blob: a955b7d402f5328451a60f9ab1866a1e255a824c [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "fd_file.h"
#include <errno.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#if defined(__BIONIC__)
#include <android/fdsan.h>
#endif
#if defined(_WIN32)
#include <windows.h>
#endif
#include <limits>
#include <android-base/file.h>
#include <android-base/logging.h>
// Includes needed for FdFile::Copy().
#ifdef __linux__
#include <sys/sendfile.h>
#else
#include <algorithm>
#include "base/globals.h"
#include "base/stl_util.h"
#endif
namespace unix_file {
#if defined(_WIN32)
// RAII wrapper for an event object to allow asynchronous I/O to correctly signal completion.
class ScopedEvent {
public:
ScopedEvent() {
handle_ = CreateEventA(/*lpEventAttributes*/ nullptr,
/*bManualReset*/ true,
/*bInitialState*/ false,
/*lpName*/ nullptr);
}
~ScopedEvent() { CloseHandle(handle_); }
HANDLE handle() { return handle_; }
private:
HANDLE handle_;
DISALLOW_COPY_AND_ASSIGN(ScopedEvent);
};
// Windows implementation of pread/pwrite. Note that these DO move the file descriptor's read/write
// position, but do so atomically.
static ssize_t pread(int fd, void* data, size_t byte_count, off64_t offset) {
ScopedEvent event;
if (event.handle() == INVALID_HANDLE_VALUE) {
PLOG(ERROR) << "Could not create event handle.";
errno = EIO;
return static_cast<ssize_t>(-1);
}
auto handle = reinterpret_cast<HANDLE>(_get_osfhandle(fd));
DWORD bytes_read = 0;
OVERLAPPED overlapped = {};
overlapped.Offset = static_cast<DWORD>(offset);
overlapped.OffsetHigh = static_cast<DWORD>(offset >> 32);
overlapped.hEvent = event.handle();
if (!ReadFile(handle, data, static_cast<DWORD>(byte_count), &bytes_read, &overlapped)) {
// If the read failed with other than ERROR_IO_PENDING, return an error.
// ERROR_IO_PENDING signals the write was begun asynchronously.
// Block until the asynchronous operation has finished or fails, and return
// result accordingly.
if (::GetLastError() != ERROR_IO_PENDING ||
!::GetOverlappedResult(handle, &overlapped, &bytes_read, TRUE)) {
// In case someone tries to read errno (since this is masquerading as a POSIX call).
errno = EIO;
return static_cast<ssize_t>(-1);
}
}
return static_cast<ssize_t>(bytes_read);
}
static ssize_t pwrite(int fd, const void* buf, size_t count, off64_t offset) {
ScopedEvent event;
if (event.handle() == INVALID_HANDLE_VALUE) {
PLOG(ERROR) << "Could not create event handle.";
errno = EIO;
return static_cast<ssize_t>(-1);
}
auto handle = reinterpret_cast<HANDLE>(_get_osfhandle(fd));
DWORD bytes_written = 0;
OVERLAPPED overlapped = {};
overlapped.Offset = static_cast<DWORD>(offset);
overlapped.OffsetHigh = static_cast<DWORD>(offset >> 32);
overlapped.hEvent = event.handle();
if (!::WriteFile(handle, buf, count, &bytes_written, &overlapped)) {
// If the write failed with other than ERROR_IO_PENDING, return an error.
// ERROR_IO_PENDING signals the write was begun asynchronously.
// Block until the asynchronous operation has finished or fails, and return
// result accordingly.
if (::GetLastError() != ERROR_IO_PENDING ||
!::GetOverlappedResult(handle, &overlapped, &bytes_written, TRUE)) {
// In case someone tries to read errno (since this is masquerading as a POSIX call).
