blob: e114e4dbace8552d2c34fbeac5b90c209718950e [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "utils.h"
#include <dirent.h>
#include <inttypes.h>
#include <pthread.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <fstream>
#include <memory>
#include <string>
#include "android-base/file.h"
#include "android-base/stringprintf.h"
#include "android-base/strings.h"
#include "base/stl_util.h"
#include "bit_utils.h"
#include "os.h"
#if defined(__APPLE__)
#include <crt_externs.h>
// NOLINTNEXTLINE - inclusion of syscall is dependent on arch
#include <sys/syscall.h>
#include "AvailabilityMacros.h" // For MAC_OS_X_VERSION_MAX_ALLOWED
#endif
#if defined(__BIONIC__)
// membarrier(2) is only supported for target builds (b/111199492).
#include <linux/membarrier.h>
// NOLINTNEXTLINE - inclusion of syscall is dependent on arch
#include <sys/syscall.h>
#endif
#if defined(__linux__)
#include <linux/unistd.h>
// NOLINTNEXTLINE - inclusion of syscall is dependent on arch
#include <sys/syscall.h>
#endif
#if defined(_WIN32)
#include <windows.h>
// This include needs to be here due to our coding conventions. Unfortunately
// it drags in the definition of the dread ERROR macro.
#ifdef ERROR
#undef ERROR
#endif
#endif
namespace art {
using android::base::ReadFileToString; // NOLINT - ReadFileToString is actually used
using android::base::StringPrintf;
#if defined(__arm__)
namespace {
// Bitmap of caches to flush for cacheflush(2). Must be zero for ARM.
static constexpr int kCacheFlushFlags = 0x0;
// Number of retry attempts when flushing cache ranges.
static constexpr size_t kMaxFlushAttempts = 4;
int CacheFlush(uintptr_t start, uintptr_t limit) {
// The signature of cacheflush(2) seems to vary by source. On ARM the system call wrapper
// (bionic/SYSCALLS.TXT) has the form: int cacheflush(long start, long end, long flags);
int r = cacheflush(start, limit, kCacheFlushFlags);
if (r == -1) {
CHECK_NE(errno, EINVAL);
}
return r;
}
bool TouchAndFlushCacheLinesWithinPage(uintptr_t start, uintptr_t limit, size_t attempts) {
CHECK_LT(start, limit);
CHECK_EQ(RoundDown(start, kPageSize), RoundDown(limit - 1, kPageSize)) << "range spans pages";
// Declare a volatile variable so the compiler does not elide reads from the page being touched.
[[maybe_unused]] volatile uint8_t v = 0;
for (size_t i = 0; i < attempts; ++i) {
// Touch page to maximize chance page is resident.
v = *reinterpret_cast<uint8_t*>(start);
if (LIKELY(CacheFlush(start, limit) == 0)) {
return true;
}
}
return false;
}
} // namespace
bool FlushCpuCaches(void* begin, void* end) {
// This method is specialized for ARM as the generic implementation below uses the
// __builtin___clear_cache() intrinsic which is declared as void. On ARMv7 flushing the CPU
// caches is a privileged operation. The Linux kernel allows these operations to fail when they
// trigger a fault (e.g. page not resident). We use a wrapper for the ARM specific cacheflush()
// system call to detect the failure and potential erroneous state of the data and instruction
// caches.
//
// The Android bug for this is b/132205399 and there's a similar discussion on
// https://reviews.llvm.org/D37788. This is primarily an issue for the dual view JIT where the
// pages where code is executed are only ever RX and never RWX. When attempting to invalidate
// instruction cache lines in the RX mapping after writing fresh code in the RW mapping, the
// page may not be resident (due to memory pressure), and this means that a fault is raised in
// the midst of a cacheflush() call and the instruction cache lines are not invalidated and so
// have stale code.
//
// Other architectures fair better for reasons such as:
//
// (1) stronger coherence between the data and instruction caches.
