| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "image_space.h" |
| |
| #include <sys/statvfs.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include <memory> |
| #include <random> |
| #include <string> |
| #include <vector> |
| |
| #include "android-base/logging.h" |
| #include "android-base/stringprintf.h" |
| #include "android-base/strings.h" |
| #include "android-base/unique_fd.h" |
| #include "arch/instruction_set.h" |
| #include "art_field-inl.h" |
| #include "art_method-inl.h" |
| #include "base/array_ref.h" |
| #include "base/bit_memory_region.h" |
| #include "base/callee_save_type.h" |
| #include "base/enums.h" |
| #include "base/file_utils.h" |
| #include "base/globals.h" |
| #include "base/macros.h" |
| #include "base/memfd.h" |
| #include "base/os.h" |
| #include "base/scoped_flock.h" |
| #include "base/stl_util.h" |
| #include "base/string_view_cpp20.h" |
| #include "base/systrace.h" |
| #include "base/time_utils.h" |
| #include "base/utils.h" |
| #include "class_root-inl.h" |
| #include "dex/art_dex_file_loader.h" |
| #include "dex/dex_file_loader.h" |
| #include "exec_utils.h" |
| #include "gc/accounting/space_bitmap-inl.h" |
| #include "gc/task_processor.h" |
| #include "image-inl.h" |
| #include "image.h" |
| #include "intern_table-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/executable-inl.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object-refvisitor-inl.h" |
| #include "mirror/var_handle.h" |
| #include "oat.h" |
| #include "oat_file.h" |
| #include "profile/profile_compilation_info.h" |
| #include "runtime.h" |
| #include "space-inl.h" |
| |
| namespace art { |
| namespace gc { |
| namespace space { |
| |
| namespace { |
| |
| using ::android::base::Join; |
| using ::android::base::StringAppendF; |
| using ::android::base::StringPrintf; |
| |
| // We do not allow the boot image and extensions to take more than 1GiB. They are |
| // supposed to be much smaller and allocating more that this would likely fail anyway. |
| static constexpr size_t kMaxTotalImageReservationSize = 1 * GB; |
| |
| } // namespace |
| |
| Atomic<uint32_t> ImageSpace::bitmap_index_(0); |
| |
| ImageSpace::ImageSpace(const std::string& image_filename, |
| const char* image_location, |
| const std::vector<std::string>& profile_files, |
| MemMap&& mem_map, |
| accounting::ContinuousSpaceBitmap&& live_bitmap, |
| uint8_t* end) |
| : MemMapSpace(image_filename, |
| std::move(mem_map), |
| mem_map.Begin(), |
| end, |
| end, |
| kGcRetentionPolicyNeverCollect), |
| live_bitmap_(std::move(live_bitmap)), |
| oat_file_non_owned_(nullptr), |
| image_location_(image_location), |
| profile_files_(profile_files) { |
| DCHECK(live_bitmap_.IsValid()); |
| } |
| |
| static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) { |
| CHECK_ALIGNED(min_delta, kPageSize); |
| CHECK_ALIGNED(max_delta, kPageSize); |
| CHECK_LT(min_delta, max_delta); |
| |
| int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta); |
| if (r % 2 == 0) { |
| r = RoundUp(r, kPageSize); |
| } else { |
| r = RoundDown(r, kPageSize); |
| } |
| CHECK_LE(min_delta, r); |
| CHECK_GE(max_delta, r); |
| CHECK_ALIGNED(r, kPageSize); |
| return r; |
| } |
| |
| static int32_t ChooseRelocationOffsetDelta() { |
| return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA); |
| } |
| |
| static bool FindImageFilenameImpl(const char* image_location, |
| const InstructionSet image_isa, |
| bool* has_system, |
| std::string* system_filename) { |
| *has_system = false; |
| |
| // image_location = /system/framework/boot.art |
| // system_image_location = /system/framework/<image_isa>/boot.art |
| std::string system_image_filename(GetSystemImageFilename(image_location, image_isa)); |
| if (OS::FileExists(system_image_filename.c_str())) { |
| *system_filename = system_image_filename; |
| *has_system = true; |
| } |
| |
| return *has_system; |
| } |
| |
| bool ImageSpace::FindImageFilename(const char* image_location, |
| const InstructionSet image_isa, |
| std::string* system_filename, |
| bool* has_system) { |
| return FindImageFilenameImpl(image_location, |
| image_isa, |
| has_system, |
| system_filename); |
| } |
| |
| static bool ReadSpecificImageHeader(File* image_file, |
| const char* file_description, |
| /*out*/ImageHeader* image_header, |
| /*out*/std::string* error_msg) { |
| if (!image_file->PreadFully(image_header, sizeof(ImageHeader), /*offset=*/ 0)) { |
| *error_msg = StringPrintf("Unable to read image header from \"%s\"", file_description); |
| return false; |
| } |
| if (!image_header->IsValid()) { |
| *error_msg = StringPrintf("Image header from \"%s\" is invalid", file_description); |
| return false; |
| } |
| return true; |
| } |
| |
| static bool ReadSpecificImageHeader(const char* filename, |
| /*out*/ImageHeader* image_header, |
| /*out*/std::string* error_msg) { |
| std::unique_ptr<File> image_file(OS::OpenFileForReading(filename)); |
| if (image_file.get() == nullptr) { |
| *error_msg = StringPrintf("Unable to open file \"%s\" for reading image header", filename); |
| return false; |
| } |
| return ReadSpecificImageHeader(image_file.get(), filename, image_header, error_msg); |
| } |
| |
| static std::unique_ptr<ImageHeader> ReadSpecificImageHeader(const char* filename, |
| std::string* error_msg) { |
| std::unique_ptr<ImageHeader> hdr(new ImageHeader); |
| if (!ReadSpecificImageHeader(filename, hdr.get(), error_msg)) { |
| return nullptr; |
| } |
| return hdr; |
| } |
| |
| void ImageSpace::VerifyImageAllocations() { |
| uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment); |
| while (current < End()) { |
| CHECK_ALIGNED(current, kObjectAlignment); |
| auto* obj = reinterpret_cast<mirror::Object*>(current); |
| CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class"; |
| CHECK(live_bitmap_.Test(obj)) << obj->PrettyTypeOf(); |
| if (kUseBakerReadBarrier) { |
| obj->AssertReadBarrierState(); |
| } |
| current += RoundUp(obj->SizeOf(), kObjectAlignment); |
| } |
| } |
| |
| // Helper class for relocating from one range of memory to another. |
| class RelocationRange { |
| public: |
| RelocationRange(const RelocationRange&) = default; |
| RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length) |
| : source_(source), |
| dest_(dest), |
| length_(length) {} |
| |
| bool InSource(uintptr_t address) const { |
| return address - source_ < length_; |
| } |
| |
| bool InDest(const void* dest) const { |
| return InDest(reinterpret_cast<uintptr_t>(dest)); |
| } |
| |
| bool InDest(uintptr_t address) const { |
| return address - dest_ < length_; |
| } |
| |
| // Translate a source address to the destination space. |
| uintptr_t ToDest(uintptr_t address) const { |
| DCHECK(InSource(address)); |
| return address + Delta(); |
| } |
| |
| template <typename T> |
| T* ToDest(T* src) const { |
| return reinterpret_cast<T*>(ToDest(reinterpret_cast<uintptr_t>(src))); |
| } |
| |
| // Returns the delta between the dest from the source. |
| uintptr_t Delta() const { |
| return dest_ - source_; |
| } |
| |
| uintptr_t Source() const { |
| return source_; |
| } |
| |
| uintptr_t Dest() const { |
| return dest_; |
| } |
| |
| uintptr_t Length() const { |
| return length_; |
| } |
| |
| private: |
| const uintptr_t source_; |
| const uintptr_t dest_; |
| const uintptr_t length_; |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) { |
| return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-" |
| << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->(" |
| << reinterpret_cast<const void*>(reloc.Dest()) << "-" |
| << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")"; |
| } |
| |
| template <PointerSize kPointerSize, typename HeapVisitor, typename NativeVisitor> |
| class ImageSpace::PatchObjectVisitor final { |
| public: |
| explicit PatchObjectVisitor(HeapVisitor heap_visitor, NativeVisitor native_visitor) |
| : heap_visitor_(heap_visitor), native_visitor_(native_visitor) {} |
| |
| void VisitClass(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Class> class_class) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // A mirror::Class object consists of |
| // - instance fields inherited from j.l.Object, |
| // - instance fields inherited from j.l.Class, |
| // - embedded tables (vtable, interface method table), |
| // - static fields of the class itself. |
| // The reference fields are at the start of each field section (this is how the |
| // ClassLinker orders fields; except when that would create a gap between superclass |
| // fields and the first reference of the subclass due to alignment, it can be filled |
| // with smaller fields - but that's not the case for j.l.Object and j.l.Class). |
| |
| DCHECK_ALIGNED(klass.Ptr(), kObjectAlignment); |
| static_assert(IsAligned<kHeapReferenceSize>(kObjectAlignment), "Object alignment check."); |
| // First, patch the `klass->klass_`, known to be a reference to the j.l.Class.class. |
| // This should be the only reference field in j.l.Object and we assert that below. |
| DCHECK_EQ(class_class, |
| heap_visitor_(klass->GetClass<kVerifyNone, kWithoutReadBarrier>())); |
| klass->SetFieldObjectWithoutWriteBarrier< |
| /*kTransactionActive=*/ false, |
| /*kCheckTransaction=*/ true, |
| kVerifyNone>(mirror::Object::ClassOffset(), class_class); |
| // Then patch the reference instance fields described by j.l.Class.class. |
| // Use the sizeof(Object) to determine where these reference fields start; |
| // this is the same as `class_class->GetFirstReferenceInstanceFieldOffset()` |
| // after patching but the j.l.Class may not have been patched yet. |
| size_t num_reference_instance_fields = class_class->NumReferenceInstanceFields<kVerifyNone>(); |
| DCHECK_NE(num_reference_instance_fields, 0u); |
| static_assert(IsAligned<kHeapReferenceSize>(sizeof(mirror::Object)), "Size alignment check."); |
| MemberOffset instance_field_offset(sizeof(mirror::Object)); |
| for (size_t i = 0; i != num_reference_instance_fields; ++i) { |
| PatchReferenceField(klass, instance_field_offset); |
| static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize, |
| "Heap reference sizes equality check."); |
| instance_field_offset = |
| MemberOffset(instance_field_offset.Uint32Value() + kHeapReferenceSize); |
| } |
| // Now that we have patched the `super_class_`, if this is the j.l.Class.class, |
| // we can get a reference to j.l.Object.class and assert that it has only one |
| // reference instance field (the `klass_` patched above). |
| if (kIsDebugBuild && klass == class_class) { |
| ObjPtr<mirror::Class> object_class = |
| klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>(); |
| CHECK_EQ(object_class->NumReferenceInstanceFields<kVerifyNone>(), 1u); |
| } |
| // Then patch static fields. |
| size_t num_reference_static_fields = klass->NumReferenceStaticFields<kVerifyNone>(); |
| if (num_reference_static_fields != 0u) { |
| MemberOffset static_field_offset = |
| klass->GetFirstReferenceStaticFieldOffset<kVerifyNone>(kPointerSize); |
| for (size_t i = 0; i != num_reference_static_fields; ++i) { |
| PatchReferenceField(klass, static_field_offset); |
| static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize, |
| "Heap reference sizes equality check."); |
| static_field_offset = |
| MemberOffset(static_field_offset.Uint32Value() + kHeapReferenceSize); |
| } |
| } |
| // Then patch native pointers. |
| klass->FixupNativePointers<kVerifyNone>(klass.Ptr(), kPointerSize, *this); |
| } |
| |
| template <typename T> |
| T* operator()(T* ptr, void** dest_addr ATTRIBUTE_UNUSED) const { |
| return (ptr != nullptr) ? native_visitor_(ptr) : nullptr; |
| } |
| |
| void VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Fully patch the pointer array, including the `klass_` field. |
| PatchReferenceField</*kMayBeNull=*/ false>(pointer_array, mirror::Object::ClassOffset()); |
| |
| int32_t length = pointer_array->GetLength<kVerifyNone>(); |
| for (int32_t i = 0; i != length; ++i) { |
| ArtMethod** method_entry = reinterpret_cast<ArtMethod**>( |
| pointer_array->ElementAddress<kVerifyNone>(i, kPointerSize)); |
| PatchNativePointer</*kMayBeNull=*/ false>(method_entry); |
| } |
| } |
| |
| void VisitObject(mirror::Object* object) REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Visit all reference fields. |
| object->VisitReferences</*kVisitNativeRoots=*/ false, |
| kVerifyNone, |
| kWithoutReadBarrier>(*this, *this); |
| // This function should not be called for classes. |
| DCHECK(!object->IsClass<kVerifyNone>()); |
| } |
| |
| // Visitor for VisitReferences(). |
| ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> object, |
| MemberOffset field_offset, |
| bool is_static) |
| const REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(!is_static); |
| PatchReferenceField(object, field_offset); |
| } |
| // Visitor for VisitReferences(), java.lang.ref.Reference case. |
| ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(klass->IsTypeOfReferenceClass()); |
| this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false); |
| } |
| // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false. |
| void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) |
| const {} |
| void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} |
| |
| template <typename T> void VisitNativeDexCacheArray(mirror::NativeArray<T>* array) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (array == nullptr) { |
| return; |
| } |
| DCHECK_ALIGNED(array, static_cast<size_t>(kPointerSize)); |
| uint32_t size = (kPointerSize == PointerSize::k32) |
| ? reinterpret_cast<uint32_t*>(array)[-1] |
| : dchecked_integral_cast<uint32_t>(reinterpret_cast<uint64_t*>(array)[-1]); |
| for (uint32_t i = 0; i < size; ++i) { |
| PatchNativePointer(array->GetPtrEntryPtrSize(i, kPointerSize)); |
| } |
| } |
| |
| template <typename T> void VisitGcRootDexCacheArray(mirror::GcRootArray<T>* array) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (array == nullptr) { |
| return; |
| } |
| DCHECK_ALIGNED(array, sizeof(GcRoot<T>)); |
| static_assert(sizeof(GcRoot<T>) == sizeof(uint32_t)); |
| uint32_t size = reinterpret_cast<uint32_t*>(array)[-1]; |
| for (uint32_t i = 0; i < size; ++i) { |
| PatchGcRoot(array->GetGcRootAddress(i)); |
| } |
| } |
| |
| void VisitDexCacheArrays(ObjPtr<mirror::DexCache> dex_cache) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| mirror::NativeArray<ArtMethod>* old_resolved_methods = dex_cache->GetResolvedMethodsArray(); |
| if (old_resolved_methods != nullptr) { |
| mirror::NativeArray<ArtMethod>* resolved_methods = native_visitor_(old_resolved_methods); |
| dex_cache->SetResolvedMethodsArray(resolved_methods); |
| VisitNativeDexCacheArray(resolved_methods); |
| } |
| |
| mirror::NativeArray<ArtField>* old_resolved_fields = dex_cache->GetResolvedFieldsArray(); |
| if (old_resolved_fields != nullptr) { |
| mirror::NativeArray<ArtField>* resolved_fields = native_visitor_(old_resolved_fields); |
| dex_cache->SetResolvedFieldsArray(resolved_fields); |
| VisitNativeDexCacheArray(resolved_fields); |
| } |
| |
| mirror::GcRootArray<mirror::String>* old_strings = dex_cache->GetStringsArray(); |
| if (old_strings != nullptr) { |
| mirror::GcRootArray<mirror::String>* strings = native_visitor_(old_strings); |
| dex_cache->SetStringsArray(strings); |
| VisitGcRootDexCacheArray(strings); |
| } |
| |
| mirror::GcRootArray<mirror::Class>* old_types = dex_cache->GetResolvedTypesArray(); |
| if (old_types != nullptr) { |
| mirror::GcRootArray<mirror::Class>* types = native_visitor_(old_types); |
| dex_cache->SetResolvedTypesArray(types); |
| VisitGcRootDexCacheArray(types); |
| } |
| } |
| |
| template <bool kMayBeNull = true, typename T> |
| ALWAYS_INLINE void PatchGcRoot(/*inout*/GcRoot<T>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| static_assert(sizeof(GcRoot<mirror::Class*>) == sizeof(uint32_t), "GcRoot size check"); |
| T* old_value = root->template Read<kWithoutReadBarrier>(); |
| DCHECK(kMayBeNull || old_value != nullptr); |
| if (!kMayBeNull || old_value != nullptr) { |
| *root = GcRoot<T>(heap_visitor_(old_value)); |
| } |
| } |
| |
| template <bool kMayBeNull = true, typename T> |
| ALWAYS_INLINE void PatchNativePointer(/*inout*/T** entry) const { |
| if (kPointerSize == PointerSize::k64) { |
| uint64_t* raw_entry = reinterpret_cast<uint64_t*>(entry); |
| T* old_value = reinterpret_cast64<T*>(*raw_entry); |
| DCHECK(kMayBeNull || old_value != nullptr); |
| if (!kMayBeNull || old_value != nullptr) { |
| T* new_value = native_visitor_(old_value); |
| *raw_entry = reinterpret_cast64<uint64_t>(new_value); |
| } |
| } else { |
| uint32_t* raw_entry = reinterpret_cast<uint32_t*>(entry); |
| T* old_value = reinterpret_cast32<T*>(*raw_entry); |
| DCHECK(kMayBeNull || old_value != nullptr); |
| if (!kMayBeNull || old_value != nullptr) { |
| T* new_value = native_visitor_(old_value); |
| *raw_entry = reinterpret_cast32<uint32_t>(new_value); |
| } |
| } |
| } |
| |
| template <bool kMayBeNull = true> |
| ALWAYS_INLINE void PatchReferenceField(ObjPtr<mirror::Object> object, MemberOffset offset) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ObjPtr<mirror::Object> old_value = |
| object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset); |
| DCHECK(kMayBeNull || old_value != nullptr); |
| if (!kMayBeNull || old_value != nullptr) { |
| ObjPtr<mirror::Object> new_value = heap_visitor_(old_value.Ptr()); |
| object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false, |
| /*kCheckTransaction=*/ true, |
| kVerifyNone>(offset, new_value); |
| } |
| } |
| |
| private: |
| // Heap objects visitor. |
| HeapVisitor heap_visitor_; |
| |
| // Native objects visitor. |
| NativeVisitor native_visitor_; |
| }; |
| |
| template <typename ReferenceVisitor> |
| class ImageSpace::ClassTableVisitor final { |
| public: |
| explicit ClassTableVisitor(const ReferenceVisitor& reference_visitor) |
| : reference_visitor_(reference_visitor) {} |
| |
| void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(root->AsMirrorPtr() != nullptr); |
| root->Assign(reference_visitor_(root->AsMirrorPtr())); |
| } |
| |
| private: |
| ReferenceVisitor reference_visitor_; |
| }; |
| |
| class ImageSpace::RemapInternedStringsVisitor { |
| public: |
| explicit RemapInternedStringsVisitor( |
| const SafeMap<mirror::String*, mirror::String*>& intern_remap) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| : intern_remap_(intern_remap), |
| string_class_(GetStringClass()) {} |
| |
| // Visitor for VisitReferences(). |
| ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> object, |
| MemberOffset field_offset, |
| bool is_static ATTRIBUTE_UNUSED) |
| const REQUIRES_SHARED(Locks::mutator_lock_) { |
| ObjPtr<mirror::Object> old_value = |
| object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(field_offset); |