errno = EIO;
return static_cast<ssize_t>(-1);
}
}
return static_cast<ssize_t>(bytes_written);
}
static int fsync(int fd) {
auto handle = reinterpret_cast<HANDLE>(_get_osfhandle(fd));
if (handle != INVALID_HANDLE_VALUE && ::FlushFileBuffers(handle)) {
return 0;
}
errno = EINVAL;
return -1;
}
#endif
#if defined(__BIONIC__)
static uint64_t GetFdFileOwnerTag(FdFile* fd_file) {
return android_fdsan_create_owner_tag(ANDROID_FDSAN_OWNER_TYPE_ART_FDFILE,
reinterpret_cast<uint64_t>(fd_file));
}
#endif
FdFile::FdFile(int fd, bool check_usage)
: FdFile(fd, std::string(), check_usage) {}
FdFile::FdFile(int fd, const std::string& path, bool check_usage)
: FdFile(fd, path, check_usage, false) {}
FdFile::FdFile(int fd, const std::string& path, bool check_usage,
bool read_only_mode)
: guard_state_(check_usage ? GuardState::kBase : GuardState::kNoCheck),
fd_(fd),
file_path_(path),
read_only_mode_(read_only_mode) {
#if defined(__BIONIC__)
if (fd >= 0) {
android_fdsan_exchange_owner_tag(fd, 0, GetFdFileOwnerTag(this));
}
#endif
}
FdFile::FdFile(const std::string& path, int flags, mode_t mode,
bool check_usage) {
Open(path, flags, mode);
if (!check_usage || !IsOpened()) {
guard_state_ = GuardState::kNoCheck;
}
}
void FdFile::Destroy() {
if (kCheckSafeUsage && (guard_state_ < GuardState::kNoCheck)) {
if (guard_state_ < GuardState::kFlushed) {
LOG(ERROR) << "File " << file_path_ << " wasn't explicitly flushed before destruction.";
}
if (guard_state_ < GuardState::kClosed) {
LOG(ERROR) << "File " << file_path_ << " wasn't explicitly closed before destruction.";
}
DCHECK_GE(guard_state_, GuardState::kClosed);
}
if (fd_ != kInvalidFd) {
if (Close() != 0) {
PLOG(WARNING) << "Failed to close file with fd=" << fd_ << " path=" << file_path_;
}
}
}
FdFile::FdFile(FdFile&& other) noexcept
: guard_state_(other.guard_state_),
fd_(other.fd_),
file_path_(std::move(other.file_path_)),
read_only_mode_(other.read_only_mode_) {
#if defined(__BIONIC__)
if (fd_ >= 0) {
android_fdsan_exchange_owner_tag(fd_, GetFdFileOwnerTag(&other), GetFdFileOwnerTag(this));
}
#endif
other.guard_state_ = GuardState::kClosed;
other.fd_ = kInvalidFd;
}
FdFile& FdFile::operator=(FdFile&& other) noexcept {
if (this == &other) {
return *this;
}
if (this->fd_ != other.fd_) {
Destroy(); // Free old state.
}
guard_state_ = other.guard_state_;
fd_ = other.fd_;
file_path_ = std::move(other.file_path_);
read_only_mode_ = other.read_only_mode_;
#if defined(__BIONIC__)
if (fd_ >= 0) {
android_fdsan_exchange_owner_tag(fd_, GetFdFileOwnerTag(&other), GetFdFileOwnerTag(this));
}
#endif
other.guard_state_ = GuardState::kClosed;
other.fd_ = kInvalidFd;
return *this;
}
FdFile::~FdFile() {
Destroy();
}
int FdFile::Release() {
int tmp_fd = fd_;
fd_ = kInvalidFd;
guard_state_ = GuardState::kNoCheck;
#if defined(__BIONIC__)
if (tmp_fd >= 0) {
android_fdsan_exchange_owner_tag(tmp_fd, GetFdFileOwnerTag(this), 0);
}
#endif
return tmp_fd;
}
void FdFile::Reset(int fd, bool check_usage) {
CHECK_NE(fd, fd_);
if (fd_ != kInvalidFd) {
Destroy();
}
fd_ = fd;
#if defined(__BIONIC__)
if (fd_ >= 0) {
android_fdsan_exchange_owner_tag(fd_, 0, GetFdFileOwnerTag(this));
}
#endif
if (check_usage) {
guard_state_ = fd == kInvalidFd ? GuardState::kNoCheck : GuardState::kBase;
