blob: 5c750af4aa2f0c6bbc026c8c00bf8fa362faecb8 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fstream>
#include <iostream>
#include <iterator>
#include <map>
#include <set>
#include <string>
#include <string_view>
#include <vector>
#include "android-base/stringprintf.h"
#include "android-base/strings.h"
#include "base/bit_utils.h"
#include "base/hiddenapi_flags.h"
#include "base/mem_map.h"
#include "base/os.h"
#include "base/stl_util.h"
#include "base/string_view_cpp20.h"
#include "base/unix_file/fd_file.h"
#include "dex/art_dex_file_loader.h"
#include "dex/class_accessor-inl.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_file_structs.h"
namespace art {
namespace hiddenapi {
const char kErrorHelp[] = "\nSee go/hiddenapi-error for help.";
static int original_argc;
static char** original_argv;
static std::string CommandLine() {
std::vector<std::string> command;
command.reserve(original_argc);
for (int i = 0; i < original_argc; ++i) {
command.push_back(original_argv[i]);
}
return android::base::Join(command, ' ');
}
static void UsageErrorV(const char* fmt, va_list ap) {
std::string error;
android::base::StringAppendV(&error, fmt, ap);
LOG(ERROR) << error;
}
static void UsageError(const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
}
NO_RETURN static void Usage(const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
UsageError("Command: %s", CommandLine().c_str());
UsageError("Usage: hiddenapi [command_name] [options]...");
UsageError("");
UsageError(" Command \"encode\": encode API list membership in boot dex files");
UsageError(" --input-dex=<filename>: dex file which belongs to boot class path");
UsageError(" --output-dex=<filename>: file to write encoded dex into");
UsageError(" input and output dex files are paired in order of appearance");
UsageError("");
UsageError(" --api-flags=<filename>:");
UsageError(" CSV file with signatures of methods/fields and their respective flags");
UsageError("");
UsageError(" --max-hiddenapi-level=<max-target-*>:");
UsageError(" the maximum hidden api level for APIs. If an API was originally restricted");
UsageError(" to a newer sdk, turn it into a regular unsupported API instead.");
UsageError(" instead. The full list of valid values is in hiddenapi_flags.h");
UsageError("");
UsageError(" --no-force-assign-all:");
UsageError(" Disable check that all dex entries have been assigned a flag");
UsageError("");
UsageError(" Command \"list\": dump lists of public and private API");
UsageError(" --dependency-stub-dex=<filename>: dex file containing API stubs provided");
UsageError(" by other parts of the bootclasspath. These are used to resolve");
UsageError(" dependencies in dex files specified in --boot-dex but do not appear in");
UsageError(" the output");
UsageError(" --boot-dex=<filename>: dex file which belongs to boot class path");
UsageError(" --public-stub-classpath=<filenames>:");
UsageError(" --system-stub-classpath=<filenames>:");
UsageError(" --test-stub-classpath=<filenames>:");
UsageError(" --core-platform-stub-classpath=<filenames>:");
UsageError(" colon-separated list of dex/apk files which form API stubs of boot");
UsageError(" classpath. Multiple classpaths can be specified");
UsageError("");
UsageError(" --out-api-flags=<filename>: output file for a CSV file with API flags");
UsageError(" --fragment: the input is only a fragment of the whole bootclasspath and may");
UsageError(" not include a complete set of classes. That requires the tool to ignore");
UsageError(" missing classes and members. Specify --verbose to see the warnings.");
UsageError(" --verbose: output all warnings, even when --fragment is specified.");
UsageError("");
exit(EXIT_FAILURE);
}
template<typename E>
static bool Contains(const std::vector<E>& vec, const E& elem) {
return std::find(vec.begin(), vec.end(), elem) != vec.end();
}
class DexClass : public ClassAccessor {
public:
explicit DexClass(const ClassAccessor& accessor) : ClassAccessor(accessor) {}
const uint8_t* GetData() const { return dex_file_.GetClassData(GetClassDef()); }
const dex::TypeIndex GetSuperclassIndex() const { return GetClassDef().superclass_idx_; }
bool HasSuperclass() const { return dex_file_.IsTypeIndexValid(GetSuperclassIndex()); }
std::string_view GetSuperclassDescriptor() const {
return HasSuperclass() ? dex_file_.StringByTypeIdx(GetSuperclassIndex()) : "";
}
std::set<std::string_view> GetInterfaceDescriptors() const {