| if (old_value != nullptr && |
| old_value->GetClass<kVerifyNone, kWithoutReadBarrier>() == string_class_) { |
| auto it = intern_remap_.find(old_value->AsString().Ptr()); |
| if (it != intern_remap_.end()) { |
| mirror::String* new_value = it->second; |
| object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false, |
| /*kCheckTransaction=*/ true, |
| kVerifyNone>(field_offset, new_value); |
| } |
| } |
| } |
| // Visitor for VisitReferences(), java.lang.ref.Reference case. |
| ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(klass->IsTypeOfReferenceClass()); |
| this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false); |
| } |
| // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false. |
| void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) |
| const {} |
| void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} |
| |
| private: |
| mirror::Class* GetStringClass() REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(!intern_remap_.empty()); |
| return intern_remap_.begin()->first->GetClass<kVerifyNone, kWithoutReadBarrier>(); |
| } |
| |
| const SafeMap<mirror::String*, mirror::String*>& intern_remap_; |
| mirror::Class* const string_class_; |
| }; |
| |
| // Helper class encapsulating loading, so we can access private ImageSpace members (this is a |
| // nested class), but not declare functions in the header. |
| class ImageSpace::Loader { |
| public: |
| static std::unique_ptr<ImageSpace> InitAppImage(const char* image_filename, |
| const char* image_location, |
| const OatFile* oat_file, |
| ArrayRef<ImageSpace* const> boot_image_spaces, |
| /*out*/std::string* error_msg) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image)); |
| |
| std::unique_ptr<ImageSpace> space = Init(image_filename, |
| image_location, |
| &logger, |
| /*image_reservation=*/ nullptr, |
| error_msg); |
| if (space != nullptr) { |
| space->oat_file_non_owned_ = oat_file; |
| const ImageHeader& image_header = space->GetImageHeader(); |
| |
| // Check the oat file checksum. |
| const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum(); |
| const uint32_t image_oat_checksum = image_header.GetOatChecksum(); |
| // Note image_oat_checksum is 0 for images generated by the runtime. |
| if (image_oat_checksum != 0u && oat_checksum != image_oat_checksum) { |
| *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s", |
| oat_checksum, |
| image_oat_checksum, |
| image_filename); |
| return nullptr; |
| } |
| size_t boot_image_space_dependencies; |
| if (!ValidateBootImageChecksum(image_filename, |
| image_header, |
| oat_file, |
| boot_image_spaces, |
| &boot_image_space_dependencies, |
| error_msg)) { |
| DCHECK(!error_msg->empty()); |
| return nullptr; |
| } |
| |
| uint32_t expected_reservation_size = RoundUp(image_header.GetImageSize(), kPageSize); |
| if (!CheckImageReservationSize(*space, expected_reservation_size, error_msg) || |
| !CheckImageComponentCount(*space, /*expected_component_count=*/ 1u, error_msg)) { |
| return nullptr; |
| } |
| |
| { |
| TimingLogger::ScopedTiming timing("RelocateImage", &logger); |
| const PointerSize pointer_size = image_header.GetPointerSize(); |
| uint32_t boot_image_begin = |
| reinterpret_cast32<uint32_t>(boot_image_spaces.front()->Begin()); |
| bool result; |
| if (pointer_size == PointerSize::k64) { |
| result = RelocateInPlace<PointerSize::k64>(boot_image_begin, |
| space->GetMemMap()->Begin(), |
| space->GetLiveBitmap(), |
| oat_file, |
| error_msg); |
| } else { |
| result = RelocateInPlace<PointerSize::k32>(boot_image_begin, |
| space->GetMemMap()->Begin(), |
| space->GetLiveBitmap(), |
| oat_file, |
| error_msg); |
| } |
| if (!result) { |
| return nullptr; |
| } |
| } |
| |
| DCHECK_LE(boot_image_space_dependencies, boot_image_spaces.size()); |
| if (boot_image_space_dependencies != boot_image_spaces.size()) { |
| TimingLogger::ScopedTiming timing("DeduplicateInternedStrings", &logger); |
| // There shall be no duplicates with boot image spaces this app image depends on. |
| ArrayRef<ImageSpace* const> old_spaces = |
| boot_image_spaces.SubArray(/*pos=*/ boot_image_space_dependencies); |
| SafeMap<mirror::String*, mirror::String*> intern_remap; |
| RemoveInternTableDuplicates(old_spaces, space.get(), &intern_remap); |
| if (!intern_remap.empty()) { |
| RemapInternedStringDuplicates(intern_remap, space.get()); |
| } |
| } |
| |
| const ImageHeader& primary_header = boot_image_spaces.front()->GetImageHeader(); |
| static_assert(static_cast<size_t>(ImageHeader::kResolutionMethod) == 0u); |
| for (size_t i = 0u; i != static_cast<size_t>(ImageHeader::kImageMethodsCount); ++i) { |
| ImageHeader::ImageMethod method = static_cast<ImageHeader::ImageMethod>(i); |
| CHECK_EQ(primary_header.GetImageMethod(method), image_header.GetImageMethod(method)) |
| << method; |
| } |
| |
| VLOG(image) << "ImageSpace::Loader::InitAppImage exiting " << *space.get(); |
| } |
| if (VLOG_IS_ON(image)) { |
| logger.Dump(LOG_STREAM(INFO)); |
| } |
| return space; |
| } |
| |
| static std::unique_ptr<ImageSpace> Init(const char* image_filename, |
| const char* image_location, |
| TimingLogger* logger, |
| /*inout*/MemMap* image_reservation, |
| /*out*/std::string* error_msg) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| CHECK(image_filename != nullptr); |
| CHECK(image_location != nullptr); |
| |
| std::unique_ptr<File> file; |
| { |
| TimingLogger::ScopedTiming timing("OpenImageFile", logger); |
| file.reset(OS::OpenFileForReading(image_filename)); |
| if (file == nullptr) { |
| *error_msg = StringPrintf("Failed to open '%s'", image_filename); |
| return nullptr; |
| } |
| } |
| return Init(file.get(), |
| image_filename, |
| image_location, |
| /*profile_files=*/ {}, |
| /*allow_direct_mapping=*/ true, |
| logger, |
| image_reservation, |
| error_msg); |
| } |
| |
| static std::unique_ptr<ImageSpace> Init(File* file, |
| const char* image_filename, |
| const char* image_location, |
| const std::vector<std::string>& profile_files, |
| bool allow_direct_mapping, |
| TimingLogger* logger, |
| /*inout*/MemMap* image_reservation, |
| /*out*/std::string* error_msg) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| CHECK(image_filename != nullptr); |
| CHECK(image_location != nullptr); |
| |
| VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename; |
| |
| ImageHeader image_header; |
| { |
| TimingLogger::ScopedTiming timing("ReadImageHeader", logger); |
| bool success = file->PreadFully(&image_header, sizeof(image_header), /*offset=*/ 0u); |
| if (!success || !image_header.IsValid()) { |
| *error_msg = StringPrintf("Invalid image header in '%s'", image_filename); |
| return nullptr; |
| } |
| } |
| // Check that the file is larger or equal to the header size + data size. |
| const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength()); |
| if (image_file_size < sizeof(ImageHeader) + image_header.GetDataSize()) { |
| *error_msg = StringPrintf( |
| "Image file truncated: %" PRIu64 " vs. %" PRIu64 ".", |
| image_file_size, |
| static_cast<uint64_t>(sizeof(ImageHeader) + image_header.GetDataSize())); |
| return nullptr; |
| } |
| |
| if (VLOG_IS_ON(startup)) { |
| LOG(INFO) << "Dumping image sections"; |
| for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) { |
| const auto section_idx = static_cast<ImageHeader::ImageSections>(i); |
| auto& section = image_header.GetImageSection(section_idx); |
| LOG(INFO) << section_idx << " start=" |
| << reinterpret_cast<void*>(image_header.GetImageBegin() + section.Offset()) << " " |
| << section; |
| } |
| } |
| |
| const auto& bitmap_section = image_header.GetImageBitmapSection(); |
| // The location we want to map from is the first aligned page after the end of the stored |
| // (possibly compressed) data. |
| const size_t image_bitmap_offset = |
| RoundUp(sizeof(ImageHeader) + image_header.GetDataSize(), kPageSize); |
| const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size(); |
| if (end_of_bitmap != image_file_size) { |
| *error_msg = StringPrintf( |
| "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", |
| image_file_size, |
| end_of_bitmap); |
| return nullptr; |
| } |
| |
| // GetImageBegin is the preferred address to map the image. If we manage to map the |
| // image at the image begin, the amount of fixup work required is minimized. |
| // If it is pic we will retry with error_msg for the2 failure case. Pass a null error_msg to |
| // avoid reading proc maps for a mapping failure and slowing everything down. |
| // For the boot image, we have already reserved the memory and we load the image |
| // into the `image_reservation`. |
| MemMap map = LoadImageFile( |
| image_filename, |
| image_location, |
| image_header, |
| file->Fd(), |
| allow_direct_mapping, |
| logger, |
| image_reservation, |
| error_msg); |
| if (!map.IsValid()) { |
| DCHECK(!error_msg->empty()); |
| return nullptr; |
| } |
| DCHECK_EQ(0, memcmp(&image_header, map.Begin(), sizeof(ImageHeader))); |
| |
| MemMap image_bitmap_map = MemMap::MapFile(bitmap_section.Size(), |
| PROT_READ, |
| MAP_PRIVATE, |
| file->Fd(), |
| image_bitmap_offset, |
| /*low_4gb=*/ false, |
| image_filename, |
| error_msg); |
| if (!image_bitmap_map.IsValid()) { |
| *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str()); |
| return nullptr; |
| } |
| const uint32_t bitmap_index = ImageSpace::bitmap_index_.fetch_add(1); |
| std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u", |
| image_filename, |
| bitmap_index)); |
| // Bitmap only needs to cover until the end of the mirror objects section. |
| const ImageSection& image_objects = image_header.GetObjectsSection(); |
| // We only want the mirror object, not the ArtFields and ArtMethods. |
| uint8_t* const image_end = map.Begin() + image_objects.End(); |
| accounting::ContinuousSpaceBitmap bitmap; |
| { |
| TimingLogger::ScopedTiming timing("CreateImageBitmap", logger); |
| bitmap = accounting::ContinuousSpaceBitmap::CreateFromMemMap( |
| bitmap_name, |
| std::move(image_bitmap_map), |
| reinterpret_cast<uint8_t*>(map.Begin()), |
| // Make sure the bitmap is aligned to card size instead of just bitmap word size. |
| RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize)); |
| if (!bitmap.IsValid()) { |
| *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str()); |
| return nullptr; |
| } |
| } |
| // We only want the mirror object, not the ArtFields and ArtMethods. |
| std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename, |
| image_location, |
| profile_files, |
| std::move(map), |
| std::move(bitmap), |
| image_end)); |
| return space; |
| } |
| |
| static bool CheckImageComponentCount(const ImageSpace& space, |
| uint32_t expected_component_count, |
| /*out*/std::string* error_msg) { |
| const ImageHeader& header = space.GetImageHeader(); |
| if (header.GetComponentCount() != expected_component_count) { |
| *error_msg = StringPrintf("Unexpected component count in %s, received %u, expected %u", |
| space.GetImageFilename().c_str(), |
| header.GetComponentCount(), |
| expected_component_count); |
| return false; |
| } |
| return true; |
| } |
| |
| static bool CheckImageReservationSize(const ImageSpace& space, |
| uint32_t expected_reservation_size, |
| /*out*/std::string* error_msg) { |
| const ImageHeader& header = space.GetImageHeader(); |
| if (header.GetImageReservationSize() != expected_reservation_size) { |
| *error_msg = StringPrintf("Unexpected reservation size in %s, received %u, expected %u", |
| space.GetImageFilename().c_str(), |
| header.GetImageReservationSize(), |
| expected_reservation_size); |
| return false; |
| } |
| return true; |
| } |
| |
| template <typename Container> |
| static void RemoveInternTableDuplicates( |
| const Container& old_spaces, |
| /*inout*/ImageSpace* new_space, |
| /*inout*/SafeMap<mirror::String*, mirror::String*>* intern_remap) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| const ImageSection& new_interns = new_space->GetImageHeader().GetInternedStringsSection(); |
| if (new_interns.Size() != 0u) { |
| const uint8_t* new_data = new_space->Begin() + new_interns.Offset(); |
| size_t new_read_count; |
| InternTable::UnorderedSet new_set(new_data, /*make_copy_of_data=*/ false, &new_read_count); |
| for (const auto& old_space : old_spaces) { |
| const ImageSection& old_interns = old_space->GetImageHeader().GetInternedStringsSection(); |
| if (old_interns.Size() != 0u) { |
| const uint8_t* old_data = old_space->Begin() + old_interns.Offset(); |
| size_t old_read_count; |
| InternTable::UnorderedSet old_set( |
| old_data, /*make_copy_of_data=*/ false, &old_read_count); |
| RemoveDuplicates(old_set, &new_set, intern_remap); |
| } |
| } |
| } |
| } |
| |
| static void RemapInternedStringDuplicates( |
| const SafeMap<mirror::String*, mirror::String*>& intern_remap, |
| ImageSpace* new_space) REQUIRES_SHARED(Locks::mutator_lock_) { |
| RemapInternedStringsVisitor visitor(intern_remap); |
| static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check"); |
| uint32_t objects_end = new_space->GetImageHeader().GetObjectsSection().Size(); |
| DCHECK_ALIGNED(objects_end, kObjectAlignment); |
| for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) { |
| mirror::Object* object = reinterpret_cast<mirror::Object*>(new_space->Begin() + pos); |
| object->VisitReferences</*kVisitNativeRoots=*/ false, |
| kVerifyNone, |
| kWithoutReadBarrier>(visitor, visitor); |
| pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment); |
| } |
| } |
| |
| private: |
| // Remove duplicates found in the `old_set` from the `new_set`. |
| // Record the removed Strings for remapping. No read barriers are needed as the |
| // tables are either just being loaded and not yet a part of the heap, or boot |
| // image intern tables with non-moveable Strings used when loading an app image. |
| static void RemoveDuplicates(const InternTable::UnorderedSet& old_set, |
| /*inout*/InternTable::UnorderedSet* new_set, |
| /*inout*/SafeMap<mirror::String*, mirror::String*>* intern_remap) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (old_set.size() < new_set->size()) { |
| for (const GcRoot<mirror::String>& old_s : old_set) { |
| auto new_it = new_set->find(old_s); |
| if (UNLIKELY(new_it != new_set->end())) { |
| intern_remap->Put(new_it->Read<kWithoutReadBarrier>(), old_s.Read<kWithoutReadBarrier>()); |
| new_set->erase(new_it); |
| } |
| } |
| } else { |
| for (auto new_it = new_set->begin(), end = new_set->end(); new_it != end; ) { |
| auto old_it = old_set.find(*new_it); |
| if (UNLIKELY(old_it != old_set.end())) { |
| intern_remap->Put(new_it->Read<kWithoutReadBarrier>(), |
| old_it->Read<kWithoutReadBarrier>()); |
| new_it = new_set->erase(new_it); |
| } else { |
| ++new_it; |
| } |
| } |
| } |
| } |
| |
| static bool ValidateBootImageChecksum(const char* image_filename, |
| const ImageHeader& image_header, |
| const OatFile* oat_file, |
| ArrayRef<ImageSpace* const> boot_image_spaces, |
| /*out*/size_t* boot_image_space_dependencies, |
| /*out*/std::string* error_msg) { |
| // Use the boot image component count to calculate the checksum from |
| // the appropriate number of boot image chunks. |
| uint32_t boot_image_component_count = image_header.GetBootImageComponentCount(); |
| size_t expected_image_component_count = ImageSpace::GetNumberOfComponents(boot_image_spaces); |
| if (boot_image_component_count > expected_image_component_count) { |
| *error_msg = StringPrintf("Too many boot image dependencies (%u > %zu) in image %s", |
| boot_image_component_count, |
| expected_image_component_count, |
| image_filename); |
| return false; |
| } |
| uint32_t checksum = 0u; |
| size_t chunk_count = 0u; |
| size_t space_pos = 0u; |
| uint64_t boot_image_size = 0u; |
| for (size_t component_count = 0u; component_count != boot_image_component_count; ) { |
| const ImageHeader& current_header = boot_image_spaces[space_pos]->GetImageHeader(); |
| if (current_header.GetComponentCount() > boot_image_component_count - component_count) { |
| *error_msg = StringPrintf("Boot image component count in %s ends in the middle of a chunk, " |
| "%u is between %zu and %zu", |
| image_filename, |
| boot_image_component_count, |
| component_count, |
| component_count + current_header.GetComponentCount()); |
| return false; |
| } |
| component_count += current_header.GetComponentCount(); |
| checksum ^= current_header.GetImageChecksum(); |
| chunk_count += 1u; |
| space_pos += current_header.GetImageSpaceCount(); |
| boot_image_size += current_header.GetImageReservationSize(); |
| } |
| if (image_header.GetBootImageChecksum() != checksum) { |
| *error_msg = StringPrintf("Boot image checksum mismatch (0x%08x != 0x%08x) in image %s", |
| image_header.GetBootImageChecksum(), |
| checksum, |
| image_filename); |
| return false; |
| } |
| if (image_header.GetBootImageSize() != boot_image_size) { |
| *error_msg = StringPrintf("Boot image size mismatch (0x%08x != 0x%08" PRIx64 ") in image %s", |
| image_header.GetBootImageSize(), |
| boot_image_size, |
| image_filename); |
| return false; |
| } |
| // Oat checksums, if present, have already been validated, so we know that |
| // they match the loaded image spaces. Therefore, we just verify that they |
| // are consistent in the number of boot image chunks they list by looking |
| // for the kImageChecksumPrefix at the start of each component. |
| const char* oat_boot_class_path_checksums = |
| oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathChecksumsKey); |
| if (oat_boot_class_path_checksums != nullptr) { |
| size_t oat_bcp_chunk_count = 0u; |
| while (*oat_boot_class_path_checksums == kImageChecksumPrefix) { |
| oat_bcp_chunk_count += 1u; |
| // Find the start of the next component if any. |
| const char* separator = strchr(oat_boot_class_path_checksums, ':'); |
| oat_boot_class_path_checksums = (separator != nullptr) ? separator + 1u : ""; |
| } |
| if (oat_bcp_chunk_count != chunk_count) { |
| *error_msg = StringPrintf("Boot image chunk count mismatch (%zu != %zu) in image %s", |
| oat_bcp_chunk_count, |
| chunk_count, |
| image_filename); |
| return false; |
| } |
| } |
| *boot_image_space_dependencies = space_pos; |
| return true; |
| } |
| |
| static MemMap LoadImageFile(const char* image_filename, |
| const char* image_location, |
| const ImageHeader& image_header, |
| int fd, |
| bool allow_direct_mapping, |
| TimingLogger* logger, |
| /*inout*/MemMap* image_reservation, |
| /*out*/std::string* error_msg) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| TimingLogger::ScopedTiming timing("MapImageFile", logger); |
| std::string temp_error_msg; |
| const bool is_compressed = image_header.HasCompressedBlock(); |
| if (!is_compressed && allow_direct_mapping) { |
