blob: 6db931d18753f305c749aa8acb6fcdd9e54475b6 [file] [log] [blame]
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_JIT_JIT_MEMORY_REGION_H_
#define ART_RUNTIME_JIT_JIT_MEMORY_REGION_H_
#include <string>
#include "arch/instruction_set.h"
#include "base/globals.h"
#include "base/locks.h"
#include "base/mem_map.h"
#include "gc_root-inl.h"
#include "handle.h"
namespace art {
namespace mirror {
class Object;
}
namespace jit {
class TestZygoteMemory;
// Number of bytes represented by a bit in the CodeCacheBitmap. Value is reasonable for all
// architectures.
static constexpr int kJitCodeAccountingBytes = 16;
// Helper to get the size required for emitting `number_of_roots` in the
// data portion of a JIT memory region.
uint32_t inline ComputeRootTableSize(uint32_t number_of_roots) {
return sizeof(uint32_t) + number_of_roots * sizeof(GcRoot<mirror::Object>);
}
// Represents a memory region for the JIT, where code and data are stored. This class
// provides allocation and deallocation primitives.
class JitMemoryRegion {
public:
JitMemoryRegion()
: initial_capacity_(0),
max_capacity_(0),
current_capacity_(0),
data_end_(0),
exec_end_(0),
used_memory_for_code_(0),
used_memory_for_data_(0),
data_pages_(),
writable_data_pages_(),
exec_pages_(),
non_exec_pages_(),
data_mspace_(nullptr),
exec_mspace_(nullptr) {}
bool Initialize(size_t initial_capacity,
size_t max_capacity,
bool rwx_memory_allowed,
bool is_zygote,
std::string* error_msg)
REQUIRES(Locks::jit_lock_);
// Try to increase the current capacity of the code cache. Return whether we
// succeeded at doing so.
bool IncreaseCodeCacheCapacity() REQUIRES(Locks::jit_lock_);
// Set the footprint limit of the code cache.
void SetFootprintLimit(size_t new_footprint) REQUIRES(Locks::jit_lock_);
const uint8_t* AllocateCode(size_t code_size) REQUIRES(Locks::jit_lock_);
void FreeCode(const uint8_t* code) REQUIRES(Locks::jit_lock_);
const uint8_t* AllocateData(size_t data_size) REQUIRES(Locks::jit_lock_);
void FreeData(const uint8_t* data) REQUIRES(Locks::jit_lock_);
void FreeData(uint8_t* writable_data) REQUIRES(Locks::jit_lock_) = delete;
void FreeWritableData(uint8_t* writable_data) REQUIRES(Locks::jit_lock_);
// Emit header and code into the memory pointed by `reserved_code` (despite it being const).
// Returns pointer to copied code (within reserved_code region; after OatQuickMethodHeader).
const uint8_t* CommitCode(ArrayRef<const uint8_t> reserved_code,
ArrayRef<const uint8_t> code,
const uint8_t* stack_map,
bool has_should_deoptimize_flag)
REQUIRES(Locks::jit_lock_);
// Emit roots and stack map into the memory pointed by `roots_data` (despite it being const).
bool CommitData(ArrayRef<const uint8_t> reserved_data,
const std::vector<Handle<mirror::Object>>& roots,
ArrayRef<const uint8_t> stack_map)
REQUIRES(Locks::jit_lock_)
REQUIRES_SHARED(Locks::mutator_lock_);
void ResetWritableMappings() REQUIRES(Locks::jit_lock_) {
non_exec_pages_.ResetInForkedProcess();
writable_data_pages_.ResetInForkedProcess();
// Also clear the mspaces, which, in their implementation,
// point to the discarded mappings.
exec_mspace_ = nullptr;
data_mspace_ = nullptr;
}
bool IsValid() const NO_THREAD_SAFETY_ANALYSIS {
return exec_mspace_ != nullptr || data_mspace_ != nullptr;
}
template <typename T>
void FillData(const T* address, size_t n, const T& t) REQUIRES(Locks::jit_lock_) {
std::fill_n(GetWritableDataAddress(address), n, t);
}
// Generic helper for writing abritrary data in the data portion of the
// region.
