| %def binop(preinstr="", result="w0", chkzero="0", instr=""): |
| /* |
| * Generic 32-bit binary operation. Provide an "instr" line that |
| * specifies an instruction that performs "result = w0 op w1". |
| * This could be an ARM instruction or a function call. (If the result |
| * comes back in a register other than w0, you can override "result".) |
| * |
| * If "chkzero" is set to 1, we perform a divide-by-zero check on |
| * vCC (w1). Useful for integer division and modulus. Note that we |
| * *don't* check for (INT_MIN / -1) here, because the ARM math lib |
| * handles it correctly. |
| * |
| * For: add-int, sub-int, mul-int, div-int, rem-int, and-int, or-int, |
| * xor-int, shl-int, shr-int, ushr-int, add-float, sub-float, |
| * mul-float, div-float, rem-float |
| */ |
| /* binop vAA, vBB, vCC */ |
| FETCH w0, 1 // w0<- CCBB |
| lsr w9, wINST, #8 // w9<- AA |
| lsr w3, w0, #8 // w3<- CC |
| and w2, w0, #255 // w2<- BB |
| GET_VREG w1, w3 // w1<- vCC |
| GET_VREG w0, w2 // w0<- vBB |
| .if $chkzero |
| cbz w1, common_errDivideByZero // is second operand zero? |
| .endif |
| FETCH_ADVANCE_INST 2 // advance rPC, load rINST |
| $preinstr // optional op; may set condition codes |
| $instr // $result<- op, w0-w3 changed |
| GET_INST_OPCODE ip // extract opcode from rINST |
| SET_VREG $result, w9 // vAA<- $result |
| GOTO_OPCODE ip // jump to next instruction |
| /* 11-14 instructions */ |
| |
| %def binop2addr(preinstr="", result="w0", chkzero="0", instr=""): |
| /* |
| * Generic 32-bit "/2addr" binary operation. Provide an "instr" line |
| * that specifies an instruction that performs "result = w0 op w1". |
| * This could be an ARM instruction or a function call. (If the result |
| * comes back in a register other than w0, you can override "result".) |
| * |
| * If "chkzero" is set to 1, we perform a divide-by-zero check on |
| * vCC (w1). Useful for integer division and modulus. |
| * |
| * For: add-int/2addr, sub-int/2addr, mul-int/2addr, div-int/2addr, |
| * rem-int/2addr, and-int/2addr, or-int/2addr, xor-int/2addr, |
| * shl-int/2addr, shr-int/2addr, ushr-int/2addr, add-float/2addr, |
| * sub-float/2addr, mul-float/2addr, div-float/2addr, rem-float/2addr |
| */ |
| /* binop/2addr vA, vB */ |
| lsr w3, wINST, #12 // w3<- B |
| ubfx w9, wINST, #8, #4 // w9<- A |
| GET_VREG w1, w3 // w1<- vB |
| GET_VREG w0, w9 // w0<- vA |
| .if $chkzero |
| cbz w1, common_errDivideByZero |
| .endif |
| FETCH_ADVANCE_INST 1 // advance rPC, load rINST |
| $preinstr // optional op; may set condition codes |
| $instr // $result<- op, w0-w3 changed |
| GET_INST_OPCODE ip // extract opcode from rINST |
| SET_VREG $result, w9 // vAA<- $result |
| GOTO_OPCODE ip // jump to next instruction |
| /* 10-13 instructions */ |
| |
| %def binopLit16(preinstr="", result="w0", chkzero="0", instr=""): |
| /* |