| uint8_t* address = (image_reservation != nullptr) ? image_reservation->Begin() : nullptr; |
| return MemMap::MapFileAtAddress(address, |
| image_header.GetImageSize(), |
| PROT_READ | PROT_WRITE, |
| MAP_PRIVATE, |
| fd, |
| /*start=*/ 0, |
| /*low_4gb=*/ true, |
| image_filename, |
| /*reuse=*/ false, |
| image_reservation, |
| error_msg); |
| } |
| |
| // Reserve output and copy/decompress into it. |
| MemMap map = MemMap::MapAnonymous(image_location, |
| image_header.GetImageSize(), |
| PROT_READ | PROT_WRITE, |
| /*low_4gb=*/ true, |
| image_reservation, |
| error_msg); |
| if (map.IsValid()) { |
| const size_t stored_size = image_header.GetDataSize(); |
| MemMap temp_map = MemMap::MapFile(sizeof(ImageHeader) + stored_size, |
| PROT_READ, |
| MAP_PRIVATE, |
| fd, |
| /*start=*/ 0, |
| /*low_4gb=*/ false, |
| image_filename, |
| error_msg); |
| if (!temp_map.IsValid()) { |
| DCHECK(error_msg == nullptr || !error_msg->empty()); |
| return MemMap::Invalid(); |
| } |
| |
| Runtime* runtime = Runtime::Current(); |
| // The runtime might not be available at this point if we're running |
| // dex2oat or oatdump. |
| if (runtime != nullptr) { |
| size_t madvise_size_limit = runtime->GetMadviseWillNeedSizeArt(); |
| Runtime::MadviseFileForRange(madvise_size_limit, |
| temp_map.Size(), |
| temp_map.Begin(), |
| temp_map.End(), |
| image_filename); |
| } |
| |
| if (is_compressed) { |
| memcpy(map.Begin(), &image_header, sizeof(ImageHeader)); |
| |
| Runtime::ScopedThreadPoolUsage stpu; |
| ThreadPool* const pool = stpu.GetThreadPool(); |
| const uint64_t start = NanoTime(); |
| Thread* const self = Thread::Current(); |
| static constexpr size_t kMinBlocks = 2u; |
| const bool use_parallel = pool != nullptr && image_header.GetBlockCount() >= kMinBlocks; |
| bool failed_decompression = false; |
| for (const ImageHeader::Block& block : image_header.GetBlocks(temp_map.Begin())) { |
| auto function = [&](Thread*) { |
| const uint64_t start2 = NanoTime(); |
| ScopedTrace trace("LZ4 decompress block"); |
| bool result = block.Decompress(/*out_ptr=*/map.Begin(), |
| /*in_ptr=*/temp_map.Begin(), |
| error_msg); |
| if (!result) { |
| failed_decompression = true; |
| if (error_msg != nullptr) { |
| *error_msg = "Failed to decompress image block " + *error_msg; |
| } |
| } |
| VLOG(image) << "Decompress block " << block.GetDataSize() << " -> " |
| << block.GetImageSize() << " in " << PrettyDuration(NanoTime() - start2); |
| }; |
| if (use_parallel) { |
| pool->AddTask(self, new FunctionTask(std::move(function))); |
| } else { |
| function(self); |
| } |
| } |
| if (use_parallel) { |
| ScopedTrace trace("Waiting for workers"); |
| // Go to native since we don't want to suspend while holding the mutator lock. |
| ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative); |
| pool->Wait(self, true, false); |
| } |
| const uint64_t time = NanoTime() - start; |
| // Add one 1 ns to prevent possible divide by 0. |
| VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " (" |
| << PrettySize(static_cast<uint64_t>(map.Size()) * MsToNs(1000) / (time + 1)) |
| << "/s)"; |
| if (failed_decompression) { |
| DCHECK(error_msg == nullptr || !error_msg->empty()); |
| return MemMap::Invalid(); |
| } |
| } else { |
| DCHECK(!allow_direct_mapping); |
| // We do not allow direct mapping for boot image extensions compiled to a memfd. |
| // This prevents wasting memory by kernel keeping the contents of the file alive |
| // despite these contents being unreachable once the file descriptor is closed |
| // and mmapped memory is copied for all existing mappings. |
| // |
| // Most pages would be copied during relocation while there is only one mapping. |
| // We could use MAP_SHARED for relocation and then msync() and remap MAP_PRIVATE |
| // as required for forking from zygote, but there would still be some pages |
| // wasted anyway and we want to avoid that. (For example, static synchronized |
| // methods use the class object for locking and thus modify its lockword.) |
| |
| // No other process should race to overwrite the extension in memfd. |
| DCHECK_EQ(memcmp(temp_map.Begin(), &image_header, sizeof(ImageHeader)), 0); |
| memcpy(map.Begin(), temp_map.Begin(), temp_map.Size()); |
| } |
| } |
| |
| return map; |
| } |
| |
| class EmptyRange { |
| public: |
| ALWAYS_INLINE bool InSource(uintptr_t) const { return false; } |
| ALWAYS_INLINE bool InDest(uintptr_t) const { return false; } |
| ALWAYS_INLINE uintptr_t ToDest(uintptr_t) const { UNREACHABLE(); } |
| }; |
| |
| template <typename Range0, typename Range1 = EmptyRange, typename Range2 = EmptyRange> |
| class ForwardAddress { |
| public: |
| explicit ForwardAddress(const Range0& range0 = Range0(), |
| const Range1& range1 = Range1(), |
| const Range2& range2 = Range2()) |
| : range0_(range0), range1_(range1), range2_(range2) {} |
| |
| // Return the relocated address of a heap object. |
| // Null checks must be performed in the caller (for performance reasons). |
| template <typename T> |
| ALWAYS_INLINE T* operator()(T* src) const { |
| DCHECK(src != nullptr); |
| const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src); |
| if (range2_.InSource(uint_src)) { |
| return reinterpret_cast<T*>(range2_.ToDest(uint_src)); |
| } |
| if (range1_.InSource(uint_src)) { |
| return reinterpret_cast<T*>(range1_.ToDest(uint_src)); |
| } |
| CHECK(range0_.InSource(uint_src)) |
| << reinterpret_cast<const void*>(src) << " not in " |
| << reinterpret_cast<const void*>(range0_.Source()) << "-" |
| << reinterpret_cast<const void*>(range0_.Source() + range0_.Length()); |
| return reinterpret_cast<T*>(range0_.ToDest(uint_src)); |
| } |
| |
| private: |
| const Range0 range0_; |
| const Range1 range1_; |
| const Range2 range2_; |
| }; |
| |
| template <typename Forward> |
| class FixupRootVisitor { |
| public: |
| template<typename... Args> |
| explicit FixupRootVisitor(Args... args) : forward_(args...) {} |
| |
| ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!root->IsNull()) { |
| VisitRoot(root); |
| } |
| } |
| |
| ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| mirror::Object* ref = root->AsMirrorPtr(); |
| mirror::Object* new_ref = forward_(ref); |
| if (ref != new_ref) { |
| root->Assign(new_ref); |
| } |
| } |
| |
| private: |
| Forward forward_; |
| }; |
| |
| template <typename Forward> |
| class FixupObjectVisitor { |
| public: |
| explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited, |
| const Forward& forward) |
| : visited_(visited), forward_(forward) {} |
| |
| // Fix up separately since we also need to fix up method entrypoints. |
| ALWAYS_INLINE void VisitRootIfNonNull( |
| mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} |
| |
| ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) |
| const {} |
| |
| ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj, |
| MemberOffset offset, |
| bool is_static ATTRIBUTE_UNUSED) const |
| NO_THREAD_SAFETY_ANALYSIS { |
| // Space is not yet added to the heap, don't do a read barrier. |
| mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>( |
| offset); |
| if (ref != nullptr) { |
| // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the |
| // image. |
| obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, forward_(ref)); |
| } |
| } |
| |
| // java.lang.ref.Reference visitor. |
| ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const |
| REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { |
| DCHECK(klass->IsTypeOfReferenceClass()); |
| this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false); |
| } |
| |
| void operator()(mirror::Object* obj) const |
| NO_THREAD_SAFETY_ANALYSIS { |
| if (!visited_->Set(obj)) { |
| // Not already visited. |
| obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>( |
| *this, |
| *this); |
| CHECK(!obj->IsClass()); |
| } |
| } |
| |
| private: |
| gc::accounting::ContinuousSpaceBitmap* const visited_; |
| Forward forward_; |
| }; |
| |
| // Relocate an image space mapped at target_base which possibly used to be at a different base |
| // address. In place means modifying a single ImageSpace in place rather than relocating from |
| // one ImageSpace to another. |
| template <PointerSize kPointerSize> |
| static bool RelocateInPlace(uint32_t boot_image_begin, |
| uint8_t* target_base, |
| accounting::ContinuousSpaceBitmap* bitmap, |
| const OatFile* app_oat_file, |
| std::string* error_msg) { |
| DCHECK(error_msg != nullptr); |
| // Set up sections. |
| ImageHeader* image_header = reinterpret_cast<ImageHeader*>(target_base); |
| const uint32_t boot_image_size = image_header->GetBootImageSize(); |
| const ImageSection& objects_section = image_header->GetObjectsSection(); |
| // Where the app image objects are mapped to. |
| uint8_t* objects_location = target_base + objects_section.Offset(); |
| TimingLogger logger(__FUNCTION__, true, false); |
| RelocationRange boot_image(image_header->GetBootImageBegin(), |
| boot_image_begin, |
| boot_image_size); |
| // Metadata is everything after the objects section, use exclusion to be safe. |
| RelocationRange app_image_metadata( |
| reinterpret_cast<uintptr_t>(image_header->GetImageBegin()) + objects_section.End(), |
| reinterpret_cast<uintptr_t>(target_base) + objects_section.End(), |
| image_header->GetImageSize() - objects_section.End()); |
| // App image heap objects, may be mapped in the heap. |
| RelocationRange app_image_objects( |
| reinterpret_cast<uintptr_t>(image_header->GetImageBegin()) + objects_section.Offset(), |
| reinterpret_cast<uintptr_t>(objects_location), |
| objects_section.Size()); |
| // Use the oat data section since this is where the OatFile::Begin is. |
| RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header->GetOatDataBegin()), |
| // Not necessarily in low 4GB. |
| reinterpret_cast<uintptr_t>(app_oat_file->Begin()), |
| image_header->GetOatDataEnd() - image_header->GetOatDataBegin()); |
| VLOG(image) << "App image metadata " << app_image_metadata; |
| VLOG(image) << "App image objects " << app_image_objects; |
| VLOG(image) << "App oat " << app_oat; |
| VLOG(image) << "Boot image " << boot_image; |
| // True if we need to fixup any heap pointers. |
| const bool fixup_image = boot_image.Delta() != 0 || app_image_metadata.Delta() != 0 || |
| app_image_objects.Delta() != 0; |
| if (!fixup_image) { |
| // Nothing to fix up. |
| return true; |
| } |
| ScopedDebugDisallowReadBarriers sddrb(Thread::Current()); |
| // TODO: Assert that the app image does not contain any Method, Constructor, |
| // FieldVarHandle or StaticFieldVarHandle. These require extra relocation |
| // for the `ArtMethod*` and `ArtField*` pointers they contain. |
| |
| using ForwardObject = ForwardAddress<RelocationRange, RelocationRange>; |
| ForwardObject forward_object(boot_image, app_image_objects); |
| ForwardObject forward_metadata(boot_image, app_image_metadata); |
| using ForwardCode = ForwardAddress<RelocationRange, RelocationRange>; |
| ForwardCode forward_code(boot_image, app_oat); |
| PatchObjectVisitor<kPointerSize, ForwardObject, ForwardCode> patch_object_visitor( |
| forward_object, |
| forward_metadata); |
| if (fixup_image) { |
| // Two pass approach, fix up all classes first, then fix up non class-objects. |
| // The visited bitmap is used to ensure that pointer arrays are not forwarded twice. |
| gc::accounting::ContinuousSpaceBitmap visited_bitmap( |
| gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap", |
| target_base, |
| image_header->GetImageSize())); |
| { |
| TimingLogger::ScopedTiming timing("Fixup classes", &logger); |
| ObjPtr<mirror::Class> class_class = [&]() NO_THREAD_SAFETY_ANALYSIS { |
| ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots = app_image_objects.ToDest( |
| image_header->GetImageRoots<kWithoutReadBarrier>().Ptr()); |
| int32_t class_roots_index = enum_cast<int32_t>(ImageHeader::kClassRoots); |
| DCHECK_LT(class_roots_index, image_roots->GetLength<kVerifyNone>()); |
| ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots = |
| ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(boot_image.ToDest( |
| image_roots->GetWithoutChecks<kVerifyNone, |
| kWithoutReadBarrier>(class_roots_index).Ptr())); |
| return GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots); |
| }(); |
| const auto& class_table_section = image_header->GetClassTableSection(); |
| if (class_table_section.Size() > 0u) { |
| ScopedObjectAccess soa(Thread::Current()); |
| ClassTableVisitor class_table_visitor(forward_object); |
| size_t read_count = 0u; |
| const uint8_t* data = target_base + class_table_section.Offset(); |
| // We avoid making a copy of the data since we want modifications to be propagated to the |
| // memory map. |
| ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count); |
| for (ClassTable::TableSlot& slot : temp_set) { |
| slot.VisitRoot(class_table_visitor); |
| ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>(); |
| if (!app_image_objects.InDest(klass.Ptr())) { |
| continue; |
| } |
| const bool already_marked = visited_bitmap.Set(klass.Ptr()); |
| CHECK(!already_marked) << "App image class already visited"; |
| patch_object_visitor.VisitClass(klass, class_class); |
| // Then patch the non-embedded vtable and iftable. |
| ObjPtr<mirror::PointerArray> vtable = |
| klass->GetVTable<kVerifyNone, kWithoutReadBarrier>(); |
| if (vtable != nullptr && |
| app_image_objects.InDest(vtable.Ptr()) && |
| !visited_bitmap.Set(vtable.Ptr())) { |
| patch_object_visitor.VisitPointerArray(vtable); |
| } |
| ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>(); |
| if (iftable != nullptr && app_image_objects.InDest(iftable.Ptr())) { |
| // Avoid processing the fields of iftable since we will process them later anyways |
| // below. |
| int32_t ifcount = klass->GetIfTableCount<kVerifyNone>(); |
| for (int32_t i = 0; i != ifcount; ++i) { |
| ObjPtr<mirror::PointerArray> unpatched_ifarray = |
| iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i); |
| if (unpatched_ifarray != nullptr) { |
| // The iftable has not been patched, so we need to explicitly adjust the pointer. |
| ObjPtr<mirror::PointerArray> ifarray = forward_object(unpatched_ifarray.Ptr()); |
| if (app_image_objects.InDest(ifarray.Ptr()) && |
| !visited_bitmap.Set(ifarray.Ptr())) { |
| patch_object_visitor.VisitPointerArray(ifarray); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Fixup objects may read fields in the boot image so we hold the mutator lock (although it is |
| // probably not required). |
| TimingLogger::ScopedTiming timing("Fixup objects", &logger); |
| ScopedObjectAccess soa(Thread::Current()); |
| // Need to update the image to be at the target base. |
| uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset()); |
| uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End()); |
| FixupObjectVisitor<ForwardObject> fixup_object_visitor(&visited_bitmap, forward_object); |
| bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor); |
| // Fixup image roots. |
| CHECK(app_image_objects.InSource(reinterpret_cast<uintptr_t>( |
| image_header->GetImageRoots<kWithoutReadBarrier>().Ptr()))); |
| image_header->RelocateImageReferences(app_image_objects.Delta()); |
| image_header->RelocateBootImageReferences(boot_image.Delta()); |
| CHECK_EQ(image_header->GetImageBegin(), target_base); |
| |
| // Fix up dex cache arrays. |
| ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches = |
| image_header->GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches) |
| ->AsObjectArray<mirror::DexCache, kVerifyNone>(); |
| for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) { |
| ObjPtr<mirror::DexCache> dex_cache = |
| dex_caches->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(i); |
| patch_object_visitor.VisitDexCacheArrays(dex_cache); |
| } |
| } |
| { |
| // Only touches objects in the app image, no need for mutator lock. |
| TimingLogger::ScopedTiming timing("Fixup methods", &logger); |
| image_header->VisitPackedArtMethods([&](ArtMethod& method) NO_THREAD_SAFETY_ANALYSIS { |
| // TODO: Consider a separate visitor for runtime vs normal methods. |
| if (UNLIKELY(method.IsRuntimeMethod())) { |
| ImtConflictTable* table = method.GetImtConflictTable(kPointerSize); |
| if (table != nullptr) { |
| ImtConflictTable* new_table = forward_metadata(table); |
| if (table != new_table) { |
| method.SetImtConflictTable(new_table, kPointerSize); |
| } |
| } |
| const void* old_code = method.GetEntryPointFromQuickCompiledCodePtrSize(kPointerSize); |
| const void* new_code = forward_code(old_code); |
| if (old_code != new_code) { |
| method.SetEntryPointFromQuickCompiledCodePtrSize(new_code, kPointerSize); |
| } |
| } else { |
| patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot()); |
| method.UpdateEntrypoints(forward_code, kPointerSize); |
| } |
| }, target_base, kPointerSize); |
| } |
| if (fixup_image) { |
| { |
| // Only touches objects in the app image, no need for mutator lock. |
| TimingLogger::ScopedTiming timing("Fixup fields", &logger); |
| image_header->VisitPackedArtFields([&](ArtField& field) NO_THREAD_SAFETY_ANALYSIS { |
| patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>( |
| &field.DeclaringClassRoot()); |
| }, target_base); |
| } |
| { |
| TimingLogger::ScopedTiming timing("Fixup imt", &logger); |
| image_header->VisitPackedImTables(forward_metadata, target_base, kPointerSize); |
| } |
| { |
| TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger); |
| image_header->VisitPackedImtConflictTables(forward_metadata, target_base, kPointerSize); |
| } |
| // Fix up the intern table. |
| const auto& intern_table_section = image_header->GetInternedStringsSection(); |
| if (intern_table_section.Size() > 0u) { |
| TimingLogger::ScopedTiming timing("Fixup intern table", &logger); |
| ScopedObjectAccess soa(Thread::Current()); |
| // Fixup the pointers in the newly written intern table to contain image addresses. |
| InternTable temp_intern_table; |
| // Note that we require that ReadFromMemory does not make an internal copy of the elements |
| // so that the VisitRoots() will update the memory directly rather than the copies. |
| temp_intern_table.AddTableFromMemory(target_base + intern_table_section.Offset(), |
| [&](InternTable::UnorderedSet& strings) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| for (GcRoot<mirror::String>& root : strings) { |
| root = GcRoot<mirror::String>(forward_object(root.Read<kWithoutReadBarrier>())); |
| } |
| }, /*is_boot_image=*/ false); |
| } |
| } |
| if (VLOG_IS_ON(image)) { |
| logger.Dump(LOG_STREAM(INFO)); |
| } |
| return true; |
| } |
| }; |
| |
| void ImageSpace::AppendImageChecksum(uint32_t component_count, |
| uint32_t checksum, |
| /*inout*/ std::string* checksums) { |
