blob: 28112d176a1530bb964dc9332c78f2a21501fed6 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
#define ART_COMPILER_OPTIMIZING_NODES_H_
#include <algorithm>
#include <array>
#include <type_traits>
#include "art_method.h"
#include "base/arena_allocator.h"
#include "base/arena_bit_vector.h"
#include "base/arena_containers.h"
#include "base/arena_object.h"
#include "base/array_ref.h"
#include "base/intrusive_forward_list.h"
#include "base/iteration_range.h"
#include "base/macros.h"
#include "base/mutex.h"
#include "base/quasi_atomic.h"
#include "base/stl_util.h"
#include "base/transform_array_ref.h"
#include "block_namer.h"
#include "class_root.h"
#include "compilation_kind.h"
#include "data_type.h"
#include "deoptimization_kind.h"
#include "dex/dex_file.h"
#include "dex/dex_file_types.h"
#include "dex/invoke_type.h"
#include "dex/method_reference.h"
#include "entrypoints/quick/quick_entrypoints_enum.h"
#include "handle.h"
#include "handle_scope.h"
#include "intrinsics_enum.h"
#include "locations.h"
#include "mirror/class.h"
#include "mirror/method_type.h"
#include "offsets.h"
namespace art HIDDEN {
class ArenaStack;
class CodeGenerator;
class GraphChecker;
class HBasicBlock;
class HConstructorFence;
class HCurrentMethod;
class HDoubleConstant;
class HEnvironment;
class HFloatConstant;
class HGraphBuilder;
class HGraphVisitor;
class HInstruction;
class HIntConstant;
class HInvoke;
class HLongConstant;
class HNullConstant;
class HParameterValue;
class HPhi;
class HSuspendCheck;
class HTryBoundary;
class FieldInfo;
class LiveInterval;
class LocationSummary;
class ProfilingInfo;
class SlowPathCode;
class SsaBuilder;
namespace mirror {
class DexCache;
} // namespace mirror
static const int kDefaultNumberOfBlocks = 8;
static const int kDefaultNumberOfSuccessors = 2;
static const int kDefaultNumberOfPredecessors = 2;
static const int kDefaultNumberOfExceptionalPredecessors = 0;
static const int kDefaultNumberOfDominatedBlocks = 1;
static const int kDefaultNumberOfBackEdges = 1;
// The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation.
static constexpr int32_t kMaxIntShiftDistance = 0x1f;
// The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation.
static constexpr int32_t kMaxLongShiftDistance = 0x3f;
static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
static constexpr uint32_t kNoDexPc = -1;
inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
// For the purposes of the compiler, the dex files must actually be the same object
// if we want to safely treat them as the same. This is especially important for JIT
// as custom class loaders can open the same underlying file (or memory) multiple
// times and provide different class resolution but no two class loaders should ever
// use the same DexFile object - doing so is an unsupported hack that can lead to
// all sorts of weird failures.
return &lhs == &rhs;
}
enum IfCondition {
// All types.
kCondEQ, // ==
kCondNE, // !=
// Signed integers and floating-point numbers.
kCondLT, // <
kCondLE, // <=
kCondGT, // >
kCondGE, // >=
// Unsigned integers.
kCondB, // <
kCondBE, // <=
kCondA, // >
kCondAE, // >=
// First and last aliases.
kCondFirst = kCondEQ,
kCondLast = kCondAE,
};
enum GraphAnalysisResult {
kAnalysisSkipped,
kAnalysisInvalidBytecode,
kAnalysisFailThrowCatchLoop,
kAnalysisFailAmbiguousArrayOp,
kAnalysisFailIrreducibleLoopAndStringInit,
kAnalysisFailPhiEquivalentInOsr,
kAnalysisSuccess,
};
template <typename T>
static inline typename std::make_unsigned<T>::type MakeUnsigned(T x) {
return static_cast<typename std::make_unsigned<T>::type>(x);
}
class HInstructionList : public ValueObject {
public:
HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
void AddInstruction(HInstruction* instruction);
void RemoveInstruction(HInstruction* instruction);
// Insert `instruction` before/after an existing instruction `cursor`.
void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
// Return true if this list contains `instruction`.
bool Contains(HInstruction* instruction) const;
// Return true if `instruction1` is found before `instruction2` in
// this instruction list and false otherwise. Abort if none
// of these instructions is found.
bool FoundBefore(const HInstruction* instruction1,
const HInstruction* instruction2) const;
bool IsEmpty() const { return first_instruction_ == nullptr; }
void Clear() { first_instruction_ = last_instruction_ = nullptr; }
// Update the block of all instructions to be `block`.
void SetBlockOfInstructions(HBasicBlock* block) const;
void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list);
void Add(const HInstructionList& instruction_list);
// Return the number of instructions in the list. This is an expensive operation.
size_t CountSize() const;
private:
HInstruction* first_instruction_;
HInstruction* last_instruction_;
friend class HBasicBlock;
friend class HGraph;
friend class HInstruction;
friend class HInstructionIterator;
friend class HInstructionIteratorHandleChanges;
friend class HBackwardInstructionIterator;
DISALLOW_COPY_AND_ASSIGN(HInstructionList);
};
class ReferenceTypeInfo : ValueObject {
public:
using TypeHandle = Handle<mirror::Class>;
static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact);
static ReferenceTypeInfo Create(TypeHandle type_handle) REQUIRES_SHARED(Locks::mutator_lock_) {
return Create(type_handle, type_handle->CannotBeAssignedFromOtherTypes());
}
static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) {
return ReferenceTypeInfo(type_handle, is_exact);
}
static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
static bool IsValidHandle(TypeHandle handle) {
return handle.GetReference() != nullptr;
}
bool IsValid() const {
return IsValidHandle(type_handle_);
}
bool IsExact() const { return is_exact_; }
bool IsObjectClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(IsValid());
return GetTypeHandle()->IsObjectClass();
}
bool IsStringClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(IsValid());
return GetTypeHandle()->IsStringClass();
}
bool IsObjectArray() const REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(IsValid());
return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
}
bool IsInterface() const REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(IsValid());
return GetTypeHandle()->IsInterface();
}
bool IsArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(IsValid());
return GetTypeHandle()->IsArrayClass();
}
bool IsPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(IsValid());
return GetTypeHandle()->IsPrimitiveArray();
}
bool IsNonPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(IsValid());
return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
}
bool CanArrayHold(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(IsValid());
if (!IsExact()) return false;
if (!IsArrayClass()) return false;
return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
}
bool CanArrayHoldValuesOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(IsValid());
if (!IsExact()) return false;
if (!IsArrayClass()) return false;
if (!rti.IsArrayClass()) return false;
return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
rti.GetTypeHandle()->GetComponentType());
}
Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
bool IsSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(IsValid());
DCHECK(rti.IsValid());
return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
}
// Returns true if the type information provide the same amount of details.
// Note that it does not mean that the instructions have the same actual type
// (because the type can be the result of a merge).
bool IsEqual(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
if (!IsValid() && !rti.IsValid()) {
// Invalid types are equal.
return true;
}
if (!IsValid() || !rti.IsValid()) {
// One is valid, the other not.
return false;
}
return IsExact() == rti.IsExact()
&& GetTypeHandle().Get() == rti.GetTypeHandle().Get();
}
private:
ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {}
ReferenceTypeInfo(TypeHandle type_handle, bool is_exact)
: type_handle_(type_handle), is_exact_(is_exact) { }
// The class of the object.
TypeHandle type_handle_;
// Whether or not the type is exact or a superclass of the actual type.
// Whether or not we have any information about this type.
bool is_exact_;
};
std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
class HandleCache {
public:
explicit HandleCache(VariableSizedHandleScope* handles) : handles_(handles) { }
VariableSizedHandleScope* GetHandles() { return handles_; }
template <typename T>
MutableHandle<T> NewHandle(T* object) REQUIRES_SHARED(Locks::mutator_lock_) {
return handles_->NewHandle(object);
}
template <typename T>
MutableHandle<T> NewHandle(ObjPtr<T> object) REQUIRES_SHARED(Locks::mutator_lock_) {
return handles_->NewHandle(object);
}
ReferenceTypeInfo::TypeHandle GetObjectClassHandle() {
return GetRootHandle(ClassRoot::kJavaLangObject, &object_class_handle_);
}
ReferenceTypeInfo::TypeHandle GetClassClassHandle() {
return GetRootHandle(ClassRoot::kJavaLangClass, &class_class_handle_);
}
ReferenceTypeInfo::TypeHandle GetMethodHandleClassHandle() {
return GetRootHandle(ClassRoot::kJavaLangInvokeMethodHandleImpl, &method_handle_class_handle_);
}
ReferenceTypeInfo::TypeHandle GetMethodTypeClassHandle() {
return GetRootHandle(ClassRoot::kJavaLangInvokeMethodType, &method_type_class_handle_);
}
ReferenceTypeInfo::TypeHandle GetStringClassHandle() {
return GetRootHandle(ClassRoot::kJavaLangString, &string_class_handle_);
}
ReferenceTypeInfo::TypeHandle GetThrowableClassHandle() {
return GetRootHandle(ClassRoot::kJavaLangThrowable, &throwable_class_handle_);
}
private:
inline ReferenceTypeInfo::TypeHandle GetRootHandle(ClassRoot class_root,
ReferenceTypeInfo::TypeHandle* cache) {
if (UNLIKELY(!ReferenceTypeInfo::IsValidHandle(*cache))) {
*cache = CreateRootHandle(handles_, class_root);
}
return *cache;
}
static ReferenceTypeInfo::TypeHandle CreateRootHandle(VariableSizedHandleScope* handles,
ClassRoot class_root);
VariableSizedHandleScope* handles_;
ReferenceTypeInfo::TypeHandle object_class_handle_;
ReferenceTypeInfo::TypeHandle class_class_handle_;
ReferenceTypeInfo::TypeHandle method_handle_class_handle_;
ReferenceTypeInfo::TypeHandle method_type_class_handle_;
ReferenceTypeInfo::TypeHandle string_class_handle_;
ReferenceTypeInfo::TypeHandle throwable_class_handle_;
};
// Control-flow graph of a method. Contains a list of basic blocks.
class HGraph : public ArenaObject<kArenaAllocGraph> {
public:
HGraph(ArenaAllocator* allocator,
ArenaStack* arena_stack,
VariableSizedHandleScope* handles,
const DexFile& dex_file,
uint32_t method_idx,
InstructionSet instruction_set,
InvokeType invoke_type = kInvalidInvokeType,
bool dead_reference_safe = false,
bool debuggable = false,
CompilationKind compilation_kind = CompilationKind::kOptimized,
int start_instruction_id = 0)
: allocator_(allocator),
arena_stack_(arena_stack),
handle_cache_(handles),
blocks_(allocator->Adapter(kArenaAllocBlockList)),
reverse_post_order_(allocator->Adapter(kArenaAllocReversePostOrder)),
linear_order_(allocator->Adapter(kArenaAllocLinearOrder)),
reachability_graph_(allocator, 0, 0, true, kArenaAllocReachabilityGraph),
entry_block_(nullptr),
exit_block_(nullptr),
maximum_number_of_out_vregs_(0),
number_of_vregs_(0),
number_of_in_vregs_(0),
temporaries_vreg_slots_(0),
has_bounds_checks_(false),
has_try_catch_(false),
has_monitor_operations_(false),
has_simd_(false),
has_loops_(false),
has_irreducible_loops_(false),
has_direct_critical_native_call_(false),
has_always_throwing_invokes_(false),
dead_reference_safe_(dead_reference_safe),
debuggable_(debuggable),
current_instruction_id_(start_instruction_id),
dex_file_(dex_file),
method_idx_(method_idx),
invoke_type_(invoke_type),
in_ssa_form_(false),
number_of_cha_guards_(0),
instruction_set_(instruction_set),
cached_null_constant_(nullptr),
cached_int_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
cached_float_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
cached_long_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
cached_double_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)),
cached_current_method_(nullptr),
art_method_(nullptr),
compilation_kind_(compilation_kind),
cha_single_implementation_list_(allocator->Adapter(kArenaAllocCHA)) {
blocks_.reserve(kDefaultNumberOfBlocks);
}
std::ostream& Dump(std::ostream& os,
CodeGenerator* codegen,
std::optional<std::reference_wrapper<const BlockNamer>> namer = std::nullopt);
ArenaAllocator* GetAllocator() const { return allocator_; }
ArenaStack* GetArenaStack() const { return arena_stack_; }
HandleCache* GetHandleCache() { return &handle_cache_; }
const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
// An iterator to only blocks that are still actually in the graph (when
// blocks are removed they are replaced with 'nullptr' in GetBlocks to
// simplify block-id assignment and avoid memmoves in the block-list).
IterationRange<FilterNull<ArenaVector<HBasicBlock*>::const_iterator>> GetActiveBlocks() const {
return FilterOutNull(MakeIterationRange(GetBlocks()));
}
bool IsInSsaForm() const { return in_ssa_form_; }
void SetInSsaForm() { in_ssa_form_ = true; }
HBasicBlock* GetEntryBlock() const { return entry_block_; }
HBasicBlock* GetExitBlock() const { return exit_block_; }
bool HasExitBlock() const { return exit_block_ != nullptr; }
void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
void AddBlock(HBasicBlock* block);
void ComputeDominanceInformation();
void ClearDominanceInformation();
void ComputeReachabilityInformation();
void ClearReachabilityInformation();
void ClearLoopInformation();
void FindBackEdges(ArenaBitVector* visited);
GraphAnalysisResult BuildDominatorTree();
void SimplifyCFG();
void SimplifyCatchBlocks();
// Analyze all natural loops in this graph. Returns a code specifying that it
// was successful or the reason for failure. The method will fail if a loop
// is a throw-catch loop, i.e. the header is a catch block.
GraphAnalysisResult AnalyzeLoops() const;
// Iterate over blocks to compute try block membership. Needs reverse post
// order and loop information.
void ComputeTryBlockInformation();
// Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
// Returns the instruction to replace the invoke expression or null if the
// invoke is for a void method. Note that the caller is responsible for replacing
// and removing the invoke instruction.
HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
// Update the loop and try membership of `block`, which was spawned from `reference`.
// In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block`
// should be the new back edge.
// `has_more_specific_try_catch_info` will be set to true when inlining a try catch.
void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
HBasicBlock* reference,
bool replace_if_back_edge,
bool has_more_specific_try_catch_info = false);
// Need to add a couple of blocks to test if the loop body is entered and
// put deoptimization instructions, etc.
void TransformLoopHeaderForBCE(HBasicBlock* header);
// Adds a new loop directly after the loop with the given header and exit.
// Returns the new preheader.
HBasicBlock* TransformLoopForVectorization(HBasicBlock* header,
HBasicBlock* body,
HBasicBlock* exit);
// Removes `block` from the graph. Assumes `block` has been disconnected from
// other blocks and has no instructions or phis.
void DeleteDeadEmptyBlock(HBasicBlock* block);
// Splits the edge between `block` and `successor` while preserving the
// indices in the predecessor/successor lists. If there are multiple edges
// between the blocks, the lowest indices are used.
// Returns the new block which is empty and has the same dex pc as `successor`.
HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
// Splits the edge between `block` and `successor` and then updates the graph's RPO to keep
// consistency without recomputing the whole graph.
HBasicBlock* SplitEdgeAndUpdateRPO(HBasicBlock* block, HBasicBlock* successor);
void OrderLoopHeaderPredecessors(HBasicBlock* header);
// Transform a loop into a format with a single preheader.
//
// Each phi in the header should be split: original one in the header should only hold
// inputs reachable from the back edges and a single input from the preheader. The newly created
// phi in the preheader should collate the inputs from the original multiple incoming blocks.
//
// Loops in the graph typically have a single preheader, so this method is used to "repair" loops
// that no longer have this property.
void TransformLoopToSinglePreheaderFormat(HBasicBlock* header);
void SimplifyLoop(HBasicBlock* header);
int32_t GetNextInstructionId() {
CHECK_NE(current_instruction_id_, INT32_MAX);
return current_instruction_id_++;
}
int32_t GetCurrentInstructionId() const {
return current_instruction_id_;
}
void SetCurrentInstructionId(int32_t id) {
CHECK_GE(id, current_instruction_id_);
current_instruction_id_ = id;
}
uint16_t GetMaximumNumberOfOutVRegs() const {
return maximum_number_of_out_vregs_;
}
void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
maximum_number_of_out_vregs_ = new_value;
}
void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
}
void UpdateTemporariesVRegSlots(size_t slots) {
temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
}
size_t GetTemporariesVRegSlots() const {
DCHECK(!in_ssa_form_);
return temporaries_vreg_slots_;
}
void SetNumberOfVRegs(uint16_t number_of_vregs) {
number_of_vregs_ = number_of_vregs;
}
uint16_t GetNumberOfVRegs() const {
return number_of_vregs_;
}
void SetNumberOfInVRegs(uint16_t value) {
number_of_in_vregs_ = value;
}
uint16_t GetNumberOfInVRegs() const {
return number_of_in_vregs_;
}
uint16_t GetNumberOfLocalVRegs() const {
DCHECK(!in_ssa_form_);
return number_of_vregs_ - number_of_in_vregs_;
}
const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
return reverse_post_order_;
}
ArrayRef<HBasicBlock* const> GetReversePostOrderSkipEntryBlock() const {
DCHECK(GetReversePostOrder()[0] == entry_block_);
return ArrayRef<HBasicBlock* const>(GetReversePostOrder()).SubArray(1);
}
IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetPostOrder() const {
return ReverseRange(GetReversePostOrder());
}
const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
return linear_order_;
}
IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetLinearPostOrder() const {
return ReverseRange(GetLinearOrder());
}
bool HasBoundsChecks() const {
return has_bounds_checks_;
}
void SetHasBoundsChecks(bool value) {
has_bounds_checks_ = value;
}
// Returns true if dest is reachable from source, using either blocks or block-ids.
bool PathBetween(const HBasicBlock* source, const HBasicBlock* dest) const;
bool PathBetween(uint32_t source_id, uint32_t dest_id) const;
// Is the code known to be robust against eliminating dead references
// and the effects of early finalization?
bool IsDeadReferenceSafe() const { return dead_reference_safe_; }
void MarkDeadReferenceUnsafe() { dead_reference_safe_ = false; }
bool IsDebuggable() const { return debuggable_; }
// Returns a constant of the given type and value. If it does not exist
// already, it is created and inserted into the graph. This method is only for
// integral types.
HConstant* GetConstant(DataType::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
// TODO: This is problematic for the consistency of reference type propagation
// because it can be created anytime after the pass and thus it will be left
// with an invalid type.
HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
return CreateConstant(value, &cached_int_constants_, dex_pc);
}
HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
return CreateConstant(value, &cached_long_constants_, dex_pc);
}
HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
}
HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
}
HCurrentMethod* GetCurrentMethod();
const DexFile& GetDexFile() const {
return dex_file_;
}
uint32_t GetMethodIdx() const {
return method_idx_;
}
// Get the method name (without the signature), e.g. "<init>"
const char* GetMethodName() const;
// Get the pretty method name (class + name + optionally signature).
std::string PrettyMethod(bool with_signature = true) const;
InvokeType GetInvokeType() const {
return invoke_type_;
}
InstructionSet GetInstructionSet() const {
return instruction_set_;
}
bool IsCompilingOsr() const { return compilation_kind_ == CompilationKind::kOsr; }
bool IsCompilingBaseline() const { return compilation_kind_ == CompilationKind::kBaseline; }
CompilationKind GetCompilationKind() const { return compilation_kind_; }
ArenaSet<ArtMethod*>& GetCHASingleImplementationList() {
return cha_single_implementation_list_;
}
// In case of OSR we intend to use SuspendChecks as an entry point to the
// function; for debuggable graphs we might deoptimize to interpreter from
// SuspendChecks. In these cases we should always generate code for them.
bool SuspendChecksAreAllowedToNoOp() const {
return !IsDebuggable() && !IsCompilingOsr();
}
void AddCHASingleImplementationDependency(ArtMethod* method) {
cha_single_implementation_list_.insert(method);
}
bool HasShouldDeoptimizeFlag() const {
return number_of_cha_guards_ != 0 || debuggable_;
}
bool HasTryCatch() const { return has_try_catch_; }
void SetHasTryCatch(bool value) { has_try_catch_ = value; }
bool HasMonitorOperations() const { return has_monitor_operations_; }
void SetHasMonitorOperations(bool value) { has_monitor_operations_ = value; }
bool HasSIMD() const { return has_simd_; }
void SetHasSIMD(bool value) { has_simd_ = value; }
bool HasLoops() const { return has_loops_; }
void SetHasLoops(bool value) { has_loops_ = value; }
bool HasIrreducibleLoops() const { return has_irreducible_loops_; }
void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; }
bool HasDirectCriticalNativeCall() const { return has_direct_critical_native_call_; }
void SetHasDirectCriticalNativeCall(bool value) { has_direct_critical_native_call_ = value; }
bool HasAlwaysThrowingInvokes() const { return has_always_throwing_invokes_; }
void SetHasAlwaysThrowingInvokes(bool value) { has_always_throwing_invokes_ = value; }
ArtMethod* GetArtMethod() const { return art_method_; }
void SetArtMethod(ArtMethod* method) { art_method_ = method; }
void SetProfilingInfo(ProfilingInfo* info) { profiling_info_ = info; }
ProfilingInfo* GetProfilingInfo() const { return profiling_info_; }
// Returns an instruction with the opposite Boolean value from 'cond'.
// The instruction has been inserted into the graph, either as a constant, or
// before cursor.
HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor);
ReferenceTypeInfo GetInexactObjectRti() {
return ReferenceTypeInfo::Create(handle_cache_.GetObjectClassHandle(), /* is_exact= */ false);
}
uint32_t GetNumberOfCHAGuards() const { return number_of_cha_guards_; }
void SetNumberOfCHAGuards(uint32_t num) { number_of_cha_guards_ = num; }
void IncrementNumberOfCHAGuards() { number_of_cha_guards_++; }
private:
void RemoveDeadBlocksInstructionsAsUsersAndDisconnect(const ArenaBitVector& visited) const;
void RemoveDeadBlocks(const ArenaBitVector& visited);
template <class InstructionType, typename ValueType>
InstructionType* CreateConstant(ValueType value,
ArenaSafeMap<ValueType, InstructionType*>* cache,
uint32_t dex_pc = kNoDexPc) {
// Try to find an existing constant of the given value.
InstructionType* constant = nullptr;
auto cached_constant = cache->find(value);
if (cached_constant != cache->end()) {
constant = cached_constant->second;
}
// If not found or previously deleted, create and cache a new instruction.
// Don't bother reviving a previously deleted instruction, for simplicity.
if (constant == nullptr || constant->GetBlock() == nullptr) {
constant = new (allocator_) InstructionType(value, dex_pc);
cache->Overwrite(value, constant);
InsertConstant(constant);
}
return constant;
}
void InsertConstant(HConstant* instruction);
// Cache a float constant into the graph. This method should only be
// called by the SsaBuilder when creating "equivalent" instructions.
void CacheFloatConstant(HFloatConstant* constant);
// See CacheFloatConstant comment.
void CacheDoubleConstant(HDoubleConstant* constant);
ArenaAllocator* const allocator_;
ArenaStack* const arena_stack_;
HandleCache handle_cache_;
// List of blocks in insertion order.
ArenaVector<HBasicBlock*> blocks_;
// List of blocks to perform a reverse post order tree traversal.
ArenaVector<HBasicBlock*> reverse_post_order_;
// List of blocks to perform a linear order tree traversal. Unlike the reverse
// post order, this order is not incrementally kept up-to-date.
ArenaVector<HBasicBlock*> linear_order_;
// Reachability graph for checking connectedness between nodes. Acts as a partitioned vector where
// each RoundUp(blocks_.size(), BitVector::kWordBits) is the reachability of each node.
ArenaBitVectorArray reachability_graph_;
HBasicBlock* entry_block_;
HBasicBlock* exit_block_;
// The maximum number of virtual registers arguments passed to a HInvoke in this graph.
uint16_t maximum_number_of_out_vregs_;
// The number of virtual registers in this method. Contains the parameters.
uint16_t number_of_vregs_;
// The number of virtual registers used by parameters of this method.
uint16_t number_of_in_vregs_;
// Number of vreg size slots that the temporaries use (used in baseline compiler).
size_t temporaries_vreg_slots_;
// Flag whether there are bounds checks in the graph. We can skip
// BCE if it's false.
bool has_bounds_checks_;
// Flag whether there are try/catch blocks in the graph. We will skip
// try/catch-related passes if it's false.
bool has_try_catch_;
// Flag whether there are any HMonitorOperation in the graph. If yes this will mandate
// DexRegisterMap to be present to allow deadlock analysis for non-debuggable code.
bool has_monitor_operations_;
// Flag whether SIMD instructions appear in the graph. If true, the
// code generators may have to be more careful spilling the wider
// contents of SIMD registers.
bool has_simd_;
// Flag whether there are any loops in the graph. We can skip loop
// optimization if it's false.
bool has_loops_;
// Flag whether there are any irreducible loops in the graph.
bool has_irreducible_loops_;
// Flag whether there are any direct calls to native code registered
// for @CriticalNative methods.
bool has_direct_critical_native_call_;
// Flag whether the graph contains invokes that always throw.
bool has_always_throwing_invokes_;
// Is the code known to be robust against eliminating dead references
// and the effects of early finalization? If false, dead reference variables
// are kept if they might be visible to the garbage collector.
// Currently this means that the class was declared to be dead-reference-safe,
// the method accesses no reachability-sensitive fields or data, and the same
// is true for any methods that were inlined into the current one.
bool dead_reference_safe_;
// Indicates whether the graph should be compiled in a way that
// ensures full debuggability. If false, we can apply more
// aggressive optimizations that may limit the level of debugging.
const bool debuggable_;
// The current id to assign to a newly added instruction. See HInstruction.id_.
int32_t current_instruction_id_;
// The dex file from which the method is from.
const DexFile& dex_file_;
// The method index in the dex file.
const uint32_t method_idx_;
// If inlined, this encodes how the callee is being invoked.
const InvokeType invoke_type_;
// Whether the graph has been transformed to SSA form. Only used
// in debug mode to ensure we are not using properties only valid
// for non-SSA form (like the number of temporaries).
bool in_ssa_form_;
// Number of CHA guards in the graph. Used to short-circuit the
// CHA guard optimization pass when there is no CHA guard left.
uint32_t number_of_cha_guards_;
const InstructionSet instruction_set_;
// Cached constants.
HNullConstant* cached_null_constant_;
ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
HCurrentMethod* cached_current_method_;
// The ArtMethod this graph is for. Note that for AOT, it may be null,
// for example for methods whose declaring class could not be resolved
// (such as when the superclass could not be found).
ArtMethod* art_method_;
// The `ProfilingInfo` associated with the method being compiled.
ProfilingInfo* profiling_info_;
// How we are compiling the graph: either optimized, osr, or baseline.
// For osr, we will make all loops seen as irreducible and emit special
// stack maps to mark compiled code entries which the interpreter can
// directly jump to.
const CompilationKind compilation_kind_;
// List of methods that are assumed to have single implementation.
ArenaSet<ArtMethod*> cha_single_implementation_list_;
friend class SsaBuilder; // For caching constants.
friend class SsaLivenessAnalysis; // For the linear order.
friend class HInliner; // For the reverse post order.
ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
DISALLOW_COPY_AND_ASSIGN(HGraph);
};
class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
public:
HLoopInformation(HBasicBlock* header, HGraph* graph)
: header_(header),
suspend_check_(nullptr),
irreducible_(false),
contains_irreducible_loop_(false),
back_edges_(graph->GetAllocator()->Adapter(kArenaAllocLoopInfoBackEdges)),
// Make bit vector growable, as the number of blocks may change.
blocks_(graph->GetAllocator(),
graph->GetBlocks().size(),
true,
kArenaAllocLoopInfoBackEdges) {
back_edges_.reserve(kDefaultNumberOfBackEdges);
}
bool IsIrreducible() const { return irreducible_; }
bool ContainsIrreducibleLoop() const { return contains_irreducible_loop_; }
void Dump(std::ostream& os);
HBasicBlock* GetHeader() const {
return header_;
}
void SetHeader(HBasicBlock* block) {
header_ = block;
}
HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
void AddBackEdge(HBasicBlock* back_edge) {
back_edges_.push_back(back_edge);
}
void RemoveBackEdge(HBasicBlock* back_edge) {
RemoveElement(back_edges_, back_edge);
}
bool IsBackEdge(const HBasicBlock& block) const {
return ContainsElement(back_edges_, &block);
}
size_t NumberOfBackEdges() const {
return back_edges_.size();
}
HBasicBlock* GetPreHeader() const;
const ArenaVector<HBasicBlock*>& GetBackEdges() const {
return back_edges_;
}
// Returns the lifetime position of the back edge that has the
// greatest lifetime position.
size_t GetLifetimeEnd() const;
void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
ReplaceElement(back_edges_, existing, new_back_edge);
}
// Finds blocks that are part of this loop.
void Populate();
// Updates blocks population of the loop and all of its outer' ones recursively after the
// population of the inner loop is updated.
void PopulateInnerLoopUpwards(HLoopInformation* inner_loop);
// Returns whether this loop information contains `block`.
// Note that this loop information *must* be populated before entering this function.
bool Contains(const HBasicBlock& block) const;
// Returns whether this loop information is an inner loop of `other`.
// Note that `other` *must* be populated before entering this function.
bool IsIn(const HLoopInformation& other) const;
// Returns true if instruction is not defined within this loop.
bool IsDefinedOutOfTheLoop(HInstruction* instruction) const;
const ArenaBitVector& GetBlocks() const { return blocks_; }
void Add(HBasicBlock* block);
void Remove(HBasicBlock* block);
void ClearAllBlocks() {
blocks_.ClearAllBits();
}
bool HasBackEdgeNotDominatedByHeader() const;
bool IsPopulated() const {
return blocks_.GetHighestBitSet() != -1;
}
bool DominatesAllBackEdges(HBasicBlock* block);
bool HasExitEdge() const;
// Resets back edge and blocks-in-loop data.
void ResetBasicBlockData() {
back_edges_.clear();
ClearAllBlocks();
}
private:
// Internal recursive implementation of `Populate`.
void PopulateRecursive(HBasicBlock* block);
void PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized);
HBasicBlock* header_;
HSuspendCheck* suspend_check_;
bool irreducible_;
bool contains_irreducible_loop_;
ArenaVector<HBasicBlock*> back_edges_;
ArenaBitVector blocks_;
DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
};
// Stores try/catch information for basic blocks.
// Note that HGraph is constructed so that catch blocks cannot simultaneously
// be try blocks.
class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
public:
// Try block information constructor.
explicit TryCatchInformation(const HTryBoundary& try_entry)
: try_entry_(&try_entry),
catch_dex_file_(nullptr),
catch_type_index_(dex::TypeIndex::Invalid()) {
DCHECK(try_entry_ != nullptr);
}
// Catch block information constructor.
TryCatchInformation(dex::TypeIndex catch_type_index, const DexFile& dex_file)
: try_entry_(nullptr),
catch_dex_file_(&dex_file),
catch_type_index_(catch_type_index) {}
bool IsTryBlock() const { return try_entry_ != nullptr; }
const HTryBoundary& GetTryEntry() const {
DCHECK(IsTryBlock());
return *try_entry_;
}
bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
bool IsValidTypeIndex() const {
DCHECK(IsCatchBlock());
return catch_type_index_.IsValid();
}
dex::TypeIndex GetCatchTypeIndex() const {
DCHECK(IsCatchBlock());
return catch_type_index_;
}
const DexFile& GetCatchDexFile() const {
DCHECK(IsCatchBlock());
return *catch_dex_file_;
}
void SetInvalidTypeIndex() {
catch_type_index_ = dex::TypeIndex::Invalid();
}
private:
// One of possibly several TryBoundary instructions entering the block's try.
// Only set for try blocks.
const HTryBoundary* try_entry_;
// Exception type information. Only set for catch blocks.
const DexFile* catch_dex_file_;
dex::TypeIndex catch_type_index_;
};
static constexpr size_t kNoLifetime = -1;
static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
// A block in a method. Contains the list of instructions represented
// as a double linked list. Each block knows its predecessors and
// successors.
class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
public:
explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
: graph_(graph),
predecessors_(graph->GetAllocator()->Adapter(kArenaAllocPredecessors)),
successors_(graph->GetAllocator()->Adapter(kArenaAllocSuccessors)),
loop_information_(nullptr),
dominator_(nullptr),
dominated_blocks_(graph->GetAllocator()->Adapter(kArenaAllocDominated)),
block_id_(kInvalidBlockId),
dex_pc_(dex_pc),
lifetime_start_(kNoLifetime),
lifetime_end_(kNoLifetime),
try_catch_information_(nullptr) {
predecessors_.reserve(kDefaultNumberOfPredecessors);
successors_.reserve(kDefaultNumberOfSuccessors);
dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
}
const ArenaVector<HBasicBlock*>& GetPredecessors() const {
return predecessors_;
}
size_t GetNumberOfPredecessors() const {
return GetPredecessors().size();
}
const ArenaVector<HBasicBlock*>& GetSuccessors() const {
return successors_;
}
ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
return ContainsElement(successors_, block, start_from);
}
const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
return dominated_blocks_;
}
bool IsEntryBlock() const {
return graph_->GetEntryBlock() == this;
}
bool IsExitBlock() const {
return graph_->GetExitBlock() == this;
}
bool IsSingleGoto() const;
bool IsSingleReturn() const;
bool IsSingleReturnOrReturnVoidAllowingPhis() const;
bool IsSingleTryBoundary() const;
// Returns true if this block emits nothing but a jump.
bool IsSingleJump() const {
HLoopInformation* loop_info = GetLoopInformation();
return (IsSingleGoto() || IsSingleTryBoundary())
// Back edges generate a suspend check.
&& (loop_info == nullptr || !loop_info->IsBackEdge(*this));
}
void AddBackEdge(HBasicBlock* back_edge) {
if (loop_information_ == nullptr) {
loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_);
}
DCHECK_EQ(loop_information_->GetHeader(), this);
loop_information_->AddBackEdge(back_edge);
}
// Registers a back edge; if the block was not a loop header before the call associates a newly
// created loop info with it.
//
// Used in SuperblockCloner to preserve LoopInformation object instead of reseting loop
// info for all blocks during back edges recalculation.
void AddBackEdgeWhileUpdating(HBasicBlock* back_edge) {
if (loop_information_ == nullptr || loop_information_->GetHeader() != this) {
loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_);
}
loop_information_->AddBackEdge(back_edge);
}
HGraph* GetGraph() const { return graph_; }
void SetGraph(HGraph* graph) { graph_ = graph; }
uint32_t GetBlockId() const { return block_id_; }
void SetBlockId(int id) { block_id_ = id; }
uint32_t GetDexPc() const { return dex_pc_; }
HBasicBlock* GetDominator() const { return dominator_; }
void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
void RemoveDominatedBlock(HBasicBlock* block) {
RemoveElement(dominated_blocks_, block);
}
void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
ReplaceElement(dominated_blocks_, existing, new_block);
}
void ClearDominanceInformation();
int NumberOfBackEdges() const {
return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
}
HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
const HInstructionList& GetInstructions() const { return instructions_; }
HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
const HInstructionList& GetPhis() const { return phis_; }
HInstruction* GetFirstInstructionDisregardMoves() const;
void AddSuccessor(HBasicBlock* block) {
successors_.push_back(block);
block->predecessors_.push_back(this);
}
void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
size_t successor_index = GetSuccessorIndexOf(existing);
existing->RemovePredecessor(this);
new_block->predecessors_.push_back(this);
successors_[successor_index] = new_block;
}
void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
size_t predecessor_index = GetPredecessorIndexOf(existing);
existing->RemoveSuccessor(this);
new_block->successors_.push_back(this);
predecessors_[predecessor_index] = new_block;
}
// Insert `this` between `predecessor` and `successor. This method
// preserves the indices, and will update the first edge found between
// `predecessor` and `successor`.
void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
successor->predecessors_[predecessor_index] = this;
predecessor->successors_[successor_index] = this;
successors_.push_back(successor);
predecessors_.push_back(predecessor);
}
void RemovePredecessor(HBasicBlock* block) {
predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
}
void RemoveSuccessor(HBasicBlock* block) {
successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
}
void ClearAllPredecessors() {
predecessors_.clear();
}
void AddPredecessor(HBasicBlock* block) {
predecessors_.push_back(block);
block->successors_.push_back(this);
}
void SwapPredecessors() {
DCHECK_EQ(predecessors_.size(), 2u);
std::swap(predecessors_[0], predecessors_[1]);
}
void SwapSuccessors() {
DCHECK_EQ(successors_.size(), 2u);
std::swap(successors_[0], successors_[1]);
}
size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
return IndexOfElement(predecessors_, predecessor);
}
size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
return IndexOfElement(successors_, successor);
}
HBasicBlock* GetSinglePredecessor() const {
DCHECK_EQ(GetPredecessors().size(), 1u);
return GetPredecessors()[0];
}
HBasicBlock* GetSingleSuccessor() const {
DCHECK_EQ(GetSuccessors().size(), 1u);
return GetSuccessors()[0];
}
// Returns whether the first occurrence of `predecessor` in the list of
// predecessors is at index `idx`.
bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
DCHECK_EQ(GetPredecessors()[idx], predecessor);
return GetPredecessorIndexOf(predecessor) == idx;
}
// Create a new block between this block and its predecessors. The new block
// is added to the graph, all predecessor edges are relinked to it and an edge
// is created to `this`. Returns the new empty block. Reverse post order or
// loop and try/catch information are not updated.
HBasicBlock* CreateImmediateDominator();
// Split the block into two blocks just before `cursor`. Returns the newly
// created, latter block. Note that this method will add the block to the
// graph, create a Goto at the end of the former block and will create an edge
// between the blocks. It will not, however, update the reverse post order or
// loop and try/catch information.
HBasicBlock* SplitBefore(HInstruction* cursor, bool require_graph_not_in_ssa_form = true);
// Split the block into two blocks just before `cursor`. Returns the newly
// created block. Note that this method just updates raw block information,
// like predecessors, successors, dominators, and instruction list. It does not
// update the graph, reverse post order, loop information, nor make sure the
// blocks are consistent (for example ending with a control flow instruction).
HBasicBlock* SplitBeforeForInlining(HInstruction* cursor);
// Similar to `SplitBeforeForInlining` but does it after `cursor`.
HBasicBlock* SplitAfterForInlining(HInstruction* cursor);
// Merge `other` at the end of `this`. Successors and dominated blocks of
// `other` are changed to be successors and dominated blocks of `this`. Note
// that this method does not update the graph, reverse post order, loop
// information, nor make sure the blocks are consistent (for example ending
// with a control flow instruction).
void MergeWithInlined(HBasicBlock* other);
// Replace `this` with `other`. Predecessors, successors, and dominated blocks
// of `this` are moved to `other`.
// Note that this method does not update the graph, reverse post order, loop
// information, nor make sure the blocks are consistent (for example ending
// with a control flow instruction).
void ReplaceWith(HBasicBlock* other);
// Merges the instructions of `other` at the end of `this`.
void MergeInstructionsWith(HBasicBlock* other);
// Merge `other` at the end of `this`. This method updates loops, reverse post
// order, links to predecessors, successors, dominators and deletes the block
// from the graph. The two blocks must be successive, i.e. `this` the only
// predecessor of `other` and vice versa.
void MergeWith(HBasicBlock* other);
// Disconnects `this` from all its predecessors, successors and dominator,
// removes it from all loops it is included in and eventually from the graph.
// The block must not dominate any other block. Predecessors and successors
// are safely updated.
void DisconnectAndDelete();
// Disconnects `this` from all its successors and updates their phis, if the successors have them.
// If `visited` is provided, it will use the information to know if a successor is reachable and
// skip updating those phis.
void DisconnectFromSuccessors(const ArenaBitVector* visited = nullptr);
// Removes the catch phi uses of the instructions in `this`, and then remove the instruction
// itself. If `building_dominator_tree` is true, it will not remove the instruction as user, since
// we do it in a previous step. This is a special case for building up the dominator tree: we want
// to eliminate uses before inputs but we don't have domination information, so we remove all
// connections from input/uses first before removing any instruction.
// This method assumes the instructions have been removed from all users with the exception of
// catch phis because of missing exceptional edges in the graph.
void RemoveCatchPhiUsesAndInstruction(bool building_dominator_tree);
void AddInstruction(HInstruction* instruction);
// Insert `instruction` before/after an existing instruction `cursor`.
void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
// Replace phi `initial` with `replacement` within this block.
void ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement);
// Replace instruction `initial` with `replacement` within this block.
void ReplaceAndRemoveInstructionWith(HInstruction* initial,
HInstruction* replacement);
void AddPhi(HPhi* phi);
void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
// RemoveInstruction and RemovePhi delete a given instruction from the respective
// instruction list. With 'ensure_safety' set to true, it verifies that the
// instruction is not in use and removes it from the use lists of its inputs.
void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
void RemovePhi(HPhi* phi, bool ensure_safety = true);
void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
bool IsLoopHeader() const {
return IsInLoop() && (loop_information_->GetHeader() == this);
}
bool IsLoopPreHeaderFirstPredecessor() const {
DCHECK(IsLoopHeader());
return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
}
bool IsFirstPredecessorBackEdge() const {
DCHECK(IsLoopHeader());
return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]);
}
HLoopInformation* GetLoopInformation() const {
return loop_information_;
}
// Set the loop_information_ on this block. Overrides the current
// loop_information if it is an outer loop of the passed loop information.
// Note that this method is called while creating the loop information.
void SetInLoop(HLoopInformation* info) {
if (IsLoopHeader()) {
// Nothing to do. This just means `info` is an outer loop.
} else if (!IsInLoop()) {
loop_information_ = info;
} else if (loop_information_->Contains(*info->GetHeader())) {
// Block is currently part of an outer loop. Make it part of this inner loop.
// Note that a non loop header having a loop information means this loop information
// has already been populated
loop_information_ = info;
} else {
// Block is part of an inner loop. Do not update the loop information.
// Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
// at this point, because this method is being called while populating `info`.
}
}
// Raw update of the loop information.
void SetLoopInformation(HLoopInformation* info) {
loop_information_ = info;
}
bool IsInLoop() const { return loop_information_ != nullptr; }
TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
try_catch_information_ = try_catch_information;
}
bool IsTryBlock() const {
return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
}
bool IsCatchBlock() const {
return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
}
// Returns the try entry that this block's successors should have. They will
// be in the same try, unless the block ends in a try boundary. In that case,
// the appropriate try entry will be returned.
const HTryBoundary* ComputeTryEntryOfSuccessors() const;
bool HasThrowingInstructions() const;
// Returns whether this block dominates the blocked passed as parameter.
bool Dominates(const HBasicBlock* block) const;
size_t GetLifetimeStart() const { return lifetime_start_; }
size_t GetLifetimeEnd() const { return lifetime_end_; }
void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
bool EndsWithControlFlowInstruction() const;
bool EndsWithReturn() const;
bool EndsWithIf() const;
bool EndsWithTryBoundary() const;
bool HasSinglePhi() const;
private:
HGraph* graph_;
ArenaVector<HBasicBlock*> predecessors_;
ArenaVector<HBasicBlock*> successors_;
HInstructionList instructions_;
HInstructionList phis_;
HLoopInformation* loop_information_;
HBasicBlock* dominator_;
ArenaVector<HBasicBlock*> dominated_blocks_;
uint32_t block_id_;
// The dex program counter of the first instruction of this block.
const uint32_t dex_pc_;
size_t lifetime_start_;
size_t lifetime_end_;
TryCatchInformation* try_catch_information_;
friend class HGraph;
friend class HInstruction;
// Allow manual control of the ordering of predecessors/successors
friend class OptimizingUnitTestHelper;
DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
};
// Iterates over the LoopInformation of all loops which contain 'block'
// from the innermost to the outermost.
class HLoopInformationOutwardIterator : public ValueObject {
public:
explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
: current_(block.GetLoopInformation()) {}
bool Done() const { return current_ == nullptr; }
void Advance() {
DCHECK(!Done());
current_ = current_->GetPreHeader()->GetLoopInformation();
}
HLoopInformation* Current() const {
DCHECK(!Done());
return current_;
}
private:
HLoopInformation* current_;
DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
};
#define FOR_EACH_CONCRETE_INSTRUCTION_SCALAR_COMMON(M) \
M(Above, Condition) \
M(AboveOrEqual, Condition) \
M(Abs, UnaryOperation) \
M(Add, BinaryOperation) \
M(And, BinaryOperation) \
M(ArrayGet, Instruction) \
M(ArrayLength, Instruction) \
M(ArraySet, Instruction) \
M(Below, Condition) \
M(BelowOrEqual, Condition) \
M(BooleanNot, UnaryOperation) \
M(BoundsCheck, Instruction) \
M(BoundType, Instruction) \
M(CheckCast, Instruction) \
M(ClassTableGet, Instruction) \
M(ClearException, Instruction) \
M(ClinitCheck, Instruction) \
M(Compare, BinaryOperation) \
M(ConstructorFence, Instruction) \
M(CurrentMethod, Instruction) \
M(ShouldDeoptimizeFlag, Instruction) \
M(Deoptimize, Instruction) \
M(Div, BinaryOperation) \
M(DivZeroCheck, Instruction) \
M(DoubleConstant, Constant) \
M(Equal, Condition) \
M(Exit, Instruction) \
M(FloatConstant, Constant) \
M(Goto, Instruction) \
M(GreaterThan, Condition) \
M(GreaterThanOrEqual, Condition) \
M(If, Instruction) \
M(InstanceFieldGet, Instruction) \
M(InstanceFieldSet, Instruction) \
M(PredicatedInstanceFieldGet, Instruction) \
M(InstanceOf, Instruction) \
M(IntConstant, Constant) \
M(IntermediateAddress, Instruction) \
M(InvokeUnresolved, Invoke) \
M(InvokeInterface, Invoke) \
M(InvokeStaticOrDirect, Invoke) \
M(InvokeVirtual, Invoke) \
M(InvokePolymorphic, Invoke) \
M(InvokeCustom, Invoke) \
M(LessThan, Condition) \
M(LessThanOrEqual, Condition) \
M(LoadClass, Instruction) \
M(LoadException, Instruction) \
M(LoadMethodHandle, Instruction) \
M(LoadMethodType, Instruction) \
M(LoadString, Instruction) \
M(LongConstant, Constant) \
M(Max, Instruction) \
M(MemoryBarrier, Instruction) \
M(MethodEntryHook, Instruction) \
M(MethodExitHook, Instruction) \
M(Min, BinaryOperation) \
M(MonitorOperation, Instruction) \
M(Mul, BinaryOperation) \
M(Neg, UnaryOperation) \
M(NewArray, Instruction) \
M(NewInstance, Instruction) \
M(Nop, Instruction) \
M(Not, UnaryOperation) \
M(NotEqual, Condition) \
M(NullConstant, Instruction) \
M(NullCheck, Instruction) \
M(Or, BinaryOperation) \
M(PackedSwitch, Instruction) \
M(ParallelMove, Instruction) \
M(ParameterValue, Instruction) \
M(Phi, Instruction) \
M(Rem, BinaryOperation) \
M(Return, Instruction) \
M(ReturnVoid, Instruction) \
M(Ror, BinaryOperation) \
M(Shl, BinaryOperation) \
M(Shr, BinaryOperation) \
M(StaticFieldGet, Instruction) \
M(StaticFieldSet, Instruction) \
M(StringBuilderAppend, Instruction) \
M(UnresolvedInstanceFieldGet, Instruction) \
M(UnresolvedInstanceFieldSet, Instruction) \
M(UnresolvedStaticFieldGet, Instruction) \
M(UnresolvedStaticFieldSet, Instruction) \
M(Select, Instruction) \
M(Sub, BinaryOperation) \
M(SuspendCheck, Instruction) \
M(Throw, Instruction) \
M(TryBoundary, Instruction) \
M(TypeConversion, Instruction) \
M(UShr, BinaryOperation) \
M(Xor, BinaryOperation)
#define FOR_EACH_CONCRETE_INSTRUCTION_VECTOR_COMMON(M) \
M(VecReplicateScalar, VecUnaryOperation) \
M(VecExtractScalar, VecUnaryOperation) \
M(VecReduce, VecUnaryOperation) \
M(VecCnv, VecUnaryOperation) \
M(VecNeg, VecUnaryOperation) \
M(VecAbs, VecUnaryOperation) \
M(VecNot, VecUnaryOperation) \
M(VecAdd, VecBinaryOperation) \
M(VecHalvingAdd, VecBinaryOperation) \
M(VecSub, VecBinaryOperation) \
M(VecMul, VecBinaryOperation) \
M(VecDiv, VecBinaryOperation) \
M(VecMin, VecBinaryOperation) \
M(VecMax, VecBinaryOperation) \
M(VecAnd, VecBinaryOperation) \
M(VecAndNot, VecBinaryOperation) \
M(VecOr, VecBinaryOperation) \
M(VecXor, VecBinaryOperation) \
M(VecSaturationAdd, VecBinaryOperation) \
M(VecSaturationSub, VecBinaryOperation) \
M(VecShl, VecBinaryOperation) \
M(VecShr, VecBinaryOperation) \
M(VecUShr, VecBinaryOperation) \
M(VecSetScalars, VecOperation) \
M(VecMultiplyAccumulate, VecOperation) \
M(VecSADAccumulate, VecOperation) \
M(VecDotProd, VecOperation) \
M(VecLoad, VecMemoryOperation) \
M(VecStore, VecMemoryOperation) \
M(VecPredSetAll, VecPredSetOperation) \
M(VecPredWhile, VecPredSetOperation) \
M(VecPredCondition, VecOperation) \
#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \
FOR_EACH_CONCRETE_INSTRUCTION_SCALAR_COMMON(M) \
FOR_EACH_CONCRETE_INSTRUCTION_VECTOR_COMMON(M)
/*
* Instructions, shared across several (not all) architectures.
*/
#if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64)
#define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)
#else
#define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \
M(BitwiseNegatedRight, Instruction) \
M(DataProcWithShifterOp, Instruction) \
M(MultiplyAccumulate, Instruction) \
M(IntermediateAddressIndex, Instruction)
#endif
#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
#ifndef ART_ENABLE_CODEGEN_x86
#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
#else
#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \
M(X86ComputeBaseMethodAddress, Instruction) \
M(X86LoadFromConstantTable, Instruction) \
M(X86FPNeg, Instruction) \
M(X86PackedSwitch, Instruction)
#endif
#if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64)
#define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M) \
M(X86AndNot, Instruction) \
M(X86MaskOrResetLeastSetBit, Instruction)
#else
#define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)
#endif
#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
#define FOR_EACH_CONCRETE_INSTRUCTION(M) \
FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \
FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \
FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) \
FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) \
FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \
FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) \
FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M)
#define FOR_EACH_ABSTRACT_INSTRUCTION(M) \
M(Condition, BinaryOperation) \
M(Constant, Instruction) \
M(UnaryOperation, Instruction) \
M(BinaryOperation, Instruction) \
M(Invoke, Instruction) \
M(VecOperation, Instruction) \
M(VecUnaryOperation, VecOperation) \
M(VecBinaryOperation, VecOperation) \
M(VecMemoryOperation, VecOperation) \
M(VecPredSetOperation, VecOperation)
#define FOR_EACH_INSTRUCTION(M) \
FOR_EACH_CONCRETE_INSTRUCTION(M) \
FOR_EACH_ABSTRACT_INSTRUCTION(M)
#define FORWARD_DECLARATION(type, super) class H##type;
FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
#undef FORWARD_DECLARATION
#define DECLARE_INSTRUCTION(type) \
private: \
H##type& operator=(const H##type&) = delete; \
public: \
const char* DebugName() const override { return #type; } \
HInstruction* Clone(ArenaAllocator* arena) const override { \
DCHECK(IsClonable()); \
return new (arena) H##type(*this->As##type()); \
} \
void Accept(HGraphVisitor* visitor) override
#define DECLARE_ABSTRACT_INSTRUCTION(type) \
private: \
H##type& operator=(const H##type&) = delete; \
public:
#define DEFAULT_COPY_CONSTRUCTOR(type) H##type(const H##type& other) = default;
template <typename T>
class HUseListNode : public ArenaObject<kArenaAllocUseListNode>,
public IntrusiveForwardListNode<HUseListNode<T>> {
public:
// Get the instruction which has this use as one of the inputs.
T GetUser() const { return user_; }
// Get the position of the input record that this use corresponds to.
size_t GetIndex() const { return index_; }
// Set the position of the input record that this use corresponds to.
void SetIndex(size_t index) { index_ = index; }
private:
HUseListNode(T user, size_t index)
: user_(user), index_(index) {}
T const user_;
size_t index_;
friend class HInstruction;
DISALLOW_COPY_AND_ASSIGN(HUseListNode);
};
template <typename T>
using HUseList = IntrusiveForwardList<HUseListNode<T>>;
// This class is used by HEnvironment and HInstruction classes to record the
// instructions they use and pointers to the corresponding HUseListNodes kept
// by the used instructions.
template <typename T>
class HUserRecord : public ValueObject {
public:
HUserRecord() : instruction_(nullptr), before_use_node_() {}
explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), before_use_node_() {}
HUserRecord(const HUserRecord<T>& old_record, typename HUseList<T>::iterator before_use_node)
: HUserRecord(old_record.instruction_, before_use_node) {}
HUserRecord(HInstruction* instruction, typename HUseList<T>::iterator before_use_node)
: instruction_(instruction), before_use_node_(before_use_node) {
DCHECK(instruction_ != nullptr);
}
HInstruction* GetInstruction() const { return instruction_; }
typename HUseList<T>::iterator GetBeforeUseNode() const { return before_use_node_; }
typename HUseList<T>::iterator GetUseNode() const { return ++GetBeforeUseNode(); }
private:
// Instruction used by the user.
HInstruction* instruction_;
// Iterator before the corresponding entry in the use list kept by 'instruction_'.
typename HUseList<T>::iterator before_use_node_;
};
// Helper class that extracts the input instruction from HUserRecord<HInstruction*>.
// This is used for HInstruction::GetInputs() to return a container wrapper providing
// HInstruction* values even though the underlying container has HUserRecord<>s.
struct HInputExtractor {
HInstruction* operator()(HUserRecord<HInstruction*>& record) const {
return record.GetInstruction();
}
const HInstruction* operator()(const HUserRecord<HInstruction*>& record) const {
return record.GetInstruction();
}
};
using HInputsRef = TransformArrayRef<HUserRecord<HInstruction*>, HInputExtractor>;
using HConstInputsRef = TransformArrayRef<const HUserRecord<HInstruction*>, HInputExtractor>;
/**
* Side-effects representation.
