile, "</method>\n");
}
}
bail:
free(typeDescriptor);
free(accessStr);
}
/*
* Dumps a string value with some escape characters.
*/
static void dumpEscapedString(const char* p) {
for (; *p; p++) {
switch (*p) {
case '\\':
fputs("\\\\", gOutFile);
break;
case '\"':
fputs("\\\"", gOutFile);
break;
case '\t':
fputs("\\t", gOutFile);
break;
case '\n':
fputs("\\n", gOutFile);
break;
case '\r':
fputs("\\r", gOutFile);
break;
default:
putc(*p, gOutFile);
}
}
}
/*
* Dumps an XML attribute value between double-quotes.
*/
static void dumpXmlAttribute(const char* p) {
for (; *p; p++) {
switch (*p) {
case '&':
fputs("&amp;", gOutFile);
break;
case '<':
fputs("&lt;", gOutFile);
break;
case '"':
fputs("&quot;", gOutFile);
break;
case '\t':
fputs("&#x9;", gOutFile);
break;
case '\n':
fputs("&#xA;", gOutFile);
break;
case '\r':
fputs("&#xD;", gOutFile);
break;
default:
putc(*p, gOutFile);
}
}
}
/*
* Dumps a value of static (class) field.
*/
static void dumpSFieldValue(const DexFile* pDexFile,
EncodedStaticFieldValueIterator::ValueType valueType,
const jvalue* pValue) {
switch (valueType) {
case EncodedStaticFieldValueIterator::kByte:
fprintf(gOutFile, "%" PRIu8, pValue->b);
break;
case EncodedStaticFieldValueIterator::kShort:
fprintf(gOutFile, "%" PRId16, pValue->s);
break;
case EncodedStaticFieldValueIterator::kChar:
fprintf(gOutFile, "%" PRIu16, pValue->c);
break;
case EncodedStaticFieldValueIterator::kInt:
fprintf(gOutFile, "%" PRId32, pValue->i);
break;
case EncodedStaticFieldValueIterator::kLong:
fprintf(gOutFile, "%" PRId64, pValue->j);
break;
case EncodedStaticFieldValueIterator::kFloat:
fprintf(gOutFile, "%f", pValue->f);
break;
case EncodedStaticFieldValueIterator::kDouble:
fprintf(gOutFile, "%f", pValue->d);
break;
case EncodedStaticFieldValueIterator::kString: {
const char* str =
pDexFile->GetStringData(pDexFile->GetStringId(pValue->i));
if (gOptions.outputFormat == OUTPUT_PLAIN) {
fputs("\"", gOutFile);
dumpEscapedString(str);
fputs("\"", gOutFile);
} else {
dumpXmlAttribute(str);
}
break;
}
case EncodedStaticFieldValueIterator::kNull:
fputs("null", gOutFile);
break;
case EncodedStaticFieldValueIterator::kBoolean:
fputs(pValue->z ? "true" : "false", gOutFile);
break;
case EncodedStaticFieldValueIterator::kAnnotation:
case EncodedStaticFieldValueIterator::kArray:
case EncodedStaticFieldValueIterator::kEnum:
case EncodedStaticFieldValueIterator::kField:
case EncodedStaticFieldValueIterator::kMethod:
case EncodedStaticFieldValueIterator::kType:
default:
fprintf(gOutFile, "Unexpected static field type: %d", valueType);
}
}
/*
* Dumps a static (class) field.
*/
static void dumpSField(const DexFile* pDexFile, u4 idx, u4 flags, int i,
EncodedStaticFieldValueIterator::ValueType valueType,
const jvalue* pValue) {
// Bail for anything private if export only requested.