| static_assert(ImageSpace::kImageChecksumPrefix == 'i', "Format prefix check."); |
| StringAppendF(checksums, "i;%u/%08x", component_count, checksum); |
| } |
| |
| static bool CheckAndRemoveImageChecksum(uint32_t component_count, |
| uint32_t checksum, |
| /*inout*/std::string_view* oat_checksums, |
| /*out*/std::string* error_msg) { |
| std::string image_checksum; |
| ImageSpace::AppendImageChecksum(component_count, checksum, &image_checksum); |
| if (!StartsWith(*oat_checksums, image_checksum)) { |
| *error_msg = StringPrintf("Image checksum mismatch, expected %s to start with %s", |
| std::string(*oat_checksums).c_str(), |
| image_checksum.c_str()); |
| return false; |
| } |
| oat_checksums->remove_prefix(image_checksum.size()); |
| return true; |
| } |
| |
| std::string ImageSpace::BootImageLayout::GetPrimaryImageLocation() { |
| DCHECK(!image_locations_.empty()); |
| std::string location = image_locations_[0]; |
| size_t profile_separator_pos = location.find(kProfileSeparator); |
| if (profile_separator_pos != std::string::npos) { |
| location.resize(profile_separator_pos); |
| } |
| if (location.find('/') == std::string::npos) { |
| // No path, so use the path from the first boot class path component. |
| size_t slash_pos = boot_class_path_.empty() |
| ? std::string::npos |
| : boot_class_path_[0].rfind('/'); |
| if (slash_pos == std::string::npos) { |
| return std::string(); |
| } |
| location.insert(0u, boot_class_path_[0].substr(0u, slash_pos + 1u)); |
| } |
| return location; |
| } |
| |
| bool ImageSpace::BootImageLayout::VerifyImageLocation( |
| ArrayRef<const std::string> components, |
| /*out*/size_t* named_components_count, |
| /*out*/std::string* error_msg) { |
| DCHECK(named_components_count != nullptr); |
| |
| // Validate boot class path. Require a path and non-empty name in each component. |
| for (const std::string& bcp_component : boot_class_path_) { |
| size_t bcp_slash_pos = bcp_component.rfind('/'); |
| if (bcp_slash_pos == std::string::npos || bcp_slash_pos == bcp_component.size() - 1u) { |
| *error_msg = StringPrintf("Invalid boot class path component: %s", bcp_component.c_str()); |
| return false; |
| } |
| } |
| |
| // Validate the format of image location components. |
| size_t components_size = components.size(); |
| if (components_size == 0u) { |
| *error_msg = "Empty image location."; |
| return false; |
| } |
| size_t wildcards_start = components_size; // No wildcards. |
| for (size_t i = 0; i != components_size; ++i) { |
| const std::string& component = components[i]; |
| DCHECK(!component.empty()); // Guaranteed by Split(). |
| std::vector<std::string> parts = android::base::Split(component, {kProfileSeparator}); |
| size_t wildcard_pos = component.find('*'); |
| if (wildcard_pos == std::string::npos) { |
| if (wildcards_start != components.size()) { |
| *error_msg = |
| StringPrintf("Image component without wildcard after component with wildcard: %s", |
| component.c_str()); |
| return false; |
| } |
| for (size_t j = 0; j < parts.size(); j++) { |
| if (parts[j].empty()) { |
| *error_msg = StringPrintf("Missing component and/or profile name in %s", |
| component.c_str()); |
| return false; |
| } |
| if (parts[j].back() == '/') { |
| *error_msg = StringPrintf("%s name ends with path separator: %s", |
| j == 0 ? "Image component" : "Profile", |
| component.c_str()); |
| return false; |
| } |
| } |
| } else { |
| if (parts.size() > 1) { |
| *error_msg = StringPrintf("Unsupproted wildcard (*) and profile delimiter (!) in %s", |
| component.c_str()); |
| return false; |
| } |
| if (wildcards_start == components_size) { |
| wildcards_start = i; |
| } |
| // Wildcard must be the last character. |
| if (wildcard_pos != component.size() - 1u) { |
| *error_msg = StringPrintf("Unsupported wildcard (*) position in %s", component.c_str()); |
| return false; |
| } |
| // And it must be either plain wildcard or preceded by a path separator. |
| if (component.size() != 1u && component[wildcard_pos - 1u] != '/') { |
| *error_msg = StringPrintf("Non-plain wildcard (*) not preceded by path separator '/': %s", |
| component.c_str()); |
| return false; |
| } |
| if (i == 0) { |
| *error_msg = StringPrintf("Primary component contains wildcard (*): %s", component.c_str()); |
| return false; |
| } |
| } |
| } |
| |
| *named_components_count = wildcards_start; |
| return true; |
| } |
| |
| bool ImageSpace::BootImageLayout::MatchNamedComponents( |
| ArrayRef<const std::string> named_components, |
| /*out*/std::vector<NamedComponentLocation>* named_component_locations, |
| /*out*/std::string* error_msg) { |
| DCHECK(!named_components.empty()); |
| DCHECK(named_component_locations->empty()); |
| named_component_locations->reserve(named_components.size()); |
| size_t bcp_component_count = boot_class_path_.size(); |
| size_t bcp_pos = 0; |
| std::string base_name; |
| for (size_t i = 0, size = named_components.size(); i != size; ++i) { |
| std::string component = named_components[i]; |
| std::vector<std::string> profile_filenames; // Empty. |
| std::vector<std::string> parts = android::base::Split(component, {kProfileSeparator}); |
| for (size_t j = 0; j < parts.size(); j++) { |
| if (j == 0) { |
| component = std::move(parts[j]); |
| DCHECK(!component.empty()); // Checked by VerifyImageLocation() |
| } else { |
| profile_filenames.push_back(std::move(parts[j])); |
| DCHECK(!profile_filenames.back().empty()); // Checked by VerifyImageLocation() |
| } |
| } |
| size_t slash_pos = component.rfind('/'); |
| std::string base_location; |
| if (i == 0u) { |
| // The primary boot image name is taken as provided. It forms the base |
| // for expanding the extension filenames. |
| if (slash_pos != std::string::npos) { |
| base_name = component.substr(slash_pos + 1u); |
| base_location = component; |
| } else { |
| base_name = component; |
| base_location = GetBcpComponentPath(0u) + component; |
| } |
| } else { |
| std::string to_match; |
| if (slash_pos != std::string::npos) { |
| // If we have the full path, we just need to match the filename to the BCP component. |
| base_location = component.substr(0u, slash_pos + 1u) + base_name; |
| to_match = component; |
| } |
| while (true) { |
| if (slash_pos == std::string::npos) { |
| // If we do not have a full path, we need to update the path based on the BCP location. |
| std::string path = GetBcpComponentPath(bcp_pos); |
| to_match = path + component; |
| base_location = path + base_name; |
| } |
| if (ExpandLocation(base_location, bcp_pos) == to_match) { |
| break; |
| } |
| ++bcp_pos; |
| if (bcp_pos == bcp_component_count) { |
| *error_msg = StringPrintf("Image component %s does not match a boot class path component", |
| component.c_str()); |
| return false; |
| } |
| } |
| } |
| for (std::string& profile_filename : profile_filenames) { |
| if (profile_filename.find('/') == std::string::npos) { |
| profile_filename.insert(/*pos*/ 0u, GetBcpComponentPath(bcp_pos)); |
| } |
| } |
| NamedComponentLocation location; |
| location.base_location = base_location; |
| location.bcp_index = bcp_pos; |
| location.profile_filenames = profile_filenames; |
| named_component_locations->push_back(location); |
| ++bcp_pos; |
| } |
| return true; |
| } |
| |
| bool ImageSpace::BootImageLayout::ValidateBootImageChecksum(const char* file_description, |
| const ImageHeader& header, |
| /*out*/std::string* error_msg) { |
| uint32_t boot_image_component_count = header.GetBootImageComponentCount(); |
| if (chunks_.empty() != (boot_image_component_count == 0u)) { |
| *error_msg = StringPrintf("Unexpected boot image component count in %s: %u, %s", |
| file_description, |
| boot_image_component_count, |
| chunks_.empty() ? "should be 0" : "should not be 0"); |
| return false; |
| } |
| uint32_t component_count = 0u; |
| uint32_t composite_checksum = 0u; |
| uint64_t boot_image_size = 0u; |
| for (const ImageChunk& chunk : chunks_) { |
| if (component_count == boot_image_component_count) { |
| break; // Hit the component count. |
| } |
| if (chunk.start_index != component_count) { |
| break; // End of contiguous chunks, fail below; same as reaching end of `chunks_`. |
| } |
| if (chunk.component_count > boot_image_component_count - component_count) { |
| *error_msg = StringPrintf("Boot image component count in %s ends in the middle of a chunk, " |
| "%u is between %u and %u", |
| file_description, |
| boot_image_component_count, |
| component_count, |
| component_count + chunk.component_count); |
| return false; |
| } |
| component_count += chunk.component_count; |
| composite_checksum ^= chunk.checksum; |
| boot_image_size += chunk.reservation_size; |
| } |
| DCHECK_LE(component_count, boot_image_component_count); |
| if (component_count != boot_image_component_count) { |
| *error_msg = StringPrintf("Missing boot image components for checksum in %s: %u > %u", |
| file_description, |
| boot_image_component_count, |
| component_count); |
| return false; |
| } |
| if (composite_checksum != header.GetBootImageChecksum()) { |
| *error_msg = StringPrintf("Boot image checksum mismatch in %s: 0x%08x != 0x%08x", |
| file_description, |
| header.GetBootImageChecksum(), |
| composite_checksum); |
| return false; |
| } |
| if (boot_image_size != header.GetBootImageSize()) { |
| *error_msg = StringPrintf("Boot image size mismatch in %s: 0x%08x != 0x%08" PRIx64, |
| file_description, |
| header.GetBootImageSize(), |
| boot_image_size); |
| return false; |
| } |
| return true; |
| } |
| |
| bool ImageSpace::BootImageLayout::ValidateHeader(const ImageHeader& header, |
| size_t bcp_index, |
| const char* file_description, |
| /*out*/std::string* error_msg) { |
| size_t bcp_component_count = boot_class_path_.size(); |
| DCHECK_LT(bcp_index, bcp_component_count); |
| size_t allowed_component_count = bcp_component_count - bcp_index; |
| DCHECK_LE(total_reservation_size_, kMaxTotalImageReservationSize); |
| size_t allowed_reservation_size = kMaxTotalImageReservationSize - total_reservation_size_; |
| |
| if (header.GetComponentCount() == 0u || |
| header.GetComponentCount() > allowed_component_count) { |
| *error_msg = StringPrintf("Unexpected component count in %s, received %u, " |
| "expected non-zero and <= %zu", |
| file_description, |
| header.GetComponentCount(), |
| allowed_component_count); |
| return false; |
| } |
| if (header.GetImageReservationSize() > allowed_reservation_size) { |
| *error_msg = StringPrintf("Reservation size too big in %s: %u > %zu", |
| file_description, |
| header.GetImageReservationSize(), |
| allowed_reservation_size); |
| return false; |
| } |
| if (!ValidateBootImageChecksum(file_description, header, error_msg)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool ImageSpace::BootImageLayout::ValidateOatFile( |
| const std::string& base_location, |
| const std::string& base_filename, |
| size_t bcp_index, |
| size_t component_count, |
| /*out*/std::string* error_msg) { |
| std::string art_filename = ExpandLocation(base_filename, bcp_index); |
| std::string art_location = ExpandLocation(base_location, bcp_index); |
| std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(art_filename); |
| std::string oat_location = ImageHeader::GetOatLocationFromImageLocation(art_location); |
| int oat_fd = |
| bcp_index < boot_class_path_oat_fds_.size() ? boot_class_path_oat_fds_[bcp_index] : -1; |
| int vdex_fd = |
| bcp_index < boot_class_path_vdex_fds_.size() ? boot_class_path_vdex_fds_[bcp_index] : -1; |
| auto dex_filenames = |
| ArrayRef<const std::string>(boot_class_path_).SubArray(bcp_index, component_count); |
| auto dex_fds = |
| bcp_index + component_count < boot_class_path_fds_.size() ? |
| ArrayRef<const int>(boot_class_path_fds_).SubArray(bcp_index, component_count) : |
| ArrayRef<const int>(); |
| // We open the oat file here only for validating that it's up-to-date. We don't open it as |
| // executable or mmap it to a reserved space. This `OatFile` object will be dropped after |
| // validation, and will not go into the `ImageSpace`. |
| std::unique_ptr<OatFile> oat_file; |
| DCHECK_EQ(oat_fd >= 0, vdex_fd >= 0); |
| if (oat_fd >= 0) { |
| oat_file.reset(OatFile::Open( |
| /*zip_fd=*/ -1, |
| vdex_fd, |
| oat_fd, |
| oat_location, |
| /*executable=*/ false, |
| /*low_4gb=*/ false, |
| dex_filenames, |
| dex_fds, |
| /*reservation=*/ nullptr, |
| error_msg)); |
| } else { |
| oat_file.reset(OatFile::Open( |
| /*zip_fd=*/ -1, |
| oat_filename, |
| oat_location, |
| /*executable=*/ false, |
| /*low_4gb=*/ false, |
| dex_filenames, |
| dex_fds, |
| /*reservation=*/ nullptr, |
| error_msg)); |
| } |
| if (oat_file == nullptr) { |
| *error_msg = StringPrintf("Failed to open oat file '%s' when validating it for image '%s': %s", |
| oat_filename.c_str(), |
| art_location.c_str(), |
| error_msg->c_str()); |
| return false; |
| } |
| if (!ImageSpace::ValidateOatFile(*oat_file, error_msg, dex_filenames, dex_fds, apex_versions_)) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool ImageSpace::BootImageLayout::ReadHeader(const std::string& base_location, |
| const std::string& base_filename, |
| size_t bcp_index, |
| /*out*/std::string* error_msg) { |
| DCHECK_LE(next_bcp_index_, bcp_index); |
| DCHECK_LT(bcp_index, boot_class_path_.size()); |
| |
| std::string actual_filename = ExpandLocation(base_filename, bcp_index); |
| int bcp_image_fd = bcp_index < boot_class_path_image_fds_.size() |
| ? boot_class_path_image_fds_[bcp_index] |
| : -1; |
| ImageHeader header; |
| // When BCP image is provided as FD, it needs to be dup'ed (since it's stored in unique_fd) so |
| // that it can later be used in LoadComponents. |
| auto image_file = bcp_image_fd >= 0 |
| ? std::make_unique<File>(DupCloexec(bcp_image_fd), actual_filename, /*check_usage=*/ false) |
| : std::unique_ptr<File>(OS::OpenFileForReading(actual_filename.c_str())); |
| if (!image_file || !image_file->IsOpened()) { |
| *error_msg = StringPrintf("Unable to open file \"%s\" for reading image header", |
| actual_filename.c_str()); |
| return false; |
| } |
| if (!ReadSpecificImageHeader(image_file.get(), actual_filename.c_str(), &header, error_msg)) { |
| return false; |
| } |
| const char* file_description = actual_filename.c_str(); |
| if (!ValidateHeader(header, bcp_index, file_description, error_msg)) { |
| return false; |
| } |
| |
| // Validate oat files. We do it here so that the boot image will be re-compiled in memory if it's |
| // outdated. |
| size_t component_count = (header.GetImageSpaceCount() == 1u) ? header.GetComponentCount() : 1u; |
| for (size_t i = 0; i < header.GetImageSpaceCount(); i++) { |
| if (!ValidateOatFile(base_location, base_filename, bcp_index + i, component_count, error_msg)) { |
| return false; |
| } |
| } |
| |
| if (chunks_.empty()) { |
| base_address_ = reinterpret_cast32<uint32_t>(header.GetImageBegin()); |
| } |
| ImageChunk chunk; |
| chunk.base_location = base_location; |
| chunk.base_filename = base_filename; |
| chunk.start_index = bcp_index; |
| chunk.component_count = header.GetComponentCount(); |
| chunk.image_space_count = header.GetImageSpaceCount(); |
| chunk.reservation_size = header.GetImageReservationSize(); |
| chunk.checksum = header.GetImageChecksum(); |
| chunk.boot_image_component_count = header.GetBootImageComponentCount(); |
| chunk.boot_image_checksum = header.GetBootImageChecksum(); |
| chunk.boot_image_size = header.GetBootImageSize(); |
| chunks_.push_back(std::move(chunk)); |
| next_bcp_index_ = bcp_index + header.GetComponentCount(); |
| total_component_count_ += header.GetComponentCount(); |
| total_reservation_size_ += header.GetImageReservationSize(); |
| return true; |
| } |
| |
| bool ImageSpace::BootImageLayout::CompileBootclasspathElements( |
| const std::string& base_location, |
| const std::string& base_filename, |
| size_t bcp_index, |
| const std::vector<std::string>& profile_filenames, |
| ArrayRef<const std::string> dependencies, |
| /*out*/std::string* error_msg) { |
| DCHECK_LE(total_component_count_, next_bcp_index_); |
| DCHECK_LE(next_bcp_index_, bcp_index); |
| size_t bcp_component_count = boot_class_path_.size(); |
| DCHECK_LT(bcp_index, bcp_component_count); |
| DCHECK(!profile_filenames.empty()); |
| if (total_component_count_ != bcp_index) { |
| // We require all previous BCP components to have a boot image space (primary or extension). |
| *error_msg = "Cannot compile extension because of missing dependencies."; |
| return false; |
| } |
| Runtime* runtime = Runtime::Current(); |
| if (!runtime->IsImageDex2OatEnabled()) { |
| *error_msg = "Cannot compile bootclasspath because dex2oat for image compilation is disabled."; |
| return false; |
| } |
| |
| // Check dependencies. |
| DCHECK_EQ(dependencies.empty(), bcp_index == 0); |
| size_t dependency_component_count = 0; |
| for (size_t i = 0, size = dependencies.size(); i != size; ++i) { |
| if (chunks_.size() == i || chunks_[i].start_index != dependency_component_count) { |
| *error_msg = StringPrintf("Missing extension dependency \"%s\"", dependencies[i].c_str()); |
| return false; |
| } |
| dependency_component_count += chunks_[i].component_count; |
| } |
| |
| // Collect locations from the profile. |
| std::set<std::string> dex_locations; |
| for (const std::string& profile_filename : profile_filenames) { |
| std::unique_ptr<File> profile_file(OS::OpenFileForReading(profile_filename.c_str())); |
| if (profile_file == nullptr) { |
| *error_msg = StringPrintf("Failed to open profile file \"%s\" for reading, error: %s", |
| profile_filename.c_str(), |
| strerror(errno)); |
| return false; |
| } |
| |
| // TODO: Rewrite ProfileCompilationInfo to provide a better interface and |
| // to store the dex locations in uncompressed section of the file. |
| auto collect_fn = [&dex_locations](const std::string& dex_location, |
| uint32_t checksum ATTRIBUTE_UNUSED) { |
| dex_locations.insert(dex_location); // Just collect locations. |
| return false; // Do not read the profile data. |
| }; |
| ProfileCompilationInfo info(/*for_boot_image=*/ true); |
| if (!info.Load(profile_file->Fd(), /*merge_classes=*/ true, collect_fn)) { |
| *error_msg = StringPrintf("Failed to scan profile from %s", profile_filename.c_str()); |
| return false; |
| } |
| } |
| |
| // Match boot class path components to locations from profile. |
| // Note that the profile records only filenames without paths. |
| size_t bcp_end = bcp_index; |
| for (; bcp_end != bcp_component_count; ++bcp_end) { |
| const std::string& bcp_component = boot_class_path_locations_[bcp_end]; |
| size_t slash_pos = bcp_component.rfind('/'); |
| DCHECK_NE(slash_pos, std::string::npos); |
| std::string bcp_component_name = bcp_component.substr(slash_pos + 1u); |
| if (dex_locations.count(bcp_component_name) == 0u) { |
| break; // Did not find the current location in dex file. |
