| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <dlfcn.h> |
| #include <errno.h> |
| #include <pthread.h> |
| #include <signal.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #if defined(__BIONIC__) |
| #include <bionic/macros.h> |
| #endif |
| |
| #include <algorithm> |
| #include <atomic> |
| #include <initializer_list> |
| #include <mutex> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "log.h" |
| #include "sigchain.h" |
| |
| #if defined(__APPLE__) |
| #define _NSIG NSIG |
| #define sighandler_t sig_t |
| |
| // Darwin has an #error when ucontext.h is included without _XOPEN_SOURCE defined. |
| #define _XOPEN_SOURCE |
| #endif |
| |
| #define SA_UNSUPPORTED 0x00000400 |
| #define SA_EXPOSE_TAGBITS 0x00000800 |
| |
| #include <ucontext.h> |
| |
| // libsigchain provides an interception layer for signal handlers, to allow ART and others to give |
| // their signal handlers the first stab at handling signals before passing them on to user code. |
| // |
| // It implements wrapper functions for signal, sigaction, and sigprocmask, and a handler that |
| // forwards signals appropriately. |
| // |
| // In our handler, we start off with all signals blocked, fetch the original signal mask from the |
| // passed in ucontext, and then adjust our signal mask appropriately for the user handler. |
| // |
| // It's somewhat tricky for us to properly handle some flag cases: |
| // SA_NOCLDSTOP and SA_NOCLDWAIT: shouldn't matter, we don't have special handlers for SIGCHLD. |
| // SA_NODEFER: unimplemented, we can manually change the signal mask appropriately. |
| // ~SA_ONSTACK: always silently enable this |
| // SA_RESETHAND: unimplemented, but we can probably do this? |
| // ~SA_RESTART: unimplemented, maybe we can reserve an RT signal, register an empty handler that |
| // doesn't have SA_RESTART, and raise the signal to avoid restarting syscalls that are |
| // expected to be interrupted? |
| |
| #if defined(__BIONIC__) && !defined(__LP64__) |
| static int sigismember(const sigset64_t* sigset, int signum) { |
| return sigismember64(sigset, signum); |
| } |
| |
| static int sigemptyset(sigset64_t* sigset) { |
| return sigemptyset64(sigset); |
| } |
| |
| static int sigaddset(sigset64_t* sigset, int signum) { |
| return sigaddset64(sigset, signum); |
| } |
| |
| static int sigdelset(sigset64_t* sigset, int signum) { |
| return sigdelset64(sigset, signum); |
| } |
| #endif |
| |
| template<typename SigsetType> |
| static int sigorset(SigsetType* dest, SigsetType* left, SigsetType* right) { |
| sigemptyset(dest); |
| for (size_t i = 0; i < sizeof(SigsetType) * CHAR_BIT; ++i) { |
| if (sigismember(left, i) == 1 || sigismember(right, i) == 1) { |
| sigaddset(dest, i); |
| } |
| } |
| return 0; |
| } |
| |
| namespace art { |
| |
| static decltype(&sigaction) linked_sigaction; |
| static decltype(&sigprocmask) linked_sigprocmask; |
| |
| #if defined(__BIONIC__) |
| static decltype(&sigaction64) linked_sigaction64; |
| static decltype(&sigprocmask64) linked_sigprocmask64; |
| #endif |
| |
| template <typename T> |
| static void lookup_libc_symbol(T* output, T wrapper, const char* name) { |
| #if defined(__BIONIC__) |
| constexpr const char* libc_name = "libc.so"; |
| #elif defined(__GLIBC__) |
| #if __GNU_LIBRARY__ != 6 |
| #error unsupported glibc version |
| #endif |
