blob: 04c11ede63c963a50efd75a28a6c456ee535463b [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mem_map.h"
#include <inttypes.h>
#include <stdlib.h>
#if !defined(ANDROID_OS) && !defined(__Fuchsia__) && !defined(_WIN32)
#include <sys/resource.h>
#endif
#if defined(__linux__)
#include <sys/prctl.h>
#endif
#include <map>
#include <memory>
#include <sstream>
#include "android-base/stringprintf.h"
#include "android-base/unique_fd.h"
#include "allocator.h"
#include "bit_utils.h"
#include "globals.h"
#include "logging.h" // For VLOG_IS_ON.
#include "memory_tool.h"
#include "mman.h" // For the PROT_* and MAP_* constants.
#include "utils.h"
#ifndef MAP_ANONYMOUS
#define MAP_ANONYMOUS MAP_ANON
#endif
namespace art {
using android::base::StringPrintf;
using android::base::unique_fd;
template<class Key, class T, AllocatorTag kTag, class Compare = std::less<Key>>
using AllocationTrackingMultiMap =
std::multimap<Key, T, Compare, TrackingAllocator<std::pair<const Key, T>, kTag>>;
using Maps = AllocationTrackingMultiMap<void*, MemMap*, kAllocatorTagMaps>;
// All the non-empty MemMaps. Use a multimap as we do a reserve-and-divide (eg ElfMap::Load()).
static Maps* gMaps GUARDED_BY(MemMap::GetMemMapsLock()) = nullptr;
// A map containing unique strings used for indentifying anonymous mappings
static std::map<std::string, int> debugStrMap GUARDED_BY(MemMap::GetMemMapsLock());
// Retrieve iterator to a `gMaps` entry that is known to exist.
Maps::iterator GetGMapsEntry(const MemMap& map) REQUIRES(MemMap::GetMemMapsLock()) {
DCHECK(map.IsValid());
DCHECK(gMaps != nullptr);
for (auto it = gMaps->lower_bound(map.BaseBegin()), end = gMaps->end();
it != end && it->first == map.BaseBegin();
++it) {
if (it->second == &map) {
return it;
}
}
LOG(FATAL) << "MemMap not found";
UNREACHABLE();
}
std::ostream& operator<<(std::ostream& os, const Maps& mem_maps) {
os << "MemMap:" << std::endl;
for (auto it = mem_maps.begin(); it != mem_maps.end(); ++it) {
void* base = it->first;
MemMap* map = it->second;
CHECK_EQ(base, map->BaseBegin());
os << *map << std::endl;
}
return os;
}
std::mutex* MemMap::mem_maps_lock_ = nullptr;
#if USE_ART_LOW_4G_ALLOCATOR
// Handling mem_map in 32b address range for 64b architectures that do not support MAP_32BIT.
// The regular start of memory allocations. The first 64KB is protected by SELinux.
static constexpr uintptr_t LOW_MEM_START = 64 * KB;
// Generate random starting position.
// To not interfere with image position, take the image's address and only place it below. Current
// formula (sketch):
//
// ART_BASE_ADDR = 0001XXXXXXXXXXXXXXX
// ----------------------------------------
// = 0000111111111111111
// & ~(kPageSize - 1) =~0000000000000001111
// ----------------------------------------
// mask = 0000111111111110000
// & random data = YYYYYYYYYYYYYYYYYYY
// -----------------------------------
// tmp = 0000YYYYYYYYYYY0000
// + LOW_MEM_START = 0000000000001000000
// --------------------------------------
// start
//
// arc4random as an entropy source is exposed in Bionic, but not in glibc. When we
// do not have Bionic, simply start with LOW_MEM_START.
// Function is standalone so it can be tested somewhat in mem_map_test.cc.
#ifdef __BIONIC__
uintptr_t CreateStartPos(uint64_t input) {
CHECK_NE(0, ART_BASE_ADDRESS);
// Start with all bits below highest bit in ART_BASE_ADDRESS.
constexpr size_t leading_zeros = CLZ(static_cast<uint32_t>(ART_BASE_ADDRESS));
constexpr uintptr_t mask_ones = (1 << (31 - leading_zeros)) - 1;
// Lowest (usually 12) bits are not used, as aligned by page size.
constexpr uintptr_t mask = mask_ones & ~(kPageSize - 1);
// Mask input data.
return (input & mask) + LOW_MEM_START;
}
#endif
static uintptr_t GenerateNextMemPos() {
#ifdef __BIONIC__
uint64_t random_data;
arc4random_buf(&random_data, sizeof(random_data));
return CreateStartPos(random_data);
#else
// No arc4random on host, see above.
return LOW_MEM_START;
#endif
}
// Initialize linear scan to random position.
uintptr_t MemMap::next_mem_pos_ = GenerateNextMemPos();
#endif
// Return true if the address range is contained in a single memory map by either reading
// the gMaps variable or the /proc/self/map entry.
bool MemMap::ContainedWithinExistingMap(uint8_t* ptr, size_t size, std::string* error_msg) {
uintptr_t begin = reinterpret_cast<uintptr_t>(ptr);
uintptr_t end = begin + size;
{
std::lock_guard<std::mutex> mu(*mem_maps_lock_);
for (auto& pair : *gMaps) {
MemMap* const map = pair.second;
if (begin >= reinterpret_cast<uintptr_t>(map->Begin()) &&
end <= reinterpret_cast<uintptr_t>(map->End())) {
return true;
}
}
}
if (error_msg != nullptr) {
PrintFileToLog("/proc/self/maps", LogSeverity::ERROR);
*error_msg = StringPrintf("Requested region 0x%08" PRIxPTR "-0x%08" PRIxPTR " does not overlap "
"any existing map. See process maps in the log.", begin, end);
}
return false;
}
// CheckMapRequest to validate a non-MAP_FAILED mmap result based on
// the expected value, calling munmap if validation fails, giving the
// reason in error_msg.