if (gOptions.exportsOnly && (flags & (kAccPublic | kAccProtected)) == 0) {
return;
}
const DexFile::FieldId& pFieldId = pDexFile->GetFieldId(idx);
const char* name = pDexFile->StringDataByIdx(pFieldId.name_idx_);
const char* typeDescriptor = pDexFile->StringByTypeIdx(pFieldId.type_idx_);
const char* backDescriptor = pDexFile->StringByTypeIdx(pFieldId.class_idx_);
char* accessStr = createAccessFlagStr(flags, kAccessForField);
if (gOptions.outputFormat == OUTPUT_PLAIN) {
fprintf(gOutFile, " #%d : (in %s)\n", i, backDescriptor);
fprintf(gOutFile, " name : '%s'\n", name);
fprintf(gOutFile, " type : '%s'\n", typeDescriptor);
fprintf(gOutFile, " access : 0x%04x (%s)\n", flags, accessStr);
if (pValue != nullptr) {
fputs(" value : ", gOutFile);
dumpSFieldValue(pDexFile, valueType, pValue);
fputs("\n", gOutFile);
}
} else if (gOptions.outputFormat == OUTPUT_XML) {
fprintf(gOutFile, "<field name=\"%s\"\n", name);
char *tmp = descriptorToDot(typeDescriptor);
fprintf(gOutFile, " type=\"%s\"\n", tmp);
free(tmp);
fprintf(gOutFile, " transient=%s\n", quotedBool((flags & kAccTransient) != 0));
fprintf(gOutFile, " volatile=%s\n", quotedBool((flags & kAccVolatile) != 0));
// The "value=" is not knowable w/o parsing annotations.
fprintf(gOutFile, " static=%s\n", quotedBool((flags & kAccStatic) != 0));
fprintf(gOutFile, " final=%s\n", quotedBool((flags & kAccFinal) != 0));
// The "deprecated=" is not knowable w/o parsing annotations.
fprintf(gOutFile, " visibility=%s\n", quotedVisibility(flags));
if (pValue != nullptr) {
fputs(" value=\"", gOutFile);
dumpSFieldValue(pDexFile, valueType, pValue);
fputs("\"\n", gOutFile);
}
fputs(">\n</field>\n", gOutFile);
}
free(accessStr);
}
/*
* Dumps an instance field.
*/
static void dumpIField(const DexFile* pDexFile, u4 idx, u4 flags, int i) {
dumpSField(pDexFile, idx, flags, i,
EncodedStaticFieldValueIterator::kByte, nullptr);
}
/*
* Dumping a CFG. Note that this will do duplicate work. utils.h doesn't expose the code-item
* version, so the DumpMethodCFG code will have to iterate again to find it. But dexdump is a
* tool, so this is not performance-critical.
*/
static void dumpCfg(const DexFile* dex_file,
uint32_t dex_method_idx,
const DexFile::CodeItem* code_item) {
if (code_item != nullptr) {
std::ostringstream oss;
DumpMethodCFG(dex_file, dex_method_idx, oss);
fprintf(gOutFile, "%s", oss.str().c_str());
}
}
static void dumpCfg(const DexFile* dex_file, int idx) {
const DexFile::ClassDef& class_def = dex_file->GetClassDef(idx);
const uint8_t* class_data = dex_file->GetClassData(class_def);
if (class_data == nullptr) { // empty class such as a marker interface?
return;
}
ClassDataItemIterator it(*dex_file, class_data);
while (it.HasNextStaticField()) {
it.Next();
}
while (it.HasNextInstanceField()) {
it.Next();
}
while (it.HasNextDirectMethod()) {
dumpCfg(dex_file,
it.GetMemberIndex(),
it.GetMethodCodeItem());
it.Next();
}
while (it.HasNextVirtualMethod()) {
dumpCfg(dex_file,
it.GetMemberIndex(),
it.GetMethodCodeItem());
it.Next();
}
}
/*
* Dumps the class.
*
* Note "idx" is a DexClassDef index, not a DexTypeId index.
*
* If "*pLastPackage" is nullptr or does not match the current class' package,
* the value will be replaced with a newly-allocated string.
*/
static void dumpClass(const DexFile* pDexFile, int idx, char** pLastPackage) {
const DexFile::ClassDef& pClassDef = pDexFile->GetClassDef(idx);
// Omitting non-public class.
if (gOptions.exportsOnly && (pClassDef.access_flags_ & kAccPublic) == 0) {
return;
}
if (gOptions.cfg) {
dumpCfg(pDexFile, idx);
return;
}
// For the XML output, show the package name. Ideally we'd gather
// up the classes, sort them, and dump them alphabetically so the
// package name wouldn't jump around, but that's not a great plan
// for something that needs to run on the device.
const char* classDescriptor = pDexFile->StringByTypeIdx(pClassDef.class_idx_);
if (!(classDescriptor[0] == 'L' &&
classDescriptor[strlen(classDescriptor)-1] == ';')) {
// Arrays and primitives should not be defined explicitly. Keep going?
fprintf(stderr, "Malformed class name '%s'\n", classDescriptor);
} else if (gOptions.outputFormat == OUTPUT_XML) {
char* mangle = strdup(classDescriptor + 1);
mangle[strlen(mangle)-1] = '\0';
// Reduce to just the package name.