| * Generic 32-bit "lit16" binary operation. Provide an "instr" line |
| * that specifies an instruction that performs "result = w0 op w1". |
| * This could be an ARM instruction or a function call. (If the result |
| * comes back in a register other than w0, you can override "result".) |
| * |
| * If "chkzero" is set to 1, we perform a divide-by-zero check on |
| * vCC (w1). Useful for integer division and modulus. |
| * |
| * For: add-int/lit16, rsub-int, mul-int/lit16, div-int/lit16, |
| * rem-int/lit16, and-int/lit16, or-int/lit16, xor-int/lit16 |
| */ |
| /* binop/lit16 vA, vB, #+CCCC */ |
| FETCH_S w1, 1 // w1<- ssssCCCC (sign-extended) |
| lsr w2, wINST, #12 // w2<- B |
| ubfx w9, wINST, #8, #4 // w9<- A |
| GET_VREG w0, w2 // w0<- vB |
| .if $chkzero |
| cbz w1, common_errDivideByZero |
| .endif |
| FETCH_ADVANCE_INST 2 // advance rPC, load rINST |
| $preinstr |
| $instr // $result<- op, w0-w3 changed |
| GET_INST_OPCODE ip // extract opcode from rINST |
| SET_VREG $result, w9 // vAA<- $result |
| GOTO_OPCODE ip // jump to next instruction |
| /* 10-13 instructions */ |
| |
| %def binopLit8(extract="asr w1, w3, #8", preinstr="", result="w0", chkzero="0", instr=""): |
| /* |
| * Generic 32-bit "lit8" binary operation. Provide an "instr" line |
| * that specifies an instruction that performs "result = w0 op w1". |
| * This could be an ARM instruction or a function call. (If the result |
| * comes back in a register other than w0, you can override "result".) |
| * |
| * You can override "extract" if the extraction of the literal value |
| * from w3 to w1 is not the default "asr w1, w3, #8". The extraction |
| * can be omitted completely if the shift is embedded in "instr". |
| * |
| * If "chkzero" is set to 1, we perform a divide-by-zero check on |
| * vCC (w1). Useful for integer division and modulus. |
| * |
| * For: add-int/lit8, rsub-int/lit8, mul-int/lit8, div-int/lit8, |
| * rem-int/lit8, and-int/lit8, or-int/lit8, xor-int/lit8, |
| * shl-int/lit8, shr-int/lit8, ushr-int/lit8 |
| */ |
| /* binop/lit8 vAA, vBB, #+CC */ |
| FETCH_S w3, 1 // w3<- ssssCCBB (sign-extended for CC) |
| lsr w9, wINST, #8 // w9<- AA |
| and w2, w3, #255 // w2<- BB |
| GET_VREG w0, w2 // w0<- vBB |
| $extract // optional; typically w1<- ssssssCC (sign extended) |
| .if $chkzero |
| cbz w1, common_errDivideByZero |
| .endif |
| FETCH_ADVANCE_INST 2 // advance rPC, load rINST |
| $preinstr // optional op; may set condition codes |
| $instr // $result<- op, w0-w3 changed |
| GET_INST_OPCODE ip // extract opcode from rINST |
| SET_VREG $result, w9 // vAA<- $result |
| GOTO_OPCODE ip // jump to next instruction |
| /* 10-12 instructions */ |
| |
| %def binopWide(preinstr="", instr="add x0, x1, x2", result="x0", r1="x1", r2="x2", chkzero="0"): |
| /* |
| * Generic 64-bit binary operation. Provide an "instr" line that |
| * specifies an instruction that performs "result = x1 op x2". |
