blob: 900e4c3e129114790927f1458d87615374cd70ed [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_JNI_LOCAL_REFERENCE_TABLE_H_
#define ART_RUNTIME_JNI_LOCAL_REFERENCE_TABLE_H_
#include <stdint.h>
#include <iosfwd>
#include <limits>
#include <string>
#include <android-base/logging.h>
#include "base/bit_field.h"
#include "base/bit_utils.h"
#include "base/casts.h"
#include "base/dchecked_vector.h"
#include "base/locks.h"
#include "base/macros.h"
#include "base/mem_map.h"
#include "base/mutex.h"
#include "gc_root.h"
#include "indirect_reference_table.h"
#include "mirror/object_reference.h"
#include "obj_ptr.h"
#include "offsets.h"
namespace art {
class RootInfo;
namespace mirror {
class Object;
} // namespace mirror
namespace jni {
// Maintain a table of local JNI references.
//
// The table contains object references that are part of the GC root set. When an object is
// added we return an `IndirectRef` that is not a valid pointer but can be used to find the
// original value in O(1) time. Conversions to and from local JNI references are performed
// on upcalls and downcalls as well as in JNI functions, so they need to be very fast.
//
// To be efficient for JNI local variable storage, we need to provide operations that allow us to
// operate on segments of the table, where segments are pushed and popped as if on a stack. For
// example, deletion of an entry should only succeed if it appears in the current segment, and we
// want to be able to strip off the current segment quickly when a method returns. Additions to the
// table must be made in the current segment even if space is available in an earlier area.
//
// A new segment is created when we call into native code from managed code, or when we handle
// the JNI PushLocalFrame function.
//
// The GC must be able to scan the entire table quickly.
//
// In summary, these must be very fast:
// - adding or removing a segment
// - adding references (always adding to the current segment)
// - converting a local reference back to an Object
// These can be a little slower, but must still be pretty quick:
// - removing individual references
// - scanning the entire table straight through
//
// If there's more than one segment, we don't guarantee that the table will fill completely before
// we fail due to lack of space. We do ensure that the current segment will pack tightly, which
// should satisfy JNI requirements (e.g. EnsureLocalCapacity).
// To get the desired behavior for JNI locals, we need to know the bottom and top of the current
// "segment". The top is managed internally, and the bottom is passed in as a function argument.
// When we call a native method or push a local frame, the current top index gets pushed on, and
// serves as the new bottom. When we pop a frame off, the value from the stack becomes the new top
// index, and the value stored in the previous frame becomes the new bottom.
// TODO: Move the bottom index from `JniEnvExt` to the `LocalReferenceTable`. Use this in the JNI
// compiler to improve the emitted local frame push/pop code by using two-register loads/stores
// where available (LDRD/STRD on arm, LDP/STP on arm64).
//
// If we delete entries from the middle of the list, we will be left with "holes" which we track
// with a singly-linked list, so that they can be reused quickly. After a segment has been removed,
// we need to prune removed free entries from the front of this singly-linked list before we can
// reuse a free entry from the current segment. This is linear in the number of entries removed
// and may appear as a slow reference addition but this slow down is attributable to the previous
// removals with a constant time per removal.
//
// Without CheckJNI, we aim for the fastest possible implementation, so there is no error checking
// (in release build) and stale references can be erroneously used, especially after the same slot
// has been reused for another reference which we cannot easily detect (even in debug build).
//
// With CheckJNI, we rotate the slots that we use based on a "serial number".
// This increases the memory use but it allows for decent error detection.
//
// We allow switching between CheckJNI enabled and disabled but entries created with CheckJNI
// disabled shall have weaker checking even after enabling CheckJNI and the switch can also
// prevent reusing a hole that held a reference created with a different CheckJNI setting.
// The state of the current segment contains the top index.
struct LRTSegmentState {
uint32_t top_index;
};
// Use as initial value for "cookie", and when table has only one segment.
static constexpr LRTSegmentState kLRTFirstSegment = { 0 };
// Each entry in the `LocalReferenceTable` can contain a null (initially or after a `Trim()`)
// or reference, or it can be marked as free and hold the index of the next free entry.