std::set<std::string_view> list;
const dex::TypeList* ifaces = dex_file_.GetInterfacesList(GetClassDef());
for (uint32_t i = 0; ifaces != nullptr && i < ifaces->Size(); ++i) {
list.insert(dex_file_.StringByTypeIdx(ifaces->GetTypeItem(i).type_idx_));
}
return list;
}
inline bool IsPublic() const { return HasAccessFlags(kAccPublic); }
inline bool IsInterface() const { return HasAccessFlags(kAccInterface); }
inline bool Equals(const DexClass& other) const {
bool equals = strcmp(GetDescriptor(), other.GetDescriptor()) == 0;
if (equals) {
LOG(FATAL) << "Class duplication: " << GetDescriptor() << " in " << dex_file_.GetLocation()
<< " and " << other.dex_file_.GetLocation();
}
return equals;
}
private:
uint32_t GetAccessFlags() const { return GetClassDef().access_flags_; }
bool HasAccessFlags(uint32_t mask) const { return (GetAccessFlags() & mask) == mask; }
static std::string JoinStringSet(const std::set<std::string_view>& s) {
return "{" + ::android::base::Join(std::vector<std::string>(s.begin(), s.end()), ",") + "}";
}
};
class DexMember {
public:
DexMember(const DexClass& klass, const ClassAccessor::Field& item)
: klass_(klass), item_(item), is_method_(false) {
DCHECK_EQ(GetFieldId().class_idx_, klass.GetClassIdx());
}
DexMember(const DexClass& klass, const ClassAccessor::Method& item)
: klass_(klass), item_(item), is_method_(true) {
DCHECK_EQ(GetMethodId().class_idx_, klass.GetClassIdx());
}
inline const DexClass& GetDeclaringClass() const { return klass_; }
inline bool IsMethod() const { return is_method_; }
inline bool IsVirtualMethod() const { return IsMethod() && !GetMethod().IsStaticOrDirect(); }
inline bool IsConstructor() const { return IsMethod() && HasAccessFlags(kAccConstructor); }
inline bool IsPublicOrProtected() const {
return HasAccessFlags(kAccPublic) || HasAccessFlags(kAccProtected);
}
// Constructs a string with a unique signature of this class member.
std::string GetApiEntry() const {
std::stringstream ss;
ss << klass_.GetDescriptor() << "->" << GetName() << (IsMethod() ? "" : ":")
<< GetSignature();
return ss.str();
}
inline bool operator==(const DexMember& other) const {
// These need to match if they should resolve to one another.
bool equals = IsMethod() == other.IsMethod() &&
GetName() == other.GetName() &&
GetSignature() == other.GetSignature();
// Soundness check that they do match.
if (equals) {
CHECK_EQ(IsVirtualMethod(), other.IsVirtualMethod());
}
return equals;
}
private:
inline uint32_t GetAccessFlags() const { return item_.GetAccessFlags(); }
inline bool HasAccessFlags(uint32_t mask) const { return (GetAccessFlags() & mask) == mask; }
inline std::string_view GetName() const {
return IsMethod() ? item_.GetDexFile().GetMethodName(GetMethodId())
: item_.GetDexFile().GetFieldName(GetFieldId());
}
inline std::string GetSignature() const {
return IsMethod() ? item_.GetDexFile().GetMethodSignature(GetMethodId()).ToString()
: item_.GetDexFile().GetFieldTypeDescriptor(GetFieldId());
}
inline const ClassAccessor::Method& GetMethod() const {
DCHECK(IsMethod());
return down_cast<const ClassAccessor::Method&>(item_);
}
inline const dex::MethodId& GetMethodId() const {
DCHECK(IsMethod());
return item_.GetDexFile().GetMethodId(item_.GetIndex());
}
inline const dex::FieldId& GetFieldId() const {
DCHECK(!IsMethod());
return item_.GetDexFile().GetFieldId(item_.GetIndex());
}
const DexClass& klass_;
const ClassAccessor::BaseItem& item_;
const bool is_method_;
};
class ClassPath final {
public:
ClassPath(const std::vector<std::string>& dex_paths, bool ignore_empty) {
OpenDexFiles(dex_paths, ignore_empty);
}
template <typename Fn>
void ForEachDexClass(const DexFile* dex_file, Fn fn) {
for (ClassAccessor accessor : dex_file->GetClasses()) {
fn(DexClass(accessor));
}
}
template<typename Fn>
void ForEachDexClass(Fn fn) {
for (auto& dex_file : dex_files_) {
for (ClassAccessor accessor : dex_file->GetClasses()) {
fn(DexClass(accessor));
}
}
}
template<typename Fn>
void ForEachDexMember(Fn fn) {
ForEachDexClass([&fn](const DexClass& klass) {
for (const ClassAccessor::Field& field : klass.GetFields()) {
fn(DexMember(klass, field));
}
for (const ClassAccessor::Method& method : klass.GetMethods()) {
fn(DexMember(klass, method));
}
});
}
std::vector<const DexFile*> GetDexFiles() const {
return MakeNonOwningPointerVector(dex_files_);
}
void UpdateDexChecksums() {
for (auto& dex_file : dex_files_) {
// Obtain a writeable pointer to the dex header.