*
* For write/read dependences on fields/arrays, the dependence analysis uses
* type disambiguation (e.g. a float field write cannot modify the value of an
* integer field read) and the access type (e.g. a reference array write cannot
* modify the value of a reference field read [although it may modify the
* reference fetch prior to reading the field, which is represented by its own
* write/read dependence]). The analysis makes conservative points-to
* assumptions on reference types (e.g. two same typed arrays are assumed to be
* the same, and any reference read depends on any reference read without
* further regard of its type).
*
* kDependsOnGCBit is defined in the following way: instructions with kDependsOnGCBit must not be
* alive across the point where garbage collection might happen.
*
* Note: Instructions with kCanTriggerGCBit do not depend on each other.
*
* kCanTriggerGCBit must be used for instructions for which GC might happen on the path across
* those instructions from the compiler perspective (between this instruction and the next one
* in the IR).
*
* Note: Instructions which can cause GC only on a fatal slow path do not need
* kCanTriggerGCBit as the execution never returns to the instruction next to the exceptional
* one. However the execution may return to compiled code if there is a catch block in the
* current method; for this purpose the TryBoundary exit instruction has kCanTriggerGCBit
* set.
*
* The internal representation uses 38-bit and is described in the table below.
* The first line indicates the side effect, and for field/array accesses the
* second line indicates the type of the access (in the order of the
* DataType::Type enum).
* The two numbered lines below indicate the bit position in the bitfield (read
* vertically).
*
* |Depends on GC|ARRAY-R |FIELD-R |Can trigger GC|ARRAY-W |FIELD-W |
* +-------------+---------+---------+--------------+---------+---------+
* | |DFJISCBZL|DFJISCBZL| |DFJISCBZL|DFJISCBZL|
* | 3 |333333322|222222221| 1 |111111110|000000000|
* | 7 |654321098|765432109| 8 |765432109|876543210|
*
* Note that, to ease the implementation, 'changes' bits are least significant
* bits, while 'dependency' bits are most significant bits.
*/
class SideEffects : public ValueObject {
public:
SideEffects() : flags_(0) {}
static SideEffects None() {
return SideEffects(0);
}
static SideEffects All() {
return SideEffects(kAllChangeBits | kAllDependOnBits);
}
static SideEffects AllChanges() {
return SideEffects(kAllChangeBits);
}
static SideEffects AllDependencies() {
return SideEffects(kAllDependOnBits);
}
static SideEffects AllExceptGCDependency() {
return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
}
static SideEffects AllWritesAndReads() {
return SideEffects(kAllWrites | kAllReads);
}
static SideEffects AllWrites() {
return SideEffects(kAllWrites);
}
static SideEffects AllReads() {
return SideEffects(kAllReads);
}
static SideEffects FieldWriteOfType(DataType::Type type, bool is_volatile) {
return is_volatile
? AllWritesAndReads()
: SideEffects(TypeFlag(type, kFieldWriteOffset));
}
static SideEffects ArrayWriteOfType(DataType::Type type) {
return SideEffects(TypeFlag(type, kArrayWriteOffset));
}
static SideEffects FieldReadOfType(DataType::Type type, bool is_volatile) {
return is_volatile
? AllWritesAndReads()
: SideEffects(TypeFlag(type, kFieldReadOffset));
}
static SideEffects ArrayReadOfType(DataType::Type type) {
return SideEffects(TypeFlag(type, kArrayReadOffset));
}
// Returns whether GC might happen across this instruction from the compiler perspective so
// the next instruction in the IR would see that.
//
// See the SideEffect class comments.
static SideEffects CanTriggerGC() {
return SideEffects(1ULL << kCanTriggerGCBit);
}
// Returns whether the instruction must not be alive across a GC point.
//
// See the SideEffect class comments.
static SideEffects DependsOnGC() {
return SideEffects(1ULL << kDependsOnGCBit);
}
// Combines the side-effects of this and the other.
SideEffects Union(SideEffects other) const {
return SideEffects(flags_ | other.flags_);
}
SideEffects Exclusion(SideEffects other) const {
return SideEffects(flags_ & ~other.flags_);
}
void Add(SideEffects other) {
flags_ |= other.flags_;
}
bool Includes(SideEffects other) const {
return (other.flags_ & flags_) == other.flags_;
}
bool HasSideEffects() const {
return (flags_ & kAllChangeBits);
}
bool HasDependencies() const {
return (flags_ & kAllDependOnBits);
}
// Returns true if there are no side effects or dependencies.
bool DoesNothing() const {
return flags_ == 0;
}
// Returns true if something is written.
bool DoesAnyWrite() const {
return (flags_ & kAllWrites);
}
// Returns true if something is read.
bool DoesAnyRead() const {
return (flags_ & kAllReads);
}
// Returns true if potentially everything is written and read
// (every type and every kind of access).
bool DoesAllReadWrite() const {
return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
}
bool DoesAll() const {
return flags_ == (kAllChangeBits | kAllDependOnBits);
}
// Returns true if `this` may read something written by `other`.
bool MayDependOn(SideEffects other) const {
const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
return (other.flags_ & depends_on_flags);
}
// Returns string representation of flags (for debugging only).
// Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
std::string ToString() const {
std::string flags = "|";
for (int s = kLastBit; s >= 0; s--) {
bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
// This is a bit for the GC side effect.
if (current_bit_is_set) {
flags += "GC";
}
flags += "|";
} else {
// This is a bit for the array/field analysis.
// The underscore character stands for the 'can trigger GC' bit.
static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
if (current_bit_is_set) {
flags += kDebug[s];
}
if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
(s == kFieldReadOffset) || (s == kArrayReadOffset)) {
flags += "|";
}
}
}
return flags;
}
bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
private:
static constexpr int kFieldArrayAnalysisBits = 9;
static constexpr int kFieldWriteOffset = 0;
static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
static constexpr int kChangeBits = kCanTriggerGCBit + 1;
static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
static constexpr int kLastBit = kDependsOnGCBit;
static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
// Aliases.
static_assert(kChangeBits == kDependOnBits,
"the 'change' bits should match the 'depend on' bits.");
static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
static constexpr uint64_t kAllWrites =
((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
static constexpr uint64_t kAllReads =
((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
// Translates type to bit flag. The type must correspond to a Java type.
static uint64_t TypeFlag(DataType::Type type, int offset) {
int shift;
switch (type) {
case DataType::Type::kReference: shift = 0; break;
case DataType::Type::kBool: shift = 1; break;
case DataType::Type::kInt8: shift = 2; break;
case DataType::Type::kUint16: shift = 3; break;
case DataType::Type::kInt16: shift = 4; break;
case DataType::Type::kInt32: shift = 5; break;
case DataType::Type::kInt64: shift = 6; break;
case DataType::Type::kFloat32: shift = 7; break;
case DataType::Type::kFloat64: shift = 8; break;
default:
LOG(FATAL) << "Unexpected data type " << type;
UNREACHABLE();
}
DCHECK_LE(kFieldWriteOffset, shift);
DCHECK_LT(shift, kArrayWriteOffset);
return UINT64_C(1) << (shift + offset);
}
// Private constructor on direct flags value.
explicit SideEffects(uint64_t flags) : flags_(flags) {}
uint64_t flags_;
};
// A HEnvironment object contains the values of virtual registers at a given location.
class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
public:
ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator,
size_t number_of_vregs,
ArtMethod* method,
uint32_t dex_pc,
HInstruction* holder)
: vregs_(number_of_vregs, allocator->Adapter(kArenaAllocEnvironmentVRegs)),
locations_(allocator->Adapter(kArenaAllocEnvironmentLocations)),
parent_(nullptr),
method_(method),
dex_pc_(dex_pc),
holder_(holder) {
}
ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator,
const HEnvironment& to_copy,
HInstruction* holder)
: HEnvironment(allocator,
to_copy.Size(),
to_copy.GetMethod(),
to_copy.GetDexPc(),
holder) {}
void AllocateLocations() {
DCHECK(locations_.empty());
locations_.resize(vregs_.size());
}
void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
if (parent_ != nullptr) {
parent_->SetAndCopyParentChain(allocator, parent);
} else {
parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
parent_->CopyFrom(parent);
if (parent->GetParent() != nullptr) {
parent_->SetAndCopyParentChain(allocator, parent->GetParent());
}
}
}
void CopyFrom(ArrayRef<HInstruction* const> locals);
void CopyFrom(HEnvironment* environment);
// Copy from `env`. If it's a loop phi for `loop_header`, copy the first
// input to the loop phi instead. This is for inserting instructions that
// require an environment (like HDeoptimization) in the loop pre-header.
void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
void SetRawEnvAt(size_t index, HInstruction* instruction) {
vregs_[index] = HUserRecord<HEnvironment*>(instruction);
}
HInstruction* GetInstructionAt(size_t index) const {
return vregs_[index].GetInstruction();
}
void RemoveAsUserOfInput(size_t index) const;
// Replaces the input at the position 'index' with the replacement; the replacement and old
// input instructions' env_uses_ lists are adjusted. The function works similar to
// HInstruction::ReplaceInput.
void ReplaceInput(HInstruction* replacement, size_t index);
size_t Size() const { return vregs_.size(); }
HEnvironment* GetParent() const { return parent_; }
void SetLocationAt(size_t index, Location location) {
locations_[index] = location;
}
Location GetLocationAt(size_t index) const {
return locations_[index];
}
uint32_t GetDexPc() const {
return dex_pc_;
}
ArtMethod* GetMethod() const {
return method_;
}
HInstruction* GetHolder() const {
return holder_;
}
bool IsFromInlinedInvoke() const {
return GetParent() != nullptr;
}
class EnvInputSelector {
public:
explicit EnvInputSelector(const HEnvironment* e) : env_(e) {}
HInstruction* operator()(size_t s) const {
return env_->GetInstructionAt(s);
}
private:
const HEnvironment* env_;
};
using HConstEnvInputRef = TransformIterator<CountIter, EnvInputSelector>;
IterationRange<HConstEnvInputRef> GetEnvInputs() const {
IterationRange<CountIter> range(Range(Size()));
return MakeIterationRange(MakeTransformIterator(range.begin(), EnvInputSelector(this)),
MakeTransformIterator(range.end(), EnvInputSelector(this)));
}
private:
ArenaVector<HUserRecord<HEnvironment*>> vregs_;
ArenaVector<Location> locations_;
HEnvironment* parent_;
ArtMethod* method_;
const uint32_t dex_pc_;
// The instruction that holds this environment.
HInstruction* const holder_;
friend class HInstruction;
DISALLOW_COPY_AND_ASSIGN(HEnvironment);
};
std::ostream& operator<<(std::ostream& os, const HInstruction& rhs);
// Iterates over the Environments
class HEnvironmentIterator : public ValueObject,
public std::iterator<std::forward_iterator_tag, HEnvironment*> {
public:
explicit HEnvironmentIterator(HEnvironment* cur) : cur_(cur) {}
HEnvironment* operator*() const {
return cur_;
}
HEnvironmentIterator& operator++() {
DCHECK(cur_ != nullptr);
cur_ = cur_->GetParent();
return *this;
}
HEnvironmentIterator operator++(int) {
HEnvironmentIterator prev(*this);
++(*this);
return prev;
}
bool operator==(const HEnvironmentIterator& other) const {
return other.cur_ == cur_;
}
bool operator!=(const HEnvironmentIterator& other) const {
return !(*this == other);
}
private:
HEnvironment* cur_;
};
class HInstruction : public ArenaObject<kArenaAllocInstruction> {
public:
#define DECLARE_KIND(type, super) k##type,
enum InstructionKind { // private marker to avoid generate-operator-out.py from processing.
FOR_EACH_CONCRETE_INSTRUCTION(DECLARE_KIND)
kLastInstructionKind
};
#undef DECLARE_KIND
HInstruction(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc)
: HInstruction(kind, DataType::Type::kVoid, side_effects, dex_pc) {}
HInstruction(InstructionKind kind, DataType::Type type, SideEffects side_effects, uint32_t dex_pc)
: previous_(nullptr),
next_(nullptr),
block_(nullptr),
dex_pc_(dex_pc),
id_(-1),
ssa_index_(-1),
packed_fields_(0u),
environment_(nullptr),
locations_(nullptr),
live_interval_(nullptr),
lifetime_position_(kNoLifetime),
side_effects_(side_effects),
reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) {
SetPackedField<InstructionKindField>(kind);
SetPackedField<TypeField>(type);
SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact());
}
virtual ~HInstruction() {}
std::ostream& Dump(std::ostream& os, bool dump_args = false);
// Helper for dumping without argument information using operator<<
struct NoArgsDump {
const HInstruction* ins;
};
NoArgsDump DumpWithoutArgs() const {
return NoArgsDump{this};
}
// Helper for dumping with argument information using operator<<
struct ArgsDump {
const HInstruction* ins;
};
ArgsDump DumpWithArgs() const {
return ArgsDump{this};
}
HInstruction* GetNext() const { return next_; }
HInstruction* GetPrevious() const { return previous_; }
HInstruction* GetNextDisregardingMoves() const;
HInstruction* GetPreviousDisregardingMoves() const;
HBasicBlock* GetBlock() const { return block_; }
ArenaAllocator* GetAllocator() const { return block_->GetGraph()->GetAllocator(); }
void SetBlock(HBasicBlock* block) { block_ = block; }
bool IsInBlock() const { return block_ != nullptr; }
bool IsInLoop() const { return block_->IsInLoop(); }
bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); }
bool IsIrreducibleLoopHeaderPhi() const {
return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible();
}
virtual ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() = 0;
ArrayRef<const HUserRecord<HInstruction*>> GetInputRecords() const {
// One virtual method is enough, just const_cast<> and then re-add the const.
return ArrayRef<const HUserRecord<HInstruction*>>(
const_cast<HInstruction*>(this)->GetInputRecords());
}
HInputsRef GetInputs() {
return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
}
HConstInputsRef GetInputs() const {
return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
}
size_t InputCount() const { return GetInputRecords().size(); }
HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
bool HasInput(HInstruction* input) const {
for (const HInstruction* i : GetInputs()) {
if (i == input) {
return true;
}
}
return false;
}
void SetRawInputAt(size_t index, HInstruction* input) {
SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
}
virtual void Accept(HGraphVisitor* visitor) = 0;
virtual const char* DebugName() const = 0;
DataType::Type GetType() const {
return TypeField::Decode(GetPackedFields());
}
virtual bool NeedsEnvironment() const { return false; }
virtual bool NeedsBss() const {
return false;
}
uint32_t GetDexPc() const { return dex_pc_; }
virtual bool IsControlFlow() const { return false; }
// Can the instruction throw?
// TODO: We should rename to CanVisiblyThrow, as some instructions (like HNewInstance),
// could throw OOME, but it is still OK to remove them if they are unused.
virtual bool CanThrow() const { return false; }
// Does the instruction always throw an exception unconditionally?
virtual bool AlwaysThrows() const { return false; }
// Will this instruction only cause async exceptions if it causes any at all?
virtual bool OnlyThrowsAsyncExceptions() const {
return false;
}
bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
// Does not apply for all instructions, but having this at top level greatly
// simplifies the null check elimination.
// TODO: Consider merging can_be_null into ReferenceTypeInfo.
virtual bool CanBeNull() const {
DCHECK_EQ(GetType(), DataType::Type::kReference) << "CanBeNull only applies to reference types";
return true;
}
virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
return false;
}
// If this instruction will do an implicit null check, return the `HNullCheck` associated
// with it. Otherwise return null.
HNullCheck* GetImplicitNullCheck() const {
// Go over previous non-move instructions that are emitted at use site.
HInstruction* prev_not_move = GetPreviousDisregardingMoves();
while (prev_not_move != nullptr && prev_not_move->IsEmittedAtUseSite()) {
if (prev_not_move->IsNullCheck()) {
return prev_not_move->AsNullCheck();
}
prev_not_move = prev_not_move->GetPreviousDisregardingMoves();
}
return nullptr;
}
virtual bool IsActualObject() const {
return GetType() == DataType::Type::kReference;
}
// Sets the ReferenceTypeInfo. The RTI must be valid.
void SetReferenceTypeInfo(ReferenceTypeInfo rti);
// Same as above, but we only set it if it's valid. Otherwise, we don't change the current RTI.
void SetReferenceTypeInfoIfValid(ReferenceTypeInfo rti);
ReferenceTypeInfo GetReferenceTypeInfo() const {
DCHECK_EQ(GetType(), DataType::Type::kReference);
return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_,
GetPackedFlag<kFlagReferenceTypeIsExact>());
}
void AddUseAt(HInstruction* user, size_t index) {
DCHECK(user != nullptr);
// Note: fixup_end remains valid across push_front().
auto fixup_end = uses_.empty() ? uses_.begin() : ++uses_.begin();
ArenaAllocator* allocator = user->GetBlock()->GetGraph()->GetAllocator();
HUseListNode<HInstruction*>* new_node =
new (allocator) HUseListNode<HInstruction*>(user, index);
uses_.push_front(*new_node);
FixUpUserRecordsAfterUseInsertion(fixup_end);
}
void AddEnvUseAt(HEnvironment* user, size_t index) {
DCHECK(user != nullptr);
// Note: env_fixup_end remains valid across push_front().
auto env_fixup_end = env_uses_.empty() ? env_uses_.begin() : ++env_uses_.begin();
HUseListNode<HEnvironment*>* new_node =
new (GetBlock()->GetGraph()->GetAllocator()) HUseListNode<HEnvironment*>(user, index);
env_uses_.push_front(*new_node);
FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
}
void RemoveAsUserOfInput(size_t input) {
HUserRecord<HInstruction*> input_use = InputRecordAt(input);
HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
input_use.GetInstruction()->uses_.erase_after(before_use_node);
input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
}
void RemoveAsUserOfAllInputs() {
for (const HUserRecord<HInstruction*>& input_use : GetInputRecords()) {
HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
input_use.GetInstruction()->uses_.erase_after(before_use_node);
input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
}
}
const HUseList<HInstruction*>& GetUses() const { return uses_; }
const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
bool HasUses() const { return !uses_.empty() || !env_uses_.empty(); }
bool HasEnvironmentUses() const { return !env_uses_.empty(); }
bool HasNonEnvironmentUses() const { return !uses_.empty(); }
bool HasOnlyOneNonEnvironmentUse() const {
return !HasEnvironmentUses() && GetUses().HasExactlyOneElement();
}
bool IsRemovable() const {
return
!DoesAnyWrite() &&
!CanThrow() &&
!IsSuspendCheck() &&
!IsControlFlow() &&
!IsNop() &&
!IsParameterValue() &&
// If we added an explicit barrier then we should keep it.
!IsMemoryBarrier() &&
!IsConstructorFence();
}
bool IsDeadAndRemovable() const {
return IsRemovable() && !HasUses();
}
// Does this instruction dominate `other_instruction`?
// Aborts if this instruction and `other_instruction` are different phis.
bool Dominates(HInstruction* other_instruction) const;
// Same but with `strictly dominates` i.e. returns false if this instruction and
// `other_instruction` are the same.
bool StrictlyDominates(HInstruction* other_instruction) const;
int GetId() const { return id_; }
void SetId(int id) { id_ = id; }
int GetSsaIndex() const { return ssa_index_; }
void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
bool HasSsaIndex() const { return ssa_index_ != -1; }
bool HasEnvironment() const { return environment_ != nullptr; }
HEnvironment* GetEnvironment() const { return environment_; }
IterationRange<HEnvironmentIterator> GetAllEnvironments() const {
return MakeIterationRange(HEnvironmentIterator(GetEnvironment()),
HEnvironmentIterator(nullptr));
}
// Set the `environment_` field. Raw because this method does not
// update the uses lists.
void SetRawEnvironment(HEnvironment* environment) {
DCHECK(environment_ == nullptr);
DCHECK_EQ(environment->GetHolder(), this);
environment_ = environment;
}
void InsertRawEnvironment(HEnvironment* environment) {
DCHECK(environment_ != nullptr);
DCHECK_EQ(environment->GetHolder(), this);
DCHECK(environment->GetParent() == nullptr);
environment->parent_ = environment_;
environment_ = environment;
}
void RemoveEnvironment();
// Set the environment of this instruction, copying it from `environment`. While
// copying, the uses lists are being updated.
void CopyEnvironmentFrom(HEnvironment* environment) {
DCHECK(environment_ == nullptr);
ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator();
environment_ = new (allocator) HEnvironment(allocator, *environment, this);
environment_->CopyFrom(environment);
if (environment->GetParent() != nullptr) {
environment_->SetAndCopyParentChain(allocator, environment->GetParent());
}
}
void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
HBasicBlock* block) {
DCHECK(environment_ == nullptr);
ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator();
environment_ = new (allocator) HEnvironment(allocator, *environment, this);
environment_->CopyFromWithLoopPhiAdjustment(environment, block);
if (environment->GetParent() != nullptr) {
environment_->SetAndCopyParentChain(allocator, environment->GetParent());
}
}
// Returns the number of entries in the environment. Typically, that is the
// number of dex registers in a method. It could be more in case of inlining.
size_t EnvironmentSize() const;
LocationSummary* GetLocations() const { return locations_; }
void SetLocations(LocationSummary* locations) { locations_ = locations; }
void ReplaceWith(HInstruction* instruction);
void ReplaceUsesDominatedBy(HInstruction* dominator,
HInstruction* replacement,
bool strictly_dominated = true);
void ReplaceEnvUsesDominatedBy(HInstruction* dominator, HInstruction* replacement);
void ReplaceInput(HInstruction* replacement, size_t index);
// This is almost the same as doing `ReplaceWith()`. But in this helper, the
// uses of this instruction by `other` are *not* updated.
void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
ReplaceWith(other);
other->ReplaceInput(this, use_index);
}
// Move `this` instruction before `cursor`
void MoveBefore(HInstruction* cursor, bool do_checks = true);
// Move `this` before its first user and out of any loops. If there is no
// out-of-loop user that dominates all other users, move the instruction
// to the end of the out-of-loop common dominator of the user's blocks.
//
// This can be used only on non-throwing instructions with no side effects that
// have at least one use but no environment uses.
void MoveBeforeFirstUserAndOutOfLoops();
#define INSTRUCTION_TYPE_CHECK(type, super) \
bool Is##type() const;
FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
#undef INSTRUCTION_TYPE_CHECK
#define INSTRUCTION_TYPE_CAST(type, super) \
const H##type* As##type() const; \
H##type* As##type();
FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)
#undef INSTRUCTION_TYPE_CAST
// Return a clone of the instruction if it is clonable (shallow copy by default, custom copy
// if a custom copy-constructor is provided for a particular type). If IsClonable() is false for
// the instruction then the behaviour of this function is undefined.
//
// Note: It is semantically valid to create a clone of the instruction only until
// prepare_for_register_allocator phase as lifetime, intervals and codegen info are not
// copied.
//
// Note: HEnvironment and some other fields are not copied and are set to default values, see
// 'explicit HInstruction(const HInstruction& other)' for details.
virtual HInstruction* Clone(ArenaAllocator* arena ATTRIBUTE_UNUSED) const {
LOG(FATAL) << "Cloning is not implemented for the instruction " <<
DebugName() << " " << GetId();
UNREACHABLE();
}
virtual bool IsFieldAccess() const {
return false;
}
virtual const FieldInfo& GetFieldInfo() const {
CHECK(IsFieldAccess()) << "Only callable on field accessors not " << DebugName() << " "
<< *this;
LOG(FATAL) << "Must be overridden by field accessors. Not implemented by " << *this;
UNREACHABLE();
}
// Return whether instruction can be cloned (copied).
virtual bool IsClonable() const { return false; }
// Returns whether the instruction can be moved within the graph.
// TODO: this method is used by LICM and GVN with possibly different
// meanings? split and rename?
virtual bool CanBeMoved() const { return false; }
// Returns whether any data encoded in the two instructions is equal.
// This method does not look at the inputs. Both instructions must be
// of the same type, otherwise the method has undefined behavior.
virtual bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const {
return false;
}
// Returns whether two instructions are equal, that is:
// 1) They have the same type and contain the same data (InstructionDataEquals).
// 2) Their inputs are identical.
bool Equals(const HInstruction* other) const;
InstructionKind GetKind() const { return GetPackedField<InstructionKindField>(); }
virtual size_t ComputeHashCode() const {
size_t result = GetKind();
for (const HInstruction* input : GetInputs()) {
result = (result * 31) + input->GetId();
}
return result;
}
SideEffects GetSideEffects() const { return side_effects_; }
void SetSideEffects(SideEffects other) { side_effects_ = other; }
void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
size_t GetLifetimePosition() const { return lifetime_position_; }
void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
LiveInterval* GetLiveInterval() const { return live_interval_; }
void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
bool HasLiveInterval() const { return live_interval_ != nullptr; }
bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
// Returns whether the code generation of the instruction will require to have access
// to the current method. Such instructions are:
// (1): Instructions that require an environment, as calling the runtime requires
// to walk the stack and have the current method stored at a specific stack address.
// (2): HCurrentMethod, potentially used by HInvokeStaticOrDirect, HLoadString, or HLoadClass
// to access the dex cache.
bool NeedsCurrentMethod() const {
return NeedsEnvironment() || IsCurrentMethod();
}
// Does this instruction have any use in an environment before
// control flow hits 'other'?
bool HasAnyEnvironmentUseBefore(HInstruction* other);
// Remove all references to environment uses of this instruction.
// The caller must ensure that this is safe to do.
void RemoveEnvironmentUsers();
bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); }
void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); }
protected:
// If set, the machine code for this instruction is assumed to be generated by
// its users. Used by liveness analysis to compute use positions accordingly.
static constexpr size_t kFlagEmittedAtUseSite = 0u;
static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1;
static constexpr size_t kFieldInstructionKind = kFlagReferenceTypeIsExact + 1;
static constexpr size_t kFieldInstructionKindSize =
MinimumBitsToStore(static_cast<size_t>(InstructionKind::kLastInstructionKind - 1));
static constexpr size_t kFieldType =
kFieldInstructionKind + kFieldInstructionKindSize;
static constexpr size_t kFieldTypeSize =
MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
static constexpr size_t kNumberOfGenericPackedBits = kFieldType + kFieldTypeSize;
static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte;
static_assert(kNumberOfGenericPackedBits <= kMaxNumberOfPackedBits,
"Too many generic packed fields");
using TypeField = BitField<DataType::Type, kFieldType, kFieldTypeSize>;
const HUserRecord<HInstruction*> InputRecordAt(size_t i) const {
return GetInputRecords()[i];
}
void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) {
ArrayRef<HUserRecord<HInstruction*>> input_records = GetInputRecords();
input_records[index] = input;
}
uint32_t GetPackedFields() const {
return packed_fields_;
}
template <size_t flag>
bool GetPackedFlag() const {
return (packed_fields_ & (1u << flag)) != 0u;
}
template <size_t flag>
void SetPackedFlag(bool value = true) {
packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag);
}
template <typename BitFieldType>
typename BitFieldType::value_type GetPackedField() const {
return BitFieldType::Decode(packed_fields_);
}
template <typename BitFieldType>
void SetPackedField(typename BitFieldType::value_type value) {
DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value)));
packed_fields_ = BitFieldType::Update(value, packed_fields_);
}
// Copy construction for the instruction (used for Clone function).
//
// Fields (e.g. lifetime, intervals and codegen info) associated with phases starting from
// prepare_for_register_allocator are not copied (set to default values).
