blob: 7ca24238566b09fa0c3cb0a8a4860b4fba934d2c [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_INTERPRETER_SHADOW_FRAME_H_
#define ART_RUNTIME_INTERPRETER_SHADOW_FRAME_H_
#include <cstdint>
#include <cstring>
#include <string>
#include "base/locks.h"
#include "base/macros.h"
#include "lock_count_data.h"
#include "read_barrier.h"
#include "stack_reference.h"
#include "verify_object.h"
namespace art {
namespace mirror {
class Object;
} // namespace mirror
class ArtMethod;
class ShadowFrame;
template<class MirrorType> class ObjPtr;
class Thread;
union JValue;
// Forward declaration. Just calls the destructor.
struct ShadowFrameDeleter;
using ShadowFrameAllocaUniquePtr = std::unique_ptr<ShadowFrame, ShadowFrameDeleter>;
// ShadowFrame has 2 possible layouts:
// - interpreter - separate VRegs and reference arrays. References are in the reference array.
// - JNI - just VRegs, but where every VReg holds a reference.
class ShadowFrame {
private:
// Used to keep track of extra state the shadowframe has.
enum class FrameFlags : uint32_t {
// We have been requested to notify when this frame gets popped.
kNotifyFramePop = 1 << 0,
// We have been asked to pop this frame off the stack as soon as possible.
kForcePopFrame = 1 << 1,
// We have been asked to re-execute the last instruction.
kForceRetryInst = 1 << 2,
// Mark that we expect the next frame to retry the last instruction (used by instrumentation and
// debuggers to keep track of required events)
kSkipMethodExitEvents = 1 << 3,
// Used to suppress exception events caused by other instrumentation events.
kSkipNextExceptionEvent = 1 << 4,
// Used to specify if DexPCMoveEvents have to be reported. These events will
// only be reported if the method has a breakpoint set.
kNotifyDexPcMoveEvents = 1 << 5,
};
public:
// Compute size of ShadowFrame in bytes assuming it has a reference array.
static size_t ComputeSize(uint32_t num_vregs) {
return sizeof(ShadowFrame) + (sizeof(uint32_t) * num_vregs) +
(sizeof(StackReference<mirror::Object>) * num_vregs);
}
// Create ShadowFrame in heap for deoptimization.
static ShadowFrame* CreateDeoptimizedFrame(uint32_t num_vregs,
ArtMethod* method,
uint32_t dex_pc) {
uint8_t* memory = new uint8_t[ComputeSize(num_vregs)];
return CreateShadowFrameImpl(num_vregs, method, dex_pc, memory);
}
// Delete a ShadowFrame allocated on the heap for deoptimization.
static void DeleteDeoptimizedFrame(ShadowFrame* sf) {
sf->~ShadowFrame(); // Explicitly destruct.
uint8_t* memory = reinterpret_cast<uint8_t*>(sf);
delete[] memory;
}
// Create a shadow frame in a fresh alloca. This needs to be in the context of the caller.
// Inlining doesn't work, the compiler will still undo the alloca. So this needs to be a macro.
#define CREATE_SHADOW_FRAME(num_vregs, method, dex_pc) ({ \
size_t frame_size = ShadowFrame::ComputeSize(num_vregs); \
void* alloca_mem = alloca(frame_size); \
ShadowFrameAllocaUniquePtr( \
ShadowFrame::CreateShadowFrameImpl((num_vregs), (method), (dex_pc), (alloca_mem))); \
})
~ShadowFrame() {}
uint32_t NumberOfVRegs() const {
return number_of_vregs_;
}
uint32_t GetDexPC() const {
return (dex_pc_ptr_ == nullptr) ? dex_pc_ : dex_pc_ptr_ - dex_instructions_;
}
int16_t GetCachedHotnessCountdown() const {
return cached_hotness_countdown_;
}
void SetCachedHotnessCountdown(int16_t cached_hotness_countdown) {
cached_hotness_countdown_ = cached_hotness_countdown;
}
int16_t GetHotnessCountdown() const {
return hotness_countdown_;
}
void SetHotnessCountdown(int16_t hotness_countdown) {
hotness_countdown_ = hotness_countdown;
}
void SetDexPC(uint32_t dex_pc) {
dex_pc_ = dex_pc;
dex_pc_ptr_ = nullptr;
}
ShadowFrame* GetLink() const {
return link_;
}
void SetLink(ShadowFrame* frame) {
DCHECK_NE(this, frame);
DCHECK_EQ(link_, nullptr);
link_ = frame;
}
void ClearLink() {
link_ = nullptr;
}
int32_t GetVReg(size_t i) const {
DCHECK_LT(i, NumberOfVRegs());
const uint32_t* vreg = &vregs_[i];
return *reinterpret_cast<const int32_t*>(vreg);
}
// Shorts are extended to Ints in VRegs. Interpreter intrinsics needs them as shorts.