//
// (2) fault handling that allows flushing/invalidation to continue after
// a missing page has been faulted in.
uintptr_t start = reinterpret_cast<uintptr_t>(begin);
const uintptr_t limit = reinterpret_cast<uintptr_t>(end);
if (LIKELY(CacheFlush(start, limit) == 0)) {
return true;
}
// A rare failure has occurred implying that part of the range (begin, end] has been swapped
// out. Retry flushing but this time grouping cache-line flushes on individual pages and
// touching each page before flushing.
uintptr_t next_page = RoundUp(start + 1, kPageSize);
while (start < limit) {
uintptr_t boundary = std::min(next_page, limit);
if (!TouchAndFlushCacheLinesWithinPage(start, boundary, kMaxFlushAttempts)) {
return false;
}
start = boundary;
next_page += kPageSize;
}
return true;
}
#else
bool FlushCpuCaches(void* begin, void* end) {
__builtin___clear_cache(reinterpret_cast<char*>(begin), reinterpret_cast<char*>(end));
return true;
}
#endif
#if defined(__linux__)
bool IsKernelVersionAtLeast(int reqd_major, int reqd_minor) {
struct utsname uts;
int major, minor;
CHECK_EQ(uname(&uts), 0);
CHECK_EQ(strcmp(uts.sysname, "Linux"), 0);
CHECK_EQ(sscanf(uts.release, "%d.%d:", &major, &minor), 2);
return major > reqd_major || (major == reqd_major && minor >= reqd_minor);
}
#endif
bool CacheOperationsMaySegFault() {
#if defined(__linux__) && defined(__aarch64__)
// Avoid issue on older ARM64 kernels where data cache operations could be classified as writes
// and cause segmentation faults. This was fixed in Linux 3.11rc2:
//
// https://github.com/torvalds/linux/commit/db6f41063cbdb58b14846e600e6bc3f4e4c2e888
//
// This behaviour means we should avoid the dual view JIT on the device. This is just
// an issue when running tests on devices that have an old kernel.
return !IsKernelVersionAtLeast(3, 12);
#else
return false;
#endif
}
uint32_t GetTid() {
#if defined(__APPLE__)
uint64_t owner;
CHECK_PTHREAD_CALL(pthread_threadid_np, (nullptr, &owner), __FUNCTION__); // Requires Mac OS 10.6
return owner;
#elif defined(__BIONIC__)
return gettid();
#elif defined(_WIN32)
return static_cast<pid_t>(::GetCurrentThreadId());
#else
return syscall(__NR_gettid);
#endif
}
std::string GetThreadName(pid_t tid) {
std::string result;
#ifdef _WIN32
UNUSED(tid);
result = "<unknown>";
#else
// TODO: make this less Linux-specific.
if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) {
result.resize(result.size() - 1); // Lose the trailing '\n'.
} else {
result = "<unknown>";
}
#endif
return result;
}
std::string PrettySize(uint64_t byte_count) {
// The byte thresholds at which we display amounts. A byte count is displayed
// in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1].
static const uint64_t kUnitThresholds[] = {
0, // B up to...
10*KB, // KB up to...
10*MB, // MB up to...
10ULL*GB // GB from here.
};
static const uint64_t kBytesPerUnit[] = { 1, KB, MB, GB };
static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" };
int i = arraysize(kUnitThresholds);
while (--i > 0) {
if (byte_count >= kUnitThresholds[i]) {
break;
}
}
return StringPrintf("%" PRIu64 "%s",
byte_count / kBytesPerUnit[i], kUnitStrings[i]);
}
template <typename StrIn, typename Str>
void Split(const StrIn& s, char separator, std::vector<Str>* out_result) {
auto split = SplitString(std::string_view(s), separator);
for (std::string_view p : split) {
if (p.empty()) {
continue;
}
out_result->push_back(Str(p));
}
}
template void Split(const char *const& s, char separator, std::vector<std::string>* out_result);
template void Split(const std::string& s, char separator, std::vector<std::string>* out_result);
template void Split(const char *const& s, char separator, std::vector<std::string_view>* out_result);
template void Split(const std::string_view& s,
char separator,
std::vector<std::string_view>* out_result);
template void Split(const std::string_view& s,
char separator,
std::vector<std::string>* out_result);
template <typename Str>
void Split(const Str& s, char separator, size_t len, Str* out_result) {
Str* last = out_result + len;
auto split = SplitString(std::string_view(s), separator);
for (std::string_view p : split) {
if (p.empty()) {
continue;
}
if (out_result == last) {
return;
}
*out_result++ = Str(p);
}
}
template void Split(const std::string& s, char separator, size_t len, std::string* out_result);
template void Split(const std::string_view& s,
char separator,
size_t len,
std::string_view* out_result);
void SetThreadName(const char* thread_name) {
bool hasAt = false;
bool hasDot = false;
const char* s = thread_name;
while (*s) {
if (*s == '.') {
hasDot = true;
} else if (*s == '@') {
hasAt = true;
}
s++;
}
int len = s - thread_name;
if (len < 15 || hasAt || !hasDot) {
s = thread_name;
} else {
s = thread_name + len - 15;
}
#if defined(__linux__) || defined(_WIN32)
// pthread_setname_np fails rather than truncating long strings.