DexFile::Header* header = const_cast<DexFile::Header*>(&dex_file->GetHeader());
// Recalculate checksum and overwrite the value in the header.
header->checksum_ = dex_file->CalculateChecksum();
}
}
private:
void OpenDexFiles(const std::vector<std::string>& dex_paths, bool ignore_empty) {
std::string error_msg;
for (const std::string& filename : dex_paths) {
DexFileLoader dex_file_loader(filename);
bool success = dex_file_loader.Open(/* verify= */ true,
/* verify_checksum= */ true,
&error_msg,
&dex_files_);
// If requested ignore a jar with no classes.dex files.
if (!success && ignore_empty && error_msg != "Entry not found") {
CHECK(success) << "Open failed for '" << filename << "' " << error_msg;
}
}
}
// Opened dex files. Note that these are opened as `const` but may be written into.
std::vector<std::unique_ptr<const DexFile>> dex_files_;
};
class HierarchyClass final {
public:
HierarchyClass() {}
void AddDexClass(const DexClass& klass) {
CHECK(dex_classes_.empty() || klass.Equals(dex_classes_.front()));
dex_classes_.push_back(klass);
}
void AddExtends(HierarchyClass& parent) {
CHECK(!Contains(extends_, &parent));
CHECK(!Contains(parent.extended_by_, this));
extends_.push_back(&parent);
parent.extended_by_.push_back(this);
}
const DexClass& GetOneDexClass() const {
CHECK(!dex_classes_.empty());
return dex_classes_.front();
}
// See comment on Hierarchy::ForEachResolvableMember.
template<typename Fn>
bool ForEachResolvableMember(const DexMember& other, Fn fn) {
std::vector<HierarchyClass*> visited;
return ForEachResolvableMember_Impl(other, fn, true, true, visited);
}
// Returns true if this class contains at least one member matching `other`.
bool HasMatchingMember(const DexMember& other) {
return ForEachMatchingMember(other, [](const DexMember&) { return true; });
}
// Recursively iterates over all subclasses of this class and invokes `fn`
// on each one. If `fn` returns false for a particular subclass, exploring its
// subclasses is skipped.
template<typename Fn>
void ForEachSubClass(Fn fn) {
for (HierarchyClass* subclass : extended_by_) {
if (fn(subclass)) {
subclass->ForEachSubClass(fn);
}
}
}
private:
template<typename Fn>
bool ForEachResolvableMember_Impl(const DexMember& other,
Fn fn,
bool allow_explore_up,
bool allow_explore_down,
std::vector<HierarchyClass*> visited) {
if (std::find(visited.begin(), visited.end(), this) == visited.end()) {
visited.push_back(this);
} else {
return false;
}
// First try to find a member matching `other` in this class.
bool found = ForEachMatchingMember(other, fn);
// If not found, see if it is inherited from parents. Note that this will not
// revisit parents already in `visited`.
if (!found && allow_explore_up) {
for (HierarchyClass* superclass : extends_) {
found |= superclass->ForEachResolvableMember_Impl(
other,
fn,
/* allow_explore_up */ true,
/* allow_explore_down */ false,
visited);
}
}
// If this is a virtual method, continue exploring into subclasses so as to visit
// all overriding methods. Allow subclasses to explore their superclasses if this
// is an interface. This is needed to find implementations of this interface's
// methods inherited from superclasses (b/122551864).
if (allow_explore_down && other.IsVirtualMethod()) {
for (HierarchyClass* subclass : extended_by_) {
subclass->ForEachResolvableMember_Impl(
other,
fn,
/* allow_explore_up */ GetOneDexClass().IsInterface(),
/* allow_explore_down */ true,
visited);
}
}
return found;
}
template<typename Fn>
bool ForEachMatchingMember(const DexMember& other, Fn fn) {
bool found = false;
auto compare_member = [&](const DexMember& member) {
// TODO(dbrazdil): Check whether class of `other` can access `member`.
if (member == other) {
found = true;
fn(member);
}
};
for (const DexClass& dex_class : dex_classes_) {
for (const ClassAccessor::Field& field : dex_class.GetFields()) {
compare_member(DexMember(dex_class, field));
}
for (const ClassAccessor::Method& method : dex_class.GetMethods()) {
compare_member(DexMember(dex_class, method));
}
}
return found;
}
// DexClass entries of this class found across all the provided dex files.
std::vector<DexClass> dex_classes_;
// Classes which this class inherits, or interfaces which it implements.
std::vector<HierarchyClass*> extends_;
// Classes which inherit from this class.
std::vector<HierarchyClass*> extended_by_;
};
class Hierarchy final {
public:
Hierarchy(ClassPath& classpath, bool fragment, bool verbose) : classpath_(classpath) {
BuildClassHierarchy(fragment, verbose);
}
// Perform an operation for each member of the hierarchy which could potentially
// be the result of method/field resolution of `other`.
// The function `fn` should accept a DexMember reference and return true if
// the member was changed. This drives a performance optimization which only
// visits overriding members the first time the overridden member is visited.
// Returns true if at least one resolvable member was found.
template<typename Fn>
bool ForEachResolvableMember(const DexMember& other, Fn fn) {
HierarchyClass* klass = FindClass(other.GetDeclaringClass().GetDescriptor());
return (klass != nullptr) && klass->ForEachResolvableMember(other, fn);
}
// Returns true if `member`, which belongs to this classpath, is visible to
// code in child class loaders.
bool IsMemberVisible(const DexMember& member) {
if (!member.IsPublicOrProtected()) {
// Member is private or package-private. Cannot be visible.
return false;
} else if (member.GetDeclaringClass().IsPublic()) {
// Member is public or protected, and class is public. It must be visible.
return true;
} else if (member.IsConstructor()) {
// Member is public or protected constructor and class is not public.