//
// Copy constructors must be provided for every HInstruction type; default copy constructor is
// fine for most of them. However for some of the instructions a custom copy constructor must be
// specified (when instruction has non-trivially copyable fields and must have a special behaviour
// for copying them).
explicit HInstruction(const HInstruction& other)
: previous_(nullptr),
next_(nullptr),
block_(nullptr),
dex_pc_(other.dex_pc_),
id_(-1),
ssa_index_(-1),
packed_fields_(other.packed_fields_),
environment_(nullptr),
locations_(nullptr),
live_interval_(nullptr),
lifetime_position_(kNoLifetime),
side_effects_(other.side_effects_),
reference_type_handle_(other.reference_type_handle_) {
}
private:
using InstructionKindField =
BitField<InstructionKind, kFieldInstructionKind, kFieldInstructionKindSize>;
void FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction*>::iterator fixup_end) {
auto before_use_node = uses_.before_begin();
for (auto use_node = uses_.begin(); use_node != fixup_end; ++use_node) {
HInstruction* user = use_node->GetUser();
size_t input_index = use_node->GetIndex();
user->SetRawInputRecordAt(input_index, HUserRecord<HInstruction*>(this, before_use_node));
before_use_node = use_node;
}
}
void FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction*>::iterator before_use_node) {
auto next = ++HUseList<HInstruction*>::iterator(before_use_node);
if (next != uses_.end()) {
HInstruction* next_user = next->GetUser();
size_t next_index = next->GetIndex();
DCHECK(next_user->InputRecordAt(next_index).GetInstruction() == this);
next_user->SetRawInputRecordAt(next_index, HUserRecord<HInstruction*>(this, before_use_node));
}
}
void FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment*>::iterator env_fixup_end) {
auto before_env_use_node = env_uses_.before_begin();
for (auto env_use_node = env_uses_.begin(); env_use_node != env_fixup_end; ++env_use_node) {
HEnvironment* user = env_use_node->GetUser();
size_t input_index = env_use_node->GetIndex();
user->vregs_[input_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
before_env_use_node = env_use_node;
}
}
void FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment*>::iterator before_env_use_node) {
auto next = ++HUseList<HEnvironment*>::iterator(before_env_use_node);
if (next != env_uses_.end()) {
HEnvironment* next_user = next->GetUser();
size_t next_index = next->GetIndex();
DCHECK(next_user->vregs_[next_index].GetInstruction() == this);
next_user->vregs_[next_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
}
}
HInstruction* previous_;
HInstruction* next_;
HBasicBlock* block_;
const uint32_t dex_pc_;
// An instruction gets an id when it is added to the graph.
// It reflects creation order. A negative id means the instruction
// has not been added to the graph.
int id_;
// When doing liveness analysis, instructions that have uses get an SSA index.
int ssa_index_;
// Packed fields.
uint32_t packed_fields_;
// List of instructions that have this instruction as input.
HUseList<HInstruction*> uses_;
// List of environments that contain this instruction.
HUseList<HEnvironment*> env_uses_;
// The environment associated with this instruction. Not null if the instruction
// might jump out of the method.
HEnvironment* environment_;
// Set by the code generator.
LocationSummary* locations_;
// Set by the liveness analysis.
LiveInterval* live_interval_;
// Set by the liveness analysis, this is the position in a linear
// order of blocks where this instruction's live interval start.
size_t lifetime_position_;
SideEffects side_effects_;
// The reference handle part of the reference type info.
// The IsExact() flag is stored in packed fields.
// TODO: for primitive types this should be marked as invalid.
ReferenceTypeInfo::TypeHandle reference_type_handle_;
friend class GraphChecker;
friend class HBasicBlock;
friend class HEnvironment;
friend class HGraph;
friend class HInstructionList;
};
std::ostream& operator<<(std::ostream& os, HInstruction::InstructionKind rhs);
std::ostream& operator<<(std::ostream& os, const HInstruction::NoArgsDump rhs);
std::ostream& operator<<(std::ostream& os, const HInstruction::ArgsDump rhs);
std::ostream& operator<<(std::ostream& os, const HUseList<HInstruction*>& lst);
std::ostream& operator<<(std::ostream& os, const HUseList<HEnvironment*>& lst);
// Forward declarations for friends
template <typename InnerIter> struct HSTLInstructionIterator;
// Iterates over the instructions, while preserving the next instruction
// in case the current instruction gets removed from the list by the user
// of this iterator.
class HInstructionIterator : public ValueObject {
public:
explicit HInstructionIterator(const HInstructionList& instructions)
: instruction_(instructions.first_instruction_) {
next_ = Done() ? nullptr : instruction_->GetNext();
}
bool Done() const { return instruction_ == nullptr; }
HInstruction* Current() const { return instruction_; }
void Advance() {
instruction_ = next_;
next_ = Done() ? nullptr : instruction_->GetNext();
}
private:
HInstructionIterator() : instruction_(nullptr), next_(nullptr) {}
HInstruction* instruction_;
HInstruction* next_;
friend struct HSTLInstructionIterator<HInstructionIterator>;
};
// Iterates over the instructions without saving the next instruction,
// therefore handling changes in the graph potentially made by the user
// of this iterator.
class HInstructionIteratorHandleChanges : public ValueObject {
public:
explicit HInstructionIteratorHandleChanges(const HInstructionList& instructions)
: instruction_(instructions.first_instruction_) {
}
bool Done() const { return instruction_ == nullptr; }
HInstruction* Current() const { return instruction_; }
void Advance() {
instruction_ = instruction_->GetNext();
}
private:
HInstructionIteratorHandleChanges() : instruction_(nullptr) {}
HInstruction* instruction_;
friend struct HSTLInstructionIterator<HInstructionIteratorHandleChanges>;
};
class HBackwardInstructionIterator : public ValueObject {
public:
explicit HBackwardInstructionIterator(const HInstructionList& instructions)
: instruction_(instructions.last_instruction_) {
next_ = Done() ? nullptr : instruction_->GetPrevious();
}
bool Done() const { return instruction_ == nullptr; }
HInstruction* Current() const { return instruction_; }
void Advance() {
instruction_ = next_;
next_ = Done() ? nullptr : instruction_->GetPrevious();
}
private:
HBackwardInstructionIterator() : instruction_(nullptr), next_(nullptr) {}
HInstruction* instruction_;
HInstruction* next_;
friend struct HSTLInstructionIterator<HBackwardInstructionIterator>;
};
template <typename InnerIter>
struct HSTLInstructionIterator : public ValueObject,
public std::iterator<std::forward_iterator_tag, HInstruction*> {
public:
static_assert(std::is_same_v<InnerIter, HBackwardInstructionIterator> ||
std::is_same_v<InnerIter, HInstructionIterator> ||
std::is_same_v<InnerIter, HInstructionIteratorHandleChanges>,
"Unknown wrapped iterator!");
explicit HSTLInstructionIterator(InnerIter inner) : inner_(inner) {}
HInstruction* operator*() const {
DCHECK(inner_.Current() != nullptr);
return inner_.Current();
}
HSTLInstructionIterator<InnerIter>& operator++() {
DCHECK(*this != HSTLInstructionIterator<InnerIter>::EndIter());
inner_.Advance();
return *this;
}
HSTLInstructionIterator<InnerIter> operator++(int) {
HSTLInstructionIterator<InnerIter> prev(*this);
++(*this);
return prev;
}
bool operator==(const HSTLInstructionIterator<InnerIter>& other) const {
return inner_.Current() == other.inner_.Current();
}
bool operator!=(const HSTLInstructionIterator<InnerIter>& other) const {
return !(*this == other);
}
static HSTLInstructionIterator<InnerIter> EndIter() {
return HSTLInstructionIterator<InnerIter>(InnerIter());
}
private:
InnerIter inner_;
};
template <typename InnerIter>
IterationRange<HSTLInstructionIterator<InnerIter>> MakeSTLInstructionIteratorRange(InnerIter iter) {
return MakeIterationRange(HSTLInstructionIterator<InnerIter>(iter),
HSTLInstructionIterator<InnerIter>::EndIter());
}
class HVariableInputSizeInstruction : public HInstruction {
public:
using HInstruction::GetInputRecords; // Keep the const version visible.
ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override {
return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
}
void AddInput(HInstruction* input);
void InsertInputAt(size_t index, HInstruction* input);
void RemoveInputAt(size_t index);
// Removes all the inputs.
// Also removes this instructions from each input's use list
// (for non-environment uses only).
void RemoveAllInputs();
protected:
HVariableInputSizeInstruction(InstructionKind inst_kind,
SideEffects side_effects,
uint32_t dex_pc,
ArenaAllocator* allocator,
size_t number_of_inputs,
ArenaAllocKind kind)
: HInstruction(inst_kind, side_effects, dex_pc),
inputs_(number_of_inputs, allocator->Adapter(kind)) {}
HVariableInputSizeInstruction(InstructionKind inst_kind,
DataType::Type type,
SideEffects side_effects,
uint32_t dex_pc,
ArenaAllocator* allocator,
size_t number_of_inputs,
ArenaAllocKind kind)
: HInstruction(inst_kind, type, side_effects, dex_pc),
inputs_(number_of_inputs, allocator->Adapter(kind)) {}
DEFAULT_COPY_CONSTRUCTOR(VariableInputSizeInstruction);
ArenaVector<HUserRecord<HInstruction*>> inputs_;
};
template<size_t N>
class HExpression : public HInstruction {
public:
HExpression<N>(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc)
: HInstruction(kind, side_effects, dex_pc), inputs_() {}
HExpression<N>(InstructionKind kind,
DataType::Type type,
SideEffects side_effects,
uint32_t dex_pc)
: HInstruction(kind, type, side_effects, dex_pc), inputs_() {}
virtual ~HExpression() {}
using HInstruction::GetInputRecords; // Keep the const version visible.
ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
}
protected:
DEFAULT_COPY_CONSTRUCTOR(Expression<N>);
private:
std::array<HUserRecord<HInstruction*>, N> inputs_;
friend class SsaBuilder;
};
// HExpression specialization for N=0.
template<>
class HExpression<0> : public HInstruction {
public:
using HInstruction::HInstruction;
virtual ~HExpression() {}
using HInstruction::GetInputRecords; // Keep the const version visible.
ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
return ArrayRef<HUserRecord<HInstruction*>>();
}
protected:
DEFAULT_COPY_CONSTRUCTOR(Expression<0>);
private:
friend class SsaBuilder;
};
class HMethodEntryHook : public HExpression<0> {
public:
explicit HMethodEntryHook(uint32_t dex_pc)
: HExpression(kMethodEntryHook, SideEffects::All(), dex_pc) {}
bool NeedsEnvironment() const override {
return true;
}
bool CanThrow() const override { return true; }
DECLARE_INSTRUCTION(MethodEntryHook);
protected:
DEFAULT_COPY_CONSTRUCTOR(MethodEntryHook);
};
class HMethodExitHook : public HExpression<1> {
public:
HMethodExitHook(HInstruction* value, uint32_t dex_pc)
: HExpression(kMethodExitHook, SideEffects::All(), dex_pc) {
SetRawInputAt(0, value);
}
bool NeedsEnvironment() const override {
return true;
}
bool CanThrow() const override { return true; }
DECLARE_INSTRUCTION(MethodExitHook);
protected:
DEFAULT_COPY_CONSTRUCTOR(MethodExitHook);
};
// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
// instruction that branches to the exit block.
class HReturnVoid final : public HExpression<0> {
public:
explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
: HExpression(kReturnVoid, SideEffects::None(), dex_pc) {
}
bool IsControlFlow() const override { return true; }
DECLARE_INSTRUCTION(ReturnVoid);
protected:
DEFAULT_COPY_CONSTRUCTOR(ReturnVoid);
};
// Represents dex's RETURN opcodes. A HReturn is a control flow
// instruction that branches to the exit block.
class HReturn final : public HExpression<1> {
public:
explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
: HExpression(kReturn, SideEffects::None(), dex_pc) {
SetRawInputAt(0, value);
}
bool IsControlFlow() const override { return true; }
DECLARE_INSTRUCTION(Return);
protected:
DEFAULT_COPY_CONSTRUCTOR(Return);
};
class HPhi final : public HVariableInputSizeInstruction {
public:
HPhi(ArenaAllocator* allocator,
uint32_t reg_number,
size_t number_of_inputs,
DataType::Type type,
uint32_t dex_pc = kNoDexPc)
: HVariableInputSizeInstruction(
kPhi,
ToPhiType(type),
SideEffects::None(),
dex_pc,
allocator,
number_of_inputs,
kArenaAllocPhiInputs),
reg_number_(reg_number) {
DCHECK_NE(GetType(), DataType::Type::kVoid);
// Phis are constructed live and marked dead if conflicting or unused.
// Individual steps of SsaBuilder should assume that if a phi has been
// marked dead, it can be ignored and will be removed by SsaPhiElimination.
SetPackedFlag<kFlagIsLive>(true);
SetPackedFlag<kFlagCanBeNull>(true);
}
bool IsClonable() const override { return true; }
// Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
static DataType::Type ToPhiType(DataType::Type type) {
return DataType::Kind(type);
}
bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
void SetType(DataType::Type new_type) {
// Make sure that only valid type changes occur. The following are allowed:
// (1) int -> float/ref (primitive type propagation),
// (2) long -> double (primitive type propagation).
DCHECK(GetType() == new_type ||
(GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kFloat32) ||
(GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kReference) ||
(GetType() == DataType::Type::kInt64 && new_type == DataType::Type::kFloat64));
SetPackedField<TypeField>(new_type);
}
bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
uint32_t GetRegNumber() const { return reg_number_; }
void SetDead() { SetPackedFlag<kFlagIsLive>(false); }
void SetLive() { SetPackedFlag<kFlagIsLive>(true); }
bool IsDead() const { return !IsLive(); }
bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); }
bool IsVRegEquivalentOf(const HInstruction* other) const {
return other != nullptr
&& other->IsPhi()
&& other->AsPhi()->GetBlock() == GetBlock()
&& other->AsPhi()->GetRegNumber() == GetRegNumber();
}
bool HasEquivalentPhi() const {
if (GetPrevious() != nullptr && GetPrevious()->AsPhi()->GetRegNumber() == GetRegNumber()) {
return true;
}
if (GetNext() != nullptr && GetNext()->AsPhi()->GetRegNumber() == GetRegNumber()) {
return true;
}
return false;
}
// Returns the next equivalent phi (starting from the current one) or null if there is none.
// An equivalent phi is a phi having the same dex register and type.
// It assumes that phis with the same dex register are adjacent.
HPhi* GetNextEquivalentPhiWithSameType() {
HInstruction* next = GetNext();
while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
if (next->GetType() == GetType()) {
return next->AsPhi();
}
next = next->GetNext();
}
return nullptr;
}
DECLARE_INSTRUCTION(Phi);
protected:
DEFAULT_COPY_CONSTRUCTOR(Phi);
private:
static constexpr size_t kFlagIsLive = HInstruction::kNumberOfGenericPackedBits;
static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1;
static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1;
static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
const uint32_t reg_number_;
};
// The exit instruction is the only instruction of the exit block.
// Instructions aborting the method (HThrow and HReturn) must branch to the
// exit block.
class HExit final : public HExpression<0> {
public:
explicit HExit(uint32_t dex_pc = kNoDexPc)
: HExpression(kExit, SideEffects::None(), dex_pc) {
}
bool IsControlFlow() const override { return true; }
DECLARE_INSTRUCTION(Exit);
protected:
DEFAULT_COPY_CONSTRUCTOR(Exit);
};
// Jumps from one block to another.
class HGoto final : public HExpression<0> {
public:
explicit HGoto(uint32_t dex_pc = kNoDexPc)
: HExpression(kGoto, SideEffects::None(), dex_pc) {
}
bool IsClonable() const override { return true; }
bool IsControlFlow() const override { return true; }
HBasicBlock* GetSuccessor() const {
return GetBlock()->GetSingleSuccessor();
}
DECLARE_INSTRUCTION(Goto);
protected:
DEFAULT_COPY_CONSTRUCTOR(Goto);
};
class HConstant : public HExpression<0> {
public:
explicit HConstant(InstructionKind kind, DataType::Type type, uint32_t dex_pc = kNoDexPc)
: HExpression(kind, type, SideEffects::None(), dex_pc) {
}
bool CanBeMoved() const override { return true; }
// Is this constant -1 in the arithmetic sense?
virtual bool IsMinusOne() const { return false; }
// Is this constant 0 in the arithmetic sense?
virtual bool IsArithmeticZero() const { return false; }
// Is this constant a 0-bit pattern?
virtual bool IsZeroBitPattern() const { return false; }
// Is this constant 1 in the arithmetic sense?
virtual bool IsOne() const { return false; }
virtual uint64_t GetValueAsUint64() const = 0;
DECLARE_ABSTRACT_INSTRUCTION(Constant);
protected:
DEFAULT_COPY_CONSTRUCTOR(Constant);
};
class HNullConstant final : public HConstant {
public:
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
return true;
}
uint64_t GetValueAsUint64() const override { return 0; }
size_t ComputeHashCode() const override { return 0; }
// The null constant representation is a 0-bit pattern.
bool IsZeroBitPattern() const override { return true; }
DECLARE_INSTRUCTION(NullConstant);
protected:
DEFAULT_COPY_CONSTRUCTOR(NullConstant);
private:
explicit HNullConstant(uint32_t dex_pc = kNoDexPc)
: HConstant(kNullConstant, DataType::Type::kReference, dex_pc) {
}
friend class HGraph;
};
// Constants of the type int. Those can be from Dex instructions, or
// synthesized (for example with the if-eqz instruction).
class HIntConstant final : public HConstant {
public:
int32_t GetValue() const { return value_; }
uint64_t GetValueAsUint64() const override {
return static_cast<uint64_t>(static_cast<uint32_t>(value_));
}
bool InstructionDataEquals(const HInstruction* other) const override {
DCHECK(other->IsIntConstant()) << other->DebugName();
return other->AsIntConstant()->value_ == value_;
}
size_t ComputeHashCode() const override { return GetValue(); }
bool IsMinusOne() const override { return GetValue() == -1; }
bool IsArithmeticZero() const override { return GetValue() == 0; }
bool IsZeroBitPattern() const override { return GetValue() == 0; }
bool IsOne() const override { return GetValue() == 1; }
// Integer constants are used to encode Boolean values as well,
// where 1 means true and 0 means false.
bool IsTrue() const { return GetValue() == 1; }
bool IsFalse() const { return GetValue() == 0; }
DECLARE_INSTRUCTION(IntConstant);
protected:
DEFAULT_COPY_CONSTRUCTOR(IntConstant);
private:
explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
: HConstant(kIntConstant, DataType::Type::kInt32, dex_pc), value_(value) {
}
explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
: HConstant(kIntConstant, DataType::Type::kInt32, dex_pc),
value_(value ? 1 : 0) {
}
const int32_t value_;
friend class HGraph;
ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
};
class HLongConstant final : public HConstant {
public:
int64_t GetValue() const { return value_; }
uint64_t GetValueAsUint64() const override { return value_; }
bool InstructionDataEquals(const HInstruction* other) const override {
DCHECK(other->IsLongConstant()) << other->DebugName();
return other->AsLongConstant()->value_ == value_;
}
size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
bool IsMinusOne() const override { return GetValue() == -1; }
bool IsArithmeticZero() const override { return GetValue() == 0; }
bool IsZeroBitPattern() const override { return GetValue() == 0; }
bool IsOne() const override { return GetValue() == 1; }
DECLARE_INSTRUCTION(LongConstant);
protected:
DEFAULT_COPY_CONSTRUCTOR(LongConstant);
private:
explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
: HConstant(kLongConstant, DataType::Type::kInt64, dex_pc),
value_(value) {
}
const int64_t value_;
friend class HGraph;
};
class HFloatConstant final : public HConstant {
public:
float GetValue() const { return value_; }
uint64_t GetValueAsUint64() const override {
return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
}
bool InstructionDataEquals(const HInstruction* other) const override {
DCHECK(other->IsFloatConstant()) << other->DebugName();
return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
}
size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
bool IsMinusOne() const override {
return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
}
bool IsArithmeticZero() const override {
return std::fpclassify(value_) == FP_ZERO;
}
bool IsArithmeticPositiveZero() const {
return IsArithmeticZero() && !std::signbit(value_);
}
bool IsArithmeticNegativeZero() const {
return IsArithmeticZero() && std::signbit(value_);
}
bool IsZeroBitPattern() const override {
return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f);
}
bool IsOne() const override {
return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
}
bool IsNaN() const {
return std::isnan(value_);
}
DECLARE_INSTRUCTION(FloatConstant);
protected:
DEFAULT_COPY_CONSTRUCTOR(FloatConstant);
private:
explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
: HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc),
value_(value) {
}
explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
: HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc),
value_(bit_cast<float, int32_t>(value)) {
}
const float value_;
// Only the SsaBuilder and HGraph can create floating-point constants.
friend class SsaBuilder;
friend class HGraph;
};
class HDoubleConstant final : public HConstant {
public:
double GetValue() const { return value_; }
uint64_t GetValueAsUint64() const override { return bit_cast<uint64_t, double>(value_); }
bool InstructionDataEquals(const HInstruction* other) const override {
DCHECK(other->IsDoubleConstant()) << other->DebugName();
return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
}
size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); }
bool IsMinusOne() const override {
return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
}
bool IsArithmeticZero() const override {
return std::fpclassify(value_) == FP_ZERO;
}
bool IsArithmeticPositiveZero() const {
return IsArithmeticZero() && !std::signbit(value_);
}
bool IsArithmeticNegativeZero() const {
return IsArithmeticZero() && std::signbit(value_);
}
bool IsZeroBitPattern() const override {
return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0));
}
bool IsOne() const override {
return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
}
bool IsNaN() const {
return std::isnan(value_);
}
DECLARE_INSTRUCTION(DoubleConstant);
protected:
DEFAULT_COPY_CONSTRUCTOR(DoubleConstant);
private:
explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
: HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc),
value_(value) {
}
explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
: HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc),
value_(bit_cast<double, int64_t>(value)) {
}
const double value_;
// Only the SsaBuilder and HGraph can create floating-point constants.
friend class SsaBuilder;
friend class HGraph;
};
// Conditional branch. A block ending with an HIf instruction must have
// two successors.
class HIf final : public HExpression<1> {
public:
explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
: HExpression(kIf, SideEffects::None(), dex_pc) {
SetRawInputAt(0, input);
}
bool IsClonable() const override { return true; }
bool IsControlFlow() const override { return true; }
HBasicBlock* IfTrueSuccessor() const {
return GetBlock()->GetSuccessors()[0];
}
HBasicBlock* IfFalseSuccessor() const {
return GetBlock()->GetSuccessors()[1];
}
DECLARE_INSTRUCTION(If);
protected:
DEFAULT_COPY_CONSTRUCTOR(If);
};
// Abstract instruction which marks the beginning and/or end of a try block and
// links it to the respective exception handlers. Behaves the same as a Goto in
// non-exceptional control flow.
// Normal-flow successor is stored at index zero, exception handlers under
// higher indices in no particular order.
class HTryBoundary final : public HExpression<0> {
public:
enum class BoundaryKind {
kEntry,
kExit,
kLast = kExit
};
// SideEffects::CanTriggerGC prevents instructions with SideEffects::DependOnGC to be alive
// across the catch block entering edges as GC might happen during throwing an exception.
// TryBoundary with BoundaryKind::kExit is conservatively used for that as there is no
// HInstruction which a catch block must start from.
explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
: HExpression(kTryBoundary,
(kind == BoundaryKind::kExit) ? SideEffects::CanTriggerGC()
: SideEffects::None(),
dex_pc) {
SetPackedField<BoundaryKindField>(kind);
}
bool IsControlFlow() const override { return true; }
// Returns the block's non-exceptional successor (index zero).
HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
}
// Returns whether `handler` is among its exception handlers (non-zero index
// successors).
bool HasExceptionHandler(const HBasicBlock& handler) const {
DCHECK(handler.IsCatchBlock());
return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
}
// If not present already, adds `handler` to its block's list of exception
// handlers.
void AddExceptionHandler(HBasicBlock* handler) {
if (!HasExceptionHandler(*handler)) {
GetBlock()->AddSuccessor(handler);
}
}
BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); }
bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; }
bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
DECLARE_INSTRUCTION(TryBoundary);
protected:
DEFAULT_COPY_CONSTRUCTOR(TryBoundary);
private:
static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits;
static constexpr size_t kFieldBoundaryKindSize =
MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast));
static constexpr size_t kNumberOfTryBoundaryPackedBits =
kFieldBoundaryKind + kFieldBoundaryKindSize;
static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits,
"Too many packed fields.");
using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>;
};
// Deoptimize to interpreter, upon checking a condition.
class HDeoptimize final : public HVariableInputSizeInstruction {
public:
// Use this constructor when the `HDeoptimize` acts as a barrier, where no code can move
// across.
HDeoptimize(ArenaAllocator* allocator,
HInstruction* cond,
DeoptimizationKind kind,
uint32_t dex_pc)
: HVariableInputSizeInstruction(
kDeoptimize,
SideEffects::All(),
dex_pc,
allocator,
/* number_of_inputs= */ 1,
kArenaAllocMisc) {
SetPackedFlag<kFieldCanBeMoved>(false);
SetPackedField<DeoptimizeKindField>(kind);
SetRawInputAt(0, cond);
}
bool IsClonable() const override { return true; }
// Use this constructor when the `HDeoptimize` guards an instruction, and any user
// that relies on the deoptimization to pass should have its input be the `HDeoptimize`
// instead of `guard`.
// We set CanTriggerGC to prevent any intermediate address to be live
// at the point of the `HDeoptimize`.
HDeoptimize(ArenaAllocator* allocator,
HInstruction* cond,
HInstruction* guard,
DeoptimizationKind kind,
uint32_t dex_pc)
: HVariableInputSizeInstruction(
kDeoptimize,
guard->GetType(),
SideEffects::CanTriggerGC(),
dex_pc,
allocator,
/* number_of_inputs= */ 2,
kArenaAllocMisc) {
SetPackedFlag<kFieldCanBeMoved>(true);
SetPackedField<DeoptimizeKindField>(kind);
SetRawInputAt(0, cond);
SetRawInputAt(1, guard);
}
bool CanBeMoved() const override { return GetPackedFlag<kFieldCanBeMoved>(); }
bool InstructionDataEquals(const HInstruction* other) const override {
return (other->CanBeMoved() == CanBeMoved()) && (other->AsDeoptimize()->GetKind() == GetKind());
}
bool NeedsEnvironment() const override { return true; }
bool CanThrow() const override { return true; }
DeoptimizationKind GetDeoptimizationKind() const { return GetPackedField<DeoptimizeKindField>(); }
bool GuardsAnInput() const {
return InputCount() == 2;
}
HInstruction* GuardedInput() const {
DCHECK(GuardsAnInput());
return InputAt(1);
}
void RemoveGuard() {
RemoveInputAt(1);
}
DECLARE_INSTRUCTION(Deoptimize);
protected:
DEFAULT_COPY_CONSTRUCTOR(Deoptimize);
private:
static constexpr size_t kFieldCanBeMoved = kNumberOfGenericPackedBits;
static constexpr size_t kFieldDeoptimizeKind = kNumberOfGenericPackedBits + 1;
static constexpr size_t kFieldDeoptimizeKindSize =
MinimumBitsToStore(static_cast<size_t>(DeoptimizationKind::kLast));
static constexpr size_t kNumberOfDeoptimizePackedBits =
kFieldDeoptimizeKind + kFieldDeoptimizeKindSize;
static_assert(kNumberOfDeoptimizePackedBits <= kMaxNumberOfPackedBits,
"Too many packed fields.");
using DeoptimizeKindField =
BitField<DeoptimizationKind, kFieldDeoptimizeKind, kFieldDeoptimizeKindSize>;
};
// Represents a should_deoptimize flag. Currently used for CHA-based devirtualization.