} else {
guard_state_ = GuardState::kNoCheck;
}
}
void FdFile::moveTo(GuardState target, GuardState warn_threshold, const char* warning) {
if (kCheckSafeUsage) {
if (guard_state_ < GuardState::kNoCheck) {
if (warn_threshold < GuardState::kNoCheck && guard_state_ >= warn_threshold) {
LOG(ERROR) << warning;
}
guard_state_ = target;
}
}
}
void FdFile::moveUp(GuardState target, const char* warning) {
if (kCheckSafeUsage) {
if (guard_state_ < GuardState::kNoCheck) {
if (guard_state_ < target) {
guard_state_ = target;
} else if (target < guard_state_) {
LOG(ERROR) << warning;
}
}
}
}
bool FdFile::Open(const std::string& path, int flags) {
return Open(path, flags, 0640);
}
bool FdFile::Open(const std::string& path, int flags, mode_t mode) {
static_assert(O_RDONLY == 0, "Readonly flag has unexpected value.");
DCHECK_EQ(fd_, kInvalidFd) << path;
read_only_mode_ = ((flags & O_ACCMODE) == O_RDONLY);
fd_ = TEMP_FAILURE_RETRY(open(path.c_str(), flags, mode));
if (fd_ == kInvalidFd) {
return false;
}
#if defined(__BIONIC__)
android_fdsan_exchange_owner_tag(fd_, 0, GetFdFileOwnerTag(this));
#endif
file_path_ = path;
if (kCheckSafeUsage && (flags & (O_RDWR | O_CREAT | O_WRONLY)) != 0) {
// Start in the base state (not flushed, not closed).
guard_state_ = GuardState::kBase;
} else {
// We are not concerned with read-only files. In that case, proper flushing and closing is
// not important.
guard_state_ = GuardState::kNoCheck;
}
return true;
}
int FdFile::Close() {
#if defined(__BIONIC__)
int result = android_fdsan_close_with_tag(fd_, GetFdFileOwnerTag(this));
#else
int result = close(fd_);
#endif
// Test here, so the file is closed and not leaked.
if (kCheckSafeUsage) {
DCHECK_GE(guard_state_, GuardState::kFlushed) << "File " << file_path_
<< " has not been flushed before closing.";
moveUp(GuardState::kClosed, nullptr);
}
#if defined(__linux__)
// close always succeeds on linux, even if failure is reported.
UNUSED(result);
#else
if (result == -1) {
return -errno;
}
#endif
fd_ = kInvalidFd;
file_path_ = "";
return 0;
}
int FdFile::Flush() {
DCHECK(!read_only_mode_);
#ifdef __linux__
int rc = TEMP_FAILURE_RETRY(fdatasync(fd_));
#else
int rc = TEMP_FAILURE_RETRY(fsync(fd_));
#endif
moveUp(GuardState::kFlushed, "Flushing closed file.");
if (rc == 0) {
return 0;
}
// Don't report failure if we just tried to flush a pipe or socket.
return errno == EINVAL ? 0 : -errno;
}
int64_t FdFile::Read(char* buf, int64_t byte_count, int64_t offset) const {
#ifdef __linux__
int rc = TEMP_FAILURE_RETRY(pread64(fd_, buf, byte_count, offset));
#else
int rc = TEMP_FAILURE_RETRY(pread(fd_, buf, byte_count, offset));
#endif
return (rc == -1) ? -errno : rc;
}
int FdFile::SetLength(int64_t new_length) {
DCHECK(!read_only_mode_);
#ifdef __linux__
int rc = TEMP_FAILURE_RETRY(ftruncate64(fd_, new_length));
#else
int rc = TEMP_FAILURE_RETRY(ftruncate(fd_, new_length));
#endif
moveTo(GuardState::kBase, GuardState::kClosed, "Truncating closed file.");
return (rc == -1) ? -errno : rc;
}
int64_t FdFile::GetLength() const {
struct stat s;
int rc = TEMP_FAILURE_RETRY(fstat(fd_, &s));
return (rc == -1) ? -errno : s.st_size;
}
int64_t FdFile::Write(const char* buf, int64_t byte_count, int64_t offset) {