| constexpr const char* libc_name = "libc.so.6"; |
| #elif defined(ANDROID_HOST_MUSL) |
| constexpr const char* libc_name = "libc_musl.so"; |
| #else |
| #error unsupported libc: not bionic or glibc? |
| #endif |
| |
| static void* libc = []() { |
| void* result = dlopen(libc_name, RTLD_LOCAL | RTLD_LAZY); |
| if (!result) { |
| fatal("failed to dlopen %s: %s", libc_name, dlerror()); |
| } |
| return result; |
| }(); |
| |
| void* sym = dlsym(libc, name); // NOLINT glibc triggers cert-dcl16-c with RTLD_NEXT. |
| if (sym == nullptr) { |
| sym = dlsym(RTLD_DEFAULT, name); |
| if (sym == wrapper || sym == sigaction) { |
| fatal("Unable to find next %s in signal chain", name); |
| } |
| } |
| *output = reinterpret_cast<T>(sym); |
| } |
| |
| __attribute__((constructor)) static void InitializeSignalChain() { |
| static std::once_flag once; |
| std::call_once(once, []() { |
| lookup_libc_symbol(&linked_sigaction, sigaction, "sigaction"); |
| lookup_libc_symbol(&linked_sigprocmask, sigprocmask, "sigprocmask"); |
| |
| #if defined(__BIONIC__) |
| lookup_libc_symbol(&linked_sigaction64, sigaction64, "sigaction64"); |
| lookup_libc_symbol(&linked_sigprocmask64, sigprocmask64, "sigprocmask64"); |
| #endif |
| }); |
| } |
| |
| template <typename T> |
| static constexpr bool IsPowerOfTwo(T x) { |
| static_assert(std::is_integral_v<T>, "T must be integral"); |
| static_assert(std::is_unsigned_v<T>, "T must be unsigned"); |
| return (x & (x - 1)) == 0; |
| } |
| |
| template <typename T> |
| static constexpr T RoundUp(T x, T n) { |
| return (x + n - 1) & -n; |
| } |
| // Use a bitmap to indicate which signal is being handled so that other |
| // non-blocked signals are allowed to be handled, if raised. |
| static constexpr size_t kSignalSetLength = _NSIG - 1; |
| static constexpr size_t kNumSignalsPerKey = std::numeric_limits<uintptr_t>::digits; |
| static_assert(IsPowerOfTwo(kNumSignalsPerKey)); |
| static constexpr size_t kHandlingSignalKeyCount = |
| RoundUp(kSignalSetLength, kNumSignalsPerKey) / kNumSignalsPerKey; |
| |
| // We rely on bionic's implementation of pthread_(get/set)specific being |
| // async-signal safe. |
| static pthread_key_t GetHandlingSignalKey(size_t idx) { |
| static pthread_key_t key[kHandlingSignalKeyCount]; |
| static std::once_flag once; |
| std::call_once(once, []() { |
| for (size_t i = 0; i < kHandlingSignalKeyCount; i++) { |
| int rc = pthread_key_create(&key[i], nullptr); |
| if (rc != 0) { |
| fatal("failed to create sigchain pthread key: %s", strerror(rc)); |
| } |
| } |
| }); |
| return key[idx]; |
| } |
| |
| static bool GetHandlingSignal() { |
| for (size_t i = 0; i < kHandlingSignalKeyCount; i++) { |
| void* result = pthread_getspecific(GetHandlingSignalKey(i)); |
| if (reinterpret_cast<uintptr_t>(result) != 0) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool GetHandlingSignal(int signo) { |
| size_t bit_idx = signo - 1; |
| size_t key_idx = bit_idx / kNumSignalsPerKey; |
| uintptr_t bit_mask = static_cast<uintptr_t>(1) << (bit_idx % kNumSignalsPerKey); |
| uintptr_t result = |
| reinterpret_cast<uintptr_t>(pthread_getspecific(GetHandlingSignalKey(key_idx))); |
| return result & bit_mask; |
| } |
| |
| static bool SetHandlingSignal(int signo, bool value) { |
| // Use signal-fence to ensure that compiler doesn't reorder generated code |
| // across signal handlers. |