int16_t GetVRegShort(size_t i) const {
return static_cast<int16_t>(GetVReg(i));
}
uint32_t* GetVRegAddr(size_t i) {
return &vregs_[i];
}
uint32_t* GetShadowRefAddr(size_t i) {
DCHECK_LT(i, NumberOfVRegs());
return &vregs_[i + NumberOfVRegs()];
}
const uint16_t* GetDexInstructions() const {
return dex_instructions_;
}
float GetVRegFloat(size_t i) const {
DCHECK_LT(i, NumberOfVRegs());
// NOTE: Strict-aliasing?
const uint32_t* vreg = &vregs_[i];
return *reinterpret_cast<const float*>(vreg);
}
int64_t GetVRegLong(size_t i) const {
DCHECK_LT(i + 1, NumberOfVRegs());
const uint32_t* vreg = &vregs_[i];
using unaligned_int64 __attribute__((aligned(4))) = const int64_t;
return *reinterpret_cast<unaligned_int64*>(vreg);
}
double GetVRegDouble(size_t i) const {
DCHECK_LT(i + 1, NumberOfVRegs());
const uint32_t* vreg = &vregs_[i];
using unaligned_double __attribute__((aligned(4))) = const double;
return *reinterpret_cast<unaligned_double*>(vreg);
}
// Look up the reference given its virtual register number.
// If this returns non-null then this does not mean the vreg is currently a reference
// on non-moving collectors. Check that the raw reg with GetVReg is equal to this if not certain.
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
mirror::Object* GetVRegReference(size_t i) const REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK_LT(i, NumberOfVRegs());
mirror::Object* ref;
ref = References()[i].AsMirrorPtr();
ReadBarrier::MaybeAssertToSpaceInvariant(ref);
if (kVerifyFlags & kVerifyReads) {
VerifyObject(ref);
}
return ref;
}
// Get view of vregs as range of consecutive arguments starting at i.
uint32_t* GetVRegArgs(size_t i) {
return &vregs_[i];
}
void SetVReg(size_t i, int32_t val) {
DCHECK_LT(i, NumberOfVRegs());
uint32_t* vreg = &vregs_[i];
*reinterpret_cast<int32_t*>(vreg) = val;
// This is needed for moving collectors since these can update the vreg references if they
// happen to agree with references in the reference array.
References()[i].Clear();
}
void SetVRegFloat(size_t i, float val) {
DCHECK_LT(i, NumberOfVRegs());
uint32_t* vreg = &vregs_[i];
*reinterpret_cast<float*>(vreg) = val;
// This is needed for moving collectors since these can update the vreg references if they
// happen to agree with references in the reference array.
References()[i].Clear();
}
void SetVRegLong(size_t i, int64_t val) {
DCHECK_LT(i + 1, NumberOfVRegs());
uint32_t* vreg = &vregs_[i];
using unaligned_int64 __attribute__((aligned(4))) = int64_t;
*reinterpret_cast<unaligned_int64*>(vreg) = val;
// This is needed for moving collectors since these can update the vreg references if they
// happen to agree with references in the reference array.