//
// If the expected_ptr is null, nothing is checked beyond the fact
// that the actual_ptr is not MAP_FAILED. However, if expected_ptr is
// non-null, we check that pointer is the actual_ptr == expected_ptr,
// and if not, report in error_msg what the conflict mapping was if
// found, or a generic error in other cases.
bool MemMap::CheckMapRequest(uint8_t* expected_ptr, void* actual_ptr, size_t byte_count,
std::string* error_msg) {
// Handled first by caller for more specific error messages.
CHECK(actual_ptr != MAP_FAILED);
if (expected_ptr == nullptr) {
return true;
}
uintptr_t actual = reinterpret_cast<uintptr_t>(actual_ptr);
uintptr_t expected = reinterpret_cast<uintptr_t>(expected_ptr);
if (expected_ptr == actual_ptr) {
return true;
}
// We asked for an address but didn't get what we wanted, all paths below here should fail.
int result = TargetMUnmap(actual_ptr, byte_count);
if (result == -1) {
PLOG(WARNING) << StringPrintf("munmap(%p, %zd) failed", actual_ptr, byte_count);
}
if (error_msg != nullptr) {
// We call this here so that we can try and generate a full error
// message with the overlapping mapping. There's no guarantee that
// that there will be an overlap though, since
// - The kernel is not *required* to honor expected_ptr unless MAP_FIXED is
// true, even if there is no overlap
// - There might have been an overlap at the point of mmap, but the
// overlapping region has since been unmapped.
// Tell the client the mappings that were in place at the time.
if (kIsDebugBuild) {
PrintFileToLog("/proc/self/maps", LogSeverity::WARNING);
}
std::ostringstream os;
os << StringPrintf("Failed to mmap at expected address, mapped at "
"0x%08" PRIxPTR " instead of 0x%08" PRIxPTR,
actual, expected);
*error_msg = os.str();
}
return false;
}
bool MemMap::CheckReservation(uint8_t* expected_ptr,
size_t byte_count,
const char* name,
const MemMap& reservation,
/*out*/std::string* error_msg) {
if (!reservation.IsValid()) {
*error_msg = StringPrintf("Invalid reservation for %s", name);
return false;
}
DCHECK_ALIGNED(reservation.Begin(), kPageSize);
if (reservation.Begin() != expected_ptr) {
*error_msg = StringPrintf("Bad image reservation start for %s: %p instead of %p",
name,
reservation.Begin(),
expected_ptr);
return false;
}
if (byte_count > reservation.Size()) {
*error_msg = StringPrintf("Insufficient reservation, required %zu, available %zu",
byte_count,
reservation.Size());
return false;
}
return true;
}
#if USE_ART_LOW_4G_ALLOCATOR
void* MemMap::TryMemMapLow4GB(void* ptr,
size_t page_aligned_byte_count,
int prot,
int flags,
int fd,
off_t offset) {
void* actual = TargetMMap(ptr, page_aligned_byte_count, prot, flags, fd, offset);
if (actual != MAP_FAILED) {
// Since we didn't use MAP_FIXED the kernel may have mapped it somewhere not in the low
// 4GB. If this is the case, unmap and retry.
if (reinterpret_cast<uintptr_t>(actual) + page_aligned_byte_count >= 4 * GB) {
TargetMUnmap(actual, page_aligned_byte_count);
actual = MAP_FAILED;
}
}
return actual;
}
#endif
void MemMap::SetDebugName(void* map_ptr, const char* name, size_t size) {
// Debug naming is only used for Android target builds. For Linux targets,
// we'll still call prctl but it wont do anything till we upstream the prctl.
if (kIsTargetFuchsia || !kIsTargetBuild) {
return;
}
// lock as std::map is not thread-safe
std::lock_guard<std::mutex> mu(*mem_maps_lock_);
std::string debug_friendly_name("dalvik-");
debug_friendly_name += name;
auto it = debugStrMap.find(debug_friendly_name);
if (it == debugStrMap.end()) {
it = debugStrMap.insert(std::make_pair(std::move(debug_friendly_name), 1)).first;
}
DCHECK(it != debugStrMap.end());
#if defined(PR_SET_VMA) && defined(__linux__)
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, map_ptr, size, it->first.c_str());
#else
// Prevent variable unused compiler errors.
UNUSED(map_ptr, size);
#endif
}
MemMap MemMap::MapAnonymous(const char* name,
uint8_t* addr,
size_t byte_count,
int prot,
bool low_4gb,
bool reuse,
/*inout*/MemMap* reservation,
/*out*/std::string* error_msg,
bool use_debug_name) {
#ifndef __LP64__
UNUSED(low_4gb);
#endif
if (byte_count == 0) {
*error_msg = "Empty MemMap requested.";
return Invalid();
}
size_t page_aligned_byte_count = RoundUp(byte_count, kPageSize);
int flags = MAP_PRIVATE | MAP_ANONYMOUS;
if (reuse) {
// reuse means it is okay that it overlaps an existing page mapping.
// Only use this if you actually made the page reservation yourself.
CHECK(addr != nullptr);
DCHECK(reservation == nullptr);
DCHECK(ContainedWithinExistingMap(addr, byte_count, error_msg)) << *error_msg;
flags |= MAP_FIXED;
} else if (reservation != nullptr) {
CHECK(addr != nullptr);
if (!CheckReservation(addr, byte_count, name, *reservation, error_msg)) {
return MemMap::Invalid();
}
flags |= MAP_FIXED;
}
unique_fd fd;
// We need to store and potentially set an error number for pretty printing of errors
int saved_errno = 0;
void* actual = MapInternal(addr,
page_aligned_byte_count,
prot,
flags,
fd.get(),
0,
low_4gb);
saved_errno = errno;
if (actual == MAP_FAILED) {
if (error_msg != nullptr) {
PrintFileToLog("/proc/self/maps", LogSeverity::WARNING);
*error_msg = StringPrintf("Failed anonymous mmap(%p, %zd, 0x%x, 0x%x, %d, 0): %s. "
"See process maps in the log.",
addr,
page_aligned_byte_count,
prot,
flags,
fd.get(),
strerror(saved_errno));
}
return Invalid();
}
if (!CheckMapRequest(addr, actual, page_aligned_byte_count, error_msg)) {
return Invalid();
}
if (use_debug_name) {
SetDebugName(actual, name, page_aligned_byte_count);
}
if (reservation != nullptr) {
// Re-mapping was successful, transfer the ownership of the memory to the new MemMap.
