| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_ |
| #define ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_ |
| |
| #include "code_generator.h" |
| #include "locations.h" |
| #include "nodes.h" |
| #include "utils/arm64/assembler_arm64.h" |
| #include "vixl/a64/disasm-a64.h" |
| #include "vixl/a64/macro-assembler-a64.h" |
| |
| namespace art { |
| namespace arm64 { |
| namespace helpers { |
| |
| // Convenience helpers to ease conversion to and from VIXL operands. |
| static_assert((SP == 31) && (WSP == 31) && (XZR == 32) && (WZR == 32), |
| "Unexpected values for register codes."); |
| |
| static inline int VIXLRegCodeFromART(int code) { |
| if (code == SP) { |
| return vixl::kSPRegInternalCode; |
| } |
| if (code == XZR) { |
| return vixl::kZeroRegCode; |
| } |
| return code; |
| } |
| |
| static inline int ARTRegCodeFromVIXL(int code) { |
| if (code == vixl::kSPRegInternalCode) { |
| return SP; |
| } |
| if (code == vixl::kZeroRegCode) { |
| return XZR; |
| } |
| return code; |
| } |
| |
| static inline vixl::Register XRegisterFrom(Location location) { |
| DCHECK(location.IsRegister()); |
| return vixl::Register::XRegFromCode(VIXLRegCodeFromART(location.reg())); |
| } |
| |
| static inline vixl::Register WRegisterFrom(Location location) { |
| DCHECK(location.IsRegister()); |
| return vixl::Register::WRegFromCode(VIXLRegCodeFromART(location.reg())); |
| } |
| |
| static inline vixl::Register RegisterFrom(Location location, Primitive::Type type) { |
| DCHECK(type != Primitive::kPrimVoid && !Primitive::IsFloatingPointType(type)); |
| return type == Primitive::kPrimLong ? XRegisterFrom(location) : WRegisterFrom(location); |
| } |
| |
| static inline vixl::Register OutputRegister(HInstruction* instr) { |
| return RegisterFrom(instr->GetLocations()->Out(), instr->GetType()); |
| } |
| |
| static inline vixl::Register InputRegisterAt(HInstruction* instr, int input_index) { |
| return RegisterFrom(instr->GetLocations()->InAt(input_index), |
| instr->InputAt(input_index)->GetType()); |
| } |
| |
| static inline vixl::FPRegister DRegisterFrom(Location location) { |
| DCHECK(location.IsFpuRegister()); |
| return vixl::FPRegister::DRegFromCode(location.reg()); |
| } |
| |
| static inline vixl::FPRegister SRegisterFrom(Location location) { |
| DCHECK(location.IsFpuRegister()); |
| return vixl::FPRegister::SRegFromCode(location.reg()); |
| } |
| |
| static inline vixl::FPRegister FPRegisterFrom(Location location, Primitive::Type type) { |
| DCHECK(Primitive::IsFloatingPointType(type)); |
| return type == Primitive::kPrimDouble ? DRegisterFrom(location) : SRegisterFrom(location); |
| } |
| |
| static inline vixl::FPRegister OutputFPRegister(HInstruction* instr) { |
| return FPRegisterFrom(instr->GetLocations()->Out(), instr->GetType()); |
| } |
| |
| static inline vixl::FPRegister InputFPRegisterAt(HInstruction* instr, int input_index) { |
| return FPRegisterFrom(instr->GetLocations()->InAt(input_index), |
| instr->InputAt(input_index)->GetType()); |
| } |
| |
| static inline vixl::CPURegister CPURegisterFrom(Location location, Primitive::Type type) { |
| return Primitive::IsFloatingPointType(type) ? vixl::CPURegister(FPRegisterFrom(location, type)) |
| : vixl::CPURegister(RegisterFrom(location, type)); |
| } |
| |
| static inline vixl::CPURegister OutputCPURegister(HInstruction* instr) { |
| return Primitive::IsFloatingPointType(instr->GetType()) |
| ? static_cast<vixl::CPURegister>(OutputFPRegister(instr)) |
| : static_cast<vixl::CPURegister>(OutputRegister(instr)); |
| } |
| |
| static inline vixl::CPURegister InputCPURegisterAt(HInstruction* instr, int index) { |
| return Primitive::IsFloatingPointType(instr->InputAt(index)->GetType()) |
| ? static_cast<vixl::CPURegister>(InputFPRegisterAt(instr, index)) |
| : static_cast<vixl::CPURegister>(InputRegisterAt(instr, index)); |
| } |
| |
| static inline int64_t Int64ConstantFrom(Location location) { |
| HConstant* instr = location.GetConstant(); |
| if (instr->IsIntConstant()) { |
| return instr->AsIntConstant()->GetValue(); |
| } else if (instr->IsNullConstant()) { |