// Must be hidden because it cannot be implicitly exposed by a subclass.
return false;
} else {
// Member is public or protected method, but class is not public. Check if
// it is exposed through a public subclass.
// Example code (`foo` exposed by ClassB):
// class ClassA { public void foo() { ... } }
// public class ClassB extends ClassA {}
HierarchyClass* klass = FindClass(member.GetDeclaringClass().GetDescriptor());
CHECK(klass != nullptr);
bool visible = false;
klass->ForEachSubClass([&visible, &member](HierarchyClass* subclass) {
if (subclass->HasMatchingMember(member)) {
// There is a member which matches `member` in `subclass`, either
// a virtual method overriding `member` or a field overshadowing
// `member`. In either case, `member` remains hidden.
CHECK(member.IsVirtualMethod() || !member.IsMethod());
return false; // do not explore deeper
} else if (subclass->GetOneDexClass().IsPublic()) {
// `subclass` inherits and exposes `member`.
visible = true;
return false; // do not explore deeper
} else {
// `subclass` inherits `member` but does not expose it.
return true; // explore deeper
}
});
return visible;
}
}
private:
HierarchyClass* FindClass(const std::string_view& descriptor) {
auto it = classes_.find(descriptor);
if (it == classes_.end()) {
return nullptr;
} else {
return &it->second;
}
}
void BuildClassHierarchy(bool fragment, bool verbose) {
// Create one HierarchyClass entry in `classes_` per class descriptor
// and add all DexClass objects with the same descriptor to that entry.
classpath_.ForEachDexClass([this](const DexClass& klass) {
classes_[klass.GetDescriptor()].AddDexClass(klass);
});
// Connect each HierarchyClass to its successors and predecessors.
for (auto& entry : classes_) {
HierarchyClass& klass = entry.second;
const DexClass& dex_klass = klass.GetOneDexClass();
if (!dex_klass.HasSuperclass()) {
CHECK(dex_klass.GetInterfaceDescriptors().empty())
<< "java/lang/Object should not implement any interfaces";
continue;
}
auto add_extends = [&](const std::string_view& extends_desc) {
HierarchyClass* extends = FindClass(extends_desc);
if (extends != nullptr) {
klass.AddExtends(*extends);
} else if (!fragment || verbose) {
auto severity = verbose ? ::android::base::WARNING : ::android::base::FATAL;
LOG(severity)
<< "Superclass/interface " << extends_desc
<< " of class " << dex_klass.GetDescriptor() << " from dex file \""
<< dex_klass.GetDexFile().GetLocation() << "\" was not found. "
<< "Either it is missing or it appears later in the classpath spec.";
}
};
add_extends(dex_klass.GetSuperclassDescriptor());
for (const std::string_view& iface_desc : dex_klass.GetInterfaceDescriptors()) {
add_extends(iface_desc);
}
}
}
ClassPath& classpath_;
std::map<std::string_view, HierarchyClass> classes_;
};
// Builder of dex section containing hiddenapi flags.
class HiddenapiClassDataBuilder final {
public:
explicit HiddenapiClassDataBuilder(const DexFile& dex_file)
: num_classdefs_(dex_file.NumClassDefs()),
next_class_def_idx_(0u),
class_def_has_non_zero_flags_(false),
dex_file_has_non_zero_flags_(false),
data_(sizeof(uint32_t) * (num_classdefs_ + 1), 0u) {
*GetSizeField() = GetCurrentDataSize();
}
// Notify the builder that new flags for the next class def
// will be written now. The builder records the current offset
// into the header.
void BeginClassDef(uint32_t idx) {
CHECK_EQ(next_class_def_idx_, idx);
CHECK_LT(idx, num_classdefs_);
GetOffsetArray()[idx] = GetCurrentDataSize();
class_def_has_non_zero_flags_ = false;
}
// Notify the builder that all flags for this class def have been
// written. The builder updates the total size of the data struct
// and may set offset for class def in header to zero if no data
// has been written.
void EndClassDef(uint32_t idx) {
CHECK_EQ(next_class_def_idx_, idx);
CHECK_LT(idx, num_classdefs_);
++next_class_def_idx_;
if (!class_def_has_non_zero_flags_) {
// No need to store flags for this class. Remove the written flags
// and set offset in header to zero.
data_.resize(GetOffsetArray()[idx]);
GetOffsetArray()[idx] = 0u;
}
dex_file_has_non_zero_flags_ |= class_def_has_non_zero_flags_;
if (idx == num_classdefs_ - 1) {
if (dex_file_has_non_zero_flags_) {
// This was the last class def and we have generated non-zero hiddenapi
// flags. Update total size in the header.