DCHECK_EQ(actual, reservation->Begin());
reservation->ReleaseReservedMemory(byte_count);
}
return MemMap(name,
reinterpret_cast<uint8_t*>(actual),
byte_count,
actual,
page_aligned_byte_count,
prot,
reuse);
}
MemMap MemMap::MapAnonymousAligned(const char* name,
size_t byte_count,
int prot,
bool low_4gb,
size_t alignment,
/*out=*/std::string* error_msg) {
DCHECK(IsPowerOfTwo(alignment));
DCHECK_GT(alignment, kPageSize);
// Allocate extra 'alignment - kPageSize' bytes so that the mapping can be aligned.
MemMap ret = MapAnonymous(name,
/*addr=*/nullptr,
byte_count + alignment - kPageSize,
prot,
low_4gb,
/*reuse=*/false,
/*reservation=*/nullptr,
error_msg);
if (LIKELY(ret.IsValid())) {
ret.AlignBy(alignment, /*align_both_ends=*/false);
ret.SetSize(byte_count);
DCHECK_EQ(ret.Size(), byte_count);
DCHECK_ALIGNED_PARAM(ret.Begin(), alignment);
}
return ret;
}
MemMap MemMap::MapPlaceholder(const char* name, uint8_t* addr, size_t byte_count) {
if (byte_count == 0) {
return Invalid();
}
const size_t page_aligned_byte_count = RoundUp(byte_count, kPageSize);
return MemMap(name, addr, byte_count, addr, page_aligned_byte_count, 0, /* reuse= */ true);
}
template<typename A, typename B>
static ptrdiff_t PointerDiff(A* a, B* b) {
return static_cast<ptrdiff_t>(reinterpret_cast<intptr_t>(a) - reinterpret_cast<intptr_t>(b));
}
bool MemMap::ReplaceWith(MemMap* source, /*out*/std::string* error) {
#if !HAVE_MREMAP_SYSCALL
UNUSED(source);
*error = "Cannot perform atomic replace because we are missing the required mremap syscall";
return false;
#else // !HAVE_MREMAP_SYSCALL
CHECK(source != nullptr);
CHECK(source->IsValid());
if (!MemMap::kCanReplaceMapping) {
*error = "Unable to perform atomic replace due to runtime environment!";
return false;
}
// neither can be reuse.
if (source->reuse_ || reuse_) {
*error = "One or both mappings is not a real mmap!";
return false;
}
// TODO Support redzones.
if (source->redzone_size_ != 0 || redzone_size_ != 0) {
*error = "source and dest have different redzone sizes";
return false;
}
// Make sure they have the same offset from the actual mmap'd address
if (PointerDiff(BaseBegin(), Begin()) != PointerDiff(source->BaseBegin(), source->Begin())) {
*error =
"source starts at a different offset from the mmap. Cannot atomically replace mappings";
return false;
}
// mremap doesn't allow the final [start, end] to overlap with the initial [start, end] (it's like
// memcpy but the check is explicit and actually done).
if (source->BaseBegin() > BaseBegin() &&
reinterpret_cast<uint8_t*>(BaseBegin()) + source->BaseSize() >
reinterpret_cast<uint8_t*>(source->BaseBegin())) {
*error = "destination memory pages overlap with source memory pages";
return false;
}
// Change the protection to match the new location.
int old_prot = source->GetProtect();
if (!source->Protect(GetProtect())) {
*error = "Could not change protections for source to those required for dest.";
return false;
}
// Do the mremap.
void* res = mremap(/*old_address*/source->BaseBegin(),
/*old_size*/source->BaseSize(),
/*new_size*/source->BaseSize(),
/*flags*/MREMAP_MAYMOVE | MREMAP_FIXED,
/*new_address*/BaseBegin());
if (res == MAP_FAILED) {
int saved_errno = errno;
// Wasn't able to move mapping. Change the protection of source back to the original one and
// return.
source->Protect(old_prot);
*error = std::string("Failed to mremap source to dest. Error was ") + strerror(saved_errno);
return false;
}
CHECK(res == BaseBegin());
// The new base_size is all the pages of the 'source' plus any remaining dest pages. We will unmap
// them later.
size_t new_base_size = std::max(source->base_size_, base_size_);
// Invalidate *source, don't unmap it though since it is already gone.
size_t source_size = source->size_;
source->Invalidate();
size_ = source_size;
base_size_ = new_base_size;
// Reduce base_size if needed (this will unmap the extra pages).
SetSize(source_size);
return true;
#endif // !HAVE_MREMAP_SYSCALL
}
MemMap MemMap::MapFileAtAddress(uint8_t* expected_ptr,
size_t byte_count,
int prot,
int flags,
int fd,
off_t start,
bool low_4gb,
const char* filename,
bool reuse,
/*inout*/MemMap* reservation,
/*out*/std::string* error_msg) {
CHECK_NE(0, prot);
CHECK_NE(0, flags & (MAP_SHARED | MAP_PRIVATE));
// Note that we do not allow MAP_FIXED unless reuse == true or we have an existing
// reservation, i.e we expect this mapping to be contained within an existing map.
if (reuse) {
// reuse means it is okay that it overlaps an existing page mapping.
// Only use this if you actually made the page reservation yourself.