// If CheckJNI is (or was) enabled, some entries can contain serial numbers instead and
// only one other entry in a CheckJNI chunk starting with a serial number is active.
//
// Valid bit patterns:
// 33222222222211111111110000000000
// 10987654321098765432109876543210
// null: 00000000000000000000000000000000 // Only above the top index.
// reference: <----- reference value ----->000 // See also `kObjectAlignment`.
// free: <-------- next free --------->01
// serial number: <------ serial number ------->10 // CheckJNI entry.
// Note that serial number entries can appear only as the first entry of a 16-byte aligned
// chunk of four entries and the serial number in the range [1, 3] specifies which of the
// other three entries in the chunk is currently used.
class LrtEntry {
public:
void SetReference(ObjPtr<mirror::Object> ref) REQUIRES_SHARED(Locks::mutator_lock_);
ObjPtr<mirror::Object> GetReference() REQUIRES_SHARED(Locks::mutator_lock_);
bool IsNull() const {
return root_.IsNull();
}
void SetNextFree(uint32_t next_free) REQUIRES_SHARED(Locks::mutator_lock_);
uint32_t GetNextFree() {
DCHECK(IsFree());
DCHECK(!IsSerialNumber());
return NextFreeField::Decode(GetRawValue());
}
bool IsFree() {
return (GetRawValue() & (1u << kFlagFree)) != 0u;
}
void SetSerialNumber(uint32_t serial_number) REQUIRES_SHARED(Locks::mutator_lock_);
uint32_t GetSerialNumber() {
DCHECK(IsSerialNumber());
DCHECK(!IsFree());
return GetSerialNumberUnchecked();
}
uint32_t GetSerialNumberUnchecked() {
return SerialNumberField::Decode(GetRawValue());
}
bool IsSerialNumber() {
return (GetRawValue() & (1u << kFlagSerialNumber)) != 0u;
}
GcRoot<mirror::Object>* GetRootAddress() {
return &root_;
}
static constexpr uint32_t FreeListEnd() {
return MaxInt<uint32_t>(kFieldNextFreeBits);
}
private:
// Definitions of bit fields and flags.
static constexpr size_t kFlagFree = 0u;
static constexpr size_t kFlagSerialNumber = kFlagFree + 1u;
static constexpr size_t kFieldNextFree = kFlagSerialNumber + 1u;
static constexpr size_t kFieldNextFreeBits = BitSizeOf<uint32_t>() - kFieldNextFree;
using NextFreeField = BitField<uint32_t, kFieldNextFree, kFieldNextFreeBits>;
using SerialNumberField = NextFreeField;
static_assert(kObjectAlignment > (1u << kFlagFree));
static_assert(kObjectAlignment > (1u << kFlagSerialNumber));
void SetVRegValue(uint32_t value) REQUIRES_SHARED(Locks::mutator_lock_);
uint32_t GetRawValue() {
return root_.AddressWithoutBarrier()->AsVRegValue();
}
// We record the contents as a `GcRoot<>` but it is an actual `GcRoot<>` only if it's below
// the current segment's top index, it's not a "serial number" or inactive entry in a CheckJNI
// chunk, and it's not marked as "free". Such entries are never null.
GcRoot<mirror::Object> root_;
};
static_assert(sizeof(LrtEntry) == sizeof(mirror::CompressedReference<mirror::Object>));
// Assert that the low bits of an `LrtEntry*` are sufficient for encoding the reference kind.
static_assert(enum_cast<uint32_t>(IndirectRefKind::kLastKind) < alignof(LrtEntry));
// We initially allocate local reference tables with a small number of entries, packing
// multiple tables into a single page. If we need to expand, we double the capacity,
// first allocating another chunk with the same number of entries as the first chunk
// and then allocating twice as big chunk on each subsequent expansion.
static constexpr size_t kInitialLrtBytes = 512; // Number of bytes in an initial local table.
static constexpr size_t kSmallLrtEntries = kInitialLrtBytes / sizeof(LrtEntry);
static_assert(IsPowerOfTwo(kInitialLrtBytes));
static_assert(kPageSize % kInitialLrtBytes == 0);
static_assert(kInitialLrtBytes % sizeof(LrtEntry) == 0);
// A minimal stopgap allocator for initial small local LRT tables.
class SmallLrtAllocator {
public:
SmallLrtAllocator();
// Allocate a small block of `LrtEntries` for the `LocalReferenceTable` table. The `size`
// must be a power of 2, at least `kSmallLrtEntries`, and requiring less than a page of memory.