char* lastSlash = strrchr(mangle, '/');
if (lastSlash != nullptr) {
*lastSlash = '\0';
} else {
*mangle = '\0';
}
for (char* cp = mangle; *cp != '\0'; cp++) {
if (*cp == '/') {
*cp = '.';
}
} // for
if (*pLastPackage == nullptr || strcmp(mangle, *pLastPackage) != 0) {
// Start of a new package.
if (*pLastPackage != nullptr) {
fprintf(gOutFile, "</package>\n");
}
fprintf(gOutFile, "<package name=\"%s\"\n>\n", mangle);
free(*pLastPackage);
*pLastPackage = mangle;
} else {
free(mangle);
}
}
// General class information.
char* accessStr = createAccessFlagStr(pClassDef.access_flags_, kAccessForClass);
const char* superclassDescriptor;
if (pClassDef.superclass_idx_ == DexFile::kDexNoIndex16) {
superclassDescriptor = nullptr;
} else {
superclassDescriptor = pDexFile->StringByTypeIdx(pClassDef.superclass_idx_);
}
if (gOptions.outputFormat == OUTPUT_PLAIN) {
fprintf(gOutFile, "Class #%d -\n", idx);
fprintf(gOutFile, " Class descriptor : '%s'\n", classDescriptor);
fprintf(gOutFile, " Access flags : 0x%04x (%s)\n", pClassDef.access_flags_, accessStr);
if (superclassDescriptor != nullptr) {
fprintf(gOutFile, " Superclass : '%s'\n", superclassDescriptor);
}
fprintf(gOutFile, " Interfaces -\n");
} else {
char* tmp = descriptorClassToDot(classDescriptor);
fprintf(gOutFile, "<class name=\"%s\"\n", tmp);
free(tmp);
if (superclassDescriptor != nullptr) {
tmp = descriptorToDot(superclassDescriptor);
fprintf(gOutFile, " extends=\"%s\"\n", tmp);
free(tmp);
}
fprintf(gOutFile, " interface=%s\n",
quotedBool((pClassDef.access_flags_ & kAccInterface) != 0));
fprintf(gOutFile, " abstract=%s\n", quotedBool((pClassDef.access_flags_ & kAccAbstract) != 0));
fprintf(gOutFile, " static=%s\n", quotedBool((pClassDef.access_flags_ & kAccStatic) != 0));
fprintf(gOutFile, " final=%s\n", quotedBool((pClassDef.access_flags_ & kAccFinal) != 0));
// The "deprecated=" not knowable w/o parsing annotations.
fprintf(gOutFile, " visibility=%s\n", quotedVisibility(pClassDef.access_flags_));
fprintf(gOutFile, ">\n");
}
// Interfaces.
const DexFile::TypeList* pInterfaces = pDexFile->GetInterfacesList(pClassDef);
if (pInterfaces != nullptr) {
for (u4 i = 0; i < pInterfaces->Size(); i++) {
dumpInterface(pDexFile, pInterfaces->GetTypeItem(i), i);
} // for
}
// Fields and methods.
const u1* pEncodedData = pDexFile->GetClassData(pClassDef);
if (pEncodedData == nullptr) {
if (gOptions.outputFormat == OUTPUT_PLAIN) {
fprintf(gOutFile, " Static fields -\n");
fprintf(gOutFile, " Instance fields -\n");
fprintf(gOutFile, " Direct methods -\n");
fprintf(gOutFile, " Virtual methods -\n");
}
} else {
ClassDataItemIterator pClassData(*pDexFile, pEncodedData);
if (gOptions.outputFormat == OUTPUT_PLAIN) {
fprintf(gOutFile, " Static fields -\n");
}
EncodedStaticFieldValueIterator staticFieldValues(*pDexFile, pClassDef);
for (int i = 0; pClassData.HasNextStaticField(); i++, pClassData.Next()) {
EncodedStaticFieldValueIterator::ValueType valueType =
EncodedStaticFieldValueIterator::kByte;
const jvalue* pValue = nullptr;
if (staticFieldValues.HasNext()) {
valueType = staticFieldValues.GetValueType();
pValue = &staticFieldValues.GetJavaValue();
}
dumpSField(pDexFile, pClassData.GetMemberIndex(),
pClassData.GetRawMemberAccessFlags(), i,
valueType, pValue);
if (staticFieldValues.HasNext()) {
staticFieldValues.Next();
}
} // for
DCHECK(!staticFieldValues.HasNext());
if (gOptions.outputFormat == OUTPUT_PLAIN) {
fprintf(gOutFile, " Instance fields -\n");