// The compiled code checks this flag value in a guard before devirtualized call and
// if it's true, starts to do deoptimization.
// It has a 4-byte slot on stack.
// TODO: allocate a register for this flag.
class HShouldDeoptimizeFlag final : public HVariableInputSizeInstruction {
public:
// CHA guards are only optimized in a separate pass and it has no side effects
// with regard to other passes.
HShouldDeoptimizeFlag(ArenaAllocator* allocator, uint32_t dex_pc)
: HVariableInputSizeInstruction(kShouldDeoptimizeFlag,
DataType::Type::kInt32,
SideEffects::None(),
dex_pc,
allocator,
0,
kArenaAllocCHA) {
}
// We do all CHA guard elimination/motion in a single pass, after which there is no
// further guard elimination/motion since a guard might have been used for justification
// of the elimination of another guard. Therefore, we pretend this guard cannot be moved
// to avoid other optimizations trying to move it.
bool CanBeMoved() const override { return false; }
DECLARE_INSTRUCTION(ShouldDeoptimizeFlag);
protected:
DEFAULT_COPY_CONSTRUCTOR(ShouldDeoptimizeFlag);
};
// Represents the ArtMethod that was passed as a first argument to
// the method. It is used by instructions that depend on it, like
// instructions that work with the dex cache.
class HCurrentMethod final : public HExpression<0> {
public:
explicit HCurrentMethod(DataType::Type type, uint32_t dex_pc = kNoDexPc)
: HExpression(kCurrentMethod, type, SideEffects::None(), dex_pc) {
}
DECLARE_INSTRUCTION(CurrentMethod);
protected:
DEFAULT_COPY_CONSTRUCTOR(CurrentMethod);
};
// Fetches an ArtMethod from the virtual table or the interface method table
// of a class.
class HClassTableGet final : public HExpression<1> {
public:
enum class TableKind {
kVTable,
kIMTable,
kLast = kIMTable
};
HClassTableGet(HInstruction* cls,
DataType::Type type,
TableKind kind,
size_t index,
uint32_t dex_pc)
: HExpression(kClassTableGet, type, SideEffects::None(), dex_pc),
index_(index) {
SetPackedField<TableKindField>(kind);
SetRawInputAt(0, cls);
}
bool IsClonable() const override { return true; }
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other) const override {
return other->AsClassTableGet()->GetIndex() == index_ &&
other->AsClassTableGet()->GetPackedFields() == GetPackedFields();
}
TableKind GetTableKind() const { return GetPackedField<TableKindField>(); }
size_t GetIndex() const { return index_; }
DECLARE_INSTRUCTION(ClassTableGet);
protected:
DEFAULT_COPY_CONSTRUCTOR(ClassTableGet);
private:
static constexpr size_t kFieldTableKind = kNumberOfGenericPackedBits;
static constexpr size_t kFieldTableKindSize =
MinimumBitsToStore(static_cast<size_t>(TableKind::kLast));
static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize;
static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits,
"Too many packed fields.");
using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKindSize>;
// The index of the ArtMethod in the table.
const size_t index_;
};
// PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
// have one successor for each entry in the switch table, and the final successor
// will be the block containing the next Dex opcode.
class HPackedSwitch final : public HExpression<1> {
public:
HPackedSwitch(int32_t start_value,
uint32_t num_entries,
HInstruction* input,
uint32_t dex_pc = kNoDexPc)
: HExpression(kPackedSwitch, SideEffects::None(), dex_pc),
start_value_(start_value),
num_entries_(num_entries) {
SetRawInputAt(0, input);
}
bool IsClonable() const override { return true; }
bool IsControlFlow() const override { return true; }
int32_t GetStartValue() const { return start_value_; }
uint32_t GetNumEntries() const { return num_entries_; }
HBasicBlock* GetDefaultBlock() const {
// Last entry is the default block.
return GetBlock()->GetSuccessors()[num_entries_];
}
DECLARE_INSTRUCTION(PackedSwitch);
protected:
DEFAULT_COPY_CONSTRUCTOR(PackedSwitch);
private:
const int32_t start_value_;
const uint32_t num_entries_;
};
class HUnaryOperation : public HExpression<1> {
public:
HUnaryOperation(InstructionKind kind,
DataType::Type result_type,
HInstruction* input,
uint32_t dex_pc = kNoDexPc)
: HExpression(kind, result_type, SideEffects::None(), dex_pc) {
SetRawInputAt(0, input);
}
// All of the UnaryOperation instructions are clonable.
bool IsClonable() const override { return true; }
HInstruction* GetInput() const { return InputAt(0); }
DataType::Type GetResultType() const { return GetType(); }
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
return true;
}
// Try to statically evaluate `this` and return a HConstant
// containing the result of this evaluation. If `this` cannot
// be evaluated as a constant, return null.
HConstant* TryStaticEvaluation() const;
// Apply this operation to `x`.
virtual HConstant* Evaluate(HIntConstant* x) const = 0;
virtual HConstant* Evaluate(HLongConstant* x) const = 0;
virtual HConstant* Evaluate(HFloatConstant* x) const = 0;
virtual HConstant* Evaluate(HDoubleConstant* x) const = 0;
DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation);
protected:
DEFAULT_COPY_CONSTRUCTOR(UnaryOperation);
};
class HBinaryOperation : public HExpression<2> {
public:
HBinaryOperation(InstructionKind kind,
DataType::Type result_type,
HInstruction* left,
HInstruction* right,
SideEffects side_effects = SideEffects::None(),
uint32_t dex_pc = kNoDexPc)
: HExpression(kind, result_type, side_effects, dex_pc) {
SetRawInputAt(0, left);
SetRawInputAt(1, right);
}
// All of the BinaryOperation instructions are clonable.
bool IsClonable() const override { return true; }
HInstruction* GetLeft() const { return InputAt(0); }
HInstruction* GetRight() const { return InputAt(1); }
DataType::Type GetResultType() const { return GetType(); }
virtual bool IsCommutative() const { return false; }
// Put constant on the right.
// Returns whether order is changed.
bool OrderInputsWithConstantOnTheRight() {
HInstruction* left = InputAt(0);
HInstruction* right = InputAt(1);
if (left->IsConstant() && !right->IsConstant()) {
ReplaceInput(right, 0);
ReplaceInput(left, 1);
return true;
}
return false;
}
// Order inputs by instruction id, but favor constant on the right side.
// This helps GVN for commutative ops.
void OrderInputs() {
DCHECK(IsCommutative());
HInstruction* left = InputAt(0);
HInstruction* right = InputAt(1);
if (left == right || (!left->IsConstant() && right->IsConstant())) {
return;
}
if (OrderInputsWithConstantOnTheRight()) {
return;
}
// Order according to instruction id.
if (left->GetId() > right->GetId()) {
ReplaceInput(right, 0);
ReplaceInput(left, 1);
}
}
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
return true;
}
// Try to statically evaluate `this` and return a HConstant
// containing the result of this evaluation. If `this` cannot
// be evaluated as a constant, return null.
HConstant* TryStaticEvaluation() const;
// Apply this operation to `x` and `y`.
virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
HNullConstant* y ATTRIBUTE_UNUSED) const {
LOG(FATAL) << DebugName() << " is not defined for the (null, null) case.";
UNREACHABLE();
}
virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
HIntConstant* y ATTRIBUTE_UNUSED) const {
LOG(FATAL) << DebugName() << " is not defined for the (long, int) case.";
UNREACHABLE();
}
virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0;
virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0;
// Returns an input that can legally be used as the right input and is
// constant, or null.
HConstant* GetConstantRight() const;
// If `GetConstantRight()` returns one of the input, this returns the other
// one. Otherwise it returns null.
HInstruction* GetLeastConstantLeft() const;
DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation);
protected:
DEFAULT_COPY_CONSTRUCTOR(BinaryOperation);
};
// The comparison bias applies for floating point operations and indicates how NaN
// comparisons are treated:
enum class ComparisonBias { // private marker to avoid generate-operator-out.py from processing.
kNoBias, // bias is not applicable (i.e. for long operation)
kGtBias, // return 1 for NaN comparisons
kLtBias, // return -1 for NaN comparisons
kLast = kLtBias
};
std::ostream& operator<<(std::ostream& os, ComparisonBias rhs);
class HCondition : public HBinaryOperation {
public:
HCondition(InstructionKind kind,
HInstruction* first,
HInstruction* second,
uint32_t dex_pc = kNoDexPc)
: HBinaryOperation(kind,
DataType::Type::kBool,
first,
second,
SideEffects::None(),
dex_pc) {
SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias);
}
// For code generation purposes, returns whether this instruction is just before
// `instruction`, and disregard moves in between.
bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
DECLARE_ABSTRACT_INSTRUCTION(Condition);
virtual IfCondition GetCondition() const = 0;
virtual IfCondition GetOppositeCondition() const = 0;
bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; }
bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; }
ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); }
bool InstructionDataEquals(const HInstruction* other) const override {
return GetPackedFields() == other->AsCondition()->GetPackedFields();
}
bool IsFPConditionTrueIfNaN() const {
DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
IfCondition if_cond = GetCondition();
if (if_cond == kCondNE) {
return true;
} else if (if_cond == kCondEQ) {
return false;
}
return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias();
}
bool IsFPConditionFalseIfNaN() const {
DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
IfCondition if_cond = GetCondition();
if (if_cond == kCondEQ) {
return true;
} else if (if_cond == kCondNE) {
return false;
}
return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias();
}
protected:
// Needed if we merge a HCompare into a HCondition.
static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits;
static constexpr size_t kFieldComparisonBiasSize =
MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
static constexpr size_t kNumberOfConditionPackedBits =
kFieldComparisonBias + kFieldComparisonBiasSize;
static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
using ComparisonBiasField =
BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
template <typename T>
int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
template <typename T>
int32_t CompareFP(T x, T y) const {
DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
// Handle the bias.
return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y);
}
// Return an integer constant containing the result of a condition evaluated at compile time.
HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const {
return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
}
DEFAULT_COPY_CONSTRUCTOR(Condition);
};
// Instruction to check if two inputs are equal to each other.
class HEqual final : public HCondition {
public:
HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
: HCondition(kEqual, first, second, dex_pc) {
}
bool IsCommutative() const override { return true; }
HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
HNullConstant* y ATTRIBUTE_UNUSED) const override {
return MakeConstantCondition(true, GetDexPc());
}
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
// In the following Evaluate methods, a HCompare instruction has
// been merged into this HEqual instruction; evaluate it as
// `Compare(x, y) == 0`.
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0),
GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
}
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
}
DECLARE_INSTRUCTION(Equal);
IfCondition GetCondition() const override {
return kCondEQ;
}
IfCondition GetOppositeCondition() const override {
return kCondNE;
}
protected:
DEFAULT_COPY_CONSTRUCTOR(Equal);
private:
template <typename T> static bool Compute(T x, T y) { return x == y; }
};
class HNotEqual final : public HCondition {
public:
HNotEqual(HInstruction* first, HInstruction* second,
uint32_t dex_pc = kNoDexPc)
: HCondition(kNotEqual, first, second, dex_pc) {
}
bool IsCommutative() const override { return true; }
HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
HNullConstant* y ATTRIBUTE_UNUSED) const override {
return MakeConstantCondition(false, GetDexPc());
}
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
// In the following Evaluate methods, a HCompare instruction has
// been merged into this HNotEqual instruction; evaluate it as
// `Compare(x, y) != 0`.
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
}
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
}
DECLARE_INSTRUCTION(NotEqual);
IfCondition GetCondition() const override {
return kCondNE;
}
IfCondition GetOppositeCondition() const override {
return kCondEQ;
}
protected:
DEFAULT_COPY_CONSTRUCTOR(NotEqual);
private:
template <typename T> static bool Compute(T x, T y) { return x != y; }
};
class HLessThan final : public HCondition {
public:
HLessThan(HInstruction* first, HInstruction* second,
uint32_t dex_pc = kNoDexPc)
: HCondition(kLessThan, first, second, dex_pc) {
}
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
// In the following Evaluate methods, a HCompare instruction has
// been merged into this HLessThan instruction; evaluate it as
// `Compare(x, y) < 0`.
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
}
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
}
DECLARE_INSTRUCTION(LessThan);
IfCondition GetCondition() const override {
return kCondLT;
}
IfCondition GetOppositeCondition() const override {
return kCondGE;
}
protected:
DEFAULT_COPY_CONSTRUCTOR(LessThan);
private:
template <typename T> static bool Compute(T x, T y) { return x < y; }
};
class HLessThanOrEqual final : public HCondition {
public:
HLessThanOrEqual(HInstruction* first, HInstruction* second,
uint32_t dex_pc = kNoDexPc)
: HCondition(kLessThanOrEqual, first, second, dex_pc) {
}
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
// In the following Evaluate methods, a HCompare instruction has
// been merged into this HLessThanOrEqual instruction; evaluate it as
// `Compare(x, y) <= 0`.
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
}
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
}
DECLARE_INSTRUCTION(LessThanOrEqual);
IfCondition GetCondition() const override {
return kCondLE;
}
IfCondition GetOppositeCondition() const override {
return kCondGT;
}
protected:
DEFAULT_COPY_CONSTRUCTOR(LessThanOrEqual);
private:
template <typename T> static bool Compute(T x, T y) { return x <= y; }
};
class HGreaterThan final : public HCondition {
public:
HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
: HCondition(kGreaterThan, first, second, dex_pc) {
}
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
// In the following Evaluate methods, a HCompare instruction has
// been merged into this HGreaterThan instruction; evaluate it as
// `Compare(x, y) > 0`.
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
}
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
}
DECLARE_INSTRUCTION(GreaterThan);
IfCondition GetCondition() const override {
return kCondGT;
}
IfCondition GetOppositeCondition() const override {
return kCondLE;
}
protected:
DEFAULT_COPY_CONSTRUCTOR(GreaterThan);
private:
template <typename T> static bool Compute(T x, T y) { return x > y; }
};
class HGreaterThanOrEqual final : public HCondition {
public:
HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
: HCondition(kGreaterThanOrEqual, first, second, dex_pc) {
}
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
// In the following Evaluate methods, a HCompare instruction has
// been merged into this HGreaterThanOrEqual instruction; evaluate it as
// `Compare(x, y) >= 0`.
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
}
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
}
DECLARE_INSTRUCTION(GreaterThanOrEqual);
IfCondition GetCondition() const override {
return kCondGE;
}
IfCondition GetOppositeCondition() const override {
return kCondLT;
}
protected:
DEFAULT_COPY_CONSTRUCTOR(GreaterThanOrEqual);
private:
template <typename T> static bool Compute(T x, T y) { return x >= y; }
};
class HBelow final : public HCondition {
public:
HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
: HCondition(kBelow, first, second, dex_pc) {
}
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
HFloatConstant* y ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for float values";
UNREACHABLE();
}
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for double values";
UNREACHABLE();
}
DECLARE_INSTRUCTION(Below);
IfCondition GetCondition() const override {
return kCondB;
}
IfCondition GetOppositeCondition() const override {
return kCondAE;
}
protected:
DEFAULT_COPY_CONSTRUCTOR(Below);
private:
template <typename T> static bool Compute(T x, T y) {
return MakeUnsigned(x) < MakeUnsigned(y);
}
};
class HBelowOrEqual final : public HCondition {
public:
HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
: HCondition(kBelowOrEqual, first, second, dex_pc) {
}
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
HFloatConstant* y ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for float values";
UNREACHABLE();
}
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for double values";
UNREACHABLE();
}
DECLARE_INSTRUCTION(BelowOrEqual);
IfCondition GetCondition() const override {
return kCondBE;
}
IfCondition GetOppositeCondition() const override {
return kCondA;
}
protected:
DEFAULT_COPY_CONSTRUCTOR(BelowOrEqual);
private:
template <typename T> static bool Compute(T x, T y) {
return MakeUnsigned(x) <= MakeUnsigned(y);
}
};
class HAbove final : public HCondition {
public:
HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
: HCondition(kAbove, first, second, dex_pc) {
}
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
HFloatConstant* y ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for float values";
UNREACHABLE();
}
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for double values";
UNREACHABLE();
}
DECLARE_INSTRUCTION(Above);
IfCondition GetCondition() const override {
return kCondA;
}
IfCondition GetOppositeCondition() const override {
return kCondBE;
}
protected:
DEFAULT_COPY_CONSTRUCTOR(Above);
private:
template <typename T> static bool Compute(T x, T y) {
return MakeUnsigned(x) > MakeUnsigned(y);
}
};
class HAboveOrEqual final : public HCondition {
public:
HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
: HCondition(kAboveOrEqual, first, second, dex_pc) {
}
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
HFloatConstant* y ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for float values";
UNREACHABLE();
}
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for double values";
UNREACHABLE();
}
DECLARE_INSTRUCTION(AboveOrEqual);
IfCondition GetCondition() const override {
return kCondAE;
}
IfCondition GetOppositeCondition() const override {
return kCondB;
}
protected:
DEFAULT_COPY_CONSTRUCTOR(AboveOrEqual);
private:
template <typename T> static bool Compute(T x, T y) {
return MakeUnsigned(x) >= MakeUnsigned(y);
}
};
// Instruction to check how two inputs compare to each other.
// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
class HCompare final : public HBinaryOperation {
public:
// Note that `comparison_type` is the type of comparison performed
// between the comparison's inputs, not the type of the instantiated
// HCompare instruction (which is always DataType::Type::kInt).
HCompare(DataType::Type comparison_type,
HInstruction* first,
HInstruction* second,
ComparisonBias bias,
uint32_t dex_pc)
: HBinaryOperation(kCompare,
DataType::Type::kInt32,
first,
second,
SideEffectsForArchRuntimeCalls(comparison_type),
dex_pc) {
SetPackedField<ComparisonBiasField>(bias);
}
template <typename T>
int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
template <typename T>
int32_t ComputeFP(T x, T y) const {
DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
// Handle the bias.
return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y);
}
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
// Note that there is no "cmp-int" Dex instruction so we shouldn't
// reach this code path when processing a freshly built HIR
// graph. However HCompare integer instructions can be synthesized
// by the instruction simplifier to implement IntegerCompare and
// IntegerSignum intrinsics, so we have to handle this case.
return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
}
bool InstructionDataEquals(const HInstruction* other) const override {
return GetPackedFields() == other->AsCompare()->GetPackedFields();
}
ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
// Does this compare instruction have a "gt bias" (vs an "lt bias")?
// Only meaningful for floating-point comparisons.
bool IsGtBias() const {
DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
return GetBias() == ComparisonBias::kGtBias;
}
static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type type ATTRIBUTE_UNUSED) {
// Comparisons do not require a runtime call in any back end.
return SideEffects::None();
}
DECLARE_INSTRUCTION(Compare);
protected:
static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits;
static constexpr size_t kFieldComparisonBiasSize =
MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
static constexpr size_t kNumberOfComparePackedBits =
kFieldComparisonBias + kFieldComparisonBiasSize;
static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
using ComparisonBiasField =
BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
// Return an integer constant containing the result of a comparison evaluated at compile time.
HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const {
DCHECK(value == -1 || value == 0 || value == 1) << value;
return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
}
DEFAULT_COPY_CONSTRUCTOR(Compare);
};
class HNewInstance final : public HExpression<1> {
public:
HNewInstance(HInstruction* cls,
uint32_t dex_pc,
dex::TypeIndex type_index,
const DexFile& dex_file,
bool finalizable,
QuickEntrypointEnum entrypoint)
: HExpression(kNewInstance,
DataType::Type::kReference,
SideEffects::CanTriggerGC(),
dex_pc),
type_index_(type_index),
dex_file_(dex_file),
entrypoint_(entrypoint) {
SetPackedFlag<kFlagFinalizable>(finalizable);
SetPackedFlag<kFlagPartialMaterialization>(false);
SetRawInputAt(0, cls);
}
bool IsClonable() const override { return true; }
void SetPartialMaterialization() {
SetPackedFlag<kFlagPartialMaterialization>(true);
}
dex::TypeIndex GetTypeIndex() const { return type_index_; }
const DexFile& GetDexFile() const { return dex_file_; }
// Calls runtime so needs an environment.
bool NeedsEnvironment() const override { return true; }
// Can throw errors when out-of-memory or if it's not instantiable/accessible.
bool CanThrow() const override { return true; }
bool OnlyThrowsAsyncExceptions() const override {
return !IsFinalizable() && !NeedsChecks();
}
bool NeedsChecks() const {
return entrypoint_ == kQuickAllocObjectWithChecks;
}
bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); }
bool CanBeNull() const override { return false; }
bool IsPartialMaterialization() const {
return GetPackedFlag<kFlagPartialMaterialization>();
}
QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
void SetEntrypoint(QuickEntrypointEnum entrypoint) {
entrypoint_ = entrypoint;
}
HLoadClass* GetLoadClass() const {
HInstruction* input = InputAt(0);
if (input->IsClinitCheck()) {
input = input->InputAt(0);
}
DCHECK(input->IsLoadClass());
return input->AsLoadClass();
}
bool IsStringAlloc() const;
DECLARE_INSTRUCTION(NewInstance);
protected:
DEFAULT_COPY_CONSTRUCTOR(NewInstance);
private:
static constexpr size_t kFlagFinalizable = kNumberOfGenericPackedBits;
static constexpr size_t kFlagPartialMaterialization = kFlagFinalizable + 1;
static constexpr size_t kNumberOfNewInstancePackedBits = kFlagPartialMaterialization + 1;
static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits,
"Too many packed fields.");
const dex::TypeIndex type_index_;
const DexFile& dex_file_;
QuickEntrypointEnum entrypoint_;
};
enum IntrinsicNeedsEnvironment {
kNoEnvironment, // Intrinsic does not require an environment.
kNeedsEnvironment // Intrinsic requires an environment.
};
enum IntrinsicSideEffects {
kNoSideEffects, // Intrinsic does not have any heap memory side effects.
kReadSideEffects, // Intrinsic may read heap memory.
kWriteSideEffects, // Intrinsic may write heap memory.
kAllSideEffects // Intrinsic may read or write heap memory, or trigger GC.
};
enum IntrinsicExceptions {
kNoThrow, // Intrinsic does not throw any exceptions.
kCanThrow // Intrinsic may throw exceptions.
};
// Determines how to load an ArtMethod*.
enum class MethodLoadKind {
// Use a String init ArtMethod* loaded from Thread entrypoints.
kStringInit,
// Use the method's own ArtMethod* loaded by the register allocator.
kRecursive,
// Use PC-relative boot image ArtMethod* address that will be known at link time.
// Used for boot image methods referenced by boot image code.
kBootImageLinkTimePcRelative,
// Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
// Used for app->boot calls with relocatable image.
kBootImageRelRo,
// Load from an entry in the .bss section using a PC-relative load.
// Used for methods outside boot image referenced by AOT-compiled app and boot image code.
kBssEntry,
// Use ArtMethod* at a known address, embed the direct address in the code.
// Used for for JIT-compiled calls.
kJitDirectAddress,
// Make a runtime call to resolve and call the method. This is the last-resort-kind
// used when other kinds are unimplemented on a particular architecture.
kRuntimeCall,
};
// Determines the location of the code pointer of an invoke.
enum class CodePtrLocation {
// Recursive call, use local PC-relative call instruction.
kCallSelf,
// Use native pointer from the Artmethod*.
// Used for @CriticalNative to avoid going through the compiled stub. This call goes through
// a special resolution stub if the class is not initialized or no native code is registered.
kCallCriticalNative,
// Use code pointer from the ArtMethod*.
// Used when we don't know the target code. This is also the last-resort-kind used when
// other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
kCallArtMethod,
};
static inline bool IsPcRelativeMethodLoadKind(MethodLoadKind load_kind) {
return load_kind == MethodLoadKind::kBootImageLinkTimePcRelative ||
load_kind == MethodLoadKind::kBootImageRelRo ||
load_kind == MethodLoadKind::kBssEntry;
}
class HInvoke : public HVariableInputSizeInstruction {
public:
bool NeedsEnvironment() const override;
void SetArgumentAt(size_t index, HInstruction* argument) {
SetRawInputAt(index, argument);
}
// Return the number of arguments. This number can be lower than
// the number of inputs returned by InputCount(), as some invoke
// instructions (e.g. HInvokeStaticOrDirect) can have non-argument
// inputs at the end of their list of inputs.
uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
InvokeType GetInvokeType() const {
return GetPackedField<InvokeTypeField>();
}
Intrinsics GetIntrinsic() const {
return intrinsic_;
}
void SetIntrinsic(Intrinsics intrinsic,
IntrinsicNeedsEnvironment needs_env,
IntrinsicSideEffects side_effects,
IntrinsicExceptions exceptions);
bool IsFromInlinedInvoke() const {
return GetEnvironment()->IsFromInlinedInvoke();
}
void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); }
bool CanThrow() const override { return GetPackedFlag<kFlagCanThrow>(); }
void SetAlwaysThrows(bool always_throws) { SetPackedFlag<kFlagAlwaysThrows>(always_throws); }
bool AlwaysThrows() const override final { return GetPackedFlag<kFlagAlwaysThrows>(); }
bool CanBeMoved() const override { return IsIntrinsic() && !DoesAnyWrite(); }
bool InstructionDataEquals(const HInstruction* other) const override {
return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_;
}
uint32_t* GetIntrinsicOptimizations() {
return &intrinsic_optimizations_;
}
const uint32_t* GetIntrinsicOptimizations() const {
return &intrinsic_optimizations_;
}
bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
ArtMethod* GetResolvedMethod() const { return resolved_method_; }
void SetResolvedMethod(ArtMethod* method, bool enable_intrinsic_opt);
MethodReference GetMethodReference() const { return method_reference_; }
const MethodReference GetResolvedMethodReference() const {
return resolved_method_reference_;
}
DECLARE_ABSTRACT_INSTRUCTION(Invoke);
protected:
static constexpr size_t kFieldInvokeType = kNumberOfGenericPackedBits;
static constexpr size_t kFieldInvokeTypeSize =
MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType));
static constexpr size_t kFlagCanThrow = kFieldInvokeType + kFieldInvokeTypeSize;
static constexpr size_t kFlagAlwaysThrows = kFlagCanThrow + 1;
static constexpr size_t kNumberOfInvokePackedBits = kFlagAlwaysThrows + 1;
static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
using InvokeTypeField = BitField<InvokeType, kFieldInvokeType, kFieldInvokeTypeSize>;
HInvoke(InstructionKind kind,
ArenaAllocator* allocator,
uint32_t number_of_arguments,
uint32_t number_of_other_inputs,
DataType::Type return_type,
uint32_t dex_pc,
MethodReference method_reference,
ArtMethod* resolved_method,
MethodReference resolved_method_reference,
InvokeType invoke_type,
bool enable_intrinsic_opt)
: HVariableInputSizeInstruction(
kind,
return_type,
SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays.
dex_pc,
allocator,
number_of_arguments + number_of_other_inputs,
kArenaAllocInvokeInputs),
number_of_arguments_(number_of_arguments),
method_reference_(method_reference),
resolved_method_reference_(resolved_method_reference),
intrinsic_(Intrinsics::kNone),
intrinsic_optimizations_(0) {
SetPackedField<InvokeTypeField>(invoke_type);
SetPackedFlag<kFlagCanThrow>(true);
SetResolvedMethod(resolved_method, enable_intrinsic_opt);
}
DEFAULT_COPY_CONSTRUCTOR(Invoke);
uint32_t number_of_arguments_;
ArtMethod* resolved_method_;
const MethodReference method_reference_;
// Cached values of the resolved method, to avoid needing the mutator lock.
const MethodReference resolved_method_reference_;
Intrinsics intrinsic_;
// A magic word holding optimizations for intrinsics. See intrinsics.h.
uint32_t intrinsic_optimizations_;
};
class HInvokeUnresolved final : public HInvoke {
public:
HInvokeUnresolved(ArenaAllocator* allocator,
uint32_t number_of_arguments,
DataType::Type return_type,
uint32_t dex_pc,
MethodReference method_reference,
InvokeType invoke_type)
: HInvoke(kInvokeUnresolved,
allocator,
number_of_arguments,
/* number_of_other_inputs= */ 0u,
return_type,
dex_pc,
method_reference,
nullptr,
MethodReference(nullptr, 0u),
invoke_type,
/* enable_intrinsic_opt= */ false) {
}
bool IsClonable() const override { return true; }
DECLARE_INSTRUCTION(InvokeUnresolved);
protected:
DEFAULT_COPY_CONSTRUCTOR(InvokeUnresolved);
};
class HInvokePolymorphic final : public HInvoke {
public:
HInvokePolymorphic(ArenaAllocator* allocator,
uint32_t number_of_arguments,
DataType::Type return_type,
uint32_t dex_pc,
MethodReference method_reference,
// resolved_method is the ArtMethod object corresponding to the polymorphic
// method (e.g. VarHandle.get), resolved using the class linker. It is needed
// to pass intrinsic information to the HInvokePolymorphic node.