DCHECK(!read_only_mode_);
#ifdef __linux__
int rc = TEMP_FAILURE_RETRY(pwrite64(fd_, buf, byte_count, offset));
#else
int rc = TEMP_FAILURE_RETRY(pwrite(fd_, buf, byte_count, offset));
#endif
moveTo(GuardState::kBase, GuardState::kClosed, "Writing into closed file.");
return (rc == -1) ? -errno : rc;
}
int FdFile::Fd() const {
return fd_;
}
bool FdFile::ReadOnlyMode() const {
return read_only_mode_;
}
bool FdFile::CheckUsage() const {
return guard_state_ != GuardState::kNoCheck;
}
bool FdFile::IsOpened() const {
return FdFile::IsOpenFd(fd_);
}
static ssize_t ReadIgnoreOffset(int fd, void *buf, size_t count, off_t offset) {
DCHECK_EQ(offset, 0);
return read(fd, buf, count);
}
template <ssize_t (*read_func)(int, void*, size_t, off_t)>
static bool ReadFullyGeneric(int fd, void* buffer, size_t byte_count, size_t offset) {
char* ptr = static_cast<char*>(buffer);
while (byte_count > 0) {
ssize_t bytes_read = TEMP_FAILURE_RETRY(read_func(fd, ptr, byte_count, offset));
if (bytes_read <= 0) {
// 0: end of file
// -1: error
return false;
}
byte_count -= bytes_read; // Reduce the number of remaining bytes.
ptr += bytes_read; // Move the buffer forward.
offset += static_cast<size_t>(bytes_read); // Move the offset forward.
}
return true;
}
bool FdFile::ReadFully(void* buffer, size_t byte_count) {
return ReadFullyGeneric<ReadIgnoreOffset>(fd_, buffer, byte_count, 0);
}
bool FdFile::PreadFully(void* buffer, size_t byte_count, size_t offset) {
return ReadFullyGeneric<pread>(fd_, buffer, byte_count, offset);
}
template <bool kUseOffset>
bool FdFile::WriteFullyGeneric(const void* buffer, size_t byte_count, size_t offset) {
DCHECK(!read_only_mode_);
moveTo(GuardState::kBase, GuardState::kClosed, "Writing into closed file.");
DCHECK(kUseOffset || offset == 0u);
const char* ptr = static_cast<const char*>(buffer);
while (byte_count > 0) {
ssize_t bytes_written = kUseOffset
? TEMP_FAILURE_RETRY(pwrite(fd_, ptr, byte_count, offset))
: TEMP_FAILURE_RETRY(write(fd_, ptr, byte_count));
if (bytes_written == -1) {
return false;
}
byte_count -= bytes_written; // Reduce the number of remaining bytes.
ptr += bytes_written; // Move the buffer forward.
offset += static_cast<size_t>(bytes_written);
}
return true;
}
bool FdFile::PwriteFully(const void* buffer, size_t byte_count, size_t offset) {
return WriteFullyGeneric<true>(buffer, byte_count, offset);
}
bool FdFile::WriteFully(const void* buffer, size_t byte_count) {
return WriteFullyGeneric<false>(buffer, byte_count, 0u);
}
bool FdFile::Copy(FdFile* input_file, int64_t offset, int64_t size) {
DCHECK(!read_only_mode_);
off_t off = static_cast<off_t>(offset);
off_t sz = static_cast<off_t>(size);
if (offset < 0 || static_cast<int64_t>(off) != offset ||
size < 0 || static_cast<int64_t>(sz) != size ||
sz > std::numeric_limits<off_t>::max() - off) {
errno = EINVAL;
return false;
}
if (size == 0) {
return true;
}
#ifdef __linux__
// Use sendfile(), available for files since linux kernel 2.6.33.
off_t end = off + sz;
while (off != end) {
int result = TEMP_FAILURE_RETRY(
sendfile(Fd(), input_file->Fd(), &off, end - off));
if (result == -1) {
return false;
}
// Ignore the number of bytes in `result`, sendfile() already updated `off`.