References()[i].Clear();
References()[i + 1].Clear();
}
void SetVRegDouble(size_t i, double val) {
DCHECK_LT(i + 1, NumberOfVRegs());
uint32_t* vreg = &vregs_[i];
using unaligned_double __attribute__((aligned(4))) = double;
*reinterpret_cast<unaligned_double*>(vreg) = val;
// This is needed for moving collectors since these can update the vreg references if they
// happen to agree with references in the reference array.
References()[i].Clear();
References()[i + 1].Clear();
}
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
void SetVRegReference(size_t i, ObjPtr<mirror::Object> val)
REQUIRES_SHARED(Locks::mutator_lock_);
void SetMethod(ArtMethod* method) REQUIRES(Locks::mutator_lock_) {
DCHECK(method != nullptr);
DCHECK(method_ != nullptr);
method_ = method;
}
ArtMethod* GetMethod() const REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(method_ != nullptr);
return method_;
}
mirror::Object* GetThisObject() const REQUIRES_SHARED(Locks::mutator_lock_);
mirror::Object* GetThisObject(uint16_t num_ins) const REQUIRES_SHARED(Locks::mutator_lock_);
bool Contains(StackReference<mirror::Object>* shadow_frame_entry_obj) const {
return ((&References()[0] <= shadow_frame_entry_obj) &&
(shadow_frame_entry_obj <= (&References()[NumberOfVRegs() - 1])));
}
LockCountData& GetLockCountData() {
return lock_count_data_;
}
static constexpr size_t LockCountDataOffset() {
return OFFSETOF_MEMBER(ShadowFrame, lock_count_data_);
}
static constexpr size_t LinkOffset() {
return OFFSETOF_MEMBER(ShadowFrame, link_);
}
static constexpr size_t MethodOffset() {
return OFFSETOF_MEMBER(ShadowFrame, method_);
}
static constexpr size_t DexPCOffset() {
return OFFSETOF_MEMBER(ShadowFrame, dex_pc_);
}
static constexpr size_t NumberOfVRegsOffset() {
return OFFSETOF_MEMBER(ShadowFrame, number_of_vregs_);
}
static constexpr size_t VRegsOffset() {
return OFFSETOF_MEMBER(ShadowFrame, vregs_);
}
static constexpr size_t ResultRegisterOffset() {
return OFFSETOF_MEMBER(ShadowFrame, result_register_);
}
static constexpr size_t DexPCPtrOffset() {
return OFFSETOF_MEMBER(ShadowFrame, dex_pc_ptr_);
}
static constexpr size_t DexInstructionsOffset() {
return OFFSETOF_MEMBER(ShadowFrame, dex_instructions_);
}
static constexpr size_t CachedHotnessCountdownOffset() {
return OFFSETOF_MEMBER(ShadowFrame, cached_hotness_countdown_);
}
static constexpr size_t HotnessCountdownOffset() {
return OFFSETOF_MEMBER(ShadowFrame, hotness_countdown_);
}
// Create ShadowFrame for interpreter using provided memory.
static ShadowFrame* CreateShadowFrameImpl(uint32_t num_vregs,
ArtMethod* method,
uint32_t dex_pc,
void* memory) {
return new (memory) ShadowFrame(num_vregs, method, dex_pc);
}
const uint16_t* GetDexPCPtr() {
return dex_pc_ptr_;
}
void SetDexPCPtr(uint16_t* dex_pc_ptr) {
dex_pc_ptr_ = dex_pc_ptr;
}
JValue* GetResultRegister() {
return result_register_;
}
bool NeedsNotifyPop() const {
return GetFrameFlag(FrameFlags::kNotifyFramePop);
}
void SetNotifyPop(bool notify) {
UpdateFrameFlag(notify, FrameFlags::kNotifyFramePop);
}
bool GetForcePopFrame() const {
return GetFrameFlag(FrameFlags::kForcePopFrame);
}
void SetForcePopFrame(bool enable) {
UpdateFrameFlag(enable, FrameFlags::kForcePopFrame);
}
bool GetForceRetryInstruction() const {
return GetFrameFlag(FrameFlags::kForceRetryInst);
}
void SetForceRetryInstruction(bool enable) {
UpdateFrameFlag(enable, FrameFlags::kForceRetryInst);
}
bool GetSkipMethodExitEvents() const {
return GetFrameFlag(FrameFlags::kSkipMethodExitEvents);
}
void SetSkipMethodExitEvents(bool enable) {
UpdateFrameFlag(enable, FrameFlags::kSkipMethodExitEvents);
}
bool GetSkipNextExceptionEvent() const {
return GetFrameFlag(FrameFlags::kSkipNextExceptionEvent);
}
void SetSkipNextExceptionEvent(bool enable) {
UpdateFrameFlag(enable, FrameFlags::kSkipNextExceptionEvent);
}
bool GetNotifyDexPcMoveEvents() const {
return GetFrameFlag(FrameFlags::kNotifyDexPcMoveEvents);
}
void SetNotifyDexPcMoveEvents(bool enable) {
UpdateFrameFlag(enable, FrameFlags::kNotifyDexPcMoveEvents);
}
void CheckConsistentVRegs() const {
if (kIsDebugBuild) {
// A shadow frame visible to GC requires the following rule: for a given vreg,
// its vreg reference equivalent should be the same, or null.