ArtMethod* resolved_method,
MethodReference resolved_method_reference,
dex::ProtoIndex proto_idx,
bool enable_intrinsic_opt)
: HInvoke(kInvokePolymorphic,
allocator,
number_of_arguments,
/* number_of_other_inputs= */ 0u,
return_type,
dex_pc,
method_reference,
resolved_method,
resolved_method_reference,
kPolymorphic,
enable_intrinsic_opt),
proto_idx_(proto_idx) {
}
bool IsClonable() const override { return true; }
dex::ProtoIndex GetProtoIndex() { return proto_idx_; }
DECLARE_INSTRUCTION(InvokePolymorphic);
protected:
dex::ProtoIndex proto_idx_;
DEFAULT_COPY_CONSTRUCTOR(InvokePolymorphic);
};
class HInvokeCustom final : public HInvoke {
public:
HInvokeCustom(ArenaAllocator* allocator,
uint32_t number_of_arguments,
uint32_t call_site_index,
DataType::Type return_type,
uint32_t dex_pc,
MethodReference method_reference,
bool enable_intrinsic_opt)
: HInvoke(kInvokeCustom,
allocator,
number_of_arguments,
/* number_of_other_inputs= */ 0u,
return_type,
dex_pc,
method_reference,
/* resolved_method= */ nullptr,
MethodReference(nullptr, 0u),
kStatic,
enable_intrinsic_opt),
call_site_index_(call_site_index) {
}
uint32_t GetCallSiteIndex() const { return call_site_index_; }
bool IsClonable() const override { return true; }
DECLARE_INSTRUCTION(InvokeCustom);
protected:
DEFAULT_COPY_CONSTRUCTOR(InvokeCustom);
private:
uint32_t call_site_index_;
};
class HInvokeStaticOrDirect final : public HInvoke {
public:
// Requirements of this method call regarding the class
// initialization (clinit) check of its declaring class.
enum class ClinitCheckRequirement { // private marker to avoid generate-operator-out.py from processing.
kNone, // Class already initialized.
kExplicit, // Static call having explicit clinit check as last input.
kImplicit, // Static call implicitly requiring a clinit check.
kLast = kImplicit
};
struct DispatchInfo {
MethodLoadKind method_load_kind;
CodePtrLocation code_ptr_location;
// The method load data holds
// - thread entrypoint offset for kStringInit method if this is a string init invoke.
// Note that there are multiple string init methods, each having its own offset.
// - the method address for kDirectAddress
uint64_t method_load_data;
};
HInvokeStaticOrDirect(ArenaAllocator* allocator,
uint32_t number_of_arguments,
DataType::Type return_type,
uint32_t dex_pc,
MethodReference method_reference,
ArtMethod* resolved_method,
DispatchInfo dispatch_info,
InvokeType invoke_type,
MethodReference resolved_method_reference,
ClinitCheckRequirement clinit_check_requirement,
bool enable_intrinsic_opt)
: HInvoke(kInvokeStaticOrDirect,
allocator,
number_of_arguments,
// There is potentially one extra argument for the HCurrentMethod input,
// and one other if the clinit check is explicit. These can be removed later.
(NeedsCurrentMethodInput(dispatch_info) ? 1u : 0u) +
(clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u),
return_type,
dex_pc,
method_reference,
resolved_method,
resolved_method_reference,
invoke_type,
enable_intrinsic_opt),
dispatch_info_(dispatch_info) {
SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement);
}
bool IsClonable() const override { return true; }
bool NeedsBss() const override {
return GetMethodLoadKind() == MethodLoadKind::kBssEntry;
}
void SetDispatchInfo(DispatchInfo dispatch_info) {
bool had_current_method_input = HasCurrentMethodInput();
bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info);
// Using the current method is the default and once we find a better
// method load kind, we should not go back to using the current method.
DCHECK(had_current_method_input || !needs_current_method_input);
if (had_current_method_input && !needs_current_method_input) {
DCHECK_EQ(InputAt(GetCurrentMethodIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
RemoveInputAt(GetCurrentMethodIndex());
}
dispatch_info_ = dispatch_info;
}
DispatchInfo GetDispatchInfo() const {
return dispatch_info_;
}
using HInstruction::GetInputRecords; // Keep the const version visible.
ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override {
ArrayRef<HUserRecord<HInstruction*>> input_records = HInvoke::GetInputRecords();
if (kIsDebugBuild && IsStaticWithExplicitClinitCheck()) {
DCHECK(!input_records.empty());
DCHECK_GT(input_records.size(), GetNumberOfArguments());
HInstruction* last_input = input_records.back().GetInstruction();
// Note: `last_input` may be null during arguments setup.
if (last_input != nullptr) {
// `last_input` is the last input of a static invoke marked as having
// an explicit clinit check. It must either be:
// - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
// - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
DCHECK(last_input->IsClinitCheck() || last_input->IsLoadClass()) << last_input->DebugName();
}
}
return input_records;
}
bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
// We do not access the method via object reference, so we cannot do an implicit null check.
// TODO: for intrinsics we can generate implicit null checks.
return false;
}
bool CanBeNull() const override {
return GetType() == DataType::Type::kReference && !IsStringInit();
}
MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
CodePtrLocation GetCodePtrLocation() const {
// We do CHA analysis after sharpening. When a method has CHA inlining, it
// cannot call itself, as if the CHA optmization is invalid we want to make
// sure the method is never executed again. So, while sharpening can return
// kCallSelf, we bypass it here if there is a CHA optimization.
if (dispatch_info_.code_ptr_location == CodePtrLocation::kCallSelf &&
GetBlock()->GetGraph()->HasShouldDeoptimizeFlag()) {
return CodePtrLocation::kCallArtMethod;
} else {
return dispatch_info_.code_ptr_location;
}
}
bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kJitDirectAddress; }
bool HasPcRelativeMethodLoadKind() const {
return IsPcRelativeMethodLoadKind(GetMethodLoadKind());
}
QuickEntrypointEnum GetStringInitEntryPoint() const {
DCHECK(IsStringInit());
return static_cast<QuickEntrypointEnum>(dispatch_info_.method_load_data);
}
uint64_t GetMethodAddress() const {
DCHECK(HasMethodAddress());
return dispatch_info_.method_load_data;
}
const DexFile& GetDexFileForPcRelativeDexCache() const;
ClinitCheckRequirement GetClinitCheckRequirement() const {
return GetPackedField<ClinitCheckRequirementField>();
}
// Is this instruction a call to a static method?
bool IsStatic() const {
return GetInvokeType() == kStatic;
}
// Does this method load kind need the current method as an input?
static bool NeedsCurrentMethodInput(DispatchInfo dispatch_info) {
return dispatch_info.method_load_kind == MethodLoadKind::kRecursive ||
dispatch_info.method_load_kind == MethodLoadKind::kRuntimeCall ||
dispatch_info.code_ptr_location == CodePtrLocation::kCallCriticalNative;
}
// Get the index of the current method input.
size_t GetCurrentMethodIndex() const {
DCHECK(HasCurrentMethodInput());
return GetCurrentMethodIndexUnchecked();
}
size_t GetCurrentMethodIndexUnchecked() const {
return GetNumberOfArguments();
}
// Check if the method has a current method input.
bool HasCurrentMethodInput() const {
if (NeedsCurrentMethodInput(GetDispatchInfo())) {
DCHECK(InputAt(GetCurrentMethodIndexUnchecked()) == nullptr || // During argument setup.
InputAt(GetCurrentMethodIndexUnchecked())->IsCurrentMethod());
return true;
} else {
DCHECK(InputCount() == GetCurrentMethodIndexUnchecked() ||
InputAt(GetCurrentMethodIndexUnchecked()) == nullptr || // During argument setup.
!InputAt(GetCurrentMethodIndexUnchecked())->IsCurrentMethod());
return false;
}
}
// Get the index of the special input.
size_t GetSpecialInputIndex() const {
DCHECK(HasSpecialInput());
return GetSpecialInputIndexUnchecked();
}
size_t GetSpecialInputIndexUnchecked() const {
return GetNumberOfArguments() + (HasCurrentMethodInput() ? 1u : 0u);
}
// Check if the method has a special input.
bool HasSpecialInput() const {
size_t other_inputs =
GetSpecialInputIndexUnchecked() + (IsStaticWithExplicitClinitCheck() ? 1u : 0u);
size_t input_count = InputCount();
DCHECK_LE(input_count - other_inputs, 1u) << other_inputs << " " << input_count;
return other_inputs != input_count;
}
void AddSpecialInput(HInstruction* input) {
// We allow only one special input.
DCHECK(!HasSpecialInput());
InsertInputAt(GetSpecialInputIndexUnchecked(), input);
}
// Remove the HClinitCheck or the replacement HLoadClass (set as last input by
// PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
// instruction; only relevant for static calls with explicit clinit check.
void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
DCHECK(IsStaticWithExplicitClinitCheck());
size_t last_input_index = inputs_.size() - 1u;
HInstruction* last_input = inputs_.back().GetInstruction();
DCHECK(last_input != nullptr);
DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
RemoveAsUserOfInput(last_input_index);
inputs_.pop_back();
SetPackedField<ClinitCheckRequirementField>(new_requirement);
DCHECK(!IsStaticWithExplicitClinitCheck());
}
// Is this a call to a static method whose declaring class has an
// explicit initialization check in the graph?
bool IsStaticWithExplicitClinitCheck() const {
return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit);
}
// Is this a call to a static method whose declaring class has an
// implicit intialization check requirement?
bool IsStaticWithImplicitClinitCheck() const {
return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit);
}
DECLARE_INSTRUCTION(InvokeStaticOrDirect);
protected:
DEFAULT_COPY_CONSTRUCTOR(InvokeStaticOrDirect);
private:
static constexpr size_t kFieldClinitCheckRequirement = kNumberOfInvokePackedBits;
static constexpr size_t kFieldClinitCheckRequirementSize =
MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast));
static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits =
kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize;
static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits,
"Too many packed fields.");
using ClinitCheckRequirementField = BitField<ClinitCheckRequirement,
kFieldClinitCheckRequirement,
kFieldClinitCheckRequirementSize>;
DispatchInfo dispatch_info_;
};
std::ostream& operator<<(std::ostream& os, MethodLoadKind rhs);
std::ostream& operator<<(std::ostream& os, CodePtrLocation rhs);
std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
class HInvokeVirtual final : public HInvoke {
public:
HInvokeVirtual(ArenaAllocator* allocator,
uint32_t number_of_arguments,
DataType::Type return_type,
uint32_t dex_pc,
MethodReference method_reference,
ArtMethod* resolved_method,
MethodReference resolved_method_reference,
uint32_t vtable_index,
bool enable_intrinsic_opt)
: HInvoke(kInvokeVirtual,
allocator,
number_of_arguments,
0u,
return_type,
dex_pc,
method_reference,
resolved_method,
resolved_method_reference,
kVirtual,
enable_intrinsic_opt),
vtable_index_(vtable_index) {
}
bool IsClonable() const override { return true; }
bool CanBeNull() const override {
switch (GetIntrinsic()) {
case Intrinsics::kThreadCurrentThread:
case Intrinsics::kStringBufferAppend:
case Intrinsics::kStringBufferToString:
case Intrinsics::kStringBuilderAppendObject:
case Intrinsics::kStringBuilderAppendString:
case Intrinsics::kStringBuilderAppendCharSequence:
case Intrinsics::kStringBuilderAppendCharArray:
case Intrinsics::kStringBuilderAppendBoolean:
case Intrinsics::kStringBuilderAppendChar:
case Intrinsics::kStringBuilderAppendInt:
case Intrinsics::kStringBuilderAppendLong:
case Intrinsics::kStringBuilderAppendFloat:
case Intrinsics::kStringBuilderAppendDouble:
case Intrinsics::kStringBuilderToString:
return false;
default:
return HInvoke::CanBeNull();
}
}
bool CanDoImplicitNullCheckOn(HInstruction* obj) const override;
uint32_t GetVTableIndex() const { return vtable_index_; }
DECLARE_INSTRUCTION(InvokeVirtual);
protected:
DEFAULT_COPY_CONSTRUCTOR(InvokeVirtual);
private:
// Cached value of the resolved method, to avoid needing the mutator lock.
const uint32_t vtable_index_;
};
class HInvokeInterface final : public HInvoke {
public:
HInvokeInterface(ArenaAllocator* allocator,
uint32_t number_of_arguments,
DataType::Type return_type,
uint32_t dex_pc,
MethodReference method_reference,
ArtMethod* resolved_method,
MethodReference resolved_method_reference,
uint32_t imt_index,
MethodLoadKind load_kind,
bool enable_intrinsic_opt)
: HInvoke(kInvokeInterface,
allocator,
number_of_arguments + (NeedsCurrentMethod(load_kind) ? 1 : 0),
0u,
return_type,
dex_pc,
method_reference,
resolved_method,
resolved_method_reference,
kInterface,
enable_intrinsic_opt),
imt_index_(imt_index),
hidden_argument_load_kind_(load_kind) {
}
static bool NeedsCurrentMethod(MethodLoadKind load_kind) {
return load_kind == MethodLoadKind::kRecursive;
}
bool IsClonable() const override { return true; }
bool NeedsBss() const override {
return GetHiddenArgumentLoadKind() == MethodLoadKind::kBssEntry;
}
bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
// TODO: Add implicit null checks in intrinsics.
return (obj == InputAt(0)) && !IsIntrinsic();
}
size_t GetSpecialInputIndex() const {
return GetNumberOfArguments();
}
void AddSpecialInput(HInstruction* input) {
InsertInputAt(GetSpecialInputIndex(), input);
}
uint32_t GetImtIndex() const { return imt_index_; }
MethodLoadKind GetHiddenArgumentLoadKind() const { return hidden_argument_load_kind_; }
DECLARE_INSTRUCTION(InvokeInterface);
protected:
DEFAULT_COPY_CONSTRUCTOR(InvokeInterface);
private:
// Cached value of the resolved method, to avoid needing the mutator lock.
const uint32_t imt_index_;
// How the hidden argument (the interface method) is being loaded.
const MethodLoadKind hidden_argument_load_kind_;
};
class HNeg final : public HUnaryOperation {
public:
HNeg(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
: HUnaryOperation(kNeg, result_type, input, dex_pc) {
DCHECK_EQ(result_type, DataType::Kind(input->GetType()));
}
template <typename T> static T Compute(T x) { return -x; }
HConstant* Evaluate(HIntConstant* x) const override {
return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x) const override {
return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x) const override {
return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc());
}
HConstant* Evaluate(HDoubleConstant* x) const override {
return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc());
}
DECLARE_INSTRUCTION(Neg);
protected:
DEFAULT_COPY_CONSTRUCTOR(Neg);
};
class HNewArray final : public HExpression<2> {
public:
HNewArray(HInstruction* cls, HInstruction* length, uint32_t dex_pc, size_t component_size_shift)
: HExpression(kNewArray, DataType::Type::kReference, SideEffects::CanTriggerGC(), dex_pc) {
SetRawInputAt(0, cls);
SetRawInputAt(1, length);
SetPackedField<ComponentSizeShiftField>(component_size_shift);
}
bool IsClonable() const override { return true; }
// Calls runtime so needs an environment.
bool NeedsEnvironment() const override { return true; }
// May throw NegativeArraySizeException, OutOfMemoryError, etc.
bool CanThrow() const override { return true; }
bool CanBeNull() const override { return false; }
HLoadClass* GetLoadClass() const {
DCHECK(InputAt(0)->IsLoadClass());
return InputAt(0)->AsLoadClass();
}
HInstruction* GetLength() const {
return InputAt(1);
}
size_t GetComponentSizeShift() {
return GetPackedField<ComponentSizeShiftField>();
}
DECLARE_INSTRUCTION(NewArray);
protected:
DEFAULT_COPY_CONSTRUCTOR(NewArray);
private:
static constexpr size_t kFieldComponentSizeShift = kNumberOfGenericPackedBits;
static constexpr size_t kFieldComponentSizeShiftSize = MinimumBitsToStore(3u);
static constexpr size_t kNumberOfNewArrayPackedBits =
kFieldComponentSizeShift + kFieldComponentSizeShiftSize;
static_assert(kNumberOfNewArrayPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
using ComponentSizeShiftField =
BitField<size_t, kFieldComponentSizeShift, kFieldComponentSizeShiftSize>;
};
class HAdd final : public HBinaryOperation {
public:
HAdd(DataType::Type result_type,
HInstruction* left,
HInstruction* right,
uint32_t dex_pc = kNoDexPc)
: HBinaryOperation(kAdd, result_type, left, right, SideEffects::None(), dex_pc) {
}
bool IsCommutative() const override { return true; }
template <typename T> static T Compute(T x, T y) { return x + y; }
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return GetBlock()->GetGraph()->GetIntConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return GetBlock()->GetGraph()->GetLongConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
return GetBlock()->GetGraph()->GetFloatConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
return GetBlock()->GetGraph()->GetDoubleConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
DECLARE_INSTRUCTION(Add);
protected:
DEFAULT_COPY_CONSTRUCTOR(Add);
};
class HSub final : public HBinaryOperation {
public:
HSub(DataType::Type result_type,
HInstruction* left,
HInstruction* right,
uint32_t dex_pc = kNoDexPc)
: HBinaryOperation(kSub, result_type, left, right, SideEffects::None(), dex_pc) {
}
template <typename T> static T Compute(T x, T y) { return x - y; }
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return GetBlock()->GetGraph()->GetIntConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return GetBlock()->GetGraph()->GetLongConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
return GetBlock()->GetGraph()->GetFloatConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
return GetBlock()->GetGraph()->GetDoubleConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
DECLARE_INSTRUCTION(Sub);
protected:
DEFAULT_COPY_CONSTRUCTOR(Sub);
};
class HMul final : public HBinaryOperation {
public:
HMul(DataType::Type result_type,
HInstruction* left,
HInstruction* right,
uint32_t dex_pc = kNoDexPc)
: HBinaryOperation(kMul, result_type, left, right, SideEffects::None(), dex_pc) {
}
bool IsCommutative() const override { return true; }
template <typename T> static T Compute(T x, T y) { return x * y; }
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return GetBlock()->GetGraph()->GetIntConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return GetBlock()->GetGraph()->GetLongConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
return GetBlock()->GetGraph()->GetFloatConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
return GetBlock()->GetGraph()->GetDoubleConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
DECLARE_INSTRUCTION(Mul);
protected:
DEFAULT_COPY_CONSTRUCTOR(Mul);
};
class HDiv final : public HBinaryOperation {
public:
HDiv(DataType::Type result_type,
HInstruction* left,
HInstruction* right,
uint32_t dex_pc)
: HBinaryOperation(kDiv, result_type, left, right, SideEffects::None(), dex_pc) {
}
template <typename T>
T ComputeIntegral(T x, T y) const {
DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType();
// Our graph structure ensures we never have 0 for `y` during
// constant folding.
DCHECK_NE(y, 0);
// Special case -1 to avoid getting a SIGFPE on x86(_64).
return (y == -1) ? -x : x / y;
}
template <typename T>
T ComputeFP(T x, T y) const {
DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
return x / y;
}
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return GetBlock()->GetGraph()->GetIntConstant(
ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return GetBlock()->GetGraph()->GetLongConstant(
ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
return GetBlock()->GetGraph()->GetFloatConstant(
ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
return GetBlock()->GetGraph()->GetDoubleConstant(
ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
}
DECLARE_INSTRUCTION(Div);
protected:
DEFAULT_COPY_CONSTRUCTOR(Div);
};
class HRem final : public HBinaryOperation {
public:
HRem(DataType::Type result_type,
HInstruction* left,
HInstruction* right,
uint32_t dex_pc)
: HBinaryOperation(kRem, result_type, left, right, SideEffects::None(), dex_pc) {
}
template <typename T>
T ComputeIntegral(T x, T y) const {
DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType();
// Our graph structure ensures we never have 0 for `y` during
// constant folding.
DCHECK_NE(y, 0);
// Special case -1 to avoid getting a SIGFPE on x86(_64).
return (y == -1) ? 0 : x % y;
}
template <typename T>
T ComputeFP(T x, T y) const {
DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
return std::fmod(x, y);
}
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return GetBlock()->GetGraph()->GetIntConstant(
ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return GetBlock()->GetGraph()->GetLongConstant(
ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override {
return GetBlock()->GetGraph()->GetFloatConstant(
ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override {
return GetBlock()->GetGraph()->GetDoubleConstant(
ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
}
DECLARE_INSTRUCTION(Rem);
protected:
DEFAULT_COPY_CONSTRUCTOR(Rem);
};
class HMin final : public HBinaryOperation {
public:
HMin(DataType::Type result_type,
HInstruction* left,
HInstruction* right,
uint32_t dex_pc)
: HBinaryOperation(kMin, result_type, left, right, SideEffects::None(), dex_pc) {}
bool IsCommutative() const override { return true; }
// Evaluation for integral values.
template <typename T> static T ComputeIntegral(T x, T y) {
return (x <= y) ? x : y;
}
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return GetBlock()->GetGraph()->GetIntConstant(
ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return GetBlock()->GetGraph()->GetLongConstant(
ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
}
// TODO: Evaluation for floating-point values.
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
DECLARE_INSTRUCTION(Min);
protected:
DEFAULT_COPY_CONSTRUCTOR(Min);
};
class HMax final : public HBinaryOperation {
public:
HMax(DataType::Type result_type,
HInstruction* left,
HInstruction* right,
uint32_t dex_pc)
: HBinaryOperation(kMax, result_type, left, right, SideEffects::None(), dex_pc) {}
bool IsCommutative() const override { return true; }
// Evaluation for integral values.
template <typename T> static T ComputeIntegral(T x, T y) {
return (x >= y) ? x : y;
}
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return GetBlock()->GetGraph()->GetIntConstant(
ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return GetBlock()->GetGraph()->GetLongConstant(
ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
}
// TODO: Evaluation for floating-point values.
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; }
DECLARE_INSTRUCTION(Max);
protected:
DEFAULT_COPY_CONSTRUCTOR(Max);
};
class HAbs final : public HUnaryOperation {
public:
HAbs(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
: HUnaryOperation(kAbs, result_type, input, dex_pc) {}
// Evaluation for integral values.
template <typename T> static T ComputeIntegral(T x) {
return x < 0 ? -x : x;
}
// Evaluation for floating-point values.
// Note, as a "quality of implementation", rather than pure "spec compliance",
// we require that Math.abs() clears the sign bit (but changes nothing else)
// for all floating-point numbers, including NaN (signaling NaN may become quiet though).
// http://b/30758343
template <typename T, typename S> static T ComputeFP(T x) {
S bits = bit_cast<S, T>(x);
return bit_cast<T, S>(bits & std::numeric_limits<S>::max());
}
HConstant* Evaluate(HIntConstant* x) const override {
return GetBlock()->GetGraph()->GetIntConstant(ComputeIntegral(x->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x) const override {
return GetBlock()->GetGraph()->GetLongConstant(ComputeIntegral(x->GetValue()), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x) const override {
return GetBlock()->GetGraph()->GetFloatConstant(
ComputeFP<float, int32_t>(x->GetValue()), GetDexPc());
}
HConstant* Evaluate(HDoubleConstant* x) const override {
return GetBlock()->GetGraph()->GetDoubleConstant(
ComputeFP<double, int64_t>(x->GetValue()), GetDexPc());
}
DECLARE_INSTRUCTION(Abs);
protected:
DEFAULT_COPY_CONSTRUCTOR(Abs);
};
class HDivZeroCheck final : public HExpression<1> {
public:
// `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException`
// constructor. However it can only do it on a fatal slow path so execution never returns to the
// instruction following the current one; thus 'SideEffects::None()' is used.
HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
: HExpression(kDivZeroCheck, value->GetType(), SideEffects::None(), dex_pc) {
SetRawInputAt(0, value);
}
bool IsClonable() const override { return true; }
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
return true;
}
bool NeedsEnvironment() const override { return true; }
bool CanThrow() const override { return true; }
DECLARE_INSTRUCTION(DivZeroCheck);
protected:
DEFAULT_COPY_CONSTRUCTOR(DivZeroCheck);
};
class HShl final : public HBinaryOperation {
public:
HShl(DataType::Type result_type,
HInstruction* value,
HInstruction* distance,
uint32_t dex_pc = kNoDexPc)
: HBinaryOperation(kShl, result_type, value, distance, SideEffects::None(), dex_pc) {
DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
}
template <typename T>
static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
return value << (distance & max_shift_distance);
}
HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
return GetBlock()->GetGraph()->GetIntConstant(
Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
}
HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
return GetBlock()->GetGraph()->GetLongConstant(
Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
}
HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
HLongConstant* distance ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
UNREACHABLE();
}
HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for float values";
UNREACHABLE();
}
HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for double values";
UNREACHABLE();
}
DECLARE_INSTRUCTION(Shl);
protected:
DEFAULT_COPY_CONSTRUCTOR(Shl);
};
class HShr final : public HBinaryOperation {
public:
HShr(DataType::Type result_type,
HInstruction* value,
HInstruction* distance,
uint32_t dex_pc = kNoDexPc)
: HBinaryOperation(kShr, result_type, value, distance, SideEffects::None(), dex_pc) {
DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
}
template <typename T>
static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
return value >> (distance & max_shift_distance);
}
HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
return GetBlock()->GetGraph()->GetIntConstant(
Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
}
HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
return GetBlock()->GetGraph()->GetLongConstant(
Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
}
HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
HLongConstant* distance ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
UNREACHABLE();
}
HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for float values";
UNREACHABLE();
}
HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for double values";
UNREACHABLE();
}
DECLARE_INSTRUCTION(Shr);
protected:
DEFAULT_COPY_CONSTRUCTOR(Shr);
};
class HUShr final : public HBinaryOperation {
public:
HUShr(DataType::Type result_type,
HInstruction* value,
HInstruction* distance,
uint32_t dex_pc = kNoDexPc)
: HBinaryOperation(kUShr, result_type, value, distance, SideEffects::None(), dex_pc) {
DCHECK_EQ(result_type, DataType::Kind(value->GetType()));
DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType()));
}
template <typename T>
static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
using V = std::make_unsigned_t<T>;
V ux = static_cast<V>(value);
return static_cast<T>(ux >> (distance & max_shift_distance));
}
HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
return GetBlock()->GetGraph()->GetIntConstant(
Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
}
HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
return GetBlock()->GetGraph()->GetLongConstant(
Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
}
HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
HLongConstant* distance ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
UNREACHABLE();
}
HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for float values";
UNREACHABLE();
}
HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for double values";
UNREACHABLE();
}
DECLARE_INSTRUCTION(UShr);
protected:
DEFAULT_COPY_CONSTRUCTOR(UShr);
};
class HAnd final : public HBinaryOperation {
public:
HAnd(DataType::Type result_type,
HInstruction* left,
HInstruction* right,
uint32_t dex_pc = kNoDexPc)
: HBinaryOperation(kAnd, result_type, left, right, SideEffects::None(), dex_pc) {
}
bool IsCommutative() const override { return true; }
template <typename T> static T Compute(T x, T y) { return x & y; }
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return GetBlock()->GetGraph()->GetIntConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return GetBlock()->GetGraph()->GetLongConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
HFloatConstant* y ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for float values";
UNREACHABLE();
}
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for double values";
UNREACHABLE();
}
DECLARE_INSTRUCTION(And);
protected:
DEFAULT_COPY_CONSTRUCTOR(And);
};
class HOr final : public HBinaryOperation {
public:
HOr(DataType::Type result_type,
HInstruction* left,
HInstruction* right,
uint32_t dex_pc = kNoDexPc)
: HBinaryOperation(kOr, result_type, left, right, SideEffects::None(), dex_pc) {
}
bool IsCommutative() const override { return true; }
template <typename T> static T Compute(T x, T y) { return x | y; }
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return GetBlock()->GetGraph()->GetIntConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return GetBlock()->GetGraph()->GetLongConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
HFloatConstant* y ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for float values";
UNREACHABLE();
}
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for double values";
UNREACHABLE();
}
DECLARE_INSTRUCTION(Or);
protected:
DEFAULT_COPY_CONSTRUCTOR(Or);
};
class HXor final : public HBinaryOperation {
public:
HXor(DataType::Type result_type,
HInstruction* left,
HInstruction* right,
uint32_t dex_pc = kNoDexPc)
: HBinaryOperation(kXor, result_type, left, right, SideEffects::None(), dex_pc) {
}
bool IsCommutative() const override { return true; }
template <typename T> static T Compute(T x, T y) { return x ^ y; }
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override {
return GetBlock()->GetGraph()->GetIntConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override {
return GetBlock()->GetGraph()->GetLongConstant(
Compute(x->GetValue(), y->GetValue()), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
HFloatConstant* y ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for float values";
UNREACHABLE();
}
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
HDoubleConstant* y ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for double values";
UNREACHABLE();
}
DECLARE_INSTRUCTION(Xor);
protected:
DEFAULT_COPY_CONSTRUCTOR(Xor);
};
class HRor final : public HBinaryOperation {
public:
HRor(DataType::Type result_type, HInstruction* value, HInstruction* distance)
: HBinaryOperation(kRor, result_type, value, distance) {
}
template <typename T>
static T Compute(T value, int32_t distance, int32_t max_shift_value) {
using V = std::make_unsigned_t<T>;
V ux = static_cast<V>(value);
if ((distance & max_shift_value) == 0) {
return static_cast<T>(ux);
} else {
const V reg_bits = sizeof(T) * 8;
return static_cast<T>(ux >> (distance & max_shift_value)) |
(value << (reg_bits - (distance & max_shift_value)));
}
}
HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override {
return GetBlock()->GetGraph()->GetIntConstant(
Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
}
HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override {
return GetBlock()->GetGraph()->GetLongConstant(
Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
}
HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
HLongConstant* distance ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
UNREACHABLE();
}
HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
HFloatConstant* distance ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for float values";
UNREACHABLE();
}
HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
HDoubleConstant* distance ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for double values";
UNREACHABLE();
}
DECLARE_INSTRUCTION(Ror);
protected:
DEFAULT_COPY_CONSTRUCTOR(Ror);
};
// The value of a parameter in this method. Its location depends on
// the calling convention.
class HParameterValue final : public HExpression<0> {
public:
HParameterValue(const DexFile& dex_file,
dex::TypeIndex type_index,
uint8_t index,
DataType::Type parameter_type,
bool is_this = false)
: HExpression(kParameterValue, parameter_type, SideEffects::None(), kNoDexPc),
dex_file_(dex_file),
type_index_(type_index),
index_(index) {
SetPackedFlag<kFlagIsThis>(is_this);
SetPackedFlag<kFlagCanBeNull>(!is_this);
}
const DexFile& GetDexFile() const { return dex_file_; }
dex::TypeIndex GetTypeIndex() const { return type_index_; }
uint8_t GetIndex() const { return index_; }
bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); }
bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
DECLARE_INSTRUCTION(ParameterValue);
protected:
DEFAULT_COPY_CONSTRUCTOR(ParameterValue);
private:
// Whether or not the parameter value corresponds to 'this' argument.
static constexpr size_t kFlagIsThis = kNumberOfGenericPackedBits;
static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1;
static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1;
static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits,
"Too many packed fields.");
const DexFile& dex_file_;
const dex::TypeIndex type_index_;
// The index of this parameter in the parameters list. Must be less
// than HGraph::number_of_in_vregs_.
const uint8_t index_;
};
class HNot final : public HUnaryOperation {
public:
HNot(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
: HUnaryOperation(kNot, result_type, input, dex_pc) {
}
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
return true;
}
template <typename T> static T Compute(T x) { return ~x; }
HConstant* Evaluate(HIntConstant* x) const override {
return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x) const override {
return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
}
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for float values";
UNREACHABLE();
}
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for double values";
UNREACHABLE();
}
DECLARE_INSTRUCTION(Not);
protected:
DEFAULT_COPY_CONSTRUCTOR(Not);
};
class HBooleanNot final : public HUnaryOperation {
public:
explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
: HUnaryOperation(kBooleanNot, DataType::Type::kBool, input, dex_pc) {
}
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
return true;
}
template <typename T> static bool Compute(T x) {
DCHECK(IsUint<1>(x)) << x;
return !x;
}
HConstant* Evaluate(HIntConstant* x) const override {
return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
}
HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for long values";
UNREACHABLE();
}
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for float values";
UNREACHABLE();
}
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override {
LOG(FATAL) << DebugName() << " is not defined for double values";
UNREACHABLE();
}
DECLARE_INSTRUCTION(BooleanNot);
protected:
DEFAULT_COPY_CONSTRUCTOR(BooleanNot);
};
class HTypeConversion final : public HExpression<1> {
public:
// Instantiate a type conversion of `input` to `result_type`.
HTypeConversion(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
: HExpression(kTypeConversion, result_type, SideEffects::None(), dex_pc) {
SetRawInputAt(0, input);
// Invariant: We should never generate a conversion to a Boolean value.
DCHECK_NE(DataType::Type::kBool, result_type);
}
HInstruction* GetInput() const { return InputAt(0); }
DataType::Type GetInputType() const { return GetInput()->GetType(); }
DataType::Type GetResultType() const { return GetType(); }
bool IsClonable() const override { return true; }
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
return true;
}
// Return whether the conversion is implicit. This includes conversion to the same type.
bool IsImplicitConversion() const {
return DataType::IsTypeConversionImplicit(GetInputType(), GetResultType());
}
// Try to statically evaluate the conversion and return a HConstant
// containing the result. If the input cannot be converted, return nullptr.
HConstant* TryStaticEvaluation() const;
DECLARE_INSTRUCTION(TypeConversion);
protected:
DEFAULT_COPY_CONSTRUCTOR(TypeConversion);
};
static constexpr uint32_t kNoRegNumber = -1;
class HNullCheck final : public HExpression<1> {
public:
// `HNullCheck` can trigger GC, as it may call the `NullPointerException`
// constructor. However it can only do it on a fatal slow path so execution never returns to the
// instruction following the current one; thus 'SideEffects::None()' is used.
HNullCheck(HInstruction* value, uint32_t dex_pc)
: HExpression(kNullCheck, value->GetType(), SideEffects::None(), dex_pc) {
SetRawInputAt(0, value);
}
bool IsClonable() const override { return true; }
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
return true;
}
bool NeedsEnvironment() const override { return true; }
bool CanThrow() const override { return true; }
bool CanBeNull() const override { return false; }
DECLARE_INSTRUCTION(NullCheck);
protected:
DEFAULT_COPY_CONSTRUCTOR(NullCheck);
};
// Embeds an ArtField and all the information required by the compiler. We cache
// that information to avoid requiring the mutator lock every time we need it.
class FieldInfo : public ValueObject {
public:
FieldInfo(ArtField* field,
MemberOffset field_offset,
DataType::Type field_type,
bool is_volatile,
uint32_t index,
uint16_t declaring_class_def_index,
const DexFile& dex_file)
: field_(field),
field_offset_(field_offset),
field_type_(field_type),
is_volatile_(is_volatile),
index_(index),
declaring_class_def_index_(declaring_class_def_index),
dex_file_(dex_file) {}
ArtField* GetField() const { return field_; }
MemberOffset GetFieldOffset() const { return field_offset_; }
DataType::Type GetFieldType() const { return field_type_; }
uint32_t GetFieldIndex() const { return index_; }
uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
const DexFile& GetDexFile() const { return dex_file_; }
bool IsVolatile() const { return is_volatile_; }
bool Equals(const FieldInfo& other) const {
return field_ == other.field_ &&
field_offset_ == other.field_offset_ &&
field_type_ == other.field_type_ &&
is_volatile_ == other.is_volatile_ &&
index_ == other.index_ &&
declaring_class_def_index_ == other.declaring_class_def_index_ &&
&dex_file_ == &other.dex_file_;
}
std::ostream& Dump(std::ostream& os) const {
os << field_ << ", off: " << field_offset_ << ", type: " << field_type_
<< ", volatile: " << std::boolalpha << is_volatile_ << ", index_: " << std::dec << index_
<< ", declaring_class: " << declaring_class_def_index_ << ", dex: " << dex_file_;
return os;
}
private:
ArtField* const field_;
const MemberOffset field_offset_;
const DataType::Type field_type_;
const bool is_volatile_;
const uint32_t index_;
const uint16_t declaring_class_def_index_;
const DexFile& dex_file_;
};
inline bool operator==(const FieldInfo& a, const FieldInfo& b) {
return a.Equals(b);
}
inline std::ostream& operator<<(std::ostream& os, const FieldInfo& a) {
return a.Dump(os);
}
class HInstanceFieldGet final : public HExpression<1> {
public:
HInstanceFieldGet(HInstruction* value,
ArtField* field,
DataType::Type field_type,
MemberOffset field_offset,
bool is_volatile,
uint32_t field_idx,
uint16_t declaring_class_def_index,
const DexFile& dex_file,
uint32_t dex_pc)
: HExpression(kInstanceFieldGet,
field_type,
SideEffects::FieldReadOfType(field_type, is_volatile),
dex_pc),
field_info_(field,
field_offset,
field_type,
is_volatile,
field_idx,
declaring_class_def_index,
dex_file) {
SetRawInputAt(0, value);
}
bool IsClonable() const override { return true; }
bool CanBeMoved() const override { return !IsVolatile(); }
bool InstructionDataEquals(const HInstruction* other) const override {
const HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
}
bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
}
size_t ComputeHashCode() const override {
return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
}
bool IsFieldAccess() const override { return true; }
const FieldInfo& GetFieldInfo() const override { return field_info_; }
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
bool IsVolatile() const { return field_info_.IsVolatile(); }
void SetType(DataType::Type new_type) {
DCHECK(DataType::IsIntegralType(GetType()));
DCHECK(DataType::IsIntegralType(new_type));
DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
SetPackedField<TypeField>(new_type);
}
DECLARE_INSTRUCTION(InstanceFieldGet);
protected:
DEFAULT_COPY_CONSTRUCTOR(InstanceFieldGet);
private:
const FieldInfo field_info_;
};
class HPredicatedInstanceFieldGet final : public HExpression<2> {
public:
HPredicatedInstanceFieldGet(HInstanceFieldGet* orig,
HInstruction* target,
HInstruction* default_val)
: HExpression(kPredicatedInstanceFieldGet,
orig->GetFieldType(),
orig->GetSideEffects(),
orig->GetDexPc()),
field_info_(orig->GetFieldInfo()) {
// NB Default-val is at 0 so we can avoid doing a move.
SetRawInputAt(1, target);
SetRawInputAt(0, default_val);
}
HPredicatedInstanceFieldGet(HInstruction* value,
ArtField* field,
HInstruction* default_value,
DataType::Type field_type,
MemberOffset field_offset,
bool is_volatile,
uint32_t field_idx,
uint16_t declaring_class_def_index,
const DexFile& dex_file,
uint32_t dex_pc)
: HExpression(kPredicatedInstanceFieldGet,
field_type,
SideEffects::FieldReadOfType(field_type, is_volatile),
dex_pc),
field_info_(field,
field_offset,
field_type,
is_volatile,
field_idx,
declaring_class_def_index,
dex_file) {
SetRawInputAt(1, value);
SetRawInputAt(0, default_value);
}
bool IsClonable() const override {
return true;
}
bool CanBeMoved() const override {
return !IsVolatile();
}
HInstruction* GetDefaultValue() const {
return InputAt(0);
}
HInstruction* GetTarget() const {
return InputAt(1);
}
bool InstructionDataEquals(const HInstruction* other) const override {
const HPredicatedInstanceFieldGet* other_get = other->AsPredicatedInstanceFieldGet();
return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue() &&
GetDefaultValue() == other_get->GetDefaultValue();
}
bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
}
size_t ComputeHashCode() const override {
return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
}
bool IsFieldAccess() const override { return true; }
const FieldInfo& GetFieldInfo() const override { return field_info_; }
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
bool IsVolatile() const { return field_info_.IsVolatile(); }
void SetType(DataType::Type new_type) {
DCHECK(DataType::IsIntegralType(GetType()));
DCHECK(DataType::IsIntegralType(new_type));
DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
SetPackedField<TypeField>(new_type);
}
DECLARE_INSTRUCTION(PredicatedInstanceFieldGet);
protected:
DEFAULT_COPY_CONSTRUCTOR(PredicatedInstanceFieldGet);
private:
const FieldInfo field_info_;
};
enum class WriteBarrierKind {
// Emit the write barrier, with a runtime optimization which checks if the value that it is being
// set is null.
kEmitWithNullCheck,
// Emit the write barrier, without the runtime null check optimization. This could be set because:
// A) It is a write barrier for an ArraySet (which does the optimization with the type check, so
// it never does the optimization at the write barrier stage)
// B) We know that the input can't be null
// C) This write barrier is actually several write barriers coalesced into one. Potentially we
// could ask if every value is null for a runtime optimization at the cost of compile time / code
// size. At the time of writing it was deemed not worth the effort.
kEmitNoNullCheck,
// Skip emitting the write barrier. This could be set because:
// A) The write barrier is not needed (e.g. it is not a reference, or the value is the null
// constant)
// B) This write barrier was coalesced into another one so there's no need to emit it.
kDontEmit,
kLast = kDontEmit
};
std::ostream& operator<<(std::ostream& os, WriteBarrierKind rhs);
class HInstanceFieldSet final : public HExpression<2> {
public:
HInstanceFieldSet(HInstruction* object,
HInstruction* value,
ArtField* field,
DataType::Type field_type,
MemberOffset field_offset,
bool is_volatile,
uint32_t field_idx,
uint16_t declaring_class_def_index,
const DexFile& dex_file,
uint32_t dex_pc)
: HExpression(kInstanceFieldSet,
SideEffects::FieldWriteOfType(field_type, is_volatile),
dex_pc),
field_info_(field,
field_offset,
field_type,
is_volatile,
field_idx,
declaring_class_def_index,
dex_file) {
SetPackedFlag<kFlagValueCanBeNull>(true);
SetPackedFlag<kFlagIsPredicatedSet>(false);
SetPackedField<WriteBarrierKindField>(WriteBarrierKind::kEmitWithNullCheck);
SetRawInputAt(0, object);
SetRawInputAt(1, value);
}
bool IsClonable() const override { return true; }
bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
}
bool IsFieldAccess() const override { return true; }
const FieldInfo& GetFieldInfo() const override { return field_info_; }
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
bool IsVolatile() const { return field_info_.IsVolatile(); }
HInstruction* GetValue() const { return InputAt(1); }
bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
bool GetIsPredicatedSet() const { return GetPackedFlag<kFlagIsPredicatedSet>(); }
void SetIsPredicatedSet(bool value = true) { SetPackedFlag<kFlagIsPredicatedSet>(value); }
WriteBarrierKind GetWriteBarrierKind() { return GetPackedField<WriteBarrierKindField>(); }
void SetWriteBarrierKind(WriteBarrierKind kind) {
DCHECK(kind != WriteBarrierKind::kEmitWithNullCheck)
<< "We shouldn't go back to the original value.";
SetPackedField<WriteBarrierKindField>(kind);
}
DECLARE_INSTRUCTION(InstanceFieldSet);
protected:
DEFAULT_COPY_CONSTRUCTOR(InstanceFieldSet);
private:
static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
static constexpr size_t kFlagIsPredicatedSet = kFlagValueCanBeNull + 1;
static constexpr size_t kWriteBarrierKind = kFlagIsPredicatedSet + 1;
static constexpr size_t kWriteBarrierKindSize =
MinimumBitsToStore(static_cast<size_t>(WriteBarrierKind::kLast));
static constexpr size_t kNumberOfInstanceFieldSetPackedBits =
kWriteBarrierKind + kWriteBarrierKindSize;
static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits,
"Too many packed fields.");
const FieldInfo field_info_;
using WriteBarrierKindField =
BitField<WriteBarrierKind, kWriteBarrierKind, kWriteBarrierKindSize>;
};
class HArrayGet final : public HExpression<2> {
public:
HArrayGet(HInstruction* array,
HInstruction* index,
DataType::Type type,
uint32_t dex_pc)
: HArrayGet(array,
index,
type,
SideEffects::ArrayReadOfType(type),
dex_pc,
/* is_string_char_at= */ false) {
}
HArrayGet(HInstruction* array,
HInstruction* index,
DataType::Type type,
SideEffects side_effects,
uint32_t dex_pc,
bool is_string_char_at)
: HExpression(kArrayGet, type, side_effects, dex_pc) {
SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
SetRawInputAt(0, array);
SetRawInputAt(1, index);
}
bool IsClonable() const override { return true; }
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
return true;
}
bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
// TODO: We can be smarter here.
// Currently, unless the array is the result of NewArray, the array access is always
// preceded by some form of null NullCheck necessary for the bounds check, usually
// implicit null check on the ArrayLength input to BoundsCheck or Deoptimize for
// dynamic BCE. There are cases when these could be removed to produce better code.
// If we ever add optimizations to do so we should allow an implicit check here
// (as long as the address falls in the first page).
//
// As an example of such fancy optimization, we could eliminate BoundsCheck for
// a = cond ? new int[1] : null;
// a[0]; // The Phi does not need bounds check for either input.
return false;
}
bool IsEquivalentOf(HArrayGet* other) const {
bool result = (GetDexPc() == other->GetDexPc());
if (kIsDebugBuild && result) {
DCHECK_EQ(GetBlock(), other->GetBlock());
DCHECK_EQ(GetArray(), other->GetArray());
DCHECK_EQ(GetIndex(), other->GetIndex());
if (DataType::IsIntOrLongType(GetType())) {
DCHECK(DataType::IsFloatingPointType(other->GetType())) << other->GetType();
} else {
DCHECK(DataType::IsFloatingPointType(GetType())) << GetType();
DCHECK(DataType::IsIntOrLongType(other->GetType())) << other->GetType();
}
}
return result;
}
bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
HInstruction* GetArray() const { return InputAt(0); }
HInstruction* GetIndex() const { return InputAt(1); }
void SetType(DataType::Type new_type) {
DCHECK(DataType::IsIntegralType(GetType()));
DCHECK(DataType::IsIntegralType(new_type));
DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
SetPackedField<TypeField>(new_type);
}
DECLARE_INSTRUCTION(ArrayGet);
protected:
DEFAULT_COPY_CONSTRUCTOR(ArrayGet);
private:
// We treat a String as an array, creating the HArrayGet from String.charAt()
// intrinsic in the instruction simplifier. We can always determine whether
// a particular HArrayGet is actually a String.charAt() by looking at the type
// of the input but that requires holding the mutator lock, so we prefer to use
// a flag, so that code generators don't need to do the locking.
static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits;
static constexpr size_t kNumberOfArrayGetPackedBits = kFlagIsStringCharAt + 1;
static_assert(kNumberOfArrayGetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
"Too many packed fields.");
};
class HArraySet final : public HExpression<3> {
public:
HArraySet(HInstruction* array,
HInstruction* index,
HInstruction* value,
DataType::Type expected_component_type,
uint32_t dex_pc)
: HArraySet(array,
index,
value,
expected_component_type,
// Make a best guess for side effects now, may be refined during SSA building.
ComputeSideEffects(GetComponentType(value->GetType(), expected_component_type)),
dex_pc) {
}
HArraySet(HInstruction* array,
HInstruction* index,
HInstruction* value,
DataType::Type expected_component_type,
SideEffects side_effects,
uint32_t dex_pc)
: HExpression(kArraySet, side_effects, dex_pc) {
SetPackedField<ExpectedComponentTypeField>(expected_component_type);
SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == DataType::Type::kReference);
SetPackedFlag<kFlagValueCanBeNull>(true);
SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false);
// ArraySets never do the null check optimization at the write barrier stage.
SetPackedField<WriteBarrierKindField>(WriteBarrierKind::kEmitNoNullCheck);
SetRawInputAt(0, array);
SetRawInputAt(1, index);
SetRawInputAt(2, value);
}
bool IsClonable() const override { return true; }
bool NeedsEnvironment() const override {
// We call a runtime method to throw ArrayStoreException.
return NeedsTypeCheck();
}
// Can throw ArrayStoreException.
bool CanThrow() const override { return NeedsTypeCheck(); }
bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override {
// TODO: Same as for ArrayGet.
return false;
}
void ClearTypeCheck() {
SetPackedFlag<kFlagNeedsTypeCheck>(false);
// Clear the `CanTriggerGC` flag too as we can only trigger a GC when doing a type check.
SetSideEffects(GetSideEffects().Exclusion(SideEffects::CanTriggerGC()));
}
void ClearValueCanBeNull() {
SetPackedFlag<kFlagValueCanBeNull>(false);
}
void SetStaticTypeOfArrayIsObjectArray() {
SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true);
}
bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); }
bool StaticTypeOfArrayIsObjectArray() const {
return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>();
}
HInstruction* GetArray() const { return InputAt(0); }
HInstruction* GetIndex() const { return InputAt(1); }
HInstruction* GetValue() const { return InputAt(2); }
DataType::Type GetComponentType() const {
return GetComponentType(GetValue()->GetType(), GetRawExpectedComponentType());
}
static DataType::Type GetComponentType(DataType::Type value_type,
DataType::Type expected_component_type) {
// The Dex format does not type floating point index operations. Since the
// `expected_component_type` comes from SSA building and can therefore not
// be correct, we also check what is the value type. If it is a floating
// point type, we must use that type.
return ((value_type == DataType::Type::kFloat32) || (value_type == DataType::Type::kFloat64))
? value_type
: expected_component_type;
}
DataType::Type GetRawExpectedComponentType() const {
return GetPackedField<ExpectedComponentTypeField>();
}
static SideEffects ComputeSideEffects(DataType::Type type) {
return SideEffects::ArrayWriteOfType(type).Union(SideEffectsForArchRuntimeCalls(type));
}
static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type value_type) {
return (value_type == DataType::Type::kReference) ? SideEffects::CanTriggerGC()
: SideEffects::None();
}
WriteBarrierKind GetWriteBarrierKind() { return GetPackedField<WriteBarrierKindField>(); }
void SetWriteBarrierKind(WriteBarrierKind kind) {
DCHECK(kind != WriteBarrierKind::kEmitNoNullCheck)
<< "We shouldn't go back to the original value.";
DCHECK(kind != WriteBarrierKind::kEmitWithNullCheck)
<< "We never do the null check optimization for ArraySets.";
SetPackedField<WriteBarrierKindField>(kind);
}
DECLARE_INSTRUCTION(ArraySet);
protected:
DEFAULT_COPY_CONSTRUCTOR(ArraySet);
private:
static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits;
static constexpr size_t kFieldExpectedComponentTypeSize =
MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
static constexpr size_t kFlagNeedsTypeCheck =
kFieldExpectedComponentType + kFieldExpectedComponentTypeSize;
static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1;
// Cached information for the reference_type_info_ so that codegen
// does not need to inspect the static type.
static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1;
static constexpr size_t kWriteBarrierKind = kFlagStaticTypeOfArrayIsObjectArray + 1;
static constexpr size_t kWriteBarrierKindSize =
MinimumBitsToStore(static_cast<size_t>(WriteBarrierKind::kLast));
static constexpr size_t kNumberOfArraySetPackedBits = kWriteBarrierKind + kWriteBarrierKindSize;
static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
using ExpectedComponentTypeField =
BitField<DataType::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>;
using WriteBarrierKindField =
BitField<WriteBarrierKind, kWriteBarrierKind, kWriteBarrierKindSize>;
};
class HArrayLength final : public HExpression<1> {
public:
HArrayLength(HInstruction* array, uint32_t dex_pc, bool is_string_length = false)
: HExpression(kArrayLength, DataType::Type::kInt32, SideEffects::None(), dex_pc) {
SetPackedFlag<kFlagIsStringLength>(is_string_length);
// Note that arrays do not change length, so the instruction does not
// depend on any write.
SetRawInputAt(0, array);
}
bool IsClonable() const override { return true; }
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
return true;
}
bool CanDoImplicitNullCheckOn(HInstruction* obj) const override {
return obj == InputAt(0);
}
bool IsStringLength() const { return GetPackedFlag<kFlagIsStringLength>(); }
DECLARE_INSTRUCTION(ArrayLength);
protected:
DEFAULT_COPY_CONSTRUCTOR(ArrayLength);
private:
// We treat a String as an array, creating the HArrayLength from String.length()
// or String.isEmpty() intrinsic in the instruction simplifier. We can always
// determine whether a particular HArrayLength is actually a String.length() by
// looking at the type of the input but that requires holding the mutator lock, so
// we prefer to use a flag, so that code generators don't need to do the locking.
static constexpr size_t kFlagIsStringLength = kNumberOfGenericPackedBits;
static constexpr size_t kNumberOfArrayLengthPackedBits = kFlagIsStringLength + 1;
static_assert(kNumberOfArrayLengthPackedBits <= HInstruction::kMaxNumberOfPackedBits,
"Too many packed fields.");
};
class HBoundsCheck final : public HExpression<2> {
public:
// `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException`
// constructor. However it can only do it on a fatal slow path so execution never returns to the
// instruction following the current one; thus 'SideEffects::None()' is used.