LrtEntry* Allocate(size_t size, std::string* error_msg) REQUIRES(!lock_);
void Deallocate(LrtEntry* unneeded, size_t size) REQUIRES(!lock_);
private:
static constexpr size_t kNumSlots = WhichPowerOf2(kPageSize / kInitialLrtBytes);
static size_t GetIndex(size_t size);
// Free lists of small chunks linked through the first word.
dchecked_vector<void*> free_lists_;
// Repository of MemMaps used for small LRT tables.
dchecked_vector<MemMap> shared_lrt_maps_;
Mutex lock_; // Level kGenericBottomLock; acquired before mem_map_lock_, which is a C++ mutex.
};
class LocalReferenceTable {
public:
explicit LocalReferenceTable(bool check_jni);
~LocalReferenceTable();
// Set the CheckJNI enabled status.
// Called only from the Zygote post-fork callback while the process is single-threaded.
// Enabling CheckJNI reduces the number of entries that can be stored, thus invalidating
// guarantees provided by a previous call to `EnsureFreeCapacity()`.
void SetCheckJniEnabled(bool enabled);
// Returns whether the CheckJNI is enabled for this `LocalReferenceTable`.
bool IsCheckJniEnabled() const {
return (free_entries_list_ & (1u << kFlagCheckJni)) != 0u;
}
// Initialize the `LocalReferenceTable`.
//
// Max_count is the requested minimum initial capacity (resizable). The actual initial
// capacity can be higher to utilize all allocated memory.
//
// Returns true on success.
// On failure, returns false and reports error in `*error_msg`.
bool Initialize(size_t max_count, std::string* error_msg);
// Add a new entry. The `obj` must be a valid non-null object reference. This function
// will return null if an error happened (with an appropriate error message set).
IndirectRef Add(LRTSegmentState previous_state,
ObjPtr<mirror::Object> obj,
std::string* error_msg)
REQUIRES_SHARED(Locks::mutator_lock_);
// Given an `IndirectRef` in the table, return the `Object` it refers to.
//
// This function may abort under error conditions in debug build.
// In release builds, error conditions are unchecked and the function can
// return old or invalid references from popped segments and deleted entries.
ObjPtr<mirror::Object> Get(IndirectRef iref) const
REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE;
// Updates an existing indirect reference to point to a new object.
// Used exclusively for updating `String` references after calling a `String` constructor.
void Update(IndirectRef iref, ObjPtr<mirror::Object> obj) REQUIRES_SHARED(Locks::mutator_lock_);
// Remove an existing entry.
//
// If the entry is not between the current top index and the bottom index
// specified by the cookie, we don't remove anything. This is the behavior
// required by JNI's DeleteLocalRef function.
//
// Returns "false" if nothing was removed.
bool Remove(LRTSegmentState previous_state, IndirectRef iref)
REQUIRES_SHARED(Locks::mutator_lock_);
void AssertEmpty();
void Dump(std::ostream& os) const
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!Locks::alloc_tracker_lock_);
IndirectRefKind GetKind() const {
return kLocal;
}
// Return the number of entries in the entire table. This includes holes,
// and so may be larger than the actual number of "live" entries.
// The value corresponds to the number of entries for the current CheckJNI setting
// and may be wrong if there are entries created with a different CheckJNI setting.
size_t Capacity() const {
if (IsCheckJniEnabled()) {
DCHECK_ALIGNED(segment_state_.top_index, kCheckJniEntriesPerReference);
return segment_state_.top_index / kCheckJniEntriesPerReference;
} else {
return segment_state_.top_index;
}
}
// Ensure that at least free_capacity elements are available, or return false.