CHECK(expected_ptr != nullptr);
DCHECK(reservation == nullptr);
DCHECK(error_msg != nullptr);
DCHECK(ContainedWithinExistingMap(expected_ptr, byte_count, error_msg))
<< ((error_msg != nullptr) ? *error_msg : std::string());
flags |= MAP_FIXED;
} else if (reservation != nullptr) {
DCHECK(error_msg != nullptr);
if (!CheckReservation(expected_ptr, byte_count, filename, *reservation, error_msg)) {
return Invalid();
}
flags |= MAP_FIXED;
} else {
CHECK_EQ(0, flags & MAP_FIXED);
// Don't bother checking for an overlapping region here. We'll
// check this if required after the fact inside CheckMapRequest.
}
if (byte_count == 0) {
*error_msg = "Empty MemMap requested";
return Invalid();
}
// Adjust 'offset' to be page-aligned as required by mmap.
int page_offset = start % kPageSize;
off_t page_aligned_offset = start - page_offset;
// Adjust 'byte_count' to be page-aligned as we will map this anyway.
size_t page_aligned_byte_count = RoundUp(byte_count + page_offset, kPageSize);
// The 'expected_ptr' is modified (if specified, ie non-null) to be page aligned to the file but
// not necessarily to virtual memory. mmap will page align 'expected' for us.
uint8_t* page_aligned_expected =
(expected_ptr == nullptr) ? nullptr : (expected_ptr - page_offset);
size_t redzone_size = 0;
if (kRunningOnMemoryTool && kMemoryToolAddsRedzones && expected_ptr == nullptr) {
redzone_size = kPageSize;
page_aligned_byte_count += redzone_size;
}
uint8_t* actual = reinterpret_cast<uint8_t*>(MapInternal(page_aligned_expected,
page_aligned_byte_count,
prot,
flags,
fd,
page_aligned_offset,
low_4gb));
if (actual == MAP_FAILED) {
if (error_msg != nullptr) {
auto saved_errno = errno;
if (kIsDebugBuild || VLOG_IS_ON(oat)) {
PrintFileToLog("/proc/self/maps", LogSeverity::WARNING);
}
*error_msg = StringPrintf("mmap(%p, %zd, 0x%x, 0x%x, %d, %" PRId64
") of file '%s' failed: %s. See process maps in the log.",
page_aligned_expected, page_aligned_byte_count, prot, flags, fd,
static_cast<int64_t>(page_aligned_offset), filename,
strerror(saved_errno));
}
return Invalid();
}
if (!CheckMapRequest(expected_ptr, actual, page_aligned_byte_count, error_msg)) {
return Invalid();
}
if (redzone_size != 0) {
const uint8_t *real_start = actual + page_offset;
const uint8_t *real_end = actual + page_offset + byte_count;
const uint8_t *mapping_end = actual + page_aligned_byte_count;
MEMORY_TOOL_MAKE_NOACCESS(actual, real_start - actual);
MEMORY_TOOL_MAKE_NOACCESS(real_end, mapping_end - real_end);
page_aligned_byte_count -= redzone_size;
}
if (reservation != nullptr) {
// Re-mapping was successful, transfer the ownership of the memory to the new MemMap.
DCHECK_EQ(actual, reservation->Begin());
reservation->ReleaseReservedMemory(byte_count);
}
return MemMap(filename,
actual + page_offset,
byte_count,
actual,
page_aligned_byte_count,
prot,
reuse,
redzone_size);
}
MemMap::MemMap(MemMap&& other) noexcept
: MemMap() {
swap(other);
}
MemMap::~MemMap() {
Reset();
}
void MemMap::DoReset() {
DCHECK(IsValid());
size_t real_base_size = base_size_;
// Unlike Valgrind, AddressSanitizer requires that all manually poisoned memory is unpoisoned
// before it is returned to the system.
if (redzone_size_ != 0) {
// Add redzone_size_ back to base_size or it will cause a mmap leakage.
real_base_size += redzone_size_;
MEMORY_TOOL_MAKE_UNDEFINED(
reinterpret_cast<char*>(base_begin_) + real_base_size - redzone_size_,
redzone_size_);
}
if (!reuse_) {
MEMORY_TOOL_MAKE_UNDEFINED(base_begin_, base_size_);
if (!already_unmapped_) {
int result = TargetMUnmap(base_begin_, real_base_size);
if (result == -1) {
PLOG(FATAL) << "munmap failed";
}
}
}
Invalidate();
}
void MemMap::ResetInForkedProcess() {
// This should be called on a map that has MADV_DONTFORK.
// The kernel has already unmapped this.
already_unmapped_ = true;
Reset();
}
void MemMap::Invalidate() {
DCHECK(IsValid());
// Remove it from gMaps.
std::lock_guard<std::mutex> mu(*mem_maps_lock_);
auto it = GetGMapsEntry(*this);
gMaps->erase(it);
// Mark it as invalid.
base_size_ = 0u;
DCHECK(!IsValid());
}
void MemMap::swap(MemMap& other) {
if (IsValid() || other.IsValid()) {
std::lock_guard<std::mutex> mu(*mem_maps_lock_);
DCHECK(gMaps != nullptr);
auto this_it = IsValid() ? GetGMapsEntry(*this) : gMaps->end();
auto other_it = other.IsValid() ? GetGMapsEntry(other) : gMaps->end();
if (IsValid()) {
DCHECK(this_it != gMaps->end());
DCHECK_EQ(this_it->second, this);
this_it->second = &other;
}
if (other.IsValid()) {
DCHECK(other_it != gMaps->end());
DCHECK_EQ(other_it->second, &other);
other_it->second = this;
}
// Swap members with the `mem_maps_lock_` held so that `base_begin_` matches
// with the `gMaps` key when other threads try to use `gMaps`.