| } |
| } |
| |
| if (bcp_end == bcp_index) { |
| // No data for the first (requested) component. |
| *error_msg = StringPrintf("The profile does not contain data for %s", |
| boot_class_path_locations_[bcp_index].c_str()); |
| return false; |
| } |
| |
| // Create in-memory files. |
| std::string art_filename = ExpandLocation(base_filename, bcp_index); |
| std::string vdex_filename = ImageHeader::GetVdexLocationFromImageLocation(art_filename); |
| std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(art_filename); |
| android::base::unique_fd art_fd(memfd_create_compat(art_filename.c_str(), /*flags=*/ 0)); |
| android::base::unique_fd vdex_fd(memfd_create_compat(vdex_filename.c_str(), /*flags=*/ 0)); |
| android::base::unique_fd oat_fd(memfd_create_compat(oat_filename.c_str(), /*flags=*/ 0)); |
| if (art_fd.get() == -1 || vdex_fd.get() == -1 || oat_fd.get() == -1) { |
| *error_msg = StringPrintf("Failed to create memfd handles for compiling bootclasspath for %s", |
| boot_class_path_locations_[bcp_index].c_str()); |
| return false; |
| } |
| |
| // Construct the dex2oat command line. |
| std::string dex2oat = runtime->GetCompilerExecutable(); |
| ArrayRef<const std::string> head_bcp = |
| boot_class_path_.SubArray(/*pos=*/ 0u, /*length=*/ dependency_component_count); |
| ArrayRef<const std::string> head_bcp_locations = |
| boot_class_path_locations_.SubArray(/*pos=*/ 0u, /*length=*/ dependency_component_count); |
| ArrayRef<const std::string> bcp_to_compile = |
| boot_class_path_.SubArray(/*pos=*/ bcp_index, /*length=*/ bcp_end - bcp_index); |
| ArrayRef<const std::string> bcp_to_compile_locations = |
| boot_class_path_locations_.SubArray(/*pos=*/ bcp_index, /*length=*/ bcp_end - bcp_index); |
| std::string boot_class_path = head_bcp.empty() ? |
| Join(bcp_to_compile, ':') : |
| Join(head_bcp, ':') + ':' + Join(bcp_to_compile, ':'); |
| std::string boot_class_path_locations = |
| head_bcp_locations.empty() ? |
| Join(bcp_to_compile_locations, ':') : |
| Join(head_bcp_locations, ':') + ':' + Join(bcp_to_compile_locations, ':'); |
| |
| std::vector<std::string> args; |
| args.push_back(dex2oat); |
| args.push_back("--runtime-arg"); |
| args.push_back("-Xbootclasspath:" + boot_class_path); |
| args.push_back("--runtime-arg"); |
| args.push_back("-Xbootclasspath-locations:" + boot_class_path_locations); |
| if (dependencies.empty()) { |
| args.push_back(android::base::StringPrintf("--base=0x%08x", ART_BASE_ADDRESS)); |
| } else { |
| args.push_back("--boot-image=" + Join(dependencies, kComponentSeparator)); |
| } |
| for (size_t i = bcp_index; i != bcp_end; ++i) { |
| args.push_back("--dex-file=" + boot_class_path_[i]); |
| args.push_back("--dex-location=" + boot_class_path_locations_[i]); |
| } |
| args.push_back("--image-fd=" + std::to_string(art_fd.get())); |
| args.push_back("--output-vdex-fd=" + std::to_string(vdex_fd.get())); |
| args.push_back("--oat-fd=" + std::to_string(oat_fd.get())); |
| args.push_back("--oat-location=" + ImageHeader::GetOatLocationFromImageLocation(base_filename)); |
| args.push_back("--single-image"); |
| args.push_back("--image-format=uncompressed"); |
| |
| // We currently cannot guarantee that the boot class path has no verification failures. |
| // And we do not want to compile anything, compilation should be done by JIT in zygote. |
| args.push_back("--compiler-filter=verify"); |
| |
| // Pass the profiles. |
| for (const std::string& profile_filename : profile_filenames) { |
| args.push_back("--profile-file=" + profile_filename); |
| } |
| |
| // Do not let the file descriptor numbers change the compilation output. |
| args.push_back("--avoid-storing-invocation"); |
| |
| runtime->AddCurrentRuntimeFeaturesAsDex2OatArguments(&args); |
| |
| if (!kIsTargetBuild) { |
| args.push_back("--host"); |
| } |
| |
| // Image compiler options go last to allow overriding above args, such as --compiler-filter. |
| for (const std::string& compiler_option : runtime->GetImageCompilerOptions()) { |
| args.push_back(compiler_option); |
| } |
| |
| // Compile. |
| VLOG(image) << "Compiling boot bootclasspath for " << (bcp_end - bcp_index) |
| << " components, starting from " << boot_class_path_locations_[bcp_index]; |
| if (!Exec(args, error_msg)) { |
| return false; |
| } |
| |
| // Read and validate the image header. |
| ImageHeader header; |
| { |
| File image_file(art_fd.release(), /*check_usage=*/ false); |
| if (!ReadSpecificImageHeader(&image_file, "compiled image file", &header, error_msg)) { |
| return false; |
| } |
| art_fd.reset(image_file.Release()); |
| } |
| const char* file_description = "compiled image file"; |
| if (!ValidateHeader(header, bcp_index, file_description, error_msg)) { |
| return false; |
| } |
| |
| DCHECK_EQ(chunks_.empty(), dependencies.empty()); |
| ImageChunk chunk; |
| chunk.base_location = base_location; |
| chunk.base_filename = base_filename; |
| chunk.profile_files = profile_filenames; |
| chunk.start_index = bcp_index; |
| chunk.component_count = header.GetComponentCount(); |
| chunk.image_space_count = header.GetImageSpaceCount(); |
| chunk.reservation_size = header.GetImageReservationSize(); |
| chunk.checksum = header.GetImageChecksum(); |
| chunk.boot_image_component_count = header.GetBootImageComponentCount(); |
| chunk.boot_image_checksum = header.GetBootImageChecksum(); |
| chunk.boot_image_size = header.GetBootImageSize(); |
| chunk.art_fd.reset(art_fd.release()); |
| chunk.vdex_fd.reset(vdex_fd.release()); |
| chunk.oat_fd.reset(oat_fd.release()); |
| chunks_.push_back(std::move(chunk)); |
| next_bcp_index_ = bcp_index + header.GetComponentCount(); |
| total_component_count_ += header.GetComponentCount(); |
| total_reservation_size_ += header.GetImageReservationSize(); |
| return true; |
| } |
| |
| template <typename FilenameFn> |
| bool ImageSpace::BootImageLayout::Load(FilenameFn&& filename_fn, |
| bool allow_in_memory_compilation, |
| /*out*/ std::string* error_msg) { |
| DCHECK(GetChunks().empty()); |
| DCHECK_EQ(GetBaseAddress(), 0u); |
| |
| ArrayRef<const std::string> components = image_locations_; |
| size_t named_components_count = 0u; |
| if (!VerifyImageLocation(components, &named_components_count, error_msg)) { |
| return false; |
| } |
| |
| ArrayRef<const std::string> named_components = |
| ArrayRef<const std::string>(components).SubArray(/*pos=*/ 0u, named_components_count); |
| |
| std::vector<NamedComponentLocation> named_component_locations; |
| if (!MatchNamedComponents(named_components, &named_component_locations, error_msg)) { |
| return false; |
| } |
| |
| // Load the image headers of named components. |
| DCHECK_EQ(named_component_locations.size(), named_components.size()); |
| const size_t bcp_component_count = boot_class_path_.size(); |
| size_t bcp_pos = 0u; |
| for (size_t i = 0, size = named_components.size(); i != size; ++i) { |
| const std::string& base_location = named_component_locations[i].base_location; |
| size_t bcp_index = named_component_locations[i].bcp_index; |
| const std::vector<std::string>& profile_filenames = |
| named_component_locations[i].profile_filenames; |
| DCHECK_EQ(i == 0, bcp_index == 0); |
| if (bcp_index < bcp_pos) { |
| DCHECK_NE(i, 0u); |
| LOG(ERROR) << "Named image component already covered by previous image: " << base_location; |
| continue; |
| } |
| std::string local_error_msg; |
| std::string base_filename; |
| if (!filename_fn(base_location, &base_filename, &local_error_msg) || |
| !ReadHeader(base_location, base_filename, bcp_index, &local_error_msg)) { |
| LOG(ERROR) << "Error reading named image component header for " << base_location |
| << ", error: " << local_error_msg; |
| // If the primary boot image is invalid, we generate a single full image. This is faster than |
| // generating the primary boot image and the extension separately. |
| if (bcp_index == 0) { |
| if (!allow_in_memory_compilation) { |
| // The boot image is unusable and we can't continue by generating a boot image in memory. |
| // All we can do is to return. |
| *error_msg = std::move(local_error_msg); |
| return false; |
| } |
| // We must at least have profiles for the core libraries. |
| if (profile_filenames.empty()) { |
| *error_msg = "Full boot image cannot be compiled because no profile is provided."; |
| return false; |
| } |
| std::vector<std::string> all_profiles; |
| for (const NamedComponentLocation& named_component_location : named_component_locations) { |
| const std::vector<std::string>& profiles = named_component_location.profile_filenames; |
| all_profiles.insert(all_profiles.end(), profiles.begin(), profiles.end()); |
| } |
| if (!CompileBootclasspathElements(base_location, |
| base_filename, |
| /*bcp_index=*/ 0, |
| all_profiles, |
| /*dependencies=*/ ArrayRef<const std::string>{}, |
| &local_error_msg)) { |
| *error_msg = |
| StringPrintf("Full boot image cannot be compiled: %s", local_error_msg.c_str()); |
| return false; |
| } |
| // No extensions are needed. |
| return true; |
| } |
| bool should_compile_extension = allow_in_memory_compilation && !profile_filenames.empty(); |
| if (!should_compile_extension || |
| !CompileBootclasspathElements(base_location, |
| base_filename, |
| bcp_index, |
| profile_filenames, |
| components.SubArray(/*pos=*/ 0, /*length=*/ 1), |
| &local_error_msg)) { |
| if (should_compile_extension) { |
| LOG(ERROR) << "Error compiling boot image extension for " << boot_class_path_[bcp_index] |
| << ", error: " << local_error_msg; |
| } |
| bcp_pos = bcp_index + 1u; // Skip at least this component. |
| DCHECK_GT(bcp_pos, GetNextBcpIndex()); |
| continue; |
| } |
| } |
| bcp_pos = GetNextBcpIndex(); |
| } |
| |
| // Look for remaining components if there are any wildcard specifications. |
| ArrayRef<const std::string> search_paths = components.SubArray(/*pos=*/ named_components_count); |
| if (!search_paths.empty()) { |
| const std::string& primary_base_location = named_component_locations[0].base_location; |
| size_t base_slash_pos = primary_base_location.rfind('/'); |
| DCHECK_NE(base_slash_pos, std::string::npos); |
| std::string base_name = primary_base_location.substr(base_slash_pos + 1u); |
| DCHECK(!base_name.empty()); |
| while (bcp_pos != bcp_component_count) { |
| const std::string& bcp_component = boot_class_path_[bcp_pos]; |
| bool found = false; |
| for (const std::string& path : search_paths) { |
| std::string base_location; |
| if (path.size() == 1u) { |
| DCHECK_EQ(path, "*"); |
| size_t slash_pos = bcp_component.rfind('/'); |
| DCHECK_NE(slash_pos, std::string::npos); |
| base_location = bcp_component.substr(0u, slash_pos + 1u) + base_name; |
| } else { |
| DCHECK(EndsWith(path, "/*")); |
| base_location = path.substr(0u, path.size() - 1u) + base_name; |
| } |
| std::string err_msg; // Ignored. |
| std::string base_filename; |
| if (filename_fn(base_location, &base_filename, &err_msg) && |
| ReadHeader(base_location, base_filename, bcp_pos, &err_msg)) { |
| VLOG(image) << "Found image extension for " << ExpandLocation(base_location, bcp_pos); |
| bcp_pos = GetNextBcpIndex(); |
| found = true; |
| break; |
| } |
| } |
| if (!found) { |
| ++bcp_pos; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| bool ImageSpace::BootImageLayout::LoadFromSystem(InstructionSet image_isa, |
| bool allow_in_memory_compilation, |
| /*out*/ std::string* error_msg) { |
| auto filename_fn = [image_isa](const std::string& location, |
| /*out*/std::string* filename, |
| /*out*/std::string* err_msg ATTRIBUTE_UNUSED) { |
| *filename = GetSystemImageFilename(location.c_str(), image_isa); |
| return true; |
| }; |
| return Load(filename_fn, allow_in_memory_compilation, error_msg); |
| } |
| |
| class ImageSpace::BootImageLoader { |
| public: |
| BootImageLoader(const std::vector<std::string>& boot_class_path, |
| const std::vector<std::string>& boot_class_path_locations, |
| const std::vector<int>& boot_class_path_fds, |
| const std::vector<int>& boot_class_path_image_fds, |
| const std::vector<int>& boot_class_path_vdex_fds, |
| const std::vector<int>& boot_class_path_oat_fds, |
| const std::vector<std::string>& image_locations, |
| InstructionSet image_isa, |
| bool relocate, |
| bool executable) |
| : boot_class_path_(boot_class_path), |
| boot_class_path_locations_(boot_class_path_locations), |
| boot_class_path_fds_(boot_class_path_fds), |
| boot_class_path_image_fds_(boot_class_path_image_fds), |
| boot_class_path_vdex_fds_(boot_class_path_vdex_fds), |
| boot_class_path_oat_fds_(boot_class_path_oat_fds), |
| image_locations_(image_locations), |
| image_isa_(image_isa), |
| relocate_(relocate), |
| executable_(executable), |
| has_system_(false) { |
| } |
| |
| void FindImageFiles() { |
| BootImageLayout layout(image_locations_, |
| boot_class_path_, |
| boot_class_path_locations_, |
| boot_class_path_fds_, |
| boot_class_path_image_fds_, |
| boot_class_path_vdex_fds_, |
| boot_class_path_oat_fds_); |
| std::string image_location = layout.GetPrimaryImageLocation(); |
| std::string system_filename; |
| bool found_image = FindImageFilenameImpl(image_location.c_str(), |
| image_isa_, |
| &has_system_, |
| &system_filename); |
| DCHECK_EQ(found_image, has_system_); |
| } |
| |
| bool HasSystem() const { return has_system_; } |
| |
| bool LoadFromSystem(size_t extra_reservation_size, |
| bool allow_in_memory_compilation, |
| /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces, |
| /*out*/MemMap* extra_reservation, |
| /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| private: |
| bool LoadImage( |
| const BootImageLayout& layout, |
| bool validate_oat_file, |
| size_t extra_reservation_size, |
| TimingLogger* logger, |
| /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces, |
| /*out*/MemMap* extra_reservation, |
| /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) { |
| ArrayRef<const BootImageLayout::ImageChunk> chunks = layout.GetChunks(); |
| DCHECK(!chunks.empty()); |
| const uint32_t base_address = layout.GetBaseAddress(); |
| const size_t image_component_count = layout.GetTotalComponentCount(); |
| const size_t image_reservation_size = layout.GetTotalReservationSize(); |
| |
| DCHECK_LE(image_reservation_size, kMaxTotalImageReservationSize); |
| static_assert(kMaxTotalImageReservationSize < std::numeric_limits<uint32_t>::max()); |
| if (extra_reservation_size > std::numeric_limits<uint32_t>::max() - image_reservation_size) { |
| // Since the `image_reservation_size` is limited to kMaxTotalImageReservationSize, |
| // the `extra_reservation_size` would have to be really excessive to fail this check. |
| *error_msg = StringPrintf("Excessive extra reservation size: %zu", extra_reservation_size); |
| return false; |
| } |
| |
| // Reserve address space. If relocating, choose a random address for ALSR. |
| uint8_t* addr = reinterpret_cast<uint8_t*>( |
| relocate_ ? ART_BASE_ADDRESS + ChooseRelocationOffsetDelta() : base_address); |
| MemMap image_reservation = |
| ReserveBootImageMemory(addr, image_reservation_size + extra_reservation_size, error_msg); |
| if (!image_reservation.IsValid()) { |
| return false; |
| } |
| |
| // Load components. |
| std::vector<std::unique_ptr<ImageSpace>> spaces; |
| spaces.reserve(image_component_count); |
| size_t max_image_space_dependencies = 0u; |
| for (size_t i = 0, num_chunks = chunks.size(); i != num_chunks; ++i) { |
| const BootImageLayout::ImageChunk& chunk = chunks[i]; |
| std::string extension_error_msg; |
| uint8_t* old_reservation_begin = image_reservation.Begin(); |
| size_t old_reservation_size = image_reservation.Size(); |
| DCHECK_LE(chunk.reservation_size, old_reservation_size); |
| if (!LoadComponents(chunk, |
| validate_oat_file, |
| max_image_space_dependencies, |
| logger, |
| &spaces, |
| &image_reservation, |
| (i == 0) ? error_msg : &extension_error_msg)) { |
| // Failed to load the chunk. If this is the primary boot image, report the error. |
| if (i == 0) { |
| return false; |
| } |
| // For extension, shrink the reservation (and remap if needed, see below). |
| size_t new_reservation_size = old_reservation_size - chunk.reservation_size; |
| if (new_reservation_size == 0u) { |
| DCHECK_EQ(extra_reservation_size, 0u); |
| DCHECK_EQ(i + 1u, num_chunks); |
| image_reservation.Reset(); |
| } else if (old_reservation_begin != image_reservation.Begin()) { |
| // Part of the image reservation has been used and then unmapped when |
| // rollling back the partial boot image extension load. Try to remap |
| // the image reservation. As this should be running single-threaded, |
| // the address range should still be available to mmap(). |
| image_reservation.Reset(); |
| std::string remap_error_msg; |
| image_reservation = ReserveBootImageMemory(old_reservation_begin, |
| new_reservation_size, |
| &remap_error_msg); |
| if (!image_reservation.IsValid()) { |
| *error_msg = StringPrintf("Failed to remap boot image reservation after failing " |
| "to load boot image extension (%s: %s): %s", |
| boot_class_path_locations_[chunk.start_index].c_str(), |
| extension_error_msg.c_str(), |
| remap_error_msg.c_str()); |
| return false; |
| } |
| } else { |
| DCHECK_EQ(old_reservation_size, image_reservation.Size()); |
| image_reservation.SetSize(new_reservation_size); |
| } |
| LOG(ERROR) << "Failed to load boot image extension " |
| << boot_class_path_locations_[chunk.start_index] << ": " << extension_error_msg; |
| } |
| // Update `max_image_space_dependencies` if all previous BCP components |
| // were covered and loading the current chunk succeeded. |
| size_t total_component_count = 0; |
| for (const std::unique_ptr<ImageSpace>& space : spaces) { |
| total_component_count += space->GetComponentCount(); |
| } |
| if (max_image_space_dependencies == chunk.start_index && |
| total_component_count == chunk.start_index + chunk.component_count) { |
| max_image_space_dependencies = chunk.start_index + chunk.component_count; |
| } |
| } |
| |
| MemMap local_extra_reservation; |
| if (!RemapExtraReservation(extra_reservation_size, |
| &image_reservation, |
| &local_extra_reservation, |
| error_msg)) { |
| return false; |
| } |
| |
| MaybeRelocateSpaces(spaces, logger); |
| DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>>(spaces), logger); |
| boot_image_spaces->swap(spaces); |
| *extra_reservation = std::move(local_extra_reservation); |
| return true; |
| } |
| |
| private: |
| class SimpleRelocateVisitor { |
| public: |
| SimpleRelocateVisitor(uint32_t diff, uint32_t begin, uint32_t size) |
| : diff_(diff), begin_(begin), size_(size) {} |
| |
| // Adapter taking the same arguments as SplitRangeRelocateVisitor |
| // to simplify constructing the various visitors in DoRelocateSpaces(). |
| SimpleRelocateVisitor(uint32_t base_diff, |
| uint32_t current_diff, |