| * This could be an ARM instruction or a function call. (If the result |
| * comes back in a register other than x0, you can override "result".) |
| * |
| * If "chkzero" is set to 1, we perform a divide-by-zero check on |
| * vCC (w1). Useful for integer division and modulus. |
| * |
| * For: add-long, sub-long, mul-long, div-long, rem-long, and-long, or-long, |
| * xor-long, add-double, sub-double, mul-double, div-double, rem-double |
| */ |
| /* binop vAA, vBB, vCC */ |
| FETCH w0, 1 // w0<- CCBB |
| lsr w4, wINST, #8 // w4<- AA |
| lsr w2, w0, #8 // w2<- CC |
| and w1, w0, #255 // w1<- BB |
| GET_VREG_WIDE $r2, w2 // w2<- vCC |
| GET_VREG_WIDE $r1, w1 // w1<- vBB |
| .if $chkzero |
| cbz $r2, common_errDivideByZero // is second operand zero? |
| .endif |
| FETCH_ADVANCE_INST 2 // advance rPC, load rINST |
| $preinstr |
| $instr // $result<- op, w0-w4 changed |
| GET_INST_OPCODE ip // extract opcode from rINST |
| SET_VREG_WIDE $result, w4 // vAA<- $result |
| GOTO_OPCODE ip // jump to next instruction |
| /* 11-14 instructions */ |
| |
| %def binopWide2addr(preinstr="", instr="add x0, x0, x1", r0="x0", r1="x1", chkzero="0"): |
| /* |
| * Generic 64-bit "/2addr" binary operation. Provide an "instr" line |
| * that specifies an instruction that performs "x0 = x0 op x1". |
| * This must not be a function call, as we keep w2 live across it. |
| * |
| * If "chkzero" is set to 1, we perform a divide-by-zero check on |
| * vCC (w1). Useful for integer division and modulus. |
| * |
| * For: add-long/2addr, sub-long/2addr, mul-long/2addr, div-long/2addr, |
| * and-long/2addr, or-long/2addr, xor-long/2addr, |
| * shl-long/2addr, shr-long/2addr, ushr-long/2addr, add-double/2addr, |
| * sub-double/2addr, mul-double/2addr, div-double/2addr, rem-double/2addr |
| */ |
| /* binop/2addr vA, vB */ |
| lsr w1, wINST, #12 // w1<- B |
| ubfx w2, wINST, #8, #4 // w2<- A |
| GET_VREG_WIDE $r1, w1 // x1<- vB |
| GET_VREG_WIDE $r0, w2 // x0<- vA |
| .if $chkzero |
| cbz $r1, common_errDivideByZero |
| .endif |
| FETCH_ADVANCE_INST 1 // advance rPC, load rINST |
| $preinstr |
| $instr // result<- op |
| GET_INST_OPCODE ip // extract opcode from rINST |
| SET_VREG_WIDE $r0, w2 // vAA<- result |
| GOTO_OPCODE ip // jump to next instruction |
| /* 10-13 instructions */ |
| |
| %def shiftWide(opcode="shl"): |
| /* |
| * 64-bit shift operation. |
| * |
| * For: shl-long, shr-long, ushr-long |
| */ |
| /* binop vAA, vBB, vCC */ |
| FETCH w0, 1 // w0<- CCBB |
| lsr w3, wINST, #8 // w3<- AA |
| lsr w2, w0, #8 // w2<- CC |
| GET_VREG w2, w2 // w2<- vCC (shift count) |
| and w1, w0, #255 // w1<- BB |
| GET_VREG_WIDE x1, w1 // x1<- vBB |
| FETCH_ADVANCE_INST 2 // advance rPC, load rINST |
| $opcode x0, x1, x2 // Do the shift. Only low 6 bits of x2 are used. |
| GET_INST_OPCODE ip // extract opcode from rINST |