| size_t bit_idx = signo - 1; |
| size_t key_idx = bit_idx / kNumSignalsPerKey; |
| uintptr_t bit_mask = static_cast<uintptr_t>(1) << (bit_idx % kNumSignalsPerKey); |
| pthread_key_t key = GetHandlingSignalKey(key_idx); |
| std::atomic_signal_fence(std::memory_order_seq_cst); |
| uintptr_t bitmap = reinterpret_cast<uintptr_t>(pthread_getspecific(key)); |
| bool ret = bitmap & bit_mask; |
| if (value) { |
| bitmap |= bit_mask; |
| } else { |
| bitmap &= ~bit_mask; |
| } |
| pthread_setspecific(key, reinterpret_cast<void*>(bitmap)); |
| std::atomic_signal_fence(std::memory_order_seq_cst); |
| return ret; |
| } |
| |
| class ScopedHandlingSignal { |
| public: |
| ScopedHandlingSignal(int signo, bool set) |
| : signo_(signo), |
| original_value_(set ? SetHandlingSignal(signo, true) : GetHandlingSignal(signo)) {} |
| |
| ~ScopedHandlingSignal() { |
| SetHandlingSignal(signo_, original_value_); |
| } |
| |
| private: |
| int signo_; |
| bool original_value_; |
| }; |
| |
| class SignalChain { |
| public: |
| SignalChain() : claimed_(false) { |
| } |
| |
| bool IsClaimed() { |
| return claimed_; |
| } |
| |
| void Claim(int signo) { |
| if (!claimed_) { |
| Register(signo); |
| claimed_ = true; |
| } |
| } |
| |
| // Register the signal chain with the kernel if needed. |
| void Register(int signo) { |
| #if defined(__BIONIC__) |
| struct sigaction64 handler_action = {}; |
| sigfillset64(&handler_action.sa_mask); |
| #else |
| struct sigaction handler_action = {}; |
| sigfillset(&handler_action.sa_mask); |
| #endif |
| |
| handler_action.sa_sigaction = SignalChain::Handler; |
| handler_action.sa_flags = SA_RESTART | SA_SIGINFO | SA_ONSTACK | |
| SA_UNSUPPORTED | SA_EXPOSE_TAGBITS; |
| |
| #if defined(__BIONIC__) |
| linked_sigaction64(signo, &handler_action, &action_); |
| linked_sigaction64(signo, nullptr, &handler_action); |
| #else |
| linked_sigaction(signo, &handler_action, &action_); |
| linked_sigaction(signo, nullptr, &handler_action); |
| #endif |
| |
| // Newer kernels clear unknown flags from sigaction.sa_flags in order to |
| // allow userspace to determine which flag bits are supported. We use this |
| // behavior in turn to implement the same flag bit support detection |
| // protocol regardless of kernel version. Due to the lack of a flag bit |
| // support detection protocol in older kernels we assume support for a base |
| // set of flags that have been supported since at least 2003 [1]. No flags |
| // were introduced since then until the introduction of SA_EXPOSE_TAGBITS |
| // handled below. glibc headers do not define SA_RESTORER so we define it |
| // ourselves. |
| // |
| // TODO(pcc): The new kernel behavior has been implemented in a kernel |
| // patch [2] that has not yet landed. Update the code if necessary once it |
| // lands. |
| // |
| // [1] https://github.com/mpe/linux-fullhistory/commit/c0f806c86fc8b07ad426df023f1a4bb0e53c64f6 |
| // [2] https://lore.kernel.org/linux-arm-kernel/cover.1605235762.git.pcc@google.com/ |
| #if !defined(__BIONIC__) |
| #define SA_RESTORER 0x04000000 |
| #endif |
| kernel_supported_flags_ = SA_NOCLDSTOP | SA_NOCLDWAIT | SA_SIGINFO | SA_ONSTACK | SA_RESTART | |
| SA_NODEFER | SA_RESETHAND; |
| #if defined(SA_RESTORER) |
| kernel_supported_flags_ |= SA_RESTORER; |
| #endif |
| |
| // Determine whether the kernel supports SA_EXPOSE_TAGBITS. For newer |