}
for (int i = 0; pClassData.HasNextInstanceField(); i++, pClassData.Next()) {
dumpIField(pDexFile, pClassData.GetMemberIndex(),
pClassData.GetRawMemberAccessFlags(), i);
} // for
if (gOptions.outputFormat == OUTPUT_PLAIN) {
fprintf(gOutFile, " Direct methods -\n");
}
for (int i = 0; pClassData.HasNextDirectMethod(); i++, pClassData.Next()) {
dumpMethod(pDexFile, pClassData.GetMemberIndex(),
pClassData.GetRawMemberAccessFlags(),
pClassData.GetMethodCodeItem(),
pClassData.GetMethodCodeItemOffset(), i);
} // for
if (gOptions.outputFormat == OUTPUT_PLAIN) {
fprintf(gOutFile, " Virtual methods -\n");
}
for (int i = 0; pClassData.HasNextVirtualMethod(); i++, pClassData.Next()) {
dumpMethod(pDexFile, pClassData.GetMemberIndex(),
pClassData.GetRawMemberAccessFlags(),
pClassData.GetMethodCodeItem(),
pClassData.GetMethodCodeItemOffset(), i);
} // for
}
// End of class.
if (gOptions.outputFormat == OUTPUT_PLAIN) {
const char* fileName;
if (pClassDef.source_file_idx_ != DexFile::kDexNoIndex) {
fileName = pDexFile->StringDataByIdx(pClassDef.source_file_idx_);
} else {
fileName = "unknown";
}
fprintf(gOutFile, " source_file_idx : %d (%s)\n\n",
pClassDef.source_file_idx_, fileName);
} else if (gOptions.outputFormat == OUTPUT_XML) {
fprintf(gOutFile, "</class>\n");
}
free(accessStr);
}
/*
* Dumps the requested sections of the file.
*/
static void processDexFile(const char* fileName, const DexFile* pDexFile) {
if (gOptions.verbose) {
fprintf(gOutFile, "Opened '%s', DEX version '%.3s'\n",
fileName, pDexFile->GetHeader().magic_ + 4);
}
// Headers.
if (gOptions.showFileHeaders) {
dumpFileHeader(pDexFile);
}
// Open XML context.
if (gOptions.outputFormat == OUTPUT_XML) {
fprintf(gOutFile, "<api>\n");
}
// Iterate over all classes.
char* package = nullptr;
const u4 classDefsSize = pDexFile->GetHeader().class_defs_size_;
for (u4 i = 0; i < classDefsSize; i++) {
if (gOptions.showSectionHeaders) {
dumpClassDef(pDexFile, i);
}
dumpClass(pDexFile, i, &package);
} // for
// Free the last package allocated.
if (package != nullptr) {
fprintf(gOutFile, "</package>\n");
free(package);
}
// Close XML context.
if (gOptions.outputFormat == OUTPUT_XML) {
fprintf(gOutFile, "</api>\n");
}
}
/*
* Processes a single file (either direct .dex or indirect .zip/.jar/.apk).
*/
int processFile(const char* fileName) {
if (gOptions.verbose) {
fprintf(gOutFile, "Processing '%s'...\n", fileName);
}
// If the file is not a .dex file, the function tries .zip/.jar/.apk files,
// all of which are Zip archives with "classes.dex" inside. The compressed
// data needs to be extracted to a temp file, the location of which varies.
//
// TODO(ajcbik): fix following issues
//
// (1) gOptions.tempFileName is not accounted for
// (2) gOptions.ignoreBadChecksum is not accounted for
//
std::string error_msg;
std::vector<std::unique_ptr<const DexFile>> dex_files;
if (!DexFile::Open(fileName, fileName, &error_msg, &dex_files)) {
// Display returned error message to user. Note that this error behavior
// differs from the error messages shown by the original Dalvik dexdump.
fputs(error_msg.c_str(), stderr);
fputc('\n', stderr);
return -1;
}
// Success. Either report checksum verification or process
// all dex files found in given file.
if (gOptions.checksumOnly) {
fprintf(gOutFile, "Checksum verified\n");
} else {
for (size_t i = 0; i < dex_files.size(); i++) {
processDexFile(fileName, dex_files[i].get());
}
}
return 0;
}
} // namespace art