*GetSizeField() = GetCurrentDataSize();
} else {
// This was the last class def and we have not generated any non-zero
// hiddenapi flags. Clear all the data.
data_.clear();
}
}
}
// Append flags at the end of the data struct. This should be called
// between BeginClassDef and EndClassDef in the order of appearance of
// fields/methods in the class data stream.
void WriteFlags(const ApiList& flags) {
uint32_t dex_flags = flags.GetDexFlags();
EncodeUnsignedLeb128(&data_, dex_flags);
class_def_has_non_zero_flags_ |= (dex_flags != 0u);
}
// Return backing data, assuming that all flags have been written.
const std::vector<uint8_t>& GetData() const {
CHECK_EQ(next_class_def_idx_, num_classdefs_) << "Incomplete data";
return data_;
}
private:
// Returns pointer to the size field in the header of this dex section.
uint32_t* GetSizeField() {
// Assume malloc() aligns allocated memory to at least uint32_t.
CHECK(IsAligned<sizeof(uint32_t)>(data_.data()));
return reinterpret_cast<uint32_t*>(data_.data());
}
// Returns pointer to array of offsets (indexed by class def indices) in the
// header of this dex section.
uint32_t* GetOffsetArray() { return &GetSizeField()[1]; }
uint32_t GetCurrentDataSize() const { return data_.size(); }
// Number of class defs in this dex file.
const uint32_t num_classdefs_;
// Next expected class def index.
uint32_t next_class_def_idx_;
// Whether non-zero flags have been encountered for this class def.
bool class_def_has_non_zero_flags_;
// Whether any non-zero flags have been encountered for this dex file.
bool dex_file_has_non_zero_flags_;
// Vector containing the data of the built data structure.
std::vector<uint8_t> data_;
};
// Edits a dex file, inserting a new HiddenapiClassData section.
class DexFileEditor final {
public:
// Add dex file to copy to output (possibly several files for multi-dex).
void Add(const DexFile* dex, const std::vector<uint8_t>&& hiddenapi_data) {
// We do not support non-standard dex encodings, e.g. compact dex.
CHECK(dex->IsStandardDexFile());
inputs_.emplace_back(dex, std::move(hiddenapi_data));
}
// Writes the edited dex file into a file.
void WriteTo(const std::string& path) {
std::vector<uint8_t> output;
// Copy the old dex files into the backing data vector.
size_t truncated_size = 0;
std::vector<size_t> header_offset;
for (size_t i = 0; i < inputs_.size(); i++) {
const DexFile* dex = inputs_[i].first;
header_offset.push_back(output.size());
std::copy(
dex->Begin(), dex->Begin() + dex->GetHeader().file_size_, std::back_inserter(output));
// Clear the old map list (make it into padding).
const dex::MapList* map = dex->GetMapList();
size_t map_off = dex->GetHeader().map_off_;
size_t map_size = sizeof(map->size_) + map->size_ * sizeof(map->list_[0]);
CHECK_LE(map_off, output.size()) << "Map list past the end of file";
CHECK_EQ(map_size, output.size() - map_off) << "Map list expected at the end of file";
std::fill_n(output.data() + map_off, map_size, 0);
truncated_size = output.size() - map_size;
}
output.resize(truncated_size); // Truncate last map list.
// Append the hidden api data into the backing data vector.
std::vector<size_t> hiddenapi_offset;
for (size_t i = 0; i < inputs_.size(); i++) {
const std::vector<uint8_t>& hiddenapi_data = inputs_[i].second;
output.resize(RoundUp(output.size(), kHiddenapiClassDataAlignment)); // Align.
hiddenapi_offset.push_back(output.size());
std::copy(hiddenapi_data.begin(), hiddenapi_data.end(), std::back_inserter(output));
}
// Update the dex headers and map lists.
for (size_t i = 0; i < inputs_.size(); i++) {
output.resize(RoundUp(output.size(), kMapListAlignment)); // Align.
const DexFile* dex = inputs_[i].first;
const dex::MapList* map = dex->GetMapList();
std::vector<dex::MapItem> items(map->list_, map->list_ + map->size_);
// Check the header entry.
CHECK(!items.empty());
CHECK_EQ(items[0].type_, DexFile::kDexTypeHeaderItem);
CHECK_EQ(items[0].offset_, header_offset[i]);
// Check and remove the old map list entry (it does not have to be last).
auto is_map_list = [](auto it) { return it.type_ == DexFile::kDexTypeMapList; };
auto it = std::find_if(items.begin(), items.end(), is_map_list);
CHECK(it != items.end());
CHECK_EQ(it->offset_, dex->GetHeader().map_off_);
items.erase(it);
// Write new map list.
if (!inputs_[i].second.empty()) {
uint32_t payload_offset = hiddenapi_offset[i];
items.push_back(dex::MapItem{DexFile::kDexTypeHiddenapiClassData, 0, 1u, payload_offset});
}
uint32_t map_offset = output.size();
items.push_back(dex::MapItem{DexFile::kDexTypeMapList, 0, 1u, map_offset});
uint32_t item_count = items.size();
Append(&output, &item_count, 1);
Append(&output, items.data(), items.size());
// Update header.
uint8_t* begin = output.data() + header_offset[i];
auto* header = reinterpret_cast<DexFile::Header*>(begin);
header->map_off_ = map_offset;
if (i + 1 < inputs_.size()) {
CHECK_EQ(header->file_size_, header_offset[i + 1] - header_offset[i]);
} else {
// Extend last dex file until the end of the file.
header->data_size_ = output.size() - header->data_off_;
header->file_size_ = output.size() - header_offset[i];
}
header->checksum_ = DexFile::CalculateChecksum(begin, header->file_size_);
// TODO: We should also update the SHA1 signature.