| uint32_t bound, |
| uint32_t begin, |
| uint32_t size) |
| : SimpleRelocateVisitor(base_diff, begin, size) { |
| // Check arguments unused by this class. |
| DCHECK_EQ(base_diff, current_diff); |
| DCHECK_EQ(bound, begin); |
| } |
| |
| template <typename T> |
| ALWAYS_INLINE T* operator()(T* src) const { |
| DCHECK(InSource(src)); |
| uint32_t raw_src = reinterpret_cast32<uint32_t>(src); |
| return reinterpret_cast32<T*>(raw_src + diff_); |
| } |
| |
| template <typename T> |
| ALWAYS_INLINE bool InSource(T* ptr) const { |
| uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr); |
| return raw_ptr - begin_ < size_; |
| } |
| |
| template <typename T> |
| ALWAYS_INLINE bool InDest(T* ptr) const { |
| uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr); |
| uint32_t src_ptr = raw_ptr - diff_; |
| return src_ptr - begin_ < size_; |
| } |
| |
| private: |
| const uint32_t diff_; |
| const uint32_t begin_; |
| const uint32_t size_; |
| }; |
| |
| class SplitRangeRelocateVisitor { |
| public: |
| SplitRangeRelocateVisitor(uint32_t base_diff, |
| uint32_t current_diff, |
| uint32_t bound, |
| uint32_t begin, |
| uint32_t size) |
| : base_diff_(base_diff), |
| current_diff_(current_diff), |
| bound_(bound), |
| begin_(begin), |
| size_(size) { |
| DCHECK_NE(begin_, bound_); |
| // The bound separates the boot image range and the extension range. |
| DCHECK_LT(bound_ - begin_, size_); |
| } |
| |
| template <typename T> |
| ALWAYS_INLINE T* operator()(T* src) const { |
| DCHECK(InSource(src)); |
| uint32_t raw_src = reinterpret_cast32<uint32_t>(src); |
| uint32_t diff = (raw_src < bound_) ? base_diff_ : current_diff_; |
| return reinterpret_cast32<T*>(raw_src + diff); |
| } |
| |
| template <typename T> |
| ALWAYS_INLINE bool InSource(T* ptr) const { |
| uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr); |
| return raw_ptr - begin_ < size_; |
| } |
| |
| private: |
| const uint32_t base_diff_; |
| const uint32_t current_diff_; |
| const uint32_t bound_; |
| const uint32_t begin_; |
| const uint32_t size_; |
| }; |
| |
| static void** PointerAddress(ArtMethod* method, MemberOffset offset) { |
| return reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(method) + offset.Uint32Value()); |
| } |
| |
| template <PointerSize kPointerSize> |
| static void DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>>& spaces, |
| int64_t base_diff64) REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(!spaces.empty()); |
| gc::accounting::ContinuousSpaceBitmap patched_objects( |
| gc::accounting::ContinuousSpaceBitmap::Create( |
| "Marked objects", |
| spaces.front()->Begin(), |
| spaces.back()->End() - spaces.front()->Begin())); |
| const ImageHeader& base_header = spaces[0]->GetImageHeader(); |
| size_t base_image_space_count = base_header.GetImageSpaceCount(); |
| DCHECK_LE(base_image_space_count, spaces.size()); |
| DoRelocateSpaces<kPointerSize, /*kExtension=*/ false>( |
| spaces.SubArray(/*pos=*/ 0u, base_image_space_count), |
| base_diff64, |
| &patched_objects); |
| |
| for (size_t i = base_image_space_count, size = spaces.size(); i != size; ) { |
| const ImageHeader& ext_header = spaces[i]->GetImageHeader(); |
| size_t ext_image_space_count = ext_header.GetImageSpaceCount(); |
| DCHECK_LE(ext_image_space_count, size - i); |
| DoRelocateSpaces<kPointerSize, /*kExtension=*/ true>( |
| spaces.SubArray(/*pos=*/ i, ext_image_space_count), |
| base_diff64, |
| &patched_objects); |
| i += ext_image_space_count; |
| } |
| } |
| |
| template <PointerSize kPointerSize, bool kExtension> |
| static void DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> spaces, |
| int64_t base_diff64, |
| gc::accounting::ContinuousSpaceBitmap* patched_objects) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(!spaces.empty()); |
| const ImageHeader& first_header = spaces.front()->GetImageHeader(); |
| uint32_t image_begin = reinterpret_cast32<uint32_t>(first_header.GetImageBegin()); |
| uint32_t image_size = first_header.GetImageReservationSize(); |
| DCHECK_NE(image_size, 0u); |
| uint32_t source_begin = kExtension ? first_header.GetBootImageBegin() : image_begin; |
| uint32_t source_size = kExtension ? first_header.GetBootImageSize() + image_size : image_size; |
| if (kExtension) { |
| DCHECK_EQ(first_header.GetBootImageBegin() + first_header.GetBootImageSize(), image_begin); |
| } |
| int64_t current_diff64 = kExtension |
| ? static_cast<int64_t>(reinterpret_cast32<uint32_t>(spaces.front()->Begin())) - |
| static_cast<int64_t>(image_begin) |
| : base_diff64; |
| if (base_diff64 == 0 && current_diff64 == 0) { |
| return; |
| } |
| uint32_t base_diff = static_cast<uint32_t>(base_diff64); |
| uint32_t current_diff = static_cast<uint32_t>(current_diff64); |
| |
| // For boot image the main visitor is a SimpleRelocateVisitor. For the boot image extension we |
| // mostly use a SplitRelocationVisitor but some work can still use the SimpleRelocationVisitor. |
| using MainRelocateVisitor = typename std::conditional< |
| kExtension, SplitRangeRelocateVisitor, SimpleRelocateVisitor>::type; |
| SimpleRelocateVisitor simple_relocate_visitor(current_diff, image_begin, image_size); |
| MainRelocateVisitor main_relocate_visitor( |
| base_diff, current_diff, /*bound=*/ image_begin, source_begin, source_size); |
| |
| using MainPatchRelocateVisitor = |
| PatchObjectVisitor<kPointerSize, MainRelocateVisitor, MainRelocateVisitor>; |
| using SimplePatchRelocateVisitor = |
| PatchObjectVisitor<kPointerSize, SimpleRelocateVisitor, SimpleRelocateVisitor>; |
| MainPatchRelocateVisitor main_patch_object_visitor(main_relocate_visitor, |
| main_relocate_visitor); |
| SimplePatchRelocateVisitor simple_patch_object_visitor(simple_relocate_visitor, |
| simple_relocate_visitor); |
| |
| // Retrieve the Class.class, Method.class and Constructor.class needed in the loops below. |
| ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots; |
| ObjPtr<mirror::Class> class_class; |
| ObjPtr<mirror::Class> method_class; |
| ObjPtr<mirror::Class> constructor_class; |
| ObjPtr<mirror::Class> field_var_handle_class; |
| ObjPtr<mirror::Class> static_field_var_handle_class; |
| { |
| ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots = |
| simple_relocate_visitor(first_header.GetImageRoots<kWithoutReadBarrier>().Ptr()); |
| DCHECK(!patched_objects->Test(image_roots.Ptr())); |
| |
| SimpleRelocateVisitor base_relocate_visitor( |
| base_diff, |
| source_begin, |
| kExtension ? source_size - image_size : image_size); |
| int32_t class_roots_index = enum_cast<int32_t>(ImageHeader::kClassRoots); |
| DCHECK_LT(class_roots_index, image_roots->GetLength<kVerifyNone>()); |
| class_roots = ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(base_relocate_visitor( |
| image_roots->GetWithoutChecks<kVerifyNone, |
| kWithoutReadBarrier>(class_roots_index).Ptr())); |
| if (kExtension) { |
| // Class roots must have been visited if we relocated the primary boot image. |
| DCHECK(base_diff == 0 || patched_objects->Test(class_roots.Ptr())); |
| class_class = GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots); |
| method_class = GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots); |
| constructor_class = GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots); |
| field_var_handle_class = |
| GetClassRoot<mirror::FieldVarHandle, kWithoutReadBarrier>(class_roots); |
| static_field_var_handle_class = |
| GetClassRoot<mirror::StaticFieldVarHandle, kWithoutReadBarrier>(class_roots); |
| } else { |
| DCHECK(!patched_objects->Test(class_roots.Ptr())); |
| class_class = simple_relocate_visitor( |
| GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots).Ptr()); |
| method_class = simple_relocate_visitor( |
| GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots).Ptr()); |
| constructor_class = simple_relocate_visitor( |
| GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots).Ptr()); |
| field_var_handle_class = simple_relocate_visitor( |
| GetClassRoot<mirror::FieldVarHandle, kWithoutReadBarrier>(class_roots).Ptr()); |
| static_field_var_handle_class = simple_relocate_visitor( |
| GetClassRoot<mirror::StaticFieldVarHandle, kWithoutReadBarrier>(class_roots).Ptr()); |
| } |
| } |
| |
| for (const std::unique_ptr<ImageSpace>& space : spaces) { |
| // First patch the image header. |
| reinterpret_cast<ImageHeader*>(space->Begin())->RelocateImageReferences(current_diff64); |
| reinterpret_cast<ImageHeader*>(space->Begin())->RelocateBootImageReferences(base_diff64); |
| |
| // Patch fields and methods. |
| const ImageHeader& image_header = space->GetImageHeader(); |
| image_header.VisitPackedArtFields([&](ArtField& field) REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Fields always reference class in the current image. |
| simple_patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>( |
| &field.DeclaringClassRoot()); |
| }, space->Begin()); |
| image_header.VisitPackedArtMethods([&](ArtMethod& method) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| main_patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot()); |
| if (!method.HasCodeItem()) { |
| void** data_address = PointerAddress(&method, ArtMethod::DataOffset(kPointerSize)); |
| main_patch_object_visitor.PatchNativePointer(data_address); |
| } |
| void** entrypoint_address = |
| PointerAddress(&method, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kPointerSize)); |
| main_patch_object_visitor.PatchNativePointer(entrypoint_address); |
| }, space->Begin(), kPointerSize); |
| auto method_table_visitor = [&](ArtMethod* method) { |
| DCHECK(method != nullptr); |
| return main_relocate_visitor(method); |
| }; |
| image_header.VisitPackedImTables(method_table_visitor, space->Begin(), kPointerSize); |
| image_header.VisitPackedImtConflictTables(method_table_visitor, space->Begin(), kPointerSize); |
| |
| // Patch the intern table. |
| if (image_header.GetInternedStringsSection().Size() != 0u) { |
| const uint8_t* data = space->Begin() + image_header.GetInternedStringsSection().Offset(); |
| size_t read_count; |
| InternTable::UnorderedSet temp_set(data, /*make_copy_of_data=*/ false, &read_count); |
| for (GcRoot<mirror::String>& slot : temp_set) { |
| // The intern table contains only strings in the current image. |
| simple_patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(&slot); |
| } |
| } |
| |
| // Patch the class table and classes, so that we can traverse class hierarchy to |
| // determine the types of other objects when we visit them later. |
| if (image_header.GetClassTableSection().Size() != 0u) { |
| uint8_t* data = space->Begin() + image_header.GetClassTableSection().Offset(); |
| size_t read_count; |
| ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count); |
| DCHECK(!temp_set.empty()); |
| // The class table contains only classes in the current image. |
| ClassTableVisitor class_table_visitor(simple_relocate_visitor); |
| for (ClassTable::TableSlot& slot : temp_set) { |
| slot.VisitRoot(class_table_visitor); |
| ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>(); |
| DCHECK(klass != nullptr); |
| DCHECK(!patched_objects->Test(klass.Ptr())); |
| patched_objects->Set(klass.Ptr()); |
| main_patch_object_visitor.VisitClass(klass, class_class); |
| // Then patch the non-embedded vtable and iftable. |
| ObjPtr<mirror::PointerArray> vtable = |
| klass->GetVTable<kVerifyNone, kWithoutReadBarrier>(); |
| if ((kExtension ? simple_relocate_visitor.InDest(vtable.Ptr()) : vtable != nullptr) && |
| !patched_objects->Set(vtable.Ptr())) { |
| main_patch_object_visitor.VisitPointerArray(vtable); |
| } |
| ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>(); |
| if (kExtension ? simple_relocate_visitor.InDest(iftable.Ptr()) : iftable != nullptr) { |
| int32_t ifcount = iftable->Count<kVerifyNone>(); |
| for (int32_t i = 0; i != ifcount; ++i) { |
| ObjPtr<mirror::PointerArray> unpatched_ifarray = |
| iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i); |
| if (kExtension ? simple_relocate_visitor.InSource(unpatched_ifarray.Ptr()) |
| : unpatched_ifarray != nullptr) { |
| // The iftable has not been patched, so we need to explicitly adjust the pointer. |
| ObjPtr<mirror::PointerArray> ifarray = |
| simple_relocate_visitor(unpatched_ifarray.Ptr()); |
| if (!patched_objects->Set(ifarray.Ptr())) { |
| main_patch_object_visitor.VisitPointerArray(ifarray); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| for (const std::unique_ptr<ImageSpace>& space : spaces) { |
| const ImageHeader& image_header = space->GetImageHeader(); |
| |
| static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check"); |
| uint32_t objects_end = image_header.GetObjectsSection().Size(); |
| DCHECK_ALIGNED(objects_end, kObjectAlignment); |
| for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) { |
| mirror::Object* object = reinterpret_cast<mirror::Object*>(space->Begin() + pos); |
| // Note: use Test() rather than Set() as this is the last time we're checking this object. |
| if (!patched_objects->Test(object)) { |
| // This is the last pass over objects, so we do not need to Set(). |
| main_patch_object_visitor.VisitObject(object); |
| ObjPtr<mirror::Class> klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>(); |
| if (klass == method_class || klass == constructor_class) { |
| // Patch the ArtMethod* in the mirror::Executable subobject. |
| ObjPtr<mirror::Executable> as_executable = |
| ObjPtr<mirror::Executable>::DownCast(object); |
| ArtMethod* unpatched_method = as_executable->GetArtMethod<kVerifyNone>(); |
| ArtMethod* patched_method = main_relocate_visitor(unpatched_method); |
| as_executable->SetArtMethod</*kTransactionActive=*/ false, |
| /*kCheckTransaction=*/ true, |
| kVerifyNone>(patched_method); |
| } else if (klass == field_var_handle_class || klass == static_field_var_handle_class) { |
| // Patch the ArtField* in the mirror::FieldVarHandle subobject. |
| ObjPtr<mirror::FieldVarHandle> as_field_var_handle = |
| ObjPtr<mirror::FieldVarHandle>::DownCast(object); |
| ArtField* unpatched_field = as_field_var_handle->GetArtField<kVerifyNone>(); |
| ArtField* patched_field = main_relocate_visitor(unpatched_field); |
| as_field_var_handle->SetArtField<kVerifyNone>(patched_field); |
| } |
| } |
| pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment); |
| } |
| } |
| if (kIsDebugBuild && !kExtension) { |
| // We used just Test() instead of Set() above but we need to use Set() |
| // for class roots to satisfy a DCHECK() for extensions. |
| DCHECK(!patched_objects->Test(class_roots.Ptr())); |
| patched_objects->Set(class_roots.Ptr()); |
| } |
| } |
| |
| void MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>>& spaces, |
| TimingLogger* logger) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| TimingLogger::ScopedTiming timing("MaybeRelocateSpaces", logger); |
| ImageSpace* first_space = spaces.front().get(); |
| const ImageHeader& first_space_header = first_space->GetImageHeader(); |
| int64_t base_diff64 = |
| static_cast<int64_t>(reinterpret_cast32<uint32_t>(first_space->Begin())) - |
| static_cast<int64_t>(reinterpret_cast32<uint32_t>(first_space_header.GetImageBegin())); |
| if (!relocate_) { |
| DCHECK_EQ(base_diff64, 0); |
| } |
| |
| // While `Thread::Current()` is null, the `ScopedDebugDisallowReadBarriers` |
| // cannot be used but the class `ReadBarrier` shall not allow read barriers anyway. |
| // For some gtests we actually have an initialized `Thread:Current()`. |
| std::optional<ScopedDebugDisallowReadBarriers> sddrb(std::nullopt); |
| if (kCheckDebugDisallowReadBarrierCount && Thread::Current() != nullptr) { |
| sddrb.emplace(Thread::Current()); |
| } |
| |
| ArrayRef<const std::unique_ptr<ImageSpace>> spaces_ref(spaces); |
| PointerSize pointer_size = first_space_header.GetPointerSize(); |
| if (pointer_size == PointerSize::k64) { |
| DoRelocateSpaces<PointerSize::k64>(spaces_ref, base_diff64); |
| } else { |
| DoRelocateSpaces<PointerSize::k32>(spaces_ref, base_diff64); |
| } |
| } |
| |
| void DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>> spaces, |
| TimingLogger* logger) REQUIRES_SHARED(Locks::mutator_lock_) { |
| TimingLogger::ScopedTiming timing("DeduplicateInternedStrings", logger); |
| DCHECK(!spaces.empty()); |
| size_t num_spaces = spaces.size(); |
| const ImageHeader& primary_header = spaces.front()->GetImageHeader(); |
| size_t primary_image_count = primary_header.GetImageSpaceCount(); |
| size_t primary_image_component_count = primary_header.GetComponentCount(); |
| DCHECK_LE(primary_image_count, num_spaces); |
| // The primary boot image can be generated with `--single-image` on device, when generated |
| // in-memory or with odrefresh. |
| DCHECK(primary_image_count == primary_image_component_count || primary_image_count == 1); |
| size_t component_count = primary_image_component_count; |
| size_t space_pos = primary_image_count; |
| while (space_pos != num_spaces) { |
| const ImageHeader& current_header = spaces[space_pos]->GetImageHeader(); |
| size_t image_space_count = current_header.GetImageSpaceCount(); |
| DCHECK_LE(image_space_count, num_spaces - space_pos); |
| size_t dependency_component_count = current_header.GetBootImageComponentCount(); |
| DCHECK_LE(dependency_component_count, component_count); |
| if (dependency_component_count < component_count) { |
| // There shall be no duplicate strings with the components that this space depends on. |
| // Find the end of the dependencies, i.e. start of non-dependency images. |
| size_t start_component_count = primary_image_component_count; |
| size_t start_pos = primary_image_count; |
| while (start_component_count != dependency_component_count) { |
| const ImageHeader& dependency_header = spaces[start_pos]->GetImageHeader(); |
| DCHECK_LE(dependency_header.GetComponentCount(), |
| dependency_component_count - start_component_count); |
| start_component_count += dependency_header.GetComponentCount(); |
| start_pos += dependency_header.GetImageSpaceCount(); |
| } |
| // Remove duplicates from all intern tables belonging to the chunk. |
| ArrayRef<const std::unique_ptr<ImageSpace>> old_spaces = |
| spaces.SubArray(/*pos=*/ start_pos, space_pos - start_pos); |
| SafeMap<mirror::String*, mirror::String*> intern_remap; |
| for (size_t i = 0; i != image_space_count; ++i) { |
| ImageSpace* new_space = spaces[space_pos + i].get(); |
| Loader::RemoveInternTableDuplicates(old_spaces, new_space, &intern_remap); |
| } |
| // Remap string for all spaces belonging to the chunk. |
| if (!intern_remap.empty()) { |
| for (size_t i = 0; i != image_space_count; ++i) { |
| ImageSpace* new_space = spaces[space_pos + i].get(); |
| Loader::RemapInternedStringDuplicates(intern_remap, new_space); |
| } |
| } |
| } |
| component_count += current_header.GetComponentCount(); |