char buf[16]; // MAX_TASK_COMM_LEN=16 is hard-coded in the kernel.
strncpy(buf, s, sizeof(buf)-1);
buf[sizeof(buf)-1] = '\0';
errno = pthread_setname_np(pthread_self(), buf);
if (errno != 0) {
PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'";
}
#else // __APPLE__
pthread_setname_np(thread_name);
#endif
}
void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu) {
*utime = *stime = *task_cpu = 0;
#ifdef _WIN32
// TODO: implement this.
UNUSED(tid);
*state = 'S';
#else
std::string stats;
// TODO: make this less Linux-specific.
if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) {
return;
}
// Skip the command, which may contain spaces.
stats = stats.substr(stats.find(')') + 2);
// Extract the three fields we care about.
std::vector<std::string> fields;
Split(stats, ' ', &fields);
*state = fields[0][0];
*utime = strtoull(fields[11].c_str(), nullptr, 10);
*stime = strtoull(fields[12].c_str(), nullptr, 10);
*task_cpu = strtoull(fields[36].c_str(), nullptr, 10);
#endif
}
void SleepForever() {
while (true) {
sleep(100000000);
}
}
std::string GetProcessStatus(const char* key) {
// Build search pattern of key and separator.
std::string pattern(key);
pattern.push_back(':');
// Search for status lines starting with pattern.
std::ifstream fs("/proc/self/status");
std::string line;
while (std::getline(fs, line)) {
if (strncmp(pattern.c_str(), line.c_str(), pattern.size()) == 0) {
// Skip whitespace in matching line (if any).
size_t pos = line.find_first_not_of(" \t", pattern.size());
if (UNLIKELY(pos == std::string::npos)) {
break;
}
return std::string(line, pos);
}
}
return "<unknown>";
}
bool IsAddressKnownBackedByFileOrShared(const void* addr) {
// We use the Linux pagemap interface for knowing if an address is backed
// by a file or is shared. See:
// https://www.kernel.org/doc/Documentation/vm/pagemap.txt
uintptr_t vmstart = reinterpret_cast<uintptr_t>(AlignDown(addr, kPageSize));
off_t index = (vmstart / kPageSize) * sizeof(uint64_t);
android::base::unique_fd pagemap(open("/proc/self/pagemap", O_RDONLY | O_CLOEXEC));
if (pagemap == -1) {
return false;
}
if (lseek(pagemap, index, SEEK_SET) != index) {
return false;
}
uint64_t flags;
if (read(pagemap, &flags, sizeof(uint64_t)) != sizeof(uint64_t)) {
return false;
}
// From https://www.kernel.org/doc/Documentation/vm/pagemap.txt:
// * Bit 61 page is file-page or shared-anon (since 3.5)
return (flags & (1LL << 61)) != 0;
}
int GetTaskCount() {
DIR* directory = opendir("/proc/self/task");
if (directory == nullptr) {
return -1;
}
uint32_t count = 0;
struct dirent* entry = nullptr;
while ((entry = readdir(directory)) != nullptr) {
if ((strcmp(entry->d_name, ".") == 0) || (strcmp(entry->d_name, "..") == 0)) {
continue;
}
++count;
}
closedir(directory);
return count;
}
} // namespace art