}
// Write the output file.
CHECK(!output.empty());
std::ofstream ofs(path.c_str(), std::ofstream::out | std::ofstream::binary);
ofs.write(reinterpret_cast<const char*>(output.data()), output.size());
ofs.flush();
CHECK(ofs.good());
ofs.close();
ReloadDex(path.c_str());
}
private:
static constexpr size_t kMapListAlignment = 4u;
static constexpr size_t kHiddenapiClassDataAlignment = 4u;
void ReloadDex(const char* filename) {
std::string error_msg;
ArtDexFileLoader loader(filename);
std::vector<std::unique_ptr<const DexFile>> dex_files;
bool ok = loader.Open(/*verify*/ true,
/*verify_checksum*/ true,
&error_msg,
&dex_files);
CHECK(ok) << "Failed to load edited dex file: " << error_msg;
}
template <typename T>
void Append(std::vector<uint8_t>* output, const T* src, size_t len) {
const uint8_t* ptr = reinterpret_cast<const uint8_t*>(src);
std::copy(ptr, ptr + len * sizeof(T), std::back_inserter(*output));
}
std::vector<std::pair<const DexFile*, const std::vector<uint8_t>>> inputs_;
};
class HiddenApi final {
public:
HiddenApi() : force_assign_all_(true) {}
void Run(int argc, char** argv) {
switch (ParseArgs(argc, argv)) {
case Command::kEncode:
EncodeAccessFlags();
break;
case Command::kList:
ListApi();
break;
}
}
private:
enum class Command {
kEncode,
kList,
};
Command ParseArgs(int argc, char** argv) {
// Skip over the binary's path.
argv++;
argc--;
if (argc > 0) {
const char* raw_command = argv[0];
const std::string_view command(raw_command);
if (command == "encode") {
for (int i = 1; i < argc; ++i) {
const char* raw_option = argv[i];
const std::string_view option(raw_option);
if (StartsWith(option, "--input-dex=")) {
boot_dex_paths_.push_back(std::string(option.substr(strlen("--input-dex="))));
} else if (StartsWith(option, "--output-dex=")) {
output_dex_paths_.push_back(std::string(option.substr(strlen("--output-dex="))));
} else if (StartsWith(option, "--api-flags=")) {
api_flags_path_ = std::string(option.substr(strlen("--api-flags=")));
} else if (option == "--no-force-assign-all") {
force_assign_all_ = false;
} else if (StartsWith(option, "--max-hiddenapi-level=")) {
std::string value = std::string(option.substr(strlen("--max-hiddenapi-level=")));
max_hiddenapi_level_ = ApiList::FromName(value);
} else {
Usage("Unknown argument '%s'", raw_option);
}
}
return Command::kEncode;
} else if (command == "list") {
for (int i = 1; i < argc; ++i) {
const char* raw_option = argv[i];
const std::string_view option(raw_option);
if (StartsWith(option, "--dependency-stub-dex=")) {
const std::string path(std::string(option.substr(strlen("--dependency-stub-dex="))));
dependency_stub_dex_paths_.push_back(path);
// Add path to the boot dex path to resolve dependencies.
boot_dex_paths_.push_back(path);
} else if (StartsWith(option, "--boot-dex=")) {
boot_dex_paths_.push_back(std::string(option.substr(strlen("--boot-dex="))));
} else if (StartsWith(option, "--public-stub-classpath=")) {
stub_classpaths_.push_back(std::make_pair(
std::string(option.substr(strlen("--public-stub-classpath="))),
ApiStubs::Kind::kPublicApi));
} else if (StartsWith(option, "--system-stub-classpath=")) {
stub_classpaths_.push_back(std::make_pair(
std::string(option.substr(strlen("--system-stub-classpath="))),
ApiStubs::Kind::kSystemApi));
} else if (StartsWith(option, "--test-stub-classpath=")) {
stub_classpaths_.push_back(std::make_pair(
std::string(option.substr(strlen("--test-stub-classpath="))),
ApiStubs::Kind::kTestApi));
} else if (StartsWith(option, "--core-platform-stub-classpath=")) {
stub_classpaths_.push_back(std::make_pair(
std::string(option.substr(strlen("--core-platform-stub-classpath="))),
ApiStubs::Kind::kCorePlatformApi));
} else if (StartsWith(option, "--out-api-flags=")) {
api_flags_path_ = std::string(option.substr(strlen("--out-api-flags=")));
} else if (option == "--fragment") {
fragment_ = true;
} else if (option == "--verbose") {
verbose_ = true;
} else {
Usage("Unknown argument '%s'", raw_option);
}
}
return Command::kList;
} else {
Usage("Unknown command '%s'", raw_command);
}
} else {
Usage("No command specified");
}
}
void EncodeAccessFlags() {
if (boot_dex_paths_.empty()) {
Usage("No input DEX files specified");
} else if (output_dex_paths_.size() != boot_dex_paths_.size()) {
Usage("Number of input DEX files does not match number of output DEX files");
}
// Load dex signatures.