| return 0; |
| } else { |
| DCHECK(instr->IsLongConstant()); |
| return instr->AsLongConstant()->GetValue(); |
| } |
| } |
| |
| static inline vixl::Operand OperandFrom(Location location, Primitive::Type type) { |
| if (location.IsRegister()) { |
| return vixl::Operand(RegisterFrom(location, type)); |
| } else { |
| return vixl::Operand(Int64ConstantFrom(location)); |
| } |
| } |
| |
| static inline vixl::Operand InputOperandAt(HInstruction* instr, int input_index) { |
| return OperandFrom(instr->GetLocations()->InAt(input_index), |
| instr->InputAt(input_index)->GetType()); |
| } |
| |
| static inline vixl::MemOperand StackOperandFrom(Location location) { |
| return vixl::MemOperand(vixl::sp, location.GetStackIndex()); |
| } |
| |
| static inline vixl::MemOperand HeapOperand(const vixl::Register& base, size_t offset = 0) { |
| // A heap reference must be 32bit, so fit in a W register. |
| DCHECK(base.IsW()); |
| return vixl::MemOperand(base.X(), offset); |
| } |
| |
| static inline vixl::MemOperand HeapOperand(const vixl::Register& base, |
| const vixl::Register& regoffset, |
| vixl::Shift shift = vixl::LSL, |
| unsigned shift_amount = 0) { |
| // A heap reference must be 32bit, so fit in a W register. |
| DCHECK(base.IsW()); |
| return vixl::MemOperand(base.X(), regoffset, shift, shift_amount); |
| } |
| |
| static inline vixl::MemOperand HeapOperand(const vixl::Register& base, Offset offset) { |
| return HeapOperand(base, offset.SizeValue()); |
| } |
| |
| static inline vixl::MemOperand HeapOperandFrom(Location location, Offset offset) { |
| return HeapOperand(RegisterFrom(location, Primitive::kPrimNot), offset); |
| } |
| |
| static inline Location LocationFrom(const vixl::Register& reg) { |
| return Location::RegisterLocation(ARTRegCodeFromVIXL(reg.code())); |
| } |
| |
| static inline Location LocationFrom(const vixl::FPRegister& fpreg) { |
| return Location::FpuRegisterLocation(fpreg.code()); |
| } |
| |
| static inline vixl::Operand OperandFromMemOperand(const vixl::MemOperand& mem_op) { |
| if (mem_op.IsImmediateOffset()) { |
| return vixl::Operand(mem_op.offset()); |
| } else { |
| DCHECK(mem_op.IsRegisterOffset()); |
| if (mem_op.extend() != vixl::NO_EXTEND) { |
| return vixl::Operand(mem_op.regoffset(), mem_op.extend(), mem_op.shift_amount()); |
| } else if (mem_op.shift() != vixl::NO_SHIFT) { |
| return vixl::Operand(mem_op.regoffset(), mem_op.shift(), mem_op.shift_amount()); |
| } else { |
| LOG(FATAL) << "Should not reach here"; |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| static bool CanEncodeConstantAsImmediate(HConstant* constant, HInstruction* instr) { |
| DCHECK(constant->IsIntConstant() || constant->IsLongConstant() || constant->IsNullConstant()); |
| |
| // For single uses we let VIXL handle the constant generation since it will |
| // use registers that are not managed by the register allocator (wip0, wip1). |
| if (constant->GetUses().HasOnlyOneUse()) { |
| return true; |
| } |
| |
| // Our code generator ensures shift distances are within an encodable range. |
| if (instr->IsRor()) { |
| return true; |
| } |
| |
| int64_t value = CodeGenerator::GetInt64ValueOf(constant); |
| |
| if (instr->IsAnd() || instr->IsOr() || instr->IsXor()) { |
| // Uses logical operations. |
| return vixl::Assembler::IsImmLogical(value, vixl::kXRegSize); |
| } else if (instr->IsNeg()) { |
| // Uses mov -immediate. |
| return vixl::Assembler::IsImmMovn(value, vixl::kXRegSize); |
| } else { |
| DCHECK(instr->IsAdd() || |
| instr->IsArm64IntermediateAddress() || |
| instr->IsBoundsCheck() || |
| instr->IsCompare() || |
| instr->IsCondition() || |
| instr->IsSub()); |
| // Uses aliases of ADD/SUB instructions. |
| // If `value` does not fit but `-value` does, VIXL will automatically use |
| // the 'opposite' instruction. |
| return vixl::Assembler::IsImmAddSub(value) || vixl::Assembler::IsImmAddSub(-value); |
| } |
| } |
| |
| static inline Location ARM64EncodableConstantOrRegister(HInstruction* constant, |
| HInstruction* instr) { |
| if (constant->IsConstant() |
| && CanEncodeConstantAsImmediate(constant->AsConstant(), instr)) { |