| space_pos += image_space_count; |
| } |
| } |
| |
| std::unique_ptr<ImageSpace> Load(const std::string& image_location, |
| const std::string& image_filename, |
| const std::vector<std::string>& profile_files, |
| android::base::unique_fd art_fd, |
| TimingLogger* logger, |
| /*inout*/MemMap* image_reservation, |
| /*out*/std::string* error_msg) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (art_fd.get() != -1) { |
| // No need to lock memfd for which we hold the only file descriptor |
| // (see locking with ScopedFlock for normal files below). |
| VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location " |
| << image_location << " for compiled extension"; |
| |
| File image_file(art_fd.release(), image_filename, /*check_usage=*/ false); |
| std::unique_ptr<ImageSpace> result = Loader::Init(&image_file, |
| image_filename.c_str(), |
| image_location.c_str(), |
| profile_files, |
| /*allow_direct_mapping=*/ false, |
| logger, |
| image_reservation, |
| error_msg); |
| // Note: We're closing the image file descriptor here when we destroy |
| // the `image_file` as we no longer need it. |
| return result; |
| } |
| |
| // Note that we must not use the file descriptor associated with |
| // ScopedFlock::GetFile to Init the image file. We want the file |
| // descriptor (and the associated exclusive lock) to be released when |
| // we leave Create. |
| ScopedFlock image = LockedFile::Open(image_filename.c_str(), |
| /*flags=*/ O_RDONLY, |
| /*block=*/ true, |
| error_msg); |
| |
| VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location " |
| << image_location; |
| |
| // If we are in /system we can assume the image is good. We can also |
| // assume this if we are using a relocated image (i.e. image checksum |
| // matches) since this is only different by the offset. We need this to |
| // make sure that host tests continue to work. |
| // Since we are the boot image, pass null since we load the oat file from the boot image oat |
| // file name. |
| return Loader::Init(image_filename.c_str(), |
| image_location.c_str(), |
| logger, |
| image_reservation, |
| error_msg); |
| } |
| |
| bool OpenOatFile(ImageSpace* space, |
| android::base::unique_fd vdex_fd, |
| android::base::unique_fd oat_fd, |
| ArrayRef<const std::string> dex_filenames, |
| ArrayRef<const int> dex_fds, |
| bool validate_oat_file, |
| ArrayRef<const std::unique_ptr<ImageSpace>> dependencies, |
| TimingLogger* logger, |
| /*inout*/MemMap* image_reservation, |
| /*out*/std::string* error_msg) { |
| // VerifyImageAllocations() will be called later in Runtime::Init() |
| // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_ |
| // and ArtField::java_lang_reflect_ArtField_, which are used from |
| // Object::SizeOf() which VerifyImageAllocations() calls, are not |
| // set yet at this point. |
| DCHECK(image_reservation != nullptr); |
| std::unique_ptr<OatFile> oat_file; |
| { |
| TimingLogger::ScopedTiming timing("OpenOatFile", logger); |
| std::string oat_filename = |
| ImageHeader::GetOatLocationFromImageLocation(space->GetImageFilename()); |
| std::string oat_location = |
| ImageHeader::GetOatLocationFromImageLocation(space->GetImageLocation()); |
| |
| DCHECK_EQ(vdex_fd.get() != -1, oat_fd.get() != -1); |
| if (vdex_fd.get() == -1) { |
| oat_file.reset(OatFile::Open(/*zip_fd=*/ -1, |
| oat_filename, |
| oat_location, |
| executable_, |
| /*low_4gb=*/ false, |
| dex_filenames, |
| dex_fds, |
| image_reservation, |
| error_msg)); |
| } else { |
| oat_file.reset(OatFile::Open(/*zip_fd=*/ -1, |
| vdex_fd.get(), |
| oat_fd.get(), |
| oat_location, |
| executable_, |
| /*low_4gb=*/ false, |
| dex_filenames, |
| dex_fds, |
| image_reservation, |
| error_msg)); |
| // We no longer need the file descriptors and they will be closed by |
| // the unique_fd destructor when we leave this function. |
| } |
| |
| if (oat_file == nullptr) { |
| *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s", |
| oat_filename.c_str(), |
| space->GetName(), |
| error_msg->c_str()); |
| return false; |
| } |
| const ImageHeader& image_header = space->GetImageHeader(); |
| uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum(); |
| uint32_t image_oat_checksum = image_header.GetOatChecksum(); |
| if (oat_checksum != image_oat_checksum) { |
| *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum" |
| " 0x%x in image %s", |
| oat_checksum, |
| image_oat_checksum, |
| space->GetName()); |
| return false; |
| } |
| const char* oat_boot_class_path = |
| oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathKey); |
| oat_boot_class_path = (oat_boot_class_path != nullptr) ? oat_boot_class_path : ""; |
| const char* oat_boot_class_path_checksums = |
| oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathChecksumsKey); |
| oat_boot_class_path_checksums = |
| (oat_boot_class_path_checksums != nullptr) ? oat_boot_class_path_checksums : ""; |
| size_t component_count = image_header.GetComponentCount(); |
| if (component_count == 0u) { |
| if (oat_boot_class_path[0] != 0 || oat_boot_class_path_checksums[0] != 0) { |
| *error_msg = StringPrintf("Unexpected non-empty boot class path %s and/or checksums %s" |
| " in image %s", |
| oat_boot_class_path, |
| oat_boot_class_path_checksums, |
| space->GetName()); |
| return false; |
| } |
| } else if (dependencies.empty()) { |
| std::string expected_boot_class_path = Join(ArrayRef<const std::string>( |
| boot_class_path_locations_).SubArray(0u, component_count), ':'); |
| if (expected_boot_class_path != oat_boot_class_path) { |
| *error_msg = StringPrintf("Failed to match oat boot class path %s to expected " |
| "boot class path %s in image %s", |
| oat_boot_class_path, |
| expected_boot_class_path.c_str(), |
| space->GetName()); |
| return false; |
| } |
| } else { |
| std::string local_error_msg; |
| if (!VerifyBootClassPathChecksums( |
| oat_boot_class_path_checksums, |
| oat_boot_class_path, |
| dependencies, |
| ArrayRef<const std::string>(boot_class_path_locations_), |
| ArrayRef<const std::string>(boot_class_path_), |
| &local_error_msg)) { |
| *error_msg = StringPrintf("Failed to verify BCP %s with checksums %s in image %s: %s", |
| oat_boot_class_path, |
| oat_boot_class_path_checksums, |
| space->GetName(), |
| local_error_msg.c_str()); |
| return false; |
| } |
| } |
| ptrdiff_t relocation_diff = space->Begin() - image_header.GetImageBegin(); |
| CHECK(image_header.GetOatDataBegin() != nullptr); |
| uint8_t* oat_data_begin = image_header.GetOatDataBegin() + relocation_diff; |
| if (oat_file->Begin() != oat_data_begin) { |
| *error_msg = StringPrintf("Oat file '%s' referenced from image %s has unexpected begin" |
| " %p v. %p", |
| oat_filename.c_str(), |
| space->GetName(), |
| oat_file->Begin(), |
| oat_data_begin); |
| return false; |
| } |
| } |
| if (validate_oat_file) { |
| TimingLogger::ScopedTiming timing("ValidateOatFile", logger); |
| if (!ImageSpace::ValidateOatFile(*oat_file, error_msg)) { |
| DCHECK(!error_msg->empty()); |
| return false; |
| } |
| } |
| |
| // As an optimization, madvise the oat file into memory if it's being used |
| // for execution with an active runtime. This can significantly improve |
| // ZygoteInit class preload performance. |
| if (executable_) { |
| Runtime* runtime = Runtime::Current(); |
| if (runtime != nullptr) { |
| Runtime::MadviseFileForRange(runtime->GetMadviseWillNeedSizeOdex(), |
| oat_file->Size(), |
| oat_file->Begin(), |
| oat_file->End(), |
| oat_file->GetLocation()); |
| } |
| } |
| |
| space->oat_file_ = std::move(oat_file); |
| space->oat_file_non_owned_ = space->oat_file_.get(); |
| |
| return true; |
| } |
| |
| bool LoadComponents(const BootImageLayout::ImageChunk& chunk, |
| bool validate_oat_file, |
| size_t max_image_space_dependencies, |
| TimingLogger* logger, |
| /*inout*/std::vector<std::unique_ptr<ImageSpace>>* spaces, |
| /*inout*/MemMap* image_reservation, |
| /*out*/std::string* error_msg) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Make sure we destroy the spaces we created if we're returning an error. |
| // Note that this can unmap part of the original `image_reservation`. |
| class Guard { |
| public: |
| explicit Guard(std::vector<std::unique_ptr<ImageSpace>>* spaces_in) |
| : spaces_(spaces_in), committed_(spaces_->size()) {} |
| void Commit() { |
| DCHECK_LT(committed_, spaces_->size()); |
| committed_ = spaces_->size(); |
| } |
| ~Guard() { |
| DCHECK_LE(committed_, spaces_->size()); |
| spaces_->resize(committed_); |
| } |
| private: |
| std::vector<std::unique_ptr<ImageSpace>>* const spaces_; |
| size_t committed_; |
| }; |
| Guard guard(spaces); |
| |
| bool is_extension = (chunk.start_index != 0u); |
| DCHECK_NE(spaces->empty(), is_extension); |
| if (max_image_space_dependencies < chunk.boot_image_component_count) { |
| DCHECK(is_extension); |
| *error_msg = StringPrintf("Missing dependencies for extension component %s, %zu < %u", |
| boot_class_path_locations_[chunk.start_index].c_str(), |
| max_image_space_dependencies, |
| chunk.boot_image_component_count); |
| return false; |
| } |
| ArrayRef<const std::string> requested_bcp_locations = |
| ArrayRef<const std::string>(boot_class_path_locations_).SubArray( |
| chunk.start_index, chunk.image_space_count); |
| std::vector<std::string> locations = |
| ExpandMultiImageLocations(requested_bcp_locations, chunk.base_location, is_extension); |
| std::vector<std::string> filenames = |
| ExpandMultiImageLocations(requested_bcp_locations, chunk.base_filename, is_extension); |
| DCHECK_EQ(locations.size(), filenames.size()); |
| size_t max_dependency_count = spaces->size(); |
| for (size_t i = 0u, size = locations.size(); i != size; ++i) { |
| android::base::unique_fd image_fd; |
| if (chunk.art_fd.get() >= 0) { |
| DCHECK_EQ(locations.size(), 1u); |
| image_fd = std::move(chunk.art_fd); |
| } else { |
| size_t pos = chunk.start_index + i; |
| int arg_image_fd = pos < boot_class_path_image_fds_.size() ? boot_class_path_image_fds_[pos] |
| : -1; |
| if (arg_image_fd >= 0) { |
| image_fd.reset(DupCloexec(arg_image_fd)); |
| } |
| } |
| spaces->push_back(Load(locations[i], |
| filenames[i], |
| chunk.profile_files, |
| std::move(image_fd), |
| logger, |
| image_reservation, |
| error_msg)); |
| const ImageSpace* space = spaces->back().get(); |
| if (space == nullptr) { |
| return false; |
| } |
| uint32_t expected_component_count = (i == 0u) ? chunk.component_count : 0u; |
| uint32_t expected_reservation_size = (i == 0u) ? chunk.reservation_size : 0u; |
| if (!Loader::CheckImageReservationSize(*space, expected_reservation_size, error_msg) || |
| !Loader::CheckImageComponentCount(*space, expected_component_count, error_msg)) { |
| return false; |
| } |
| const ImageHeader& header = space->GetImageHeader(); |
| if (i == 0 && (chunk.checksum != header.GetImageChecksum() || |
| chunk.image_space_count != header.GetImageSpaceCount() || |
| chunk.boot_image_component_count != header.GetBootImageComponentCount() || |
| chunk.boot_image_checksum != header.GetBootImageChecksum() || |
| chunk.boot_image_size != header.GetBootImageSize())) { |
| *error_msg = StringPrintf("Image header modified since previously read from %s; " |
| "checksum: 0x%08x -> 0x%08x," |
| "image_space_count: %u -> %u" |
| "boot_image_component_count: %u -> %u, " |
| "boot_image_checksum: 0x%08x -> 0x%08x" |
| "boot_image_size: 0x%08x -> 0x%08x", |
| space->GetImageFilename().c_str(), |
| chunk.checksum, |
| chunk.image_space_count, |
| header.GetImageSpaceCount(), |
| header.GetImageChecksum(), |
| chunk.boot_image_component_count, |
| header.GetBootImageComponentCount(), |
| chunk.boot_image_checksum, |
| header.GetBootImageChecksum(), |
| chunk.boot_image_size, |
| header.GetBootImageSize()); |
| return false; |
| } |
| } |
| DCHECK_GE(max_image_space_dependencies, chunk.boot_image_component_count); |
| size_t dependency_count = 0; |
| size_t dependency_component_count = 0; |
| while (dependency_component_count < chunk.boot_image_component_count && |
| dependency_count < max_dependency_count) { |
| const ImageHeader& current_header = (*spaces)[dependency_count]->GetImageHeader(); |
| dependency_component_count += current_header.GetComponentCount(); |
| dependency_count += current_header.GetImageSpaceCount(); |
| } |
| if (dependency_component_count != chunk.boot_image_component_count) { |
| *error_msg = StringPrintf( |
| "Unable to find dependencies from image spaces; boot_image_component_count: %u", |
| chunk.boot_image_component_count); |
| return false; |
| } |
| ArrayRef<const std::unique_ptr<ImageSpace>> dependencies = |
| ArrayRef<const std::unique_ptr<ImageSpace>>(*spaces).SubArray( |
| /*pos=*/ 0u, dependency_count); |
| for (size_t i = 0u, size = locations.size(); i != size; ++i) { |
| ImageSpace* space = (*spaces)[spaces->size() - chunk.image_space_count + i].get(); |
| size_t bcp_chunk_size = (chunk.image_space_count == 1u) ? chunk.component_count : 1u; |
| |
| size_t pos = chunk.start_index + i; |
| auto boot_class_path_fds = boot_class_path_fds_.empty() ? ArrayRef<const int>() |
| : boot_class_path_fds_.SubArray(/*pos=*/ pos, bcp_chunk_size); |
| |
| // Select vdex and oat FD if any exists. |
| android::base::unique_fd vdex_fd; |
| android::base::unique_fd oat_fd; |
| if (chunk.vdex_fd.get() >= 0) { |
| DCHECK_EQ(locations.size(), 1u); |
| vdex_fd = std::move(chunk.vdex_fd); |
| } else { |
| int arg_vdex_fd = pos < boot_class_path_vdex_fds_.size() ? boot_class_path_vdex_fds_[pos] |
| : -1; |
| if (arg_vdex_fd >= 0) { |
| vdex_fd.reset(DupCloexec(arg_vdex_fd)); |
| } |
| } |
| if (chunk.oat_fd.get() >= 0) { |
| DCHECK_EQ(locations.size(), 1u); |
| oat_fd = std::move(chunk.oat_fd); |
| } else { |
| int arg_oat_fd = pos < boot_class_path_oat_fds_.size() ? boot_class_path_oat_fds_[pos] |
| : -1; |
| if (arg_oat_fd >= 0) { |
| oat_fd.reset(DupCloexec(arg_oat_fd)); |
| } |
| } |
| |
| if (!OpenOatFile(space, |
| std::move(vdex_fd), |
| std::move(oat_fd), |
| boot_class_path_.SubArray(/*pos=*/ pos, bcp_chunk_size), |
| boot_class_path_fds, |
| validate_oat_file, |
| dependencies, |
| logger, |
| image_reservation, |
| error_msg)) { |
| return false; |
| } |
| } |
| |
| guard.Commit(); |
| return true; |
| } |
| |
| MemMap ReserveBootImageMemory(uint8_t* addr, |
| uint32_t reservation_size, |
| /*out*/std::string* error_msg) { |
| DCHECK_ALIGNED(reservation_size, kPageSize); |
| DCHECK_ALIGNED(addr, kPageSize); |
| return MemMap::MapAnonymous("Boot image reservation", |
| addr, |
| reservation_size, |
| PROT_NONE, |
| /*low_4gb=*/ true, |
| /*reuse=*/ false, |
| /*reservation=*/ nullptr, |
| error_msg); |
| } |
| |
| bool RemapExtraReservation(size_t extra_reservation_size, |
| /*inout*/MemMap* image_reservation, |
| /*out*/MemMap* extra_reservation, |
| /*out*/std::string* error_msg) { |
| DCHECK_ALIGNED(extra_reservation_size, kPageSize); |
| DCHECK(!extra_reservation->IsValid()); |
| size_t expected_size = image_reservation->IsValid() ? image_reservation->Size() : 0u; |
| if (extra_reservation_size != expected_size) { |
| *error_msg = StringPrintf("Image reservation mismatch after loading boot image: %zu != %zu", |
| extra_reservation_size, |
| expected_size); |
| return false; |
| } |
| if (extra_reservation_size != 0u) { |
| DCHECK(image_reservation->IsValid()); |
| DCHECK_EQ(extra_reservation_size, image_reservation->Size()); |
| *extra_reservation = image_reservation->RemapAtEnd(image_reservation->Begin(), |
| "Boot image extra reservation", |
| PROT_NONE, |
| error_msg); |
| if (!extra_reservation->IsValid()) { |
| return false; |
| } |
| } |
| DCHECK(!image_reservation->IsValid()); |
| return true; |
| } |
| |
| const ArrayRef<const std::string> boot_class_path_; |
| const ArrayRef<const std::string> boot_class_path_locations_; |
| const ArrayRef<const int> boot_class_path_fds_; |
| const ArrayRef<const int> boot_class_path_image_fds_; |
| const ArrayRef<const int> boot_class_path_vdex_fds_; |
| const ArrayRef<const int> boot_class_path_oat_fds_; |
| const ArrayRef<const std::string> image_locations_; |
| const InstructionSet image_isa_; |
| const bool relocate_; |
| const bool executable_; |
| bool has_system_; |
| }; |
| |
| bool ImageSpace::BootImageLoader::LoadFromSystem( |
| size_t extra_reservation_size, |
| bool allow_in_memory_compilation, |
| /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces, |
| /*out*/MemMap* extra_reservation, |
| /*out*/std::string* error_msg) { |
| TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image)); |
| |
| BootImageLayout layout(image_locations_, |
| boot_class_path_, |
| boot_class_path_locations_, |
| boot_class_path_fds_, |
| boot_class_path_image_fds_, |
| boot_class_path_vdex_fds_, |
| boot_class_path_oat_fds_); |
| if (!layout.LoadFromSystem(image_isa_, allow_in_memory_compilation, error_msg)) { |
| return false; |
| } |
| |
| // Load the image. We don't validate oat files in this stage because they have been validated |
| // before. |
| if (!LoadImage(layout, |
| /*validate_oat_file=*/ false, |
| extra_reservation_size, |
| &logger, |
| boot_image_spaces, |
| extra_reservation, |
| error_msg)) { |
| return false; |
| } |
| |
| if (VLOG_IS_ON(image)) { |
| LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromSystem exiting " |
| << *boot_image_spaces->front(); |
| logger.Dump(LOG_STREAM(INFO)); |
| } |
| return true; |
| } |
| |
| bool ImageSpace::IsBootClassPathOnDisk(InstructionSet image_isa) { |
| Runtime* runtime = Runtime::Current(); |
| BootImageLayout layout(ArrayRef<const std::string>(runtime->GetImageLocations()), |
| ArrayRef<const std::string>(runtime->GetBootClassPath()), |
| ArrayRef<const std::string>(runtime->GetBootClassPathLocations()), |
| ArrayRef<const int>(runtime->GetBootClassPathFds()), |
| ArrayRef<const int>(runtime->GetBootClassPathImageFds()), |
| ArrayRef<const int>(runtime->GetBootClassPathVdexFds()), |
| ArrayRef<const int>(runtime->GetBootClassPathOatFds())); |
| const std::string image_location = layout.GetPrimaryImageLocation(); |
| std::unique_ptr<ImageHeader> image_header; |
| std::string error_msg; |
| |
| std::string system_filename; |
| bool has_system = false; |
| |
| if (FindImageFilename(image_location.c_str(), |
| image_isa, |
| &system_filename, |
| &has_system)) { |
| DCHECK(has_system); |
| image_header = ReadSpecificImageHeader(system_filename.c_str(), &error_msg); |
| } |
| |
| return image_header != nullptr; |
| } |
| |
| bool ImageSpace::LoadBootImage( |
| const std::vector<std::string>& boot_class_path, |
| const std::vector<std::string>& boot_class_path_locations, |
| const std::vector<int>& boot_class_path_fds, |
| const std::vector<int>& boot_class_path_image_fds, |
| const std::vector<int>& boot_class_path_vdex_fds, |