std::map<std::string, ApiList> api_list = OpenApiFile(api_flags_path_);
// Iterate over input dex files and insert HiddenapiClassData sections.
bool max_hiddenapi_level_error = false;
for (size_t i = 0; i < boot_dex_paths_.size(); ++i) {
const std::string& input_path = boot_dex_paths_[i];
const std::string& output_path = output_dex_paths_[i];
ClassPath boot_classpath({input_path}, /* ignore_empty= */ false);
DexFileEditor dex_editor;
for (const DexFile* input_dex : boot_classpath.GetDexFiles()) {
HiddenapiClassDataBuilder builder(*input_dex);
boot_classpath.ForEachDexClass(input_dex, [&](const DexClass& boot_class) {
builder.BeginClassDef(boot_class.GetClassDefIndex());
if (boot_class.GetData() != nullptr) {
auto fn_shared = [&](const DexMember& boot_member) {
auto signature = boot_member.GetApiEntry();
auto it = api_list.find(signature);
bool api_list_found = (it != api_list.end());
CHECK(!force_assign_all_ || api_list_found)
<< "Could not find hiddenapi flags for dex entry: " << signature;
if (api_list_found && it->second.GetIntValue() > max_hiddenapi_level_.GetIntValue()) {
ApiList without_domain(it->second.GetIntValue());
LOG(ERROR) << "Hidden api flag " << without_domain << " for member " << signature
<< " in " << input_path << " exceeds maximum allowable flag "
<< max_hiddenapi_level_;
max_hiddenapi_level_error = true;
} else {
builder.WriteFlags(api_list_found ? it->second : ApiList::Sdk());
}
};
auto fn_field = [&](const ClassAccessor::Field& boot_field) {
fn_shared(DexMember(boot_class, boot_field));
};
auto fn_method = [&](const ClassAccessor::Method& boot_method) {
fn_shared(DexMember(boot_class, boot_method));
};
boot_class.VisitFieldsAndMethods(fn_field, fn_field, fn_method, fn_method);
}
builder.EndClassDef(boot_class.GetClassDefIndex());
});
dex_editor.Add(input_dex, std::move(builder.GetData()));
}
dex_editor.WriteTo(output_path);
}
if (max_hiddenapi_level_error) {
LOG(ERROR)
<< "Some hidden API flags could not be encoded within the dex file as"
<< " they exceed the maximum allowable level of " << max_hiddenapi_level_
<< " which is determined by the min_sdk_version of the source Java library.\n"
<< "The affected DEX members are reported in previous error messages.\n"
<< "The unsupported flags are being generated from the maxTargetSdk property"
<< " of the member's @UnsupportedAppUsage annotation.\n"
<< "See b/172453495 and/or contact art-team@ or compat-team@ for more info.\n";
exit(EXIT_FAILURE);
}
}
std::map<std::string, ApiList> OpenApiFile(const std::string& path) {
CHECK(!path.empty());
std::ifstream api_file(path, std::ifstream::in);
CHECK(!api_file.fail()) << "Unable to open file '" << path << "' " << strerror(errno);
std::map<std::string, ApiList> api_flag_map;
size_t line_number = 1;
bool errors = false;
for (std::string line; std::getline(api_file, line); line_number++) {
// Every line contains a comma separated list with the signature as the
// first element and the api flags as the rest
std::vector<std::string> values = android::base::Split(line, ",");
CHECK_GT(values.size(), 1u) << path << ":" << line_number
<< ": No flags found: " << line << kErrorHelp;
const std::string& signature = values[0];
CHECK(api_flag_map.find(signature) == api_flag_map.end()) << path << ":" << line_number
<< ": Duplicate entry: " << signature << kErrorHelp;
ApiList membership;
std::vector<std::string>::iterator apiListBegin = values.begin() + 1;
std::vector<std::string>::iterator apiListEnd = values.end();
bool success = ApiList::FromNames(apiListBegin, apiListEnd, &membership);
if (!success) {
LOG(ERROR) << path << ":" << line_number
<< ": Some flags were not recognized: " << line << kErrorHelp;
errors = true;
continue;
} else if (!membership.IsValid()) {
LOG(ERROR) << path << ":" << line_number
<< ": Invalid combination of flags: " << line << kErrorHelp;
errors = true;
continue;
}
api_flag_map.emplace(signature, membership);
}
CHECK(!errors) << "Errors encountered while parsing file " << path;
api_file.close();
return api_flag_map;
}
// A special flag added to the set of flags in boot_members to indicate that
// it should be excluded from the output.