| // kernels we use the flag support detection protocol described above. In |
| // order to allow userspace to distinguish old and new kernels, |
| // SA_UNSUPPORTED has been reserved as an unsupported flag. If the kernel |
| // did not clear it then we know that we have an old kernel that would not |
| // support SA_EXPOSE_TAGBITS anyway. |
| if (!(handler_action.sa_flags & SA_UNSUPPORTED) && |
| (handler_action.sa_flags & SA_EXPOSE_TAGBITS)) { |
| kernel_supported_flags_ |= SA_EXPOSE_TAGBITS; |
| } |
| } |
| |
| template <typename SigactionType> |
| SigactionType GetAction() { |
| if constexpr (std::is_same_v<decltype(action_), SigactionType>) { |
| return action_; |
| } else { |
| SigactionType result; |
| result.sa_flags = action_.sa_flags; |
| result.sa_handler = action_.sa_handler; |
| #if defined(SA_RESTORER) |
| result.sa_restorer = action_.sa_restorer; |
| #endif |
| memcpy(&result.sa_mask, &action_.sa_mask, |
| std::min(sizeof(action_.sa_mask), sizeof(result.sa_mask))); |
| return result; |
| } |
| } |
| |
| template <typename SigactionType> |
| void SetAction(const SigactionType* new_action) { |
| if constexpr (std::is_same_v<decltype(action_), SigactionType>) { |
| action_ = *new_action; |
| } else { |
| action_.sa_flags = new_action->sa_flags; |
| action_.sa_handler = new_action->sa_handler; |
| #if defined(SA_RESTORER) |
| action_.sa_restorer = new_action->sa_restorer; |
| #endif |
| sigemptyset(&action_.sa_mask); |
| memcpy(&action_.sa_mask, &new_action->sa_mask, |
| std::min(sizeof(action_.sa_mask), sizeof(new_action->sa_mask))); |
| } |
| action_.sa_flags &= kernel_supported_flags_; |
| } |
| |
| void AddSpecialHandler(SigchainAction* sa) { |
| for (SigchainAction& slot : special_handlers_) { |
| if (slot.sc_sigaction == nullptr) { |
| slot = *sa; |
| return; |
| } |
| } |
| |
| fatal("too many special signal handlers"); |
| } |
| |
| void RemoveSpecialHandler(bool (*fn)(int, siginfo_t*, void*)) { |
| // This isn't thread safe, but it's unlikely to be a real problem. |
| size_t len = sizeof(special_handlers_)/sizeof(*special_handlers_); |
| for (size_t i = 0; i < len; ++i) { |
| if (special_handlers_[i].sc_sigaction == fn) { |
| for (size_t j = i; j < len - 1; ++j) { |
| special_handlers_[j] = special_handlers_[j + 1]; |
| } |
| special_handlers_[len - 1].sc_sigaction = nullptr; |
| return; |
| } |
| } |
| |
| fatal("failed to find special handler to remove"); |
| } |
| |
| |
| static void Handler(int signo, siginfo_t* siginfo, void*); |
| |
| private: |
| bool claimed_; |
| int kernel_supported_flags_; |
| #if defined(__BIONIC__) |
| struct sigaction64 action_; |
| #else |
| struct sigaction action_; |
| #endif |
| SigchainAction special_handlers_[2]; |
| }; |
| |
| // _NSIG is 1 greater than the highest valued signal, but signals start from 1. |
| // Leave an empty element at index 0 for convenience. |
| static SignalChain chains[_NSIG]; |
| |
| static bool is_signal_hook_debuggable = false; |
| |
| // Weak linkage, as the ART APEX might be deployed on devices where this symbol doesn't exist (i.e. |
| // all OS's before Android U). This symbol comes from libdl. |
| __attribute__((weak)) extern "C" bool android_handle_signal(int signal_number, |
| siginfo_t* info, |
| void* context); |
| |
| void SignalChain::Handler(int signo, siginfo_t* siginfo, void* ucontext_raw) { |