for (uint32_t i = 0; i < NumberOfVRegs(); ++i) {
int32_t reference_value = References()[i].AsVRegValue();
CHECK((GetVReg(i) == reference_value) || (reference_value == 0));
}
}
}
private:
ShadowFrame(uint32_t num_vregs, ArtMethod* method, uint32_t dex_pc)
: link_(nullptr),
method_(method),
result_register_(nullptr),
dex_pc_ptr_(nullptr),
dex_instructions_(nullptr),
number_of_vregs_(num_vregs),
dex_pc_(dex_pc),
cached_hotness_countdown_(0),
hotness_countdown_(0),
frame_flags_(0) {
memset(vregs_, 0, num_vregs * (sizeof(uint32_t) + sizeof(StackReference<mirror::Object>)));
}
void UpdateFrameFlag(bool enable, FrameFlags flag) {
if (enable) {
frame_flags_ |= static_cast<uint32_t>(flag);
} else {
frame_flags_ &= ~static_cast<uint32_t>(flag);
}
}
bool GetFrameFlag(FrameFlags flag) const {
return (frame_flags_ & static_cast<uint32_t>(flag)) != 0;
}
const StackReference<mirror::Object>* References() const {
const uint32_t* vreg_end = &vregs_[NumberOfVRegs()];
return reinterpret_cast<const StackReference<mirror::Object>*>(vreg_end);
}
StackReference<mirror::Object>* References() {
return const_cast<StackReference<mirror::Object>*>(
const_cast<const ShadowFrame*>(this)->References());
}
// Link to previous shadow frame or null.
ShadowFrame* link_;
ArtMethod* method_;
JValue* result_register_;
const uint16_t* dex_pc_ptr_;
// Dex instruction base of the code item.
const uint16_t* dex_instructions_;
LockCountData lock_count_data_; // This may contain GC roots when lock counting is active.
const uint32_t number_of_vregs_;
uint32_t dex_pc_;
int16_t cached_hotness_countdown_;
int16_t hotness_countdown_;
// This is a set of ShadowFrame::FrameFlags which denote special states this frame is in.
// NB alignment requires that this field takes 4 bytes no matter its size. Only 3 bits are
// currently used.
uint32_t frame_flags_;
// This is a two-part array:
// - [0..number_of_vregs) holds the raw virtual registers, and each element here is always 4
// bytes.
// - [number_of_vregs..number_of_vregs*2) holds only reference registers. Each element here is
// ptr-sized.
// In other words when a primitive is stored in vX, the second (reference) part of the array will
// be null. When a reference is stored in vX, the second (reference) part of the array will be a
// copy of vX.
uint32_t vregs_[0];
DISALLOW_IMPLICIT_CONSTRUCTORS(ShadowFrame);
};
struct ShadowFrameDeleter {
inline void operator()(ShadowFrame* frame) {
if (frame != nullptr) {
frame->~ShadowFrame();
}
}
};
} // namespace art
#endif // ART_RUNTIME_INTERPRETER_SHADOW_FRAME_H_