| SET_VREG_WIDE x0, w3 // vAA<- x0 |
| GOTO_OPCODE ip // jump to next instruction |
| /* 11-14 instructions */ |
| |
| %def shiftWide2addr(opcode="lsl"): |
| /* |
| * Generic 64-bit shift operation. |
| */ |
| /* binop/2addr vA, vB */ |
| lsr w1, wINST, #12 // w1<- B |
| ubfx w2, wINST, #8, #4 // w2<- A |
| GET_VREG w1, w1 // x1<- vB |
| GET_VREG_WIDE x0, w2 // x0<- vA |
| FETCH_ADVANCE_INST 1 // advance rPC, load rINST |
| $opcode x0, x0, x1 // Do the shift. Only low 6 bits of x1 are used. |
| GET_INST_OPCODE ip // extract opcode from rINST |
| SET_VREG_WIDE x0, w2 // vAA<- result |
| GOTO_OPCODE ip // jump to next instruction |
| /* 10-13 instructions */ |
| |
| %def unop(instr=""): |
| /* |
| * Generic 32-bit unary operation. Provide an "instr" line that |
| * specifies an instruction that performs "result = op w0". |
| * This could be an ARM instruction or a function call. |
| * |
| * for: neg-int, not-int, neg-float, int-to-float, float-to-int, |
| * int-to-byte, int-to-char, int-to-short |
| */ |
| /* unop vA, vB */ |
| lsr w3, wINST, #12 // w3<- B |
| GET_VREG w0, w3 // w0<- vB |
| ubfx w9, wINST, #8, #4 // w9<- A |
| FETCH_ADVANCE_INST 1 // advance rPC, load rINST |
| $instr // w0<- op, w0-w3 changed |
| GET_INST_OPCODE ip // extract opcode from rINST |
| SET_VREG w0, w9 // vAA<- w0 |
| GOTO_OPCODE ip // jump to next instruction |
| /* 8-9 instructions */ |
| |
| %def unopWide(instr="sub x0, xzr, x0"): |
| /* |
| * Generic 64-bit unary operation. Provide an "instr" line that |
| * specifies an instruction that performs "result = op x0". |
| * |
| * For: neg-long, not-long |
| */ |
| /* unop vA, vB */ |
| lsr w3, wINST, #12 // w3<- B |
| ubfx w4, wINST, #8, #4 // w4<- A |
| GET_VREG_WIDE x0, w3 |
| FETCH_ADVANCE_INST 1 // advance rPC, load wINST |
| $instr |
| GET_INST_OPCODE ip // extract opcode from wINST |
| SET_VREG_WIDE x0, w4 |
| GOTO_OPCODE ip // jump to next instruction |
| /* 10-11 instructions */ |
| |
| %def op_add_int(): |
| % binop(instr="add w0, w0, w1") |
| |
| %def op_add_int_2addr(): |
| % binop2addr(instr="add w0, w0, w1") |
| |
| %def op_add_int_lit16(): |
| % binopLit16(instr="add w0, w0, w1") |
| |
| %def op_add_int_lit8(): |
| % binopLit8(extract="", instr="add w0, w0, w3, asr #8") |
| |
| %def op_add_long(): |
| % binopWide(instr="add x0, x1, x2") |
| |
| %def op_add_long_2addr(): |
| % binopWide2addr(instr="add x0, x0, x1") |
| |
| %def op_and_int(): |
| % binop(instr="and w0, w0, w1") |
| |
| %def op_and_int_2addr(): |
| % binop2addr(instr="and w0, w0, w1") |
| |
| %def op_and_int_lit16(): |
| % binopLit16(instr="and w0, w0, w1") |
| |
| %def op_and_int_lit8(): |
| % binopLit8(extract="", instr="and w0, w0, w3, asr #8") |
| |
| %def op_and_long(): |
| % binopWide(instr="and x0, x1, x2") |
| |
| %def op_and_long_2addr(): |
| % binopWide2addr(instr="and x0, x0, x1") |
| |
| %def op_cmp_long(): |