| // Try the special handlers first. |
| // If one of them crashes, we'll reenter this handler and pass that crash onto the user handler. |
| if (!GetHandlingSignal(signo)) { |
| for (const auto& handler : chains[signo].special_handlers_) { |
| if (handler.sc_sigaction == nullptr) { |
| break; |
| } |
| |
| // The native bridge signal handler might not return. |
| // Avoid setting the thread local flag in this case, since we'll never |
| // get a chance to restore it. |
| bool handler_noreturn = (handler.sc_flags & SIGCHAIN_ALLOW_NORETURN); |
| sigset_t previous_mask; |
| linked_sigprocmask(SIG_SETMASK, &handler.sc_mask, &previous_mask); |
| |
| ScopedHandlingSignal restorer(signo, !handler_noreturn); |
| |
| if (handler.sc_sigaction(signo, siginfo, ucontext_raw)) { |
| return; |
| } |
| |
| linked_sigprocmask(SIG_SETMASK, &previous_mask, nullptr); |
| } |
| } |
| |
| // In Android 14, there's a special feature called "recoverable" GWP-ASan. GWP-ASan is a tool that |
| // finds heap-buffer-overflow and heap-use-after-free on native heap allocations (e.g. malloc() |
| // inside of JNI, not the ART heap). The way it catches buffer overflow (roughly) is by rounding |
| // up the malloc() so that it's page-sized, and mapping an inaccessible page on the left- and |
| // right-hand side. It catches use-after-free by mprotecting the allocation page to be PROT_NONE |
| // on free(). The new "recoverable" mode is designed to allow debuggerd to print a crash report, |
| // but for the app or process in question to not crash (i.e. recover) and continue even after the |
| // bug is detected. Sigchain thus must allow debuggerd to handle the signal first, and if |
| // debuggerd has promised that it can recover, and it's done the steps to allow recovery (as |
| // identified by android_handle_signal returning true), then we should return from this handler |
| // and let the app continue. |
| // |
| // For all non-GWP-ASan-recoverable crashes, or crashes where recovery is not possible, |
| // android_handle_signal returns false, and we will continue to the rest of the sigchain handler |
| // logic. |
| if (android_handle_signal != nullptr && android_handle_signal(signo, siginfo, ucontext_raw)) { |
| return; |
| } |
| |
| // Forward to the user's signal handler. |
| int handler_flags = chains[signo].action_.sa_flags; |
| ucontext_t* ucontext = static_cast<ucontext_t*>(ucontext_raw); |
| #if defined(__BIONIC__) |
| sigset64_t mask; |
| sigorset(&mask, &ucontext->uc_sigmask64, &chains[signo].action_.sa_mask); |
| #else |
| sigset_t mask; |
| sigorset(&mask, &ucontext->uc_sigmask, &chains[signo].action_.sa_mask); |
| #endif |
| if (!(handler_flags & SA_NODEFER)) { |
| sigaddset(&mask, signo); |
| } |
| |
| #if defined(__BIONIC__) |
| linked_sigprocmask64(SIG_SETMASK, &mask, nullptr); |
| #else |
| linked_sigprocmask(SIG_SETMASK, &mask, nullptr); |
| #endif |
| |
| if ((handler_flags & SA_SIGINFO)) { |
| // If the chained handler is not expecting tag bits in the fault address, |
| // mask them out now. |
| #if defined(__BIONIC__) |
| if (!(handler_flags & SA_EXPOSE_TAGBITS) && |
| (signo == SIGILL || signo == SIGFPE || signo == SIGSEGV || |
| signo == SIGBUS || signo == SIGTRAP) && |
| siginfo->si_code > SI_USER && siginfo->si_code < SI_KERNEL && |
