blob: aeb7fa21a528805df02c586369563e76add1b845 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "time_utils.h"
#include <inttypes.h>
#include <stdio.h>
#include <limits>
#include <sstream>
#include "android-base/stringprintf.h"
#include "logging.h"
#if defined(__APPLE__)
#include <sys/time.h>
#endif
namespace art {
namespace {
#if !defined(__linux__)
int GetTimeOfDay(struct timeval* tv, struct timezone* tz) {
#ifdef _WIN32
return mingw_gettimeofday(tv, tz);
#else
return gettimeofday(tv, tz);
#endif
}
#endif
} // namespace
using android::base::StringPrintf;
std::string PrettyDuration(uint64_t nano_duration, size_t max_fraction_digits) {
if (nano_duration == 0) {
return "0";
} else {
return FormatDuration(nano_duration, GetAppropriateTimeUnit(nano_duration),
max_fraction_digits);
}
}
TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration) {
const uint64_t one_sec = 1000 * 1000 * 1000;
const uint64_t one_ms = 1000 * 1000;
const uint64_t one_us = 1000;
if (nano_duration >= one_sec) {
return kTimeUnitSecond;
} else if (nano_duration >= one_ms) {
return kTimeUnitMillisecond;
} else if (nano_duration >= one_us) {
return kTimeUnitMicrosecond;
} else {
return kTimeUnitNanosecond;
}
}
uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit) {
const uint64_t one_sec = 1000 * 1000 * 1000;
const uint64_t one_ms = 1000 * 1000;
const uint64_t one_us = 1000;
switch (time_unit) {
case kTimeUnitSecond:
return one_sec;
case kTimeUnitMillisecond:
return one_ms;
case kTimeUnitMicrosecond:
return one_us;
case kTimeUnitNanosecond:
return 1;
}
return 0;
}
std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit,
size_t max_fraction_digits) {
const char* unit = nullptr;
uint64_t divisor = GetNsToTimeUnitDivisor(time_unit);
switch (time_unit) {
case kTimeUnitSecond:
unit = "s";
break;
case kTimeUnitMillisecond:
unit = "ms";
break;
case kTimeUnitMicrosecond:
unit = "us";
break;
case kTimeUnitNanosecond:
unit = "ns";
break;
}
const uint64_t whole_part = nano_duration / divisor;
uint64_t fractional_part = nano_duration % divisor;
if (fractional_part == 0) {
return StringPrintf("%" PRIu64 "%s", whole_part, unit);
} else {
static constexpr size_t kMaxDigits = 30;
size_t avail_digits = kMaxDigits;
char fraction_buffer[kMaxDigits];
char* ptr = fraction_buffer;
uint64_t multiplier = 10;
// This infinite loops if fractional part is 0.
while (avail_digits > 1 && fractional_part * multiplier < divisor) {
multiplier *= 10;
*ptr++ = '0';
avail_digits--;
}
snprintf(ptr, avail_digits, "%" PRIu64, fractional_part);
fraction_buffer[std::min(kMaxDigits - 1, max_fraction_digits)] = '\0';
return StringPrintf("%" PRIu64 ".%s%s", whole_part, fraction_buffer, unit);
}
}
std::string GetIsoDate() {
tm tmbuf;
int ns;
#ifdef _WIN32
time_t now = time(nullptr);
localtime_s(&tmbuf, &now);
ns = 0;
#else
if (__builtin_available(macOS 10.12, *)) {
timespec now;
clock_gettime(CLOCK_REALTIME, &now);
localtime_r(&now.tv_sec, &tmbuf);
ns = now.tv_nsec;
} else {
time_t now = time(nullptr);
localtime_r(&now, &tmbuf);
ns = 0;
}
#endif
char zone[16] = {};
strftime(zone, sizeof(zone), "%z", &tmbuf);
return StringPrintf("%04d-%02d-%02d %02d:%02d:%02d.%09d%s",
tmbuf.tm_year + 1900, tmbuf.tm_mon+1, tmbuf.tm_mday,
tmbuf.tm_hour, tmbuf.tm_min, tmbuf.tm_sec, ns, zone);
}
uint64_t MilliTime() {
#if defined(__linux__)
timespec now;
clock_gettime(CLOCK_MONOTONIC, &now);
return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000) + now.tv_nsec / UINT64_C(1000000);
#else
timeval now;
GetTimeOfDay(&now, nullptr);
return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000) + now.tv_usec / UINT64_C(1000);
#endif
}
uint64_t MicroTime() {
#if defined(__linux__)
timespec now;
clock_gettime(CLOCK_MONOTONIC, &now);
return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
#else
timeval now;
GetTimeOfDay(&now, nullptr);
return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_usec;
#endif
}
uint64_t NanoTime() {
#if defined(__linux__)
timespec now;
clock_gettime(CLOCK_MONOTONIC, &now);
return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
#else
timeval now;
GetTimeOfDay(&now, nullptr);
return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_usec * UINT64_C(1000);
#endif
}
uint64_t ThreadCpuNanoTime() {
#if defined(__linux__)
timespec now;
clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now);
return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
#else
UNIMPLEMENTED(WARNING);
return -1;
#endif
}
uint64_t ProcessCpuNanoTime() {
#if defined(__linux__)
timespec now;
clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &now);
return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
#else
// We cannot use clock_gettime() here. Return the process wall clock time
// (using art::NanoTime, which relies on gettimeofday()) as approximation of
// the process CPU time instead.
//
// Note: clock_gettime() is available from macOS 10.12 (Darwin 16), but we try
// to keep things simple here.
return NanoTime();
#endif
}
void NanoSleep(uint64_t ns) {
timespec tm;
tm.tv_sec = SaturatedTimeT(ns / MsToNs(1000));
tm.tv_nsec = ns - static_cast<uint64_t>(tm.tv_sec) * MsToNs(1000);
nanosleep(&tm, nullptr);
}
void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts) {
if (absolute) {
#if defined(__linux__)
clock_gettime(clock, ts);
#else
UNUSED(clock);
timeval tv;
GetTimeOfDay(&tv, nullptr);
ts->tv_sec = tv.tv_sec;
ts->tv_nsec = tv.tv_usec * 1000;
#endif
} else {
ts->tv_sec = 0;
ts->tv_nsec = 0;
}
int64_t end_sec = ts->tv_sec + ms / 1000;
constexpr int32_t int32_max = std::numeric_limits<int32_t>::max();
if (UNLIKELY(end_sec >= int32_max)) {
// Either ms was intended to denote an infinite timeout, or we have a
// problem. The former generally uses the largest possible millisecond
// or nanosecond value. Log only in the latter case.
constexpr int64_t int64_max = std::numeric_limits<int64_t>::max();
if (ms != int64_max && ms != int64_max / (1000 * 1000)) {
LOG(INFO) << "Note: end time exceeds INT32_MAX: " << end_sec;
}
end_sec = int32_max - 1; // Allow for increment below.
}
ts->tv_sec = end_sec;
ts->tv_nsec = (ts->tv_nsec + (ms % 1000) * 1000000) + ns;
// Catch rollover.
if (ts->tv_nsec >= 1000000000L) {
ts->tv_sec++;
ts->tv_nsec -= 1000000000L;
}
}
} // namespace art