blob: a90a31963b85d682a3085719381e4f2e1dd008ce [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_GC_ACCOUNTING_ATOMIC_STACK_H_
#define ART_RUNTIME_GC_ACCOUNTING_ATOMIC_STACK_H_
#include <sys/mman.h> // For the PROT_* and MAP_* constants.
#include <algorithm>
#include <memory>
#include <string>
#include <android-base/logging.h>
#include "base/atomic.h"
#include "base/macros.h"
#include "base/mem_map.h"
#include "stack_reference.h"
// This implements a double-ended queue (deque) with various flavors of PushBack operations,
// as well as PopBack and PopFront operations. We expect that all calls are performed
// by a single thread (normally the GC). There is one exception, which accounts for the
// name:
// - Multiple calls to AtomicPushBack*() and AtomicBumpBack() may be made concurrently,
// provided no other calls are made at the same time.
namespace art {
namespace gc {
namespace accounting {
// Internal representation is StackReference<T>, so this only works with mirror::Object or its
// subclasses.
template <typename T>
class AtomicStack {
public:
class ObjectComparator {
public:
// These two comparators are for std::binary_search.
bool operator()(const T* a, const StackReference<T>& b) const NO_THREAD_SAFETY_ANALYSIS {
return a < b.AsMirrorPtr();
}
bool operator()(const StackReference<T>& a, const T* b) const NO_THREAD_SAFETY_ANALYSIS {
return a.AsMirrorPtr() < b;
}
// This comparator is for std::sort.
bool operator()(const StackReference<T>& a, const StackReference<T>& b) const
NO_THREAD_SAFETY_ANALYSIS {
return a.AsMirrorPtr() < b.AsMirrorPtr();
}
};
// Capacity is how many elements we can store in the stack.
static AtomicStack* Create(const std::string& name, size_t growth_limit, size_t capacity) {
std::unique_ptr<AtomicStack> mark_stack(new AtomicStack(name, growth_limit, capacity));
mark_stack->Init();
return mark_stack.release();
}
~AtomicStack() {}
void Reset() {
DCHECK(mem_map_.IsValid());
DCHECK(begin_ != nullptr);
front_index_.store(0, std::memory_order_relaxed);
back_index_.store(0, std::memory_order_relaxed);
debug_is_sorted_ = true;
mem_map_.MadviseDontNeedAndZero();
}
// Beware: Mixing atomic pushes and atomic pops will cause ABA problem.
// Returns false if we overflowed the stack.
bool AtomicPushBackIgnoreGrowthLimit(T* value) REQUIRES_SHARED(Locks::mutator_lock_) {
return AtomicPushBackInternal(value, capacity_);
}
// Returns false if we overflowed the stack.
bool AtomicPushBack(T* value) REQUIRES_SHARED(Locks::mutator_lock_) {
return AtomicPushBackInternal(value, growth_limit_);
}
// Atomically bump the back index by the given number of
// slots. Returns false if we overflowed the stack.
bool AtomicBumpBack(size_t num_slots, StackReference<T>** start_address,
StackReference<T>** end_address)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (kIsDebugBuild) {
debug_is_sorted_ = false;
}
int32_t index;
int32_t new_index;
do {
index = back_index_.load(std::memory_order_relaxed);
new_index = index + num_slots;
if (UNLIKELY(static_cast<size_t>(new_index) >= growth_limit_)) {
// Stack overflow.
return false;
}
} while (!back_index_.CompareAndSetWeakRelaxed(index, new_index));
*start_address = begin_ + index;
*end_address = begin_ + new_index;
if (kIsDebugBuild) {
// Check that the memory is zero.
for (int32_t i = index; i < new_index; ++i) {
DCHECK_EQ(begin_[i].AsMirrorPtr(), static_cast<T*>(nullptr))
<< "i=" << i << " index=" << index << " new_index=" << new_index;
}
}
return true;
}
void AssertAllZero() REQUIRES_SHARED(Locks::mutator_lock_) {
if (kIsDebugBuild) {
for (size_t i = 0; i < capacity_; ++i) {
DCHECK_EQ(begin_[i].AsMirrorPtr(), static_cast<T*>(nullptr)) << "i=" << i;
}
}
}
// Bump the back index by the given number of slots. Returns false if this
// operation will overflow the stack. New elements should be written
// to [*start_address, *end_address).
bool BumpBack(size_t num_slots,
StackReference<T>** start_address,
StackReference<T>** end_address)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (kIsDebugBuild) {
debug_is_sorted_ = false;
}
const int32_t index = back_index_.load(std::memory_order_relaxed);
const int32_t new_index = index + num_slots;
if (UNLIKELY(static_cast<size_t>(new_index) >= growth_limit_)) {
// Stack overflow.
return false;
}
back_index_.store(new_index, std::memory_order_relaxed);
*start_address = begin_ + index;
*end_address = begin_ + new_index;
if (kIsDebugBuild) {
// Check the memory is zero.