| !(signo == SIGTRAP && siginfo->si_code == TRAP_HWBKPT)) { |
| siginfo->si_addr = untag_address(siginfo->si_addr); |
| } |
| #endif |
| chains[signo].action_.sa_sigaction(signo, siginfo, ucontext_raw); |
| } else { |
| auto handler = chains[signo].action_.sa_handler; |
| if (handler == SIG_IGN) { |
| return; |
| } else if (handler == SIG_DFL) { |
| // We'll only get here if debuggerd is disabled. In that case, whatever next tries to handle |
| // the crash will have no way to know our ucontext, and thus no way to dump the original crash |
| // stack (since we're on an alternate stack.) Let's remove our handler and return. Then the |
| // pre-crash state is restored, the crash happens again, and the next handler gets a chance. |
| log("reverting to SIG_DFL handler for signal %d, ucontext %p", signo, ucontext); |
| struct sigaction dfl = {}; |
| dfl.sa_handler = SIG_DFL; |
| linked_sigaction(signo, &dfl, nullptr); |
| return; |
| } else { |
| handler(signo); |
| } |
| } |
| } |
| |
| template <typename SigactionType> |
| static int __sigaction(int signal, const SigactionType* new_action, |
| SigactionType* old_action, |
| int (*linked)(int, const SigactionType*, |
| SigactionType*)) { |
| if (is_signal_hook_debuggable) { |
| return 0; |
| } |
| |
| // If this signal has been claimed as a signal chain, record the user's |
| // action but don't pass it on to the kernel. |
| // Note that we check that the signal number is in range here. An out of range signal |
| // number should behave exactly as the libc sigaction. |
| if (signal <= 0 || signal >= _NSIG) { |
| errno = EINVAL; |
| return -1; |
| } |
| |
| if (chains[signal].IsClaimed()) { |
| SigactionType saved_action = chains[signal].GetAction<SigactionType>(); |
| if (new_action != nullptr) { |
| chains[signal].SetAction(new_action); |
| } |
| if (old_action != nullptr) { |
| *old_action = saved_action; |
| } |
| return 0; |
| } |
| |
| // Will only get here if the signal chain has not been claimed. We want |
| // to pass the sigaction on to the kernel via the real sigaction in libc. |
| return linked(signal, new_action, old_action); |
| } |
| |
| extern "C" int sigaction(int signal, const struct sigaction* new_action, |
| struct sigaction* old_action) { |
| InitializeSignalChain(); |
| return __sigaction(signal, new_action, old_action, linked_sigaction); |
| } |
| |
| #if defined(__BIONIC__) |
| extern "C" int sigaction64(int signal, const struct sigaction64* new_action, |
| struct sigaction64* old_action) { |
| InitializeSignalChain(); |
| return __sigaction(signal, new_action, old_action, linked_sigaction64); |
| } |
| #endif |
| |
| extern "C" sighandler_t signal(int signo, sighandler_t handler) { |
| InitializeSignalChain(); |
| |
| if (signo <= 0 || signo >= _NSIG) { |
| errno = EINVAL; |
| return SIG_ERR; |
| } |
| |
| struct sigaction sa = {}; |
| sigemptyset(&sa.sa_mask); |
| sa.sa_handler = handler; |
| sa.sa_flags = SA_RESTART | SA_ONSTACK; |
| sighandler_t oldhandler; |
| |
| // If this signal has been claimed as a signal chain, record the user's |
| // action but don't pass it on to the kernel. |
| if (chains[signo].IsClaimed()) { |
| oldhandler = reinterpret_cast<sighandler_t>( |
| chains[signo].GetAction<struct sigaction>().sa_handler); |
| chains[signo].SetAction(&sa); |
| return oldhandler; |
| } |
| |
| // Will only get here if the signal chain has not been claimed. We want |