SwapMembers(other);
} else {
SwapMembers(other);
}
}
void MemMap::SwapMembers(MemMap& other) {
name_.swap(other.name_);
std::swap(begin_, other.begin_);
std::swap(size_, other.size_);
std::swap(base_begin_, other.base_begin_);
std::swap(base_size_, other.base_size_);
std::swap(prot_, other.prot_);
std::swap(reuse_, other.reuse_);
std::swap(already_unmapped_, other.already_unmapped_);
std::swap(redzone_size_, other.redzone_size_);
}
MemMap::MemMap(const std::string& name, uint8_t* begin, size_t size, void* base_begin,
size_t base_size, int prot, bool reuse, size_t redzone_size)
: name_(name), begin_(begin), size_(size), base_begin_(base_begin), base_size_(base_size),
prot_(prot), reuse_(reuse), already_unmapped_(false), redzone_size_(redzone_size) {
if (size_ == 0) {
CHECK(begin_ == nullptr);
CHECK(base_begin_ == nullptr);
CHECK_EQ(base_size_, 0U);
} else {
CHECK(begin_ != nullptr);
CHECK(base_begin_ != nullptr);
CHECK_NE(base_size_, 0U);
// Add it to gMaps.
std::lock_guard<std::mutex> mu(*mem_maps_lock_);
DCHECK(gMaps != nullptr);
gMaps->insert(std::make_pair(base_begin_, this));
}
}
MemMap MemMap::RemapAtEnd(uint8_t* new_end,
const char* tail_name,
int tail_prot,
std::string* error_msg,
bool use_debug_name) {
return RemapAtEnd(new_end,
tail_name,
tail_prot,
MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
/* fd= */ -1,
/* offset= */ 0,
error_msg,
use_debug_name);
}
MemMap MemMap::RemapAtEnd(uint8_t* new_end,
const char* tail_name,
int tail_prot,
int flags,
int fd,
off_t offset,
std::string* error_msg,
bool use_debug_name) {
DCHECK_GE(new_end, Begin());
DCHECK_LE(new_end, End());
DCHECK_LE(begin_ + size_, reinterpret_cast<uint8_t*>(base_begin_) + base_size_);
DCHECK_ALIGNED(begin_, kPageSize);
DCHECK_ALIGNED(base_begin_, kPageSize);
DCHECK_ALIGNED(reinterpret_cast<uint8_t*>(base_begin_) + base_size_, kPageSize);
DCHECK_ALIGNED(new_end, kPageSize);
uint8_t* old_end = begin_ + size_;
uint8_t* old_base_end = reinterpret_cast<uint8_t*>(base_begin_) + base_size_;
uint8_t* new_base_end = new_end;
DCHECK_LE(new_base_end, old_base_end);
if (new_base_end == old_base_end) {
return Invalid();
}
size_t new_size = new_end - reinterpret_cast<uint8_t*>(begin_);
size_t new_base_size = new_base_end - reinterpret_cast<uint8_t*>(base_begin_);
DCHECK_LE(begin_ + new_size, reinterpret_cast<uint8_t*>(base_begin_) + new_base_size);
size_t tail_size = old_end - new_end;
uint8_t* tail_base_begin = new_base_end;
size_t tail_base_size = old_base_end - new_base_end;
DCHECK_EQ(tail_base_begin + tail_base_size, old_base_end);
DCHECK_ALIGNED(tail_base_size, kPageSize);
MEMORY_TOOL_MAKE_UNDEFINED(tail_base_begin, tail_base_size);
// Note: Do not explicitly unmap the tail region, mmap() with MAP_FIXED automatically
// removes old mappings for the overlapping region. This makes the operation atomic
// and prevents other threads from racing to allocate memory in the requested region.
uint8_t* actual = reinterpret_cast<uint8_t*>(TargetMMap(tail_base_begin,
tail_base_size,
tail_prot,
flags,
fd,
offset));
if (actual == MAP_FAILED) {
*error_msg = StringPrintf("map(%p, %zd, 0x%x, 0x%x, %d, 0) failed: %s. See process "
"maps in the log.", tail_base_begin, tail_base_size, tail_prot, flags,
fd, strerror(errno));
PrintFileToLog("/proc/self/maps", LogSeverity::WARNING);
return Invalid();
}
// Update *this.
if (new_base_size == 0u) {
std::lock_guard<std::mutex> mu(*mem_maps_lock_);
auto it = GetGMapsEntry(*this);
gMaps->erase(it);
}
if (use_debug_name) {
SetDebugName(actual, tail_name, tail_base_size);
}
size_ = new_size;
base_size_ = new_base_size;
// Return the new mapping.
return MemMap(tail_name, actual, tail_size, actual, tail_base_size, tail_prot, false);
}
MemMap MemMap::TakeReservedMemory(size_t byte_count, bool reuse) {
uint8_t* begin = Begin();
ReleaseReservedMemory(byte_count); // Performs necessary DCHECK()s on this reservation.
size_t base_size = RoundUp(byte_count, kPageSize);
return MemMap(name_, begin, byte_count, begin, base_size, prot_, reuse);
}
void MemMap::ReleaseReservedMemory(size_t byte_count) {
// Check the reservation mapping.
DCHECK(IsValid());
DCHECK(!reuse_);
DCHECK(!already_unmapped_);
DCHECK_EQ(redzone_size_, 0u);
DCHECK_EQ(begin_, base_begin_);
DCHECK_EQ(size_, base_size_);
DCHECK_ALIGNED(begin_, kPageSize);
DCHECK_ALIGNED(size_, kPageSize);
// Check and round up the `byte_count`.
DCHECK_NE(byte_count, 0u);
DCHECK_LE(byte_count, size_);
byte_count = RoundUp(byte_count, kPageSize);
if (byte_count == size_) {
Invalidate();
} else {
// Shrink the reservation MemMap and update its `gMaps` entry.
std::lock_guard<std::mutex> mu(*mem_maps_lock_);
auto it = GetGMapsEntry(*this);
auto node = gMaps->extract(it);
begin_ += byte_count;
size_ -= byte_count;
base_begin_ = begin_;
base_size_ = size_;
node.key() = base_begin_;
gMaps->insert(std::move(node));
}
}
void MemMap::MadviseDontNeedAndZero() {
if (base_begin_ != nullptr || base_size_ != 0) {
if (!kMadviseZeroes) {
memset(base_begin_, 0, base_size_);
}
#ifdef _WIN32
// It is benign not to madvise away the pages here.