}
#else
if (lseek(input_file->Fd(), off, SEEK_SET) != off) {
return false;
}
constexpr size_t kMaxBufferSize = 4 * ::art::kPageSize;
const size_t buffer_size = std::min<uint64_t>(size, kMaxBufferSize);
art::UniqueCPtr<void> buffer(malloc(buffer_size));
if (buffer == nullptr) {
errno = ENOMEM;
return false;
}
while (size != 0) {
size_t chunk_size = std::min<uint64_t>(buffer_size, size);
if (!input_file->ReadFully(buffer.get(), chunk_size) ||
!WriteFully(buffer.get(), chunk_size)) {
return false;
}
size -= chunk_size;
}
#endif
return true;
}
bool FdFile::Unlink() {
if (file_path_.empty()) {
return false;
}
// Try to figure out whether this file is still referring to the one on disk.
bool is_current = false;
{
struct stat this_stat, current_stat;
int cur_fd = TEMP_FAILURE_RETRY(open(file_path_.c_str(), O_RDONLY | O_CLOEXEC));
if (cur_fd > 0) {
// File still exists.
if (fstat(fd_, &this_stat) == 0 && fstat(cur_fd, &current_stat) == 0) {
is_current = (this_stat.st_dev == current_stat.st_dev) &&
(this_stat.st_ino == current_stat.st_ino);
}
close(cur_fd);
}
}
if (is_current) {
unlink(file_path_.c_str());
}
return is_current;
}
bool FdFile::Erase(bool unlink) {
DCHECK(!read_only_mode_);
bool ret_result = true;
if (unlink) {
ret_result = Unlink();
}
int result;
result = SetLength(0);
result = Flush();
result = Close();
// Ignore the errors.
(void) result;
return ret_result;
}
int FdFile::FlushCloseOrErase() {
DCHECK(!read_only_mode_);
int flush_result = Flush();
if (flush_result != 0) {
LOG(ERROR) << "CloseOrErase failed while flushing a file.";
Erase();
return flush_result;
}
int close_result = Close();
if (close_result != 0) {
LOG(ERROR) << "CloseOrErase failed while closing a file.";
Erase();
return close_result;
}
return 0;
}
int FdFile::FlushClose() {
DCHECK(!read_only_mode_);
int flush_result = Flush();
if (flush_result != 0) {
LOG(ERROR) << "FlushClose failed while flushing a file.";
}
int close_result = Close();
if (close_result != 0) {
LOG(ERROR) << "FlushClose failed while closing a file.";
}
return (flush_result != 0) ? flush_result : close_result;
}
void FdFile::MarkUnchecked() {
guard_state_ = GuardState::kNoCheck;
}
bool FdFile::ClearContent() {
DCHECK(!read_only_mode_);
if (SetLength(0) < 0) {
PLOG(ERROR) << "Failed to reset the length";
return false;
}
return ResetOffset();
}
bool FdFile::ResetOffset() {
DCHECK(!read_only_mode_);
off_t rc = TEMP_FAILURE_RETRY(lseek(fd_, 0, SEEK_SET));
if (rc == static_cast<off_t>(-1)) {
PLOG(ERROR) << "Failed to reset the offset";
return false;
}
return true;
}
int FdFile::Compare(FdFile* other) {
int64_t length = GetLength();
int64_t length2 = other->GetLength();
if (length != length2) {
return length < length2 ? -1 : 1;
}
static const size_t kBufferSize = 4096;
std::unique_ptr<uint8_t[]> buffer1(new uint8_t[kBufferSize]);
std::unique_ptr<uint8_t[]> buffer2(new uint8_t[kBufferSize]);
size_t offset = 0;
while (length > 0) {
size_t len = std::min(kBufferSize, static_cast<size_t>(length));
if (!PreadFully(&buffer1[0], len, offset)) {
return -1;
}
if (!other->PreadFully(&buffer2[0], len, offset)) {
return 1;
}
int result = memcmp(&buffer1[0], &buffer2[0], len);
if (result != 0) {
return result;
}
length -= len;
offset += len;
}
return 0;
}
bool FdFile::IsOpenFd(int fd) {
if (fd == kInvalidFd) {
return false;
}
#ifdef _WIN32 // Windows toolchain does not support F_GETFD.
return true;
#else
int saved_errno = errno;
bool is_open = (fcntl(fd, F_GETFD) != -1);
errno = saved_errno;
return is_open;
#endif
}
} // namespace unix_file