| // to pass the sigaction on to the kernel via the real sigaction in libc. |
| if (linked_sigaction(signo, &sa, &sa) == -1) { |
| return SIG_ERR; |
| } |
| |
| return reinterpret_cast<sighandler_t>(sa.sa_handler); |
| } |
| |
| #if !defined(__LP64__) |
| extern "C" sighandler_t bsd_signal(int signo, sighandler_t handler) { |
| InitializeSignalChain(); |
| |
| return signal(signo, handler); |
| } |
| #endif |
| |
| template <typename SigsetType> |
| int __sigprocmask(int how, const SigsetType* new_set, SigsetType* old_set, |
| int (*linked)(int, const SigsetType*, SigsetType*)) { |
| // When inside a signal handler, forward directly to the actual sigprocmask. |
| if (GetHandlingSignal()) { |
| return linked(how, new_set, old_set); |
| } |
| |
| const SigsetType* new_set_ptr = new_set; |
| SigsetType tmpset; |
| if (new_set != nullptr) { |
| tmpset = *new_set; |
| |
| if (how == SIG_BLOCK || how == SIG_SETMASK) { |
| // Don't allow claimed signals in the mask. If a signal chain has been claimed |
| // we can't allow the user to block that signal. |
| for (int i = 1; i < _NSIG; ++i) { |
| if (chains[i].IsClaimed() && sigismember(&tmpset, i)) { |
| sigdelset(&tmpset, i); |
| } |
| } |
| } |
| new_set_ptr = &tmpset; |
| } |
| |
| return linked(how, new_set_ptr, old_set); |
| } |
| |
| extern "C" int sigprocmask(int how, const sigset_t* new_set, |
| sigset_t* old_set) { |
| InitializeSignalChain(); |
| return __sigprocmask(how, new_set, old_set, linked_sigprocmask); |
| } |
| |
| #if defined(__BIONIC__) |
| extern "C" int sigprocmask64(int how, const sigset64_t* new_set, |
| sigset64_t* old_set) { |
| InitializeSignalChain(); |
| return __sigprocmask(how, new_set, old_set, linked_sigprocmask64); |
| } |
| #endif |
| |
| extern "C" void AddSpecialSignalHandlerFn(int signal, SigchainAction* sa) { |
| InitializeSignalChain(); |
| |
| if (signal <= 0 || signal >= _NSIG) { |
| fatal("Invalid signal %d", signal); |
| } |
| |
| // Set the managed_handler. |
| chains[signal].AddSpecialHandler(sa); |
| chains[signal].Claim(signal); |
| } |
| |
| extern "C" void RemoveSpecialSignalHandlerFn(int signal, bool (*fn)(int, siginfo_t*, void*)) { |
| InitializeSignalChain(); |
| |
| if (signal <= 0 || signal >= _NSIG) { |
| fatal("Invalid signal %d", signal); |
| } |
| |
| chains[signal].RemoveSpecialHandler(fn); |
| } |
| |
| extern "C" void EnsureFrontOfChain(int signal) { |
| InitializeSignalChain(); |
| |
| if (signal <= 0 || signal >= _NSIG) { |
| fatal("Invalid signal %d", signal); |
| } |
| |
| // Read the current action without looking at the chain, it should be the expected action. |
| #if defined(__BIONIC__) |
| struct sigaction64 current_action; |
| linked_sigaction64(signal, nullptr, ¤t_action); |
| #else |
| struct sigaction current_action; |
| linked_sigaction(signal, nullptr, ¤t_action); |
| #endif |
| |
| // If the sigactions don't match then we put the current action on the chain and make ourself as |
| // the main action. |
| if (current_action.sa_sigaction != SignalChain::Handler) { |
| log("Warning: Unexpected sigaction action found %p\n", current_action.sa_sigaction); |
| chains[signal].Register(signal); |
| } |
| } |
| |
| extern "C" void SkipAddSignalHandler(bool value) { |
| is_signal_hook_debuggable = value; |
| } |
| |
| } // namespace art |
| |