PLOG(WARNING) << "MemMap::MadviseDontNeedAndZero does not madvise on Windows.";
#else
int result = madvise(base_begin_, base_size_, MADV_DONTNEED);
if (result == -1) {
PLOG(WARNING) << "madvise failed";
}
#endif
}
}
int MemMap::MadviseDontFork() {
#if defined(__linux__)
if (base_begin_ != nullptr || base_size_ != 0) {
return madvise(base_begin_, base_size_, MADV_DONTFORK);
}
#endif
return -1;
}
bool MemMap::Sync() {
#ifdef _WIN32
// TODO: add FlushViewOfFile support.
PLOG(ERROR) << "MemMap::Sync unsupported on Windows.";
return false;
#else
// Historical note: To avoid Valgrind errors, we temporarily lifted the lower-end noaccess
// protection before passing it to msync() when `redzone_size_` was non-null, as Valgrind
// only accepts page-aligned base address, and excludes the higher-end noaccess protection
// from the msync range. b/27552451.
return msync(BaseBegin(), BaseSize(), MS_SYNC) == 0;
#endif
}
bool MemMap::Protect(int prot) {
if (base_begin_ == nullptr && base_size_ == 0) {
prot_ = prot;
return true;
}
#ifndef _WIN32
if (mprotect(base_begin_, base_size_, prot) == 0) {
prot_ = prot;
return true;
}
#endif
PLOG(ERROR) << "mprotect(" << reinterpret_cast<void*>(base_begin_) << ", " << base_size_ << ", "
<< prot << ") failed";
return false;
}
bool MemMap::CheckNoGaps(MemMap& begin_map, MemMap& end_map) {
std::lock_guard<std::mutex> mu(*mem_maps_lock_);
CHECK(begin_map.IsValid());
CHECK(end_map.IsValid());
CHECK(HasMemMap(begin_map));
CHECK(HasMemMap(end_map));
CHECK_LE(begin_map.BaseBegin(), end_map.BaseBegin());
MemMap* map = &begin_map;
while (map->BaseBegin() != end_map.BaseBegin()) {
MemMap* next_map = GetLargestMemMapAt(map->BaseEnd());
if (next_map == nullptr) {
// Found a gap.
return false;
}
map = next_map;
}
return true;
}
void MemMap::DumpMaps(std::ostream& os, bool terse) {
std::lock_guard<std::mutex> mu(*mem_maps_lock_);
DumpMapsLocked(os, terse);
}
void MemMap::DumpMapsLocked(std::ostream& os, bool terse) {
const auto& mem_maps = *gMaps;
if (!terse) {
os << mem_maps;
return;
}
// Terse output example:
// [MemMap: 0x409be000+0x20P~0x11dP+0x20P~0x61cP+0x20P prot=0x3 LinearAlloc]
// [MemMap: 0x451d6000+0x6bP(3) prot=0x3 large object space allocation]
// The details:
// "+0x20P" means 0x20 pages taken by a single mapping,
// "~0x11dP" means a gap of 0x11d pages,
// "+0x6bP(3)" means 3 mappings one after another, together taking 0x6b pages.
os << "MemMap:" << std::endl;
for (auto it = mem_maps.begin(), maps_end = mem_maps.end(); it != maps_end;) {
MemMap* map = it->second;
void* base = it->first;
CHECK_EQ(base, map->BaseBegin());
os << "[MemMap: " << base;
++it;
// Merge consecutive maps with the same protect flags and name.
constexpr size_t kMaxGaps = 9;
size_t num_gaps = 0;
size_t num = 1u;
size_t size = map->BaseSize();
CHECK_ALIGNED(size, kPageSize);
void* end = map->BaseEnd();
while (it != maps_end &&
it->second->GetProtect() == map->GetProtect() &&
it->second->GetName() == map->GetName() &&
(it->second->BaseBegin() == end || num_gaps < kMaxGaps)) {
if (it->second->BaseBegin() != end) {
++num_gaps;
os << "+0x" << std::hex << (size / kPageSize) << "P";
if (num != 1u) {
os << "(" << std::dec << num << ")";
}
size_t gap =
reinterpret_cast<uintptr_t>(it->second->BaseBegin()) - reinterpret_cast<uintptr_t>(end);
CHECK_ALIGNED(gap, kPageSize);
os << "~0x" << std::hex << (gap / kPageSize) << "P";
num = 0u;
size = 0u;
}
CHECK_ALIGNED(it->second->BaseSize(), kPageSize);
++num;
size += it->second->BaseSize();
end = it->second->BaseEnd();
++it;
}
os << "+0x" << std::hex << (size / kPageSize) << "P";
if (num != 1u) {
os << "(" << std::dec << num << ")";
}
os << " prot=0x" << std::hex << map->GetProtect() << " " << map->GetName() << "]" << std::endl;
}
}
bool MemMap::HasMemMap(MemMap& map) {
void* base_begin = map.BaseBegin();
for (auto it = gMaps->lower_bound(base_begin), end = gMaps->end();
it != end && it->first == base_begin; ++it) {
if (it->second == &map) {
return true;
}
}
return false;
}
MemMap* MemMap::GetLargestMemMapAt(void* address) {
size_t largest_size = 0;
MemMap* largest_map = nullptr;
DCHECK(gMaps != nullptr);
for (auto it = gMaps->lower_bound(address), end = gMaps->end();
it != end && it->first == address; ++it) {
MemMap* map = it->second;
CHECK(map != nullptr);
if (largest_size < map->BaseSize()) {
largest_size = map->BaseSize();
largest_map = map;
}
}
return largest_map;
}
void MemMap::Init() {
if (mem_maps_lock_ != nullptr) {
// dex2oat calls MemMap::Init twice since its needed before the runtime is created.
return;
}
mem_maps_lock_ = new std::mutex();
// Not for thread safety, but for the annotation that gMaps is GUARDED_BY(mem_maps_lock_).