| return Location::ConstantLocation(constant->AsConstant()); |
| } |
| |
| return Location::RequiresRegister(); |
| } |
| |
| // Check if registers in art register set have the same register code in vixl. If the register |
| // codes are same, we can initialize vixl register list simply by the register masks. Currently, |
| // only SP/WSP and ZXR/WZR codes are different between art and vixl. |
| // Note: This function is only used for debug checks. |
| static inline bool ArtVixlRegCodeCoherentForRegSet(uint32_t art_core_registers, |
| size_t num_core, |
| uint32_t art_fpu_registers, |
| size_t num_fpu) { |
| // The register masks won't work if the number of register is larger than 32. |
| DCHECK_GE(sizeof(art_core_registers) * 8, num_core); |
| DCHECK_GE(sizeof(art_fpu_registers) * 8, num_fpu); |
| for (size_t art_reg_code = 0; art_reg_code < num_core; ++art_reg_code) { |
| if (RegisterSet::Contains(art_core_registers, art_reg_code)) { |
| if (art_reg_code != static_cast<size_t>(VIXLRegCodeFromART(art_reg_code))) { |
| return false; |
| } |
| } |
| } |
| // There is no register code translation for float registers. |
| return true; |
| } |
| |
| static inline vixl::Shift ShiftFromOpKind(HArm64DataProcWithShifterOp::OpKind op_kind) { |
| switch (op_kind) { |
| case HArm64DataProcWithShifterOp::kASR: return vixl::ASR; |
| case HArm64DataProcWithShifterOp::kLSL: return vixl::LSL; |
| case HArm64DataProcWithShifterOp::kLSR: return vixl::LSR; |
| default: |
| LOG(FATAL) << "Unexpected op kind " << op_kind; |
| UNREACHABLE(); |
| return vixl::NO_SHIFT; |
| } |
| } |
| |
| static inline vixl::Extend ExtendFromOpKind(HArm64DataProcWithShifterOp::OpKind op_kind) { |
| switch (op_kind) { |
| case HArm64DataProcWithShifterOp::kUXTB: return vixl::UXTB; |
| case HArm64DataProcWithShifterOp::kUXTH: return vixl::UXTH; |
| case HArm64DataProcWithShifterOp::kUXTW: return vixl::UXTW; |
| case HArm64DataProcWithShifterOp::kSXTB: return vixl::SXTB; |
| case HArm64DataProcWithShifterOp::kSXTH: return vixl::SXTH; |
| case HArm64DataProcWithShifterOp::kSXTW: return vixl::SXTW; |
| default: |
| LOG(FATAL) << "Unexpected op kind " << op_kind; |
| UNREACHABLE(); |
| return vixl::NO_EXTEND; |
| } |
| } |
| |
| static inline bool CanFitInShifterOperand(HInstruction* instruction) { |
| if (instruction->IsTypeConversion()) { |
| HTypeConversion* conversion = instruction->AsTypeConversion(); |
| Primitive::Type result_type = conversion->GetResultType(); |
| Primitive::Type input_type = conversion->GetInputType(); |
| // We don't expect to see the same type as input and result. |
| return Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type) && |
| (result_type != input_type); |
| } else { |
| return (instruction->IsShl() && instruction->AsShl()->InputAt(1)->IsIntConstant()) || |
| (instruction->IsShr() && instruction->AsShr()->InputAt(1)->IsIntConstant()) || |
| (instruction->IsUShr() && instruction->AsUShr()->InputAt(1)->IsIntConstant()); |
| } |
| } |
| |
| static inline bool HasShifterOperand(HInstruction* instr) { |
| // `neg` instructions are an alias of `sub` using the zero register as the |
| // first register input. |
| bool res = instr->IsAdd() || instr->IsAnd() || instr->IsNeg() || |
| instr->IsOr() || instr->IsSub() || instr->IsXor(); |
| return res; |
| } |
| |
| static inline bool ShifterOperandSupportsExtension(HInstruction* instruction) { |
| DCHECK(HasShifterOperand(instruction)); |
| // Although the `neg` instruction is an alias of the `sub` instruction, `HNeg` |
| // does *not* support extension. This is because the `extended register` form |
| // of the `sub` instruction interprets the left register with code 31 as the |
| // stack pointer and not the zero register. (So does the `immediate` form.) In |
| // the other form `shifted register, the register with code 31 is interpreted |
| // as the zero register. |
| return instruction->IsAdd() || instruction->IsSub(); |
| } |
| |
| } // namespace helpers |
| } // namespace arm64 |
| } // namespace art |
| |
| #endif // ART_COMPILER_OPTIMIZING_COMMON_ARM64_H_ |