| const std::vector<int>& boot_class_path_odex_fds, |
| const std::vector<std::string>& image_locations, |
| const InstructionSet image_isa, |
| bool relocate, |
| bool executable, |
| size_t extra_reservation_size, |
| bool allow_in_memory_compilation, |
| /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces, |
| /*out*/MemMap* extra_reservation) { |
| ScopedTrace trace(__FUNCTION__); |
| |
| DCHECK(boot_image_spaces != nullptr); |
| DCHECK(boot_image_spaces->empty()); |
| DCHECK_ALIGNED(extra_reservation_size, kPageSize); |
| DCHECK(extra_reservation != nullptr); |
| DCHECK_NE(image_isa, InstructionSet::kNone); |
| |
| if (image_locations.empty()) { |
| return false; |
| } |
| |
| BootImageLoader loader(boot_class_path, |
| boot_class_path_locations, |
| boot_class_path_fds, |
| boot_class_path_image_fds, |
| boot_class_path_vdex_fds, |
| boot_class_path_odex_fds, |
| image_locations, |
| image_isa, |
| relocate, |
| executable); |
| loader.FindImageFiles(); |
| |
| // Collect all the errors. |
| std::vector<std::string> error_msgs; |
| |
| std::string error_msg; |
| if (loader.LoadFromSystem(extra_reservation_size, |
| allow_in_memory_compilation, |
| boot_image_spaces, |
| extra_reservation, |
| &error_msg)) { |
| return true; |
| } |
| error_msgs.push_back(error_msg); |
| |
| std::ostringstream oss; |
| bool first = true; |
| for (const auto& msg : error_msgs) { |
| if (first) { |
| first = false; |
| } else { |
| oss << "\n "; |
| } |
| oss << msg; |
| } |
| |
| LOG(ERROR) << "Could not create image space with image file '" |
| << Join(image_locations, kComponentSeparator) << "'. Attempting to fall back to imageless " |
| << "running. Error was: " << oss.str(); |
| |
| return false; |
| } |
| |
| ImageSpace::~ImageSpace() { |
| // Everything done by member destructors. Classes forward-declared in header are now defined. |
| } |
| |
| std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image, |
| const OatFile* oat_file, |
| std::string* error_msg) { |
| // Note: The oat file has already been validated. |
| const std::vector<ImageSpace*>& boot_image_spaces = |
| Runtime::Current()->GetHeap()->GetBootImageSpaces(); |
| return CreateFromAppImage(image, |
| oat_file, |
| ArrayRef<ImageSpace* const>(boot_image_spaces), |
| error_msg); |
| } |
| |
| std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage( |
| const char* image, |
| const OatFile* oat_file, |
| ArrayRef<ImageSpace* const> boot_image_spaces, |
| std::string* error_msg) { |
| return Loader::InitAppImage(image, |
| image, |
| oat_file, |
| boot_image_spaces, |
| error_msg); |
| } |
| |
| const OatFile* ImageSpace::GetOatFile() const { |
| return oat_file_non_owned_; |
| } |
| |
| std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() { |
| CHECK(oat_file_ != nullptr); |
| return std::move(oat_file_); |
| } |
| |
| void ImageSpace::Dump(std::ostream& os) const { |
| os << GetType() |
| << " begin=" << reinterpret_cast<void*>(Begin()) |
| << ",end=" << reinterpret_cast<void*>(End()) |
| << ",size=" << PrettySize(Size()) |
| << ",name=\"" << GetName() << "\"]"; |
| } |
| |
| bool ImageSpace::ValidateApexVersions(const OatHeader& oat_header, |
| const std::string& apex_versions, |
| const std::string& file_location, |
| std::string* error_msg) { |
| // For a boot image, the key value store only exists in the first OAT file. Skip other OAT files. |
| if (oat_header.GetKeyValueStoreSize() == 0) { |
| return true; |
| } |
| |
| const char* oat_apex_versions = oat_header.GetStoreValueByKey(OatHeader::kApexVersionsKey); |
| if (oat_apex_versions == nullptr) { |
| *error_msg = StringPrintf("ValidateApexVersions failed to get APEX versions from oat file '%s'", |
| file_location.c_str()); |
| return false; |
| } |
| // For a boot image, it can be generated from a subset of the bootclasspath. |
| // For an app image, some dex files get compiled with a subset of the bootclasspath. |
| // For such cases, the OAT APEX versions will be a prefix of the runtime APEX versions. |
| if (!android::base::StartsWith(apex_versions, oat_apex_versions)) { |
| *error_msg = StringPrintf( |
| "ValidateApexVersions found APEX versions mismatch between oat file '%s' and the runtime " |
| "(Oat file: '%s', Runtime: '%s')", |
| file_location.c_str(), |
| oat_apex_versions, |
| apex_versions.c_str()); |
| return false; |
| } |
| return true; |
| } |
| |
| bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) { |
| DCHECK(Runtime::Current() != nullptr); |
| return ValidateOatFile(oat_file, |
| error_msg, |
| ArrayRef<const std::string>(), |
| ArrayRef<const int>(), |
| Runtime::Current()->GetApexVersions()); |
| } |
| |
| bool ImageSpace::ValidateOatFile(const OatFile& oat_file, |
| std::string* error_msg, |
| ArrayRef<const std::string> dex_filenames, |
| ArrayRef<const int> dex_fds, |
| const std::string& apex_versions) { |
| if (!ValidateApexVersions(oat_file.GetOatHeader(), |
| apex_versions, |
| oat_file.GetLocation(), |
| error_msg)) { |
| return false; |
| } |
| |
| // For a boot image, the key value store only exists in the first OAT file. Skip other OAT files. |
| if (oat_file.GetOatHeader().GetKeyValueStoreSize() != 0 && |
| oat_file.GetOatHeader().IsConcurrentCopying() != gUseReadBarrier) { |
| *error_msg = |
| ART_FORMAT("ValidateOatFile found read barrier state mismatch (oat file: {}, runtime: {})", |
| oat_file.GetOatHeader().IsConcurrentCopying(), |
| gUseReadBarrier); |
| return false; |
| } |
| |
| size_t dex_file_index = 0; |
| for (const OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) { |
| // Skip multidex locations - These will be checked when we visit their |
| // corresponding primary non-multidex location. |
| if (DexFileLoader::IsMultiDexLocation(oat_dex_file->GetDexFileLocation().c_str())) { |
| continue; |
| } |
| |
| DCHECK(dex_filenames.empty() || dex_file_index < dex_filenames.size()); |
| const std::string& dex_file_location = |
| dex_filenames.empty() ? oat_dex_file->GetDexFileLocation() : dex_filenames[dex_file_index]; |
| int dex_fd = dex_file_index < dex_fds.size() ? dex_fds[dex_file_index] : -1; |
| dex_file_index++; |
| |
| std::vector<uint32_t> checksums; |
| std::vector<std::string> dex_locations_ignored; |
| if (!ArtDexFileLoader::GetMultiDexChecksums( |
| dex_file_location.c_str(), &checksums, &dex_locations_ignored, error_msg, dex_fd)) { |
| *error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' " |
| "referenced by oat file %s: %s", |
| dex_file_location.c_str(), |
| oat_file.GetLocation().c_str(), |
| error_msg->c_str()); |
| return false; |
| } |
| CHECK(!checksums.empty()); |
| if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) { |
| *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file " |
| "'%s' and dex file '%s' (0x%x != 0x%x)", |
| oat_file.GetLocation().c_str(), |
| dex_file_location.c_str(), |
| oat_dex_file->GetDexFileLocationChecksum(), |
| checksums[0]); |
| return false; |
| } |
| |
| // Verify checksums for any related multidex entries. |
| for (size_t i = 1; i < checksums.size(); i++) { |
| std::string multi_dex_location = DexFileLoader::GetMultiDexLocation( |
| i, |
| dex_file_location.c_str()); |
| const OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(), |
| nullptr, |
| error_msg); |
| if (multi_dex == nullptr) { |
| *error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'", |
| oat_file.GetLocation().c_str(), |
| multi_dex_location.c_str()); |
| return false; |
| } |
| |
| if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) { |
| *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file " |
| "'%s' and dex file '%s' (0x%x != 0x%x)", |
| oat_file.GetLocation().c_str(), |
| multi_dex_location.c_str(), |
| multi_dex->GetDexFileLocationChecksum(), |
| checksums[i]); |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| std::string ImageSpace::GetBootClassPathChecksums( |
| ArrayRef<ImageSpace* const> image_spaces, |
| ArrayRef<const DexFile* const> boot_class_path) { |
| DCHECK(!boot_class_path.empty()); |
| size_t bcp_pos = 0u; |
| std::string boot_image_checksum; |
| |
| for (size_t image_pos = 0u, size = image_spaces.size(); image_pos != size; ) { |
| const ImageSpace* main_space = image_spaces[image_pos]; |
| // Caller must make sure that the image spaces correspond to the head of the BCP. |
| DCHECK_NE(main_space->oat_file_non_owned_->GetOatDexFiles().size(), 0u); |
| DCHECK_EQ(main_space->oat_file_non_owned_->GetOatDexFiles()[0]->GetDexFileLocation(), |
| boot_class_path[bcp_pos]->GetLocation()); |
| const ImageHeader& current_header = main_space->GetImageHeader(); |
| uint32_t image_space_count = current_header.GetImageSpaceCount(); |
| DCHECK_NE(image_space_count, 0u); |
| DCHECK_LE(image_space_count, image_spaces.size() - image_pos); |
| if (image_pos != 0u) { |
| boot_image_checksum += ':'; |
| } |
| uint32_t component_count = current_header.GetComponentCount(); |
| AppendImageChecksum(component_count, current_header.GetImageChecksum(), &boot_image_checksum); |
| for (size_t space_index = 0; space_index != image_space_count; ++space_index) { |
| const ImageSpace* space = image_spaces[image_pos + space_index]; |
| const OatFile* oat_file = space->oat_file_non_owned_; |
| size_t num_dex_files = oat_file->GetOatDexFiles().size(); |
| if (kIsDebugBuild) { |
| CHECK_NE(num_dex_files, 0u); |
| CHECK_LE(oat_file->GetOatDexFiles().size(), boot_class_path.size() - bcp_pos); |
| for (size_t i = 0; i != num_dex_files; ++i) { |
| CHECK_EQ(oat_file->GetOatDexFiles()[i]->GetDexFileLocation(), |
| boot_class_path[bcp_pos + i]->GetLocation()); |
| } |
| } |
| bcp_pos += num_dex_files; |
| } |
| image_pos += image_space_count; |
| } |
| |
| ArrayRef<const DexFile* const> boot_class_path_tail = |
| ArrayRef<const DexFile* const>(boot_class_path).SubArray(bcp_pos); |
| DCHECK(boot_class_path_tail.empty() || |
| !DexFileLoader::IsMultiDexLocation(boot_class_path_tail.front()->GetLocation().c_str())); |
| for (const DexFile* dex_file : boot_class_path_tail) { |
| if (!DexFileLoader::IsMultiDexLocation(dex_file->GetLocation().c_str())) { |
| if (!boot_image_checksum.empty()) { |
| boot_image_checksum += ':'; |
| } |
| boot_image_checksum += kDexFileChecksumPrefix; |
| } |
| StringAppendF(&boot_image_checksum, "/%08x", dex_file->GetLocationChecksum()); |
| } |
| return boot_image_checksum; |
| } |
| |
| size_t ImageSpace::GetNumberOfComponents(ArrayRef<ImageSpace* const> image_spaces) { |
| size_t n = 0; |
| for (auto&& is : image_spaces) { |
| n += is->GetComponentCount(); |
| } |
| return n; |
| } |
| |
| size_t ImageSpace::CheckAndCountBCPComponents(std::string_view oat_boot_class_path, |
| ArrayRef<const std::string> boot_class_path, |
| /*out*/std::string* error_msg) { |
| // Check that the oat BCP is a prefix of current BCP locations and count components. |
| size_t component_count = 0u; |
| std::string_view remaining_bcp(oat_boot_class_path); |
| bool bcp_ok = false; |
| for (const std::string& location : boot_class_path) { |
| if (!StartsWith(remaining_bcp, location)) { |
| break; |
| } |
| remaining_bcp.remove_prefix(location.size()); |
| ++component_count; |
| if (remaining_bcp.empty()) { |
| bcp_ok = true; |
| break; |
| } |
| if (!StartsWith(remaining_bcp, ":")) { |
| break; |
| } |
| remaining_bcp.remove_prefix(1u); |
| } |
| if (!bcp_ok) { |
| *error_msg = StringPrintf("Oat boot class path (%s) is not a prefix of" |
| " runtime boot class path (%s)", |
| std::string(oat_boot_class_path).c_str(), |
| Join(boot_class_path, ':').c_str()); |
| return static_cast<size_t>(-1); |
| } |
| return component_count; |
| } |
| |
| bool ImageSpace::VerifyBootClassPathChecksums( |
| std::string_view oat_checksums, |
| std::string_view oat_boot_class_path, |
| ArrayRef<const std::unique_ptr<ImageSpace>> image_spaces, |
| ArrayRef<const std::string> boot_class_path_locations, |
| ArrayRef<const std::string> boot_class_path, |
| /*out*/std::string* error_msg) { |
| DCHECK_EQ(boot_class_path.size(), boot_class_path_locations.size()); |
| DCHECK_GE(boot_class_path_locations.size(), image_spaces.size()); |
| if (oat_checksums.empty() || oat_boot_class_path.empty()) { |
| *error_msg = oat_checksums.empty() ? "Empty checksums." : "Empty boot class path."; |
| return false; |
| } |
| |
| size_t oat_bcp_size = |
| CheckAndCountBCPComponents(oat_boot_class_path, boot_class_path_locations, error_msg); |
| if (oat_bcp_size == static_cast<size_t>(-1)) { |
| DCHECK(!error_msg->empty()); |
| return false; |
| } |
| const size_t num_image_spaces = image_spaces.size(); |
| size_t dependency_component_count = 0; |
| for (const std::unique_ptr<ImageSpace>& space : image_spaces) { |
| dependency_component_count += space->GetComponentCount(); |
| } |
| if (dependency_component_count != oat_bcp_size) { |
| *error_msg = StringPrintf("Image header records %s dependencies (%zu) than BCP (%zu)", |
| dependency_component_count < oat_bcp_size ? "less" : "more", |
| dependency_component_count, |
| oat_bcp_size); |
| return false; |
| } |
| |
| // Verify image checksums. |
| size_t bcp_pos = 0u; |
| size_t image_pos = 0u; |
| while (image_pos != num_image_spaces && StartsWith(oat_checksums, "i")) { |
| // Verify the current image checksum. |
| const ImageHeader& current_header = image_spaces[image_pos]->GetImageHeader(); |
| uint32_t image_space_count = current_header.GetImageSpaceCount(); |
| DCHECK_NE(image_space_count, 0u); |
| DCHECK_LE(image_space_count, image_spaces.size() - image_pos); |
| uint32_t component_count = current_header.GetComponentCount(); |
| uint32_t checksum = current_header.GetImageChecksum(); |
| if (!CheckAndRemoveImageChecksum(component_count, checksum, &oat_checksums, error_msg)) { |
| DCHECK(!error_msg->empty()); |
| return false; |
| } |
| |
| if (kIsDebugBuild) { |
| for (size_t space_index = 0; space_index != image_space_count; ++space_index) { |
| const OatFile* oat_file = image_spaces[image_pos + space_index]->oat_file_non_owned_; |
| size_t num_dex_files = oat_file->GetOatDexFiles().size(); |
| CHECK_NE(num_dex_files, 0u); |
| const std::string main_location = oat_file->GetOatDexFiles()[0]->GetDexFileLocation(); |
| CHECK_EQ(main_location, boot_class_path_locations[bcp_pos + space_index]); |
| CHECK(!DexFileLoader::IsMultiDexLocation(main_location.c_str())); |
| size_t num_base_locations = 1u; |
| for (size_t i = 1u; i != num_dex_files; ++i) { |
| if (!DexFileLoader::IsMultiDexLocation( |
| oat_file->GetOatDexFiles()[i]->GetDexFileLocation().c_str())) { |
| CHECK_EQ(image_space_count, 1u); // We can find base locations only for --single-image. |
| ++num_base_locations; |
| } |
| } |
| if (image_space_count == 1u) { |
| CHECK_EQ(num_base_locations, component_count); |
| } |
| } |
| } |
| |
| image_pos += image_space_count; |
| bcp_pos += component_count; |
| |
| if (!StartsWith(oat_checksums, ":")) { |
| // Check that we've reached the end of checksums and BCP. |
| if (!oat_checksums.empty()) { |
| *error_msg = StringPrintf("Expected ':' separator or end of checksums, remaining %s.", |
| std::string(oat_checksums).c_str()); |
| return false; |
| } |
| if (bcp_pos != oat_bcp_size) { |
| *error_msg = StringPrintf("Component count mismatch between checksums (%zu) and BCP (%zu)", |
| bcp_pos, |
| oat_bcp_size); |
| return false; |
| } |
| return true; |
| } |
| oat_checksums.remove_prefix(1u); |
| } |
| |
| // We do not allow dependencies of extensions on dex files. That would require |
| // interleaving the loading of the images with opening the other BCP dex files. |
| return false; |
| } |
| |
| std::vector<std::string> ImageSpace::ExpandMultiImageLocations( |
| ArrayRef<const std::string> dex_locations, |
| const std::string& image_location, |
| bool boot_image_extension) { |
| DCHECK(!dex_locations.empty()); |
| |
| // Find the path. |
| size_t last_slash = image_location.rfind('/'); |
| CHECK_NE(last_slash, std::string::npos); |
| |
| // We also need to honor path components that were encoded through '@'. Otherwise the loading |
| // code won't be able to find the images. |
| if (image_location.find('@', last_slash) != std::string::npos) { |
| last_slash = image_location.rfind('@'); |
| } |
| |
| // Find the dot separating the primary image name from the extension. |
| size_t last_dot = image_location.rfind('.'); |
| // Extract the extension and base (the path and primary image name). |
| std::string extension; |
| std::string base = image_location; |
| if (last_dot != std::string::npos && last_dot > last_slash) { |
| extension = image_location.substr(last_dot); // Including the dot. |
| base.resize(last_dot); |
| } |
| // For non-empty primary image name, add '-' to the `base`. |
| if (last_slash + 1u != base.size()) { |
| base += '-'; |
| } |
| |
| std::vector<std::string> locations; |
| locations.reserve(dex_locations.size()); |
| size_t start_index = 0u; |
| if (!boot_image_extension) { |
| start_index = 1u; |
| locations.push_back(image_location); |
| } |
| |
| // Now create the other names. Use a counted loop to skip the first one if needed. |
| for (size_t i = start_index; i < dex_locations.size(); ++i) { |
| // Replace path with `base` (i.e. image path and prefix) and replace the original |
| // extension (if any) with `extension`. |
| std::string name = dex_locations[i]; |
| size_t last_dex_slash = name.rfind('/'); |
| if (last_dex_slash != std::string::npos) { |
| name = name.substr(last_dex_slash + 1); |
| } |
| size_t last_dex_dot = name.rfind('.'); |
| if (last_dex_dot != std::string::npos) { |
| name.resize(last_dex_dot); |
| } |
| locations.push_back(base + name + extension); |
| } |
| return locations; |
| } |
| |
| void ImageSpace::DumpSections(std::ostream& os) const { |
| const uint8_t* base = Begin(); |
| const ImageHeader& header = GetImageHeader(); |
| for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) { |
| auto section_type = static_cast<ImageHeader::ImageSections>(i); |
| const ImageSection& section = header.GetImageSection(section_type); |
| os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset()) |
| << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n"; |
| } |
| } |
| |
| void ImageSpace::ReleaseMetadata() { |
| const ImageSection& metadata = GetImageHeader().GetMetadataSection(); |
| VLOG(image) << "Releasing " << metadata.Size() << " image metadata bytes"; |
| // Avoid using ZeroAndReleasePages since the zero fill might not be word atomic. |
| uint8_t* const page_begin = AlignUp(Begin() + metadata.Offset(), kPageSize); |
| uint8_t* const page_end = AlignDown(Begin() + metadata.End(), kPageSize); |
| if (page_begin < page_end) { |
| CHECK_NE(madvise(page_begin, page_end - page_begin, MADV_DONTNEED), -1) << "madvise failed"; |
| } |
| } |
| |
| } // namespace space |
| } // namespace gc |
| } // namespace art |