static constexpr std::string_view kExcludeFromOutput{"exclude-from-output"};
void ListApi() {
if (boot_dex_paths_.empty()) {
Usage("No boot DEX files specified");
} else if (stub_classpaths_.empty()) {
Usage("No stub DEX files specified");
} else if (api_flags_path_.empty()) {
Usage("No output path specified");
}
// Complete list of boot class path members. The associated boolean states
// whether it is public (true) or private (false).
std::map<std::string, std::set<std::string_view>> boot_members;
// Deduplicate errors before printing them.
std::set<std::string> unresolved;
// Open all dex files.
ClassPath boot_classpath(boot_dex_paths_, /* ignore_empty= */ false);
Hierarchy boot_hierarchy(boot_classpath, fragment_, verbose_);
// Mark all boot dex members private.
boot_classpath.ForEachDexMember([&](const DexMember& boot_member) {
boot_members[boot_member.GetApiEntry()] = {};
});
// Open all dependency API stub dex files.
ClassPath dependency_classpath(dependency_stub_dex_paths_, /* ignore_empty= */ false);
// Mark all dependency API stub dex members as coming from the dependency.
dependency_classpath.ForEachDexMember([&](const DexMember& boot_member) {
boot_members[boot_member.GetApiEntry()] = {kExcludeFromOutput};
});
// Resolve each SDK dex member against the framework and mark it as SDK.
for (const auto& cp_entry : stub_classpaths_) {
// Ignore any empty stub jars as it just means that they provide no APIs
// for the current kind, e.g. framework-sdkextensions does not provide
// any public APIs.
ClassPath stub_classpath(android::base::Split(cp_entry.first, ":"), /*ignore_empty=*/true);
Hierarchy stub_hierarchy(stub_classpath, fragment_, verbose_);
const ApiStubs::Kind stub_api = cp_entry.second;
stub_classpath.ForEachDexMember(
[&](const DexMember& stub_member) {
if (!stub_hierarchy.IsMemberVisible(stub_member)) {
// Typically fake constructors and inner-class `this` fields.
return;
}
bool resolved = boot_hierarchy.ForEachResolvableMember(
stub_member,
[&](const DexMember& boot_member) {
std::string entry = boot_member.GetApiEntry();
auto it = boot_members.find(entry);
CHECK(it != boot_members.end());
it->second.insert(ApiStubs::ToString(stub_api));
});
if (!resolved) {
unresolved.insert(stub_member.GetApiEntry());
}
});
}
// Print errors.
if (!fragment_ || verbose_) {
for (const std::string& str : unresolved) {
LOG(WARNING) << "unresolved: " << str;
}
}
// Write into public/private API files.
std::ofstream file_flags(api_flags_path_.c_str());
for (const auto& entry : boot_members) {
std::set<std::string_view> flags = entry.second;
if (flags.empty()) {
// There are no flags so it cannot be from the dependency stub API dex
// files so just output the signature.
file_flags << entry.first << std::endl;
} else if (flags.find(kExcludeFromOutput) == flags.end()) {
// The entry has flags and is not from the dependency stub API dex so
// output it.
file_flags << entry.first << ",";
file_flags << android::base::Join(entry.second, ",") << std::endl;
}
}
file_flags.close();
}
// Whether to check that all dex entries have been assigned flags.
// Defaults to true.
bool force_assign_all_;
// Paths to DEX files which should be processed.
std::vector<std::string> boot_dex_paths_;
// Paths to DEX files containing API stubs provided by other parts of the
// boot class path which the DEX files in boot_dex_paths depend.
std::vector<std::string> dependency_stub_dex_paths_;
// Output paths where modified DEX files should be written.
std::vector<std::string> output_dex_paths_;
// Set of public API stub classpaths. Each classpath is formed by a list
// of DEX/APK files in the order they appear on the classpath.
std::vector<std::pair<std::string, ApiStubs::Kind>> stub_classpaths_;
// Path to CSV file containing the list of API members and their flags.
// This could be both an input and output path.
std::string api_flags_path_;
// Maximum allowable hidden API level that can be encoded into the dex file.
//
// By default this returns a GetIntValue() that is guaranteed to be bigger than
// any valid value returned by GetIntValue().
ApiList max_hiddenapi_level_;
// Whether the input is only a fragment of the whole bootclasspath and may
// not include a complete set of classes. That requires the tool to ignore missing
// classes and members.
bool fragment_ = false;
// Whether to output all warnings, even when `fragment_` is set.
bool verbose_ = false;
};
} // namespace hiddenapi
} // namespace art
int main(int argc, char** argv) {
art::hiddenapi::original_argc = argc;
art::hiddenapi::original_argv = argv;
android::base::InitLogging(argv);
art::MemMap::Init();
art::hiddenapi::HiddenApi().Run(argc, argv);
return EXIT_SUCCESS;
}