std::lock_guard<std::mutex> mu(*mem_maps_lock_);
DCHECK(gMaps == nullptr);
gMaps = new Maps;
TargetMMapInit();
}
bool MemMap::IsInitialized() { return mem_maps_lock_ != nullptr; }
void MemMap::Shutdown() {
if (mem_maps_lock_ == nullptr) {
// If MemMap::Shutdown is called more than once, there is no effect.
return;
}
{
// Not for thread safety, but for the annotation that gMaps is GUARDED_BY(mem_maps_lock_).
std::lock_guard<std::mutex> mu(*mem_maps_lock_);
DCHECK(gMaps != nullptr);
delete gMaps;
gMaps = nullptr;
}
delete mem_maps_lock_;
mem_maps_lock_ = nullptr;
}
void MemMap::SetSize(size_t new_size) {
CHECK_LE(new_size, size_);
size_t new_base_size = RoundUp(new_size + static_cast<size_t>(PointerDiff(Begin(), BaseBegin())),
kPageSize);
if (new_base_size == base_size_) {
size_ = new_size;
return;
}
CHECK_LT(new_base_size, base_size_);
MEMORY_TOOL_MAKE_UNDEFINED(
reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(BaseBegin()) +
new_base_size),
base_size_ - new_base_size);
CHECK_EQ(TargetMUnmap(reinterpret_cast<void*>(
reinterpret_cast<uintptr_t>(BaseBegin()) + new_base_size),
base_size_ - new_base_size), 0)
<< new_base_size << " " << base_size_;
base_size_ = new_base_size;
size_ = new_size;
}
void* MemMap::MapInternalArtLow4GBAllocator(size_t length,
int prot,
int flags,
int fd,
off_t offset) {
#if USE_ART_LOW_4G_ALLOCATOR
void* actual = MAP_FAILED;
bool first_run = true;
std::lock_guard<std::mutex> mu(*mem_maps_lock_);
for (uintptr_t ptr = next_mem_pos_; ptr < 4 * GB; ptr += kPageSize) {
// Use gMaps as an optimization to skip over large maps.
// Find the first map which is address > ptr.
auto it = gMaps->upper_bound(reinterpret_cast<void*>(ptr));
if (it != gMaps->begin()) {
auto before_it = it;
--before_it;
// Start at the end of the map before the upper bound.
ptr = std::max(ptr, reinterpret_cast<uintptr_t>(before_it->second->BaseEnd()));
CHECK_ALIGNED(ptr, kPageSize);
}
while (it != gMaps->end()) {
// How much space do we have until the next map?
size_t delta = reinterpret_cast<uintptr_t>(it->first) - ptr;
// If the space may be sufficient, break out of the loop.
if (delta >= length) {
break;
}
// Otherwise, skip to the end of the map.
ptr = reinterpret_cast<uintptr_t>(it->second->BaseEnd());
CHECK_ALIGNED(ptr, kPageSize);
++it;
}
// Try to see if we get lucky with this address since none of the ART maps overlap.
actual = TryMemMapLow4GB(reinterpret_cast<void*>(ptr), length, prot, flags, fd, offset);
if (actual != MAP_FAILED) {
next_mem_pos_ = reinterpret_cast<uintptr_t>(actual) + length;
return actual;
}
if (4U * GB - ptr < length) {
// Not enough memory until 4GB.
if (first_run) {
// Try another time from the bottom;
ptr = LOW_MEM_START - kPageSize;
first_run = false;
continue;
} else {
// Second try failed.
break;
}
}
uintptr_t tail_ptr;
// Check pages are free.
bool safe = true;
for (tail_ptr = ptr; tail_ptr < ptr + length; tail_ptr += kPageSize) {
if (msync(reinterpret_cast<void*>(tail_ptr), kPageSize, 0) == 0) {
safe = false;
break;
} else {
DCHECK_EQ(errno, ENOMEM);
}
}
next_mem_pos_ = tail_ptr; // update early, as we break out when we found and mapped a region
if (safe == true) {
actual = TryMemMapLow4GB(reinterpret_cast<void*>(ptr), length, prot, flags, fd, offset);
if (actual != MAP_FAILED) {
return actual;
}
} else {
// Skip over last page.
ptr = tail_ptr;
}
}
if (actual == MAP_FAILED) {
LOG(ERROR) << "Could not find contiguous low-memory space.";
errno = ENOMEM;
}
return actual;
#else
UNUSED(length, prot, flags, fd, offset);
LOG(FATAL) << "Unreachable";
UNREACHABLE();
#endif
}
void* MemMap::MapInternal(void* addr,
size_t length,
int prot,
int flags,
int fd,
off_t offset,
bool low_4gb) {
#ifdef __LP64__
// When requesting low_4g memory and having an expectation, the requested range should fit into
// 4GB.
if (low_4gb && (
// Start out of bounds.
(reinterpret_cast<uintptr_t>(addr) >> 32) != 0 ||
// End out of bounds. For simplicity, this will fail for the last page of memory.
((reinterpret_cast<uintptr_t>(addr) + length) >> 32) != 0)) {
LOG(ERROR) << "The requested address space (" << addr << ", "
<< reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(addr) + length)
<< ") cannot fit in low_4gb";
return MAP_FAILED;
}
#else
UNUSED(low_4gb);
#endif
DCHECK_ALIGNED(length, kPageSize);
// TODO:
// A page allocator would be a useful abstraction here, as
// 1) It is doubtful that MAP_32BIT on x86_64 is doing the right job for us
void* actual = MAP_FAILED;
#if USE_ART_LOW_4G_ALLOCATOR
// MAP_32BIT only available on x86_64.
if (low_4gb && addr == nullptr) {
// The linear-scan allocator has an issue when executable pages are denied (e.g., by selinux
// policies in sensitive processes). In that case, the error code will still be ENOMEM. So
// the allocator will scan all low 4GB twice, and still fail. This is *very* slow.