| FETCH w0, 1 // w0<- CCBB |
| lsr w4, wINST, #8 // w4<- AA |
| and w2, w0, #255 // w2<- BB |
| lsr w3, w0, #8 // w3<- CC |
| GET_VREG_WIDE x1, w2 |
| GET_VREG_WIDE x2, w3 |
| cmp x1, x2 |
| cset w0, ne |
| cneg w0, w0, lt |
| FETCH_ADVANCE_INST 2 // advance rPC, load wINST |
| SET_VREG w0, w4 |
| GET_INST_OPCODE ip // extract opcode from wINST |
| GOTO_OPCODE ip // jump to next instruction |
| |
| %def op_div_int(): |
| % binop(instr="sdiv w0, w0, w1", chkzero="1") |
| |
| %def op_div_int_2addr(): |
| % binop2addr(instr="sdiv w0, w0, w1", chkzero="1") |
| |
| %def op_div_int_lit16(): |
| % binopLit16(instr="sdiv w0, w0, w1", chkzero="1") |
| |
| %def op_div_int_lit8(): |
| % binopLit8(instr="sdiv w0, w0, w1", chkzero="1") |
| |
| %def op_div_long(): |
| % binopWide(instr="sdiv x0, x1, x2", chkzero="1") |
| |
| %def op_div_long_2addr(): |
| % binopWide2addr(instr="sdiv x0, x0, x1", chkzero="1") |
| |
| %def op_int_to_byte(): |
| % unop(instr="sxtb w0, w0") |
| |
| %def op_int_to_char(): |
| % unop(instr="uxth w0, w0") |
| |
| %def op_int_to_long(): |
| /* int-to-long vA, vB */ |
| lsr w3, wINST, #12 // w3<- B |
| ubfx w4, wINST, #8, #4 // w4<- A |
| GET_VREG_S x0, w3 // x0<- sign_extend(fp[B]) |
| FETCH_ADVANCE_INST 1 // advance rPC, load wINST |
| GET_INST_OPCODE ip // extract opcode from wINST |
| SET_VREG_WIDE x0, w4 // fp[A]<- x0 |
| GOTO_OPCODE ip // jump to next instruction |
| |
| %def op_int_to_short(): |
| % unop(instr="sxth w0, w0") |
| |
| %def op_long_to_int(): |
| /* we ignore the high word, making this equivalent to a 32-bit reg move */ |
| % op_move() |
| |
| %def op_mul_int(): |
| /* must be "mul w0, w1, w0" -- "w0, w0, w1" is illegal */ |
| % binop(instr="mul w0, w1, w0") |
| |
| %def op_mul_int_2addr(): |
| /* must be "mul w0, w1, w0" -- "w0, w0, w1" is illegal */ |
| % binop2addr(instr="mul w0, w1, w0") |
| |
| %def op_mul_int_lit16(): |
| /* must be "mul w0, w1, w0" -- "w0, w0, w1" is illegal */ |
| % binopLit16(instr="mul w0, w1, w0") |
| |
| %def op_mul_int_lit8(): |
| /* must be "mul w0, w1, w0" -- "w0, w0, w1" is illegal */ |
| % binopLit8(instr="mul w0, w1, w0") |
| |
| %def op_mul_long(): |
| % binopWide(instr="mul x0, x1, x2") |
| |
| %def op_mul_long_2addr(): |
| % binopWide2addr(instr="mul x0, x0, x1") |
| |
| %def op_neg_int(): |
| % unop(instr="sub w0, wzr, w0") |
| |
| %def op_neg_long(): |
| % unopWide(instr="sub x0, xzr, x0") |
| |
| %def op_not_int(): |
| % unop(instr="mvn w0, w0") |
| |
| %def op_not_long(): |
| % unopWide(instr="mvn x0, x0") |
| |
| %def op_or_int(): |
| % binop(instr="orr w0, w0, w1") |
| |
| %def op_or_int_2addr(): |
| % binop2addr(instr="orr w0, w0, w1") |
| |
| %def op_or_int_lit16(): |
| % binopLit16(instr="orr w0, w0, w1") |
| |
| %def op_or_int_lit8(): |
| % binopLit8(extract="", instr="orr w0, w0, w3, asr #8") |
| |
| %def op_or_long(): |