// Caller ensures free_capacity > 0.
bool EnsureFreeCapacity(size_t free_capacity, std::string* error_msg)
REQUIRES_SHARED(Locks::mutator_lock_);
// See implementation of EnsureFreeCapacity. We'll only state here how much is trivially free,
// without recovering holes. Thus this is a conservative estimate.
size_t FreeCapacity() const;
void VisitRoots(RootVisitor* visitor, const RootInfo& root_info)
REQUIRES_SHARED(Locks::mutator_lock_);
LRTSegmentState GetSegmentState() const {
return segment_state_;
}
void SetSegmentState(LRTSegmentState new_state);
static Offset SegmentStateOffset(size_t pointer_size ATTRIBUTE_UNUSED) {
// Note: Currently segment_state_ is at offset 0. We're testing the expected value in
// jni_internal_test to make sure it stays correct. It is not OFFSETOF_MEMBER, as that
// is not pointer-size-safe.
return Offset(0);
}
// Release pages past the end of the table that may have previously held references.
void Trim() REQUIRES_SHARED(Locks::mutator_lock_);
/* Reference validation for CheckJNI and debug build. */
bool IsValidReference(IndirectRef, /*out*/std::string* error_msg) const
REQUIRES_SHARED(Locks::mutator_lock_);
private:
// Flags and fields in the `free_entries_list_`.
static constexpr size_t kFlagCheckJni = 0u;
// Skip a bit to have the same value range for the "first free" as the "next free" in `LrtEntry`.
static constexpr size_t kFlagPadding = kFlagCheckJni + 1u;
static constexpr size_t kFieldFirstFree = kFlagPadding + 1u;
static constexpr size_t kFieldFirstFreeSize = BitSizeOf<uint32_t>() - kFieldFirstFree;
using FirstFreeField = BitField<uint32_t, kFieldFirstFree, kFieldFirstFreeSize>;
// The value of `FirstFreeField` in `free_entries_list_` indicating the end of the free list.
static constexpr uint32_t kFreeListEnd = LrtEntry::FreeListEnd();
static_assert(kFreeListEnd == MaxInt<uint32_t>(kFieldFirstFreeSize));
// The value of `free_entries_list_` indicating empty free list and disabled CheckJNI.
static constexpr uint32_t kEmptyFreeListAndCheckJniDisabled =
FirstFreeField::Update(kFreeListEnd, 0u); // kFlagCheckJni not set.
// The number of entries per reference to detect obsolete reference uses with CheckJNI enabled.
// The first entry serves as a serial number, one of the remaining entries can hold the actual
// reference or the next free index.
static constexpr size_t kCheckJniEntriesPerReference = 4u;
static_assert(IsPowerOfTwo(kCheckJniEntriesPerReference));
// The maximum total table size we allow.
static constexpr size_t kMaxTableSizeInBytes = 128 * MB;
static_assert(IsPowerOfTwo(kMaxTableSizeInBytes));
static_assert(IsPowerOfTwo(sizeof(LrtEntry)));
static constexpr size_t kMaxTableSize = kMaxTableSizeInBytes / sizeof(LrtEntry);
static IndirectRef ToIndirectRef(LrtEntry* entry) {
// The `IndirectRef` can be used to directly access the underlying `GcRoot<>`.