//
// To avoid the issue, always map non-executable first, and mprotect if necessary.
const int orig_prot = prot;
const int prot_non_exec = prot & ~PROT_EXEC;
actual = MapInternalArtLow4GBAllocator(length, prot_non_exec, flags, fd, offset);
if (actual == MAP_FAILED) {
return MAP_FAILED;
}
// See if we need to remap with the executable bit now.
if (orig_prot != prot_non_exec) {
if (mprotect(actual, length, orig_prot) != 0) {
PLOG(ERROR) << "Could not protect to requested prot: " << orig_prot;
TargetMUnmap(actual, length);
errno = ENOMEM;
return MAP_FAILED;
}
}
return actual;
}
actual = TargetMMap(addr, length, prot, flags, fd, offset);
#else
#if defined(__LP64__)
if (low_4gb && addr == nullptr) {
flags |= MAP_32BIT;
}
#endif
actual = TargetMMap(addr, length, prot, flags, fd, offset);
#endif
return actual;
}
std::ostream& operator<<(std::ostream& os, const MemMap& mem_map) {
os << StringPrintf("[MemMap: %p-%p prot=0x%x %s]",
mem_map.BaseBegin(), mem_map.BaseEnd(), mem_map.GetProtect(),
mem_map.GetName().c_str());
return os;
}
void MemMap::TryReadable() {
if (base_begin_ == nullptr && base_size_ == 0) {
return;
}
CHECK_NE(prot_ & PROT_READ, 0);
volatile uint8_t* begin = reinterpret_cast<volatile uint8_t*>(base_begin_);
volatile uint8_t* end = begin + base_size_;
DCHECK(IsAligned<kPageSize>(begin));
DCHECK(IsAligned<kPageSize>(end));
// Read the first byte of each page. Use volatile to prevent the compiler from optimizing away the
// reads.
for (volatile uint8_t* ptr = begin; ptr < end; ptr += kPageSize) {
// This read could fault if protection wasn't set correctly.
uint8_t value = *ptr;
UNUSED(value);
}
}
void ZeroAndReleasePages(void* address, size_t length) {
if (length == 0) {
return;
}
uint8_t* const mem_begin = reinterpret_cast<uint8_t*>(address);
uint8_t* const mem_end = mem_begin + length;
uint8_t* const page_begin = AlignUp(mem_begin, kPageSize);
uint8_t* const page_end = AlignDown(mem_end, kPageSize);
if (!kMadviseZeroes || page_begin >= page_end) {
// No possible area to madvise.
std::fill(mem_begin, mem_end, 0);
} else {
// Spans one or more pages.
DCHECK_LE(mem_begin, page_begin);
DCHECK_LE(page_begin, page_end);
DCHECK_LE(page_end, mem_end);
std::fill(mem_begin, page_begin, 0);
#ifdef _WIN32
LOG(WARNING) << "ZeroAndReleasePages does not madvise on Windows.";
#else
CHECK_NE(madvise(page_begin, page_end - page_begin, MADV_DONTNEED), -1) << "madvise failed";
#endif
std::fill(page_end, mem_end, 0);
}
}
void MemMap::AlignBy(size_t alignment, bool align_both_ends) {
CHECK_EQ(begin_, base_begin_) << "Unsupported";
CHECK_EQ(size_, base_size_) << "Unsupported";
CHECK_GT(alignment, static_cast<size_t>(kPageSize));
CHECK_ALIGNED(alignment, kPageSize);
CHECK(!reuse_);
if (IsAlignedParam(reinterpret_cast<uintptr_t>(base_begin_), alignment) &&
(!align_both_ends || IsAlignedParam(base_size_, alignment))) {
// Already aligned.
return;
}
uint8_t* base_begin = reinterpret_cast<uint8_t*>(base_begin_);
uint8_t* aligned_base_begin = AlignUp(base_begin, alignment);
CHECK_LE(base_begin, aligned_base_begin);
if (base_begin < aligned_base_begin) {
MEMORY_TOOL_MAKE_UNDEFINED(base_begin, aligned_base_begin - base_begin);
CHECK_EQ(TargetMUnmap(base_begin, aligned_base_begin - base_begin), 0)
<< "base_begin=" << reinterpret_cast<void*>(base_begin)
<< " aligned_base_begin=" << reinterpret_cast<void*>(aligned_base_begin);
}
uint8_t* base_end = base_begin + base_size_;
size_t aligned_base_size;
if (align_both_ends) {
uint8_t* aligned_base_end = AlignDown(base_end, alignment);
CHECK_LE(aligned_base_end, base_end);
CHECK_LT(aligned_base_begin, aligned_base_end)
<< "base_begin = " << reinterpret_cast<void*>(base_begin)
<< " base_end = " << reinterpret_cast<void*>(base_end);
aligned_base_size = aligned_base_end - aligned_base_begin;
CHECK_GE(aligned_base_size, alignment);
if (aligned_base_end < base_end) {
MEMORY_TOOL_MAKE_UNDEFINED(aligned_base_end, base_end - aligned_base_end);
CHECK_EQ(TargetMUnmap(aligned_base_end, base_end - aligned_base_end), 0)
<< "base_end=" << reinterpret_cast<void*>(base_end)
<< " aligned_base_end=" << reinterpret_cast<void*>(aligned_base_end);
}
} else {
CHECK_LT(aligned_base_begin, base_end)
<< "base_begin = " << reinterpret_cast<void*>(base_begin);
aligned_base_size = base_end - aligned_base_begin;
}
std::lock_guard<std::mutex> mu(*mem_maps_lock_);
if (base_begin < aligned_base_begin) {
auto it = GetGMapsEntry(*this);
auto node = gMaps->extract(it);
node.key() = aligned_base_begin;
gMaps->insert(std::move(node));
}
base_begin_ = aligned_base_begin;
base_size_ = aligned_base_size;
begin_ = aligned_base_begin;
size_ = aligned_base_size;
DCHECK(gMaps != nullptr);
}
} // namespace art