for (int32_t i = index; i < new_index; i++) {
DCHECK_EQ(begin_[i].AsMirrorPtr(), static_cast<T*>(nullptr))
<< "i=" << i << " index=" << index << " new_index=" << new_index;
}
}
return true;
}
void PushBack(T* value) REQUIRES_SHARED(Locks::mutator_lock_) {
if (kIsDebugBuild) {
debug_is_sorted_ = false;
}
const int32_t index = back_index_.load(std::memory_order_relaxed);
DCHECK_LT(static_cast<size_t>(index), growth_limit_);
back_index_.store(index + 1, std::memory_order_relaxed);
begin_[index].Assign(value);
}
T* PopBack() REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK_GT(back_index_.load(std::memory_order_relaxed),
front_index_.load(std::memory_order_relaxed));
// Decrement the back index non atomically.
const int32_t index = back_index_.load(std::memory_order_relaxed) - 1;
back_index_.store(index, std::memory_order_relaxed);
T* ret = begin_[index].AsMirrorPtr();
// In debug builds we expect the stack elements to be null, which may not
// always be the case if the stack is being reused without resetting it
// in-between.
if (kIsDebugBuild) {
begin_[index].Clear();
}
return ret;
}
// Take an item from the front of the stack.
T PopFront() {
int32_t index = front_index_.load(std::memory_order_relaxed);
DCHECK_LT(index, back_index_.load(std::memory_order_relaxed));
front_index_.store(index + 1, std::memory_order_relaxed);
return begin_[index];
}
// Pop a number of elements.
void PopBackCount(int32_t n) {
DCHECK_GE(Size(), static_cast<size_t>(n));
back_index_.store(back_index_.load(std::memory_order_relaxed) - n, std::memory_order_relaxed);
}
bool IsEmpty() const {
return Size() == 0;
}
bool IsFull() const {
return Size() == growth_limit_;
}
size_t Size() const {
DCHECK_LE(front_index_.load(std::memory_order_relaxed),
back_index_.load(std::memory_order_relaxed));
return
back_index_.load(std::memory_order_relaxed) - front_index_.load(std::memory_order_relaxed);
}
StackReference<T>* Begin() const {
return begin_ + front_index_.load(std::memory_order_relaxed);
}
StackReference<T>* End() const {
return begin_ + back_index_.load(std::memory_order_relaxed);
}
size_t Capacity() const {
return capacity_;
}
// Will clear the stack.
void Resize(size_t new_capacity) {
capacity_ = new_capacity;
growth_limit_ = new_capacity;
Init();
}
void Sort() {
int32_t start_back_index = back_index_.load(std::memory_order_relaxed);
int32_t start_front_index = front_index_.load(std::memory_order_relaxed);
std::sort(Begin(), End(), ObjectComparator());
CHECK_EQ(start_back_index, back_index_.load(std::memory_order_relaxed));
CHECK_EQ(start_front_index, front_index_.load(std::memory_order_relaxed));
if (kIsDebugBuild) {
debug_is_sorted_ = true;
}
}
bool ContainsSorted(const T* value) const REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(debug_is_sorted_);
return std::binary_search(Begin(), End(), value, ObjectComparator());
}
bool Contains(const T* value) const REQUIRES_SHARED(Locks::mutator_lock_) {
for (auto cur = Begin(), end = End(); cur != end; ++cur) {
if (cur->AsMirrorPtr() == value) {
return true;
}
}
return false;
}
private:
AtomicStack(const std::string& name, size_t growth_limit, size_t capacity)
: name_(name),
back_index_(0),
front_index_(0),
begin_(nullptr),
growth_limit_(growth_limit),
capacity_(capacity),
debug_is_sorted_(true) {
}
// Returns false if we overflowed the stack.
bool AtomicPushBackInternal(T* value, size_t limit) ALWAYS_INLINE
REQUIRES_SHARED(Locks::mutator_lock_) {
if (kIsDebugBuild) {
debug_is_sorted_ = false;
}
int32_t index;
do {
index = back_index_.load(std::memory_order_relaxed);
if (UNLIKELY(static_cast<size_t>(index) >= limit)) {
// Stack overflow.
return false;
}
} while (!back_index_.CompareAndSetWeakRelaxed(index, index + 1));
begin_[index].Assign(value);
return true;
}
// Size in number of elements.
void Init() {
std::string error_msg;
mem_map_ = MemMap::MapAnonymous(name_.c_str(),
capacity_ * sizeof(begin_[0]),
PROT_READ | PROT_WRITE,
/*low_4gb=*/ false,
&error_msg);
CHECK(mem_map_.IsValid()) << "couldn't allocate mark stack.\n" << error_msg;
uint8_t* addr = mem_map_.Begin();
CHECK(addr != nullptr);
debug_is_sorted_ = true;
begin_ = reinterpret_cast<StackReference<T>*>(addr);
Reset();
}
// Name of the mark stack.
std::string name_;
// Memory mapping of the atomic stack.
MemMap mem_map_;
// Back index (index after the last element pushed).
AtomicInteger back_index_;
// Front index, used for implementing PopFront.
AtomicInteger front_index_;
// Base of the atomic stack.
StackReference<T>* begin_;
// Current maximum which we can push back to, must be <= capacity_.
size_t growth_limit_;
// Maximum number of elements.
size_t capacity_;
// Whether or not the stack is sorted, only updated in debug mode to avoid performance overhead.
bool debug_is_sorted_;
DISALLOW_COPY_AND_ASSIGN(AtomicStack);
};
using ObjectStack = AtomicStack<mirror::Object>;
} // namespace accounting
} // namespace gc
} // namespace art
#endif // ART_RUNTIME_GC_ACCOUNTING_ATOMIC_STACK_H_