DCHECK_EQ(reinterpret_cast<GcRoot<mirror::Object>*>(entry), entry->GetRootAddress());
return reinterpret_cast<IndirectRef>(
reinterpret_cast<uintptr_t>(entry) | static_cast<uintptr_t>(kLocal));
}
static LrtEntry* ToLrtEntry(IndirectRef iref) {
DCHECK_EQ(IndirectReferenceTable::GetIndirectRefKind(iref), kLocal);
return IndirectReferenceTable::ClearIndirectRefKind<LrtEntry*>(iref);
}
static constexpr size_t GetTableSize(size_t table_index) {
// First two tables have size `kSmallLrtEntries`, then it doubles for subsequent tables.
return kSmallLrtEntries << (table_index != 0u ? table_index - 1u : 0u);
}
static constexpr size_t NumTablesForSize(size_t size) {
DCHECK_GE(size, kSmallLrtEntries);
DCHECK(IsPowerOfTwo(size));
return 1u + WhichPowerOf2(size / kSmallLrtEntries);
}
static constexpr size_t MaxSmallTables() {
return NumTablesForSize(kPageSize / sizeof(LrtEntry));
}
LrtEntry* GetEntry(size_t entry_index) const {
DCHECK_LT(entry_index, max_entries_);
if (LIKELY(small_table_ != nullptr)) {
DCHECK_LT(entry_index, kSmallLrtEntries);
DCHECK_EQ(max_entries_, kSmallLrtEntries);
return &small_table_[entry_index];
}
size_t table_start_index =
(entry_index < kSmallLrtEntries) ? 0u : TruncToPowerOfTwo(entry_index);
size_t table_index =
(entry_index < kSmallLrtEntries) ? 0u : NumTablesForSize(table_start_index);
LrtEntry* table = tables_[table_index];
return &table[entry_index - table_start_index];
}
// Get the entry index for a local reference. Note that this may be higher than
// the current segment state. Returns maximum uint32 value if the reference does not
// point to one of the internal tables.
uint32_t GetReferenceEntryIndex(IndirectRef iref) const;
static LrtEntry* GetCheckJniSerialNumberEntry(LrtEntry* entry) {
return AlignDown(entry, kCheckJniEntriesPerReference * sizeof(LrtEntry));
}
static uint32_t IncrementSerialNumber(LrtEntry* serial_number_entry)
REQUIRES_SHARED(Locks::mutator_lock_);
static bool IsValidSerialNumber(uint32_t serial_number) {
return serial_number != 0u && serial_number < kCheckJniEntriesPerReference;
}
// Debug mode check that the reference is valid.
void DCheckValidReference(IndirectRef iref) const REQUIRES_SHARED(Locks::mutator_lock_);
// Resize the backing table to be at least `new_size` elements long. The `new_size`
// must be larger than the current size. After return max_entries_ >= new_size.
bool Resize(size_t new_size, std::string* error_msg);
// Extract the first free index from `free_entries_list_`.
uint32_t GetFirstFreeIndex() const {
return FirstFreeField::Decode(free_entries_list_);
}
// Remove popped free entries from the list.
// Called only if `free_entries_list_` points to a popped entry.
template <typename EntryGetter>
void PrunePoppedFreeEntries(EntryGetter&& get_entry);
// Helper template function for visiting roots.
template <typename Visitor>
void VisitRootsInternal(Visitor&& visitor) const REQUIRES_SHARED(Locks::mutator_lock_);
/// semi-public - read/write by jni down calls.
LRTSegmentState segment_state_;
// The maximum number of entries (modulo resizing).
uint32_t max_entries_;
// The singly-linked list of free nodes.
// We use entry indexes instead of pointers and `kFreeListEnd` instead of null indicates
// the end of the list. See `LocalReferenceTable::GetEntry()` and `LrtEntry::GetNextFree().
//
// We use the lowest bit to record whether CheckJNI is enabled. This helps us
// check that the list is empty and CheckJNI is disabled in a single comparison.
uint32_t free_entries_list_;
// Individual tables.
// As long as we have only one small table, we use `small_table_` to avoid an extra load
// from another heap allocated location, otherwise we set it to null and use `tables_`.
LrtEntry* small_table_; // For optimizing the fast-path.
dchecked_vector<LrtEntry*> tables_;
// Mem maps where we store tables allocated directly with `MemMap`
// rather than the `SmallLrtAllocator`.
dchecked_vector<MemMap> table_mem_maps_;
};
} // namespace jni
} // namespace art
#endif // ART_RUNTIME_JNI_LOCAL_REFERENCE_TABLE_H_