| % binopWide(instr="orr x0, x1, x2") |
| |
| %def op_or_long_2addr(): |
| % binopWide2addr(instr="orr x0, x0, x1") |
| |
| %def op_rem_int(): |
| % binop(preinstr="sdiv w2, w0, w1", instr="msub w0, w2, w1, w0", chkzero="1") |
| |
| %def op_rem_int_2addr(): |
| % binop2addr(preinstr="sdiv w2, w0, w1", instr="msub w0, w2, w1, w0", chkzero="1") |
| |
| %def op_rem_int_lit16(): |
| % binopLit16(preinstr="sdiv w3, w0, w1", instr="msub w0, w3, w1, w0", chkzero="1") |
| |
| %def op_rem_int_lit8(): |
| % binopLit8(preinstr="sdiv w3, w0, w1", instr="msub w0, w3, w1, w0", chkzero="1") |
| |
| %def op_rem_long(): |
| % binopWide(preinstr="sdiv x3, x1, x2", instr="msub x0, x3, x2, x1", chkzero="1") |
| |
| %def op_rem_long_2addr(): |
| % binopWide2addr(preinstr="sdiv x3, x0, x1", instr="msub x0, x3, x1, x0", chkzero="1") |
| |
| %def op_rsub_int(): |
| /* this op is "rsub-int", but can be thought of as "rsub-int/lit16" */ |
| % binopLit16(instr="sub w0, w1, w0") |
| |
| %def op_rsub_int_lit8(): |
| % binopLit8(instr="sub w0, w1, w0") |
| |
| %def op_shl_int(): |
| % binop(instr="lsl w0, w0, w1") |
| |
| %def op_shl_int_2addr(): |
| % binop2addr(instr="lsl w0, w0, w1") |
| |
| %def op_shl_int_lit8(): |
| % binopLit8(extract="ubfx w1, w3, #8, #5", instr="lsl w0, w0, w1") |
| |
| %def op_shl_long(): |
| % shiftWide(opcode="lsl") |
| |
| %def op_shl_long_2addr(): |
| % shiftWide2addr(opcode="lsl") |
| |
| %def op_shr_int(): |
| % binop(instr="asr w0, w0, w1") |
| |
| %def op_shr_int_2addr(): |
| % binop2addr(instr="asr w0, w0, w1") |
| |
| %def op_shr_int_lit8(): |
| % binopLit8(extract="ubfx w1, w3, #8, #5", instr="asr w0, w0, w1") |
| |
| %def op_shr_long(): |
| % shiftWide(opcode="asr") |
| |
| %def op_shr_long_2addr(): |
| % shiftWide2addr(opcode="asr") |
| |
| %def op_sub_int(): |
| % binop(instr="sub w0, w0, w1") |
| |
| %def op_sub_int_2addr(): |
| % binop2addr(instr="sub w0, w0, w1") |
| |
| %def op_sub_long(): |
| % binopWide(instr="sub x0, x1, x2") |
| |
| %def op_sub_long_2addr(): |
| % binopWide2addr(instr="sub x0, x0, x1") |
| |
| %def op_ushr_int(): |
| % binop(instr="lsr w0, w0, w1") |
| |
| %def op_ushr_int_2addr(): |
| % binop2addr(instr="lsr w0, w0, w1") |
| |
| %def op_ushr_int_lit8(): |
| % binopLit8(extract="ubfx w1, w3, #8, #5", instr="lsr w0, w0, w1") |
| |
| %def op_ushr_long(): |
| % shiftWide(opcode="lsr") |
| |
| %def op_ushr_long_2addr(): |
| % shiftWide2addr(opcode="lsr") |
| |
| %def op_xor_int(): |
| % binop(instr="eor w0, w0, w1") |
| |
| %def op_xor_int_2addr(): |
| % binop2addr(instr="eor w0, w0, w1") |
| |
| %def op_xor_int_lit16(): |
| % binopLit16(instr="eor w0, w0, w1") |
| |
| %def op_xor_int_lit8(): |
| % binopLit8(extract="", instr="eor w0, w0, w3, asr #8") |
| |
| %def op_xor_long(): |
| % binopWide(instr="eor x0, x1, x2") |
| |
| %def op_xor_long_2addr(): |
| % binopWide2addr(instr="eor x0, x0, x1") |