template <typename T>
void WriteData(const T* address, const T& value) {
*GetWritableDataAddress(address) = value;
}
bool HasDualCodeMapping() const {
return non_exec_pages_.IsValid();
}
bool HasDualDataMapping() const {
return writable_data_pages_.IsValid();
}
bool HasCodeMapping() const {
return exec_pages_.IsValid();
}
bool IsInDataSpace(const void* ptr) const {
return data_pages_.HasAddress(ptr);
}
bool IsInExecSpace(const void* ptr) const {
return exec_pages_.HasAddress(ptr);
}
const MemMap* GetExecPages() const {
return &exec_pages_;
}
void* MoreCore(const void* mspace, intptr_t increment);
bool OwnsSpace(const void* mspace) const NO_THREAD_SAFETY_ANALYSIS {
return mspace == data_mspace_ || mspace == exec_mspace_;
}
size_t GetCurrentCapacity() const REQUIRES(Locks::jit_lock_) {
return current_capacity_;
}
size_t GetMaxCapacity() const REQUIRES(Locks::jit_lock_) {
return max_capacity_;
}
size_t GetUsedMemoryForCode() const REQUIRES(Locks::jit_lock_) {
return used_memory_for_code_;
}
size_t GetResidentMemoryForCode() const REQUIRES(Locks::jit_lock_) {
return exec_end_;
}
size_t GetUsedMemoryForData() const REQUIRES(Locks::jit_lock_) {
return used_memory_for_data_;
}
size_t GetResidentMemoryForData() const REQUIRES(Locks::jit_lock_) {
return data_end_;
}
template <typename T> T* GetWritableDataAddress(const T* src_ptr) {
if (!HasDualDataMapping()) {
return const_cast<T*>(src_ptr);
}
return const_cast<T*>(TranslateAddress(src_ptr, data_pages_, writable_data_pages_));
}
private:
template <typename T>
T* TranslateAddress(T* src_ptr, const MemMap& src, const MemMap& dst) {
CHECK(src.HasAddress(src_ptr)) << reinterpret_cast<const void*>(src_ptr);
const uint8_t* const raw_src_ptr = reinterpret_cast<const uint8_t*>(src_ptr);
return reinterpret_cast<T*>(raw_src_ptr - src.Begin() + dst.Begin());
}
const MemMap* GetUpdatableCodeMapping() const {
if (HasDualCodeMapping()) {
return &non_exec_pages_;
} else if (HasCodeMapping()) {
return &exec_pages_;
} else {
return nullptr;
}
}
const MemMap* GetWritableDataMapping() const {
if (HasDualDataMapping()) {
return &writable_data_pages_;
} else {
return &data_pages_;
}
}
template <typename T> T* GetNonWritableDataAddress(T* src_ptr) {
if (!HasDualDataMapping()) {
return src_ptr;
}
return TranslateAddress(src_ptr, writable_data_pages_, data_pages_);
}
template <typename T> T* GetExecutableAddress(T* src_ptr) {
if (!HasDualCodeMapping()) {
return src_ptr;
}
return TranslateAddress(src_ptr, non_exec_pages_, exec_pages_);
}
template <typename T> T* GetNonExecutableAddress(T* src_ptr) {
if (!HasDualCodeMapping()) {
return src_ptr;
}
return TranslateAddress(src_ptr, exec_pages_, non_exec_pages_);
}
static int CreateZygoteMemory(size_t capacity, std::string* error_msg);
static bool ProtectZygoteMemory(int fd, std::string* error_msg);
// The initial capacity in bytes this code region starts with.
size_t initial_capacity_ GUARDED_BY(Locks::jit_lock_);
// The maximum capacity in bytes this region can go to.
size_t max_capacity_ GUARDED_BY(Locks::jit_lock_);
// The current capacity in bytes of the region.
size_t current_capacity_ GUARDED_BY(Locks::jit_lock_);
// The current footprint in bytes of the data portion of the region.
size_t data_end_ GUARDED_BY(Locks::jit_lock_);
// The current footprint in bytes of the code portion of the region.
size_t exec_end_ GUARDED_BY(Locks::jit_lock_);
// The size in bytes of used memory for the code portion of the region.
size_t used_memory_for_code_ GUARDED_BY(Locks::jit_lock_);
// The size in bytes of used memory for the data portion of the region.
size_t used_memory_for_data_ GUARDED_BY(Locks::jit_lock_);
// Mem map which holds data (stack maps and profiling info).
MemMap data_pages_;
// Mem map which holds data with writable permission. Only valid for dual view
// JIT when this is the writable view and data_pages_ is the readable view.
MemMap writable_data_pages_;
// Mem map which holds code and has executable permission.
MemMap exec_pages_;
// Mem map which holds code with non executable permission. Only valid for dual view JIT when
// this is the non-executable view of code used to write updates.
MemMap non_exec_pages_;
// The opaque mspace for allocating data.
void* data_mspace_ GUARDED_BY(Locks::jit_lock_);
// The opaque mspace for allocating code.
void* exec_mspace_ GUARDED_BY(Locks::jit_lock_);
friend class ScopedCodeCacheWrite; // For GetUpdatableCodeMapping
friend class TestZygoteMemory;
};
} // namespace jit
} // namespace art
#endif // ART_RUNTIME_JIT_JIT_MEMORY_REGION_H_