HBoundsCheck(HInstruction* index,
HInstruction* length,
uint32_t dex_pc,
bool is_string_char_at = false)
: HExpression(kBoundsCheck, index->GetType(), SideEffects::None(), dex_pc) {
DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(index->GetType()));
SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
SetRawInputAt(0, index);
SetRawInputAt(1, length);
}
bool IsClonable() const override { return true; }
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
return true;
}
bool NeedsEnvironment() const override { return true; }
bool CanThrow() const override { return true; }
bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
HInstruction* GetIndex() const { return InputAt(0); }
DECLARE_INSTRUCTION(BoundsCheck);
protected:
DEFAULT_COPY_CONSTRUCTOR(BoundsCheck);
private:
static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits;
static constexpr size_t kNumberOfBoundsCheckPackedBits = kFlagIsStringCharAt + 1;
static_assert(kNumberOfBoundsCheckPackedBits <= HInstruction::kMaxNumberOfPackedBits,
"Too many packed fields.");
};
class HSuspendCheck final : public HExpression<0> {
public:
explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc, bool is_no_op = false)
: HExpression(kSuspendCheck, SideEffects::CanTriggerGC(), dex_pc),
slow_path_(nullptr) {
SetPackedFlag<kFlagIsNoOp>(is_no_op);
}
bool IsClonable() const override { return true; }
bool NeedsEnvironment() const override {
return true;
}
void SetIsNoOp(bool is_no_op) { SetPackedFlag<kFlagIsNoOp>(is_no_op); }
bool IsNoOp() const { return GetPackedFlag<kFlagIsNoOp>(); }
void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
SlowPathCode* GetSlowPath() const { return slow_path_; }
DECLARE_INSTRUCTION(SuspendCheck);
protected:
DEFAULT_COPY_CONSTRUCTOR(SuspendCheck);
// True if the HSuspendCheck should not emit any code during codegen. It is
// not possible to simply remove this instruction to disable codegen, as
// other optimizations (e.g: CHAGuardVisitor::HoistGuard) depend on
// HSuspendCheck being present in every loop.
static constexpr size_t kFlagIsNoOp = kNumberOfGenericPackedBits;
static constexpr size_t kNumberOfSuspendCheckPackedBits = kFlagIsNoOp + 1;
static_assert(kNumberOfSuspendCheckPackedBits <= HInstruction::kMaxNumberOfPackedBits,
"Too many packed fields.");
private:
// Only used for code generation, in order to share the same slow path between back edges
// of a same loop.
SlowPathCode* slow_path_;
};
// Pseudo-instruction which doesn't generate any code.
// If `emit_environment` is true, it can be used to generate an environment. It is used, for
// example, to provide the native debugger with mapping information. It ensures that we can generate
// line number and local variables at this point.
class HNop : public HExpression<0> {
public:
explicit HNop(uint32_t dex_pc, bool needs_environment)
: HExpression<0>(kNop, SideEffects::None(), dex_pc), needs_environment_(needs_environment) {
}
bool NeedsEnvironment() const override {
return needs_environment_;
}
DECLARE_INSTRUCTION(Nop);
protected:
DEFAULT_COPY_CONSTRUCTOR(Nop);
private:
bool needs_environment_;
};
/**
* Instruction to load a Class object.
*/
class HLoadClass final : public HInstruction {
public:
// Determines how to load the Class.
enum class LoadKind {
// We cannot load this class. See HSharpening::SharpenLoadClass.
kInvalid = -1,
// Use the Class* from the method's own ArtMethod*.
kReferrersClass,
// Use PC-relative boot image Class* address that will be known at link time.
// Used for boot image classes referenced by boot image code.
kBootImageLinkTimePcRelative,
// Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
// Used for boot image classes referenced by apps in AOT-compiled code.
kBootImageRelRo,
// Load from an entry in the .bss section using a PC-relative load.
// Used for classes outside boot image referenced by AOT-compiled app and boot image code.
kBssEntry,
// Load from an entry for public class in the .bss section using a PC-relative load.
// Used for classes that were unresolved during AOT-compilation outside the literal
// package of the compiling class. Such classes are accessible only if they are public
// and the .bss entry shall therefore be filled only if the resolved class is public.
kBssEntryPublic,
// Load from an entry for package class in the .bss section using a PC-relative load.
// Used for classes that were unresolved during AOT-compilation but within the literal
// package of the compiling class. Such classes are accessible if they are public or
// in the same package which, given the literal package match, requires only matching
// defining class loader and the .bss entry shall therefore be filled only if at least
// one of those conditions holds. Note that all code in an oat file belongs to classes
// with the same defining class loader.
kBssEntryPackage,
// Use a known boot image Class* address, embedded in the code by the codegen.
// Used for boot image classes referenced by apps in JIT-compiled code.
kJitBootImageAddress,
// Load from the root table associated with the JIT compiled method.
kJitTableAddress,
// Load using a simple runtime call. This is the fall-back load kind when
// the codegen is unable to use another appropriate kind.
kRuntimeCall,
kLast = kRuntimeCall
};
HLoadClass(HCurrentMethod* current_method,
dex::TypeIndex type_index,
const DexFile& dex_file,
Handle<mirror::Class> klass,
bool is_referrers_class,
uint32_t dex_pc,
bool needs_access_check)
: HInstruction(kLoadClass,
DataType::Type::kReference,
SideEffectsForArchRuntimeCalls(),
dex_pc),
special_input_(HUserRecord<HInstruction*>(current_method)),
type_index_(type_index),
dex_file_(dex_file),
klass_(klass) {
// Referrers class should not need access check. We never inline unverified
// methods so we can't possibly end up in this situation.
DCHECK_IMPLIES(is_referrers_class, !needs_access_check);
SetPackedField<LoadKindField>(
is_referrers_class ? LoadKind::kReferrersClass : LoadKind::kRuntimeCall);
SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check);
SetPackedFlag<kFlagIsInBootImage>(false);
SetPackedFlag<kFlagGenerateClInitCheck>(false);
SetPackedFlag<kFlagValidLoadedClassRTI>(false);
}
bool IsClonable() const override { return true; }
void SetLoadKind(LoadKind load_kind);
LoadKind GetLoadKind() const {
return GetPackedField<LoadKindField>();
}
bool HasPcRelativeLoadKind() const {
return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
GetLoadKind() == LoadKind::kBootImageRelRo ||
GetLoadKind() == LoadKind::kBssEntry ||
GetLoadKind() == LoadKind::kBssEntryPublic ||
GetLoadKind() == LoadKind::kBssEntryPackage;
}
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other) const override;
size_t ComputeHashCode() const override { return type_index_.index_; }
bool CanBeNull() const override { return false; }
bool NeedsEnvironment() const override {
return CanCallRuntime();
}
bool NeedsBss() const override {
LoadKind load_kind = GetLoadKind();
return load_kind == LoadKind::kBssEntry ||
load_kind == LoadKind::kBssEntryPublic ||
load_kind == LoadKind::kBssEntryPackage;
}
void SetMustGenerateClinitCheck(bool generate_clinit_check) {
SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check);
}
bool CanCallRuntime() const {
return NeedsAccessCheck() ||
MustGenerateClinitCheck() ||
GetLoadKind() == LoadKind::kRuntimeCall ||
GetLoadKind() == LoadKind::kBssEntry;
}
bool CanThrow() const override {
return NeedsAccessCheck() ||
MustGenerateClinitCheck() ||
// If the class is in the boot image, the lookup in the runtime call cannot throw.
((GetLoadKind() == LoadKind::kRuntimeCall ||
GetLoadKind() == LoadKind::kBssEntry) &&
!IsInBootImage());
}
ReferenceTypeInfo GetLoadedClassRTI() {
if (GetPackedFlag<kFlagValidLoadedClassRTI>()) {
// Note: The is_exact flag from the return value should not be used.
return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true);
} else {
return ReferenceTypeInfo::CreateInvalid();
}
}
// Loaded class RTI is marked as valid by RTP if the klass_ is admissible.
void SetValidLoadedClassRTI() {
DCHECK(klass_ != nullptr);
SetPackedFlag<kFlagValidLoadedClassRTI>(true);
}
dex::TypeIndex GetTypeIndex() const { return type_index_; }
const DexFile& GetDexFile() const { return dex_file_; }
static SideEffects SideEffectsForArchRuntimeCalls() {
return SideEffects::CanTriggerGC();
}
bool IsReferrersClass() const { return GetLoadKind() == LoadKind::kReferrersClass; }
bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); }
bool IsInBootImage() const { return GetPackedFlag<kFlagIsInBootImage>(); }
bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); }
bool MustResolveTypeOnSlowPath() const {
// Check that this instruction has a slow path.
LoadKind load_kind = GetLoadKind();
DCHECK(load_kind != LoadKind::kRuntimeCall); // kRuntimeCall calls on main path.
bool must_resolve_type_on_slow_path =
load_kind == LoadKind::kBssEntry ||
load_kind == LoadKind::kBssEntryPublic ||
load_kind == LoadKind::kBssEntryPackage;
DCHECK(must_resolve_type_on_slow_path || MustGenerateClinitCheck());
return must_resolve_type_on_slow_path;
}
void MarkInBootImage() {
SetPackedFlag<kFlagIsInBootImage>(true);
}
void AddSpecialInput(HInstruction* special_input);
using HInstruction::GetInputRecords; // Keep the const version visible.
ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
return ArrayRef<HUserRecord<HInstruction*>>(
&special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
}
Handle<mirror::Class> GetClass() const {
return klass_;
}
DECLARE_INSTRUCTION(LoadClass);
protected:
DEFAULT_COPY_CONSTRUCTOR(LoadClass);
private:
static constexpr size_t kFlagNeedsAccessCheck = kNumberOfGenericPackedBits;
static constexpr size_t kFlagIsInBootImage = kFlagNeedsAccessCheck + 1;
// Whether this instruction must generate the initialization check.
// Used for code generation.
static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInBootImage + 1;
static constexpr size_t kFieldLoadKind = kFlagGenerateClInitCheck + 1;
static constexpr size_t kFieldLoadKindSize =
MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
static constexpr size_t kFlagValidLoadedClassRTI = kFieldLoadKind + kFieldLoadKindSize;
static constexpr size_t kNumberOfLoadClassPackedBits = kFlagValidLoadedClassRTI + 1;
static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields.");
using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
static bool HasTypeReference(LoadKind load_kind) {
return load_kind == LoadKind::kReferrersClass ||
load_kind == LoadKind::kBootImageLinkTimePcRelative ||
load_kind == LoadKind::kBssEntry ||
load_kind == LoadKind::kBssEntryPublic ||
load_kind == LoadKind::kBssEntryPackage ||
load_kind == LoadKind::kRuntimeCall;
}
void SetLoadKindInternal(LoadKind load_kind);
// The special input is the HCurrentMethod for kRuntimeCall or kReferrersClass.
// For other load kinds it's empty or possibly some architecture-specific instruction
// for PC-relative loads, i.e. kBssEntry* or kBootImageLinkTimePcRelative.
HUserRecord<HInstruction*> special_input_;
// A type index and dex file where the class can be accessed. The dex file can be:
// - The compiling method's dex file if the class is defined there too.
// - The compiling method's dex file if the class is referenced there.
// - The dex file where the class is defined. When the load kind can only be
// kBssEntry* or kRuntimeCall, we cannot emit code for this `HLoadClass`.
const dex::TypeIndex type_index_;
const DexFile& dex_file_;
Handle<mirror::Class> klass_;
};
std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs);
// Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
inline void HLoadClass::SetLoadKind(LoadKind load_kind) {
// The load kind should be determined before inserting the instruction to the graph.
DCHECK(GetBlock() == nullptr);
DCHECK(GetEnvironment() == nullptr);
SetPackedField<LoadKindField>(load_kind);
if (load_kind != LoadKind::kRuntimeCall && load_kind != LoadKind::kReferrersClass) {
special_input_ = HUserRecord<HInstruction*>(nullptr);
}
if (!NeedsEnvironment()) {
SetSideEffects(SideEffects::None());
}
}
// Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
inline void HLoadClass::AddSpecialInput(HInstruction* special_input) {
// The special input is used for PC-relative loads on some architectures,
// including literal pool loads, which are PC-relative too.
DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
GetLoadKind() == LoadKind::kBootImageRelRo ||
GetLoadKind() == LoadKind::kBssEntry ||
GetLoadKind() == LoadKind::kBssEntryPublic ||
GetLoadKind() == LoadKind::kBssEntryPackage ||
GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind();
DCHECK(special_input_.GetInstruction() == nullptr);
special_input_ = HUserRecord<HInstruction*>(special_input);
special_input->AddUseAt(this, 0);
}
class HLoadString final : public HInstruction {
public:
// Determines how to load the String.
enum class LoadKind {
// Use PC-relative boot image String* address that will be known at link time.
// Used for boot image strings referenced by boot image code.
kBootImageLinkTimePcRelative,
// Load from an entry in the .data.bimg.rel.ro using a PC-relative load.
// Used for boot image strings referenced by apps in AOT-compiled code.
kBootImageRelRo,
// Load from an entry in the .bss section using a PC-relative load.
// Used for strings outside boot image referenced by AOT-compiled app and boot image code.
kBssEntry,
// Use a known boot image String* address, embedded in the code by the codegen.
// Used for boot image strings referenced by apps in JIT-compiled code.
kJitBootImageAddress,
// Load from the root table associated with the JIT compiled method.
kJitTableAddress,
// Load using a simple runtime call. This is the fall-back load kind when
// the codegen is unable to use another appropriate kind.
kRuntimeCall,
kLast = kRuntimeCall,
};
HLoadString(HCurrentMethod* current_method,
dex::StringIndex string_index,
const DexFile& dex_file,
uint32_t dex_pc)
: HInstruction(kLoadString,
DataType::Type::kReference,
SideEffectsForArchRuntimeCalls(),
dex_pc),
special_input_(HUserRecord<HInstruction*>(current_method)),
string_index_(string_index),
dex_file_(dex_file) {
SetPackedField<LoadKindField>(LoadKind::kRuntimeCall);
}
bool IsClonable() const override { return true; }
bool NeedsBss() const override {
return GetLoadKind() == LoadKind::kBssEntry;
}
void SetLoadKind(LoadKind load_kind);
LoadKind GetLoadKind() const {
return GetPackedField<LoadKindField>();
}
bool HasPcRelativeLoadKind() const {
return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
GetLoadKind() == LoadKind::kBootImageRelRo ||
GetLoadKind() == LoadKind::kBssEntry;
}
const DexFile& GetDexFile() const {
return dex_file_;
}
dex::StringIndex GetStringIndex() const {
return string_index_;
}
Handle<mirror::String> GetString() const {
return string_;
}
void SetString(Handle<mirror::String> str) {
string_ = str;
}
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other) const override;
size_t ComputeHashCode() const override { return string_index_.index_; }
// Will call the runtime if we need to load the string through
// the dex cache and the string is not guaranteed to be there yet.
bool NeedsEnvironment() const override {
LoadKind load_kind = GetLoadKind();
if (load_kind == LoadKind::kBootImageLinkTimePcRelative ||
load_kind == LoadKind::kBootImageRelRo ||
load_kind == LoadKind::kJitBootImageAddress ||
load_kind == LoadKind::kJitTableAddress) {
return false;
}
return true;
}
bool CanBeNull() const override { return false; }
bool CanThrow() const override { return NeedsEnvironment(); }
static SideEffects SideEffectsForArchRuntimeCalls() {
return SideEffects::CanTriggerGC();
}
void AddSpecialInput(HInstruction* special_input);
using HInstruction::GetInputRecords; // Keep the const version visible.
ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
return ArrayRef<HUserRecord<HInstruction*>>(
&special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
}
DECLARE_INSTRUCTION(LoadString);
protected:
DEFAULT_COPY_CONSTRUCTOR(LoadString);
private:
static constexpr size_t kFieldLoadKind = kNumberOfGenericPackedBits;
static constexpr size_t kFieldLoadKindSize =
MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize;
static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
void SetLoadKindInternal(LoadKind load_kind);
// The special input is the HCurrentMethod for kRuntimeCall.
// For other load kinds it's empty or possibly some architecture-specific instruction
// for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative.
HUserRecord<HInstruction*> special_input_;
dex::StringIndex string_index_;
const DexFile& dex_file_;
Handle<mirror::String> string_;
};
std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs);
// Note: defined outside class to see operator<<(., HLoadString::LoadKind).
inline void HLoadString::SetLoadKind(LoadKind load_kind) {
// The load kind should be determined before inserting the instruction to the graph.
DCHECK(GetBlock() == nullptr);
DCHECK(GetEnvironment() == nullptr);
DCHECK_EQ(GetLoadKind(), LoadKind::kRuntimeCall);
SetPackedField<LoadKindField>(load_kind);
if (load_kind != LoadKind::kRuntimeCall) {
special_input_ = HUserRecord<HInstruction*>(nullptr);
}
if (!NeedsEnvironment()) {
SetSideEffects(SideEffects::None());
}
}
// Note: defined outside class to see operator<<(., HLoadString::LoadKind).
inline void HLoadString::AddSpecialInput(HInstruction* special_input) {
// The special input is used for PC-relative loads on some architectures,
// including literal pool loads, which are PC-relative too.
DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
GetLoadKind() == LoadKind::kBootImageRelRo ||
GetLoadKind() == LoadKind::kBssEntry ||
GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind();
// HLoadString::GetInputRecords() returns an empty array at this point,
// so use the GetInputRecords() from the base class to set the input record.
DCHECK(special_input_.GetInstruction() == nullptr);
special_input_ = HUserRecord<HInstruction*>(special_input);
special_input->AddUseAt(this, 0);
}
class HLoadMethodHandle final : public HInstruction {
public:
HLoadMethodHandle(HCurrentMethod* current_method,
uint16_t method_handle_idx,
const DexFile& dex_file,
uint32_t dex_pc)
: HInstruction(kLoadMethodHandle,
DataType::Type::kReference,
SideEffectsForArchRuntimeCalls(),
dex_pc),
special_input_(HUserRecord<HInstruction*>(current_method)),
method_handle_idx_(method_handle_idx),
dex_file_(dex_file) {
}
using HInstruction::GetInputRecords; // Keep the const version visible.
ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
return ArrayRef<HUserRecord<HInstruction*>>(
&special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
}
bool IsClonable() const override { return true; }
uint16_t GetMethodHandleIndex() const { return method_handle_idx_; }
const DexFile& GetDexFile() const { return dex_file_; }
static SideEffects SideEffectsForArchRuntimeCalls() {
return SideEffects::CanTriggerGC();
}
bool CanThrow() const override { return true; }
bool NeedsEnvironment() const override { return true; }
DECLARE_INSTRUCTION(LoadMethodHandle);
protected:
DEFAULT_COPY_CONSTRUCTOR(LoadMethodHandle);
private:
// The special input is the HCurrentMethod for kRuntimeCall.
HUserRecord<HInstruction*> special_input_;
const uint16_t method_handle_idx_;
const DexFile& dex_file_;
};
class HLoadMethodType final : public HInstruction {
public:
HLoadMethodType(HCurrentMethod* current_method,
dex::ProtoIndex proto_index,
const DexFile& dex_file,
uint32_t dex_pc)
: HInstruction(kLoadMethodType,
DataType::Type::kReference,
SideEffectsForArchRuntimeCalls(),
dex_pc),
special_input_(HUserRecord<HInstruction*>(current_method)),
proto_index_(proto_index),
dex_file_(dex_file) {
}
using HInstruction::GetInputRecords; // Keep the const version visible.
ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final {
return ArrayRef<HUserRecord<HInstruction*>>(
&special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
}
bool IsClonable() const override { return true; }
dex::ProtoIndex GetProtoIndex() const { return proto_index_; }
const DexFile& GetDexFile() const { return dex_file_; }
static SideEffects SideEffectsForArchRuntimeCalls() {
return SideEffects::CanTriggerGC();
}
bool CanThrow() const override { return true; }
bool NeedsEnvironment() const override { return true; }
DECLARE_INSTRUCTION(LoadMethodType);
protected:
DEFAULT_COPY_CONSTRUCTOR(LoadMethodType);
private:
// The special input is the HCurrentMethod for kRuntimeCall.
HUserRecord<HInstruction*> special_input_;
const dex::ProtoIndex proto_index_;
const DexFile& dex_file_;
};
/**
* Performs an initialization check on its Class object input.
*/
class HClinitCheck final : public HExpression<1> {
public:
HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
: HExpression(
kClinitCheck,
DataType::Type::kReference,
SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays.
dex_pc) {
SetRawInputAt(0, constant);
}
// TODO: Make ClinitCheck clonable.
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
return true;
}
bool NeedsEnvironment() const override {
// May call runtime to initialize the class.
return true;
}
bool CanThrow() const override { return true; }
HLoadClass* GetLoadClass() const {
DCHECK(InputAt(0)->IsLoadClass());
return InputAt(0)->AsLoadClass();
}
DECLARE_INSTRUCTION(ClinitCheck);
protected:
DEFAULT_COPY_CONSTRUCTOR(ClinitCheck);
};
class HStaticFieldGet final : public HExpression<1> {
public:
HStaticFieldGet(HInstruction* cls,
ArtField* field,
DataType::Type field_type,
MemberOffset field_offset,
bool is_volatile,
uint32_t field_idx,
uint16_t declaring_class_def_index,
const DexFile& dex_file,
uint32_t dex_pc)
: HExpression(kStaticFieldGet,
field_type,
SideEffects::FieldReadOfType(field_type, is_volatile),
dex_pc),
field_info_(field,
field_offset,
field_type,
is_volatile,
field_idx,
declaring_class_def_index,
dex_file) {
SetRawInputAt(0, cls);
}
bool IsClonable() const override { return true; }
bool CanBeMoved() const override { return !IsVolatile(); }
bool InstructionDataEquals(const HInstruction* other) const override {
const HStaticFieldGet* other_get = other->AsStaticFieldGet();
return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
}
size_t ComputeHashCode() const override {
return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
}
bool IsFieldAccess() const override { return true; }
const FieldInfo& GetFieldInfo() const override { return field_info_; }
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
bool IsVolatile() const { return field_info_.IsVolatile(); }
void SetType(DataType::Type new_type) {
DCHECK(DataType::IsIntegralType(GetType()));
DCHECK(DataType::IsIntegralType(new_type));
DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type));
SetPackedField<TypeField>(new_type);
}
DECLARE_INSTRUCTION(StaticFieldGet);
protected:
DEFAULT_COPY_CONSTRUCTOR(StaticFieldGet);
private:
const FieldInfo field_info_;
};
class HStaticFieldSet final : public HExpression<2> {
public:
HStaticFieldSet(HInstruction* cls,
HInstruction* value,
ArtField* field,
DataType::Type field_type,
MemberOffset field_offset,
bool is_volatile,
uint32_t field_idx,
uint16_t declaring_class_def_index,
const DexFile& dex_file,
uint32_t dex_pc)
: HExpression(kStaticFieldSet,
SideEffects::FieldWriteOfType(field_type, is_volatile),
dex_pc),
field_info_(field,
field_offset,
field_type,
is_volatile,
field_idx,
declaring_class_def_index,
dex_file) {
SetPackedFlag<kFlagValueCanBeNull>(true);
SetPackedField<WriteBarrierKindField>(WriteBarrierKind::kEmitWithNullCheck);
SetRawInputAt(0, cls);
SetRawInputAt(1, value);
}
bool IsClonable() const override { return true; }
bool IsFieldAccess() const override { return true; }
const FieldInfo& GetFieldInfo() const override { return field_info_; }
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
DataType::Type GetFieldType() const { return field_info_.GetFieldType(); }
bool IsVolatile() const { return field_info_.IsVolatile(); }
HInstruction* GetValue() const { return InputAt(1); }
bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
WriteBarrierKind GetWriteBarrierKind() { return GetPackedField<WriteBarrierKindField>(); }
void SetWriteBarrierKind(WriteBarrierKind kind) {
DCHECK(kind != WriteBarrierKind::kEmitWithNullCheck)
<< "We shouldn't go back to the original value.";
SetPackedField<WriteBarrierKindField>(kind);
}
DECLARE_INSTRUCTION(StaticFieldSet);
protected:
DEFAULT_COPY_CONSTRUCTOR(StaticFieldSet);
private:
static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
static constexpr size_t kWriteBarrierKind = kFlagValueCanBeNull + 1;
static constexpr size_t kWriteBarrierKindSize =
MinimumBitsToStore(static_cast<size_t>(WriteBarrierKind::kLast));
static constexpr size_t kNumberOfStaticFieldSetPackedBits =
kWriteBarrierKind + kWriteBarrierKindSize;
static_assert(kNumberOfStaticFieldSetPackedBits <= kMaxNumberOfPackedBits,
"Too many packed fields.");
const FieldInfo field_info_;
using WriteBarrierKindField =
BitField<WriteBarrierKind, kWriteBarrierKind, kWriteBarrierKindSize>;
};
class HStringBuilderAppend final : public HVariableInputSizeInstruction {
public:
HStringBuilderAppend(HIntConstant* format,
uint32_t number_of_arguments,
bool has_fp_args,
ArenaAllocator* allocator,
uint32_t dex_pc)
: HVariableInputSizeInstruction(
kStringBuilderAppend,
DataType::Type::kReference,
SideEffects::CanTriggerGC().Union(
// The runtime call may read memory from inputs. It never writes outside
// of the newly allocated result object or newly allocated helper objects,
// except for float/double arguments where we reuse thread-local helper objects.
has_fp_args ? SideEffects::AllWritesAndReads() : SideEffects::AllReads()),
dex_pc,
allocator,
number_of_arguments + /* format */ 1u,
kArenaAllocInvokeInputs) {
DCHECK_GE(number_of_arguments, 1u); // There must be something to append.
SetRawInputAt(FormatIndex(), format);
}
void SetArgumentAt(size_t index, HInstruction* argument) {
DCHECK_LE(index, GetNumberOfArguments());
SetRawInputAt(index, argument);
}
// Return the number of arguments, excluding the format.
size_t GetNumberOfArguments() const {
DCHECK_GE(InputCount(), 1u);
return InputCount() - 1u;
}
size_t FormatIndex() const {
return GetNumberOfArguments();
}
HIntConstant* GetFormat() {
return InputAt(FormatIndex())->AsIntConstant();
}
bool NeedsEnvironment() const override { return true; }
bool CanThrow() const override { return true; }
bool CanBeNull() const override { return false; }
DECLARE_INSTRUCTION(StringBuilderAppend);
protected:
DEFAULT_COPY_CONSTRUCTOR(StringBuilderAppend);
};
class HUnresolvedInstanceFieldGet final : public HExpression<1> {
public:
HUnresolvedInstanceFieldGet(HInstruction* obj,
DataType::Type field_type,
uint32_t field_index,
uint32_t dex_pc)
: HExpression(kUnresolvedInstanceFieldGet,
field_type,
SideEffects::AllExceptGCDependency(),
dex_pc),
field_index_(field_index) {
SetRawInputAt(0, obj);
}
bool IsClonable() const override { return true; }
bool NeedsEnvironment() const override { return true; }
bool CanThrow() const override { return true; }
DataType::Type GetFieldType() const { return GetType(); }
uint32_t GetFieldIndex() const { return field_index_; }
DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
protected:
DEFAULT_COPY_CONSTRUCTOR(UnresolvedInstanceFieldGet);
private:
const uint32_t field_index_;
};
class HUnresolvedInstanceFieldSet final : public HExpression<2> {
public:
HUnresolvedInstanceFieldSet(HInstruction* obj,
HInstruction* value,
DataType::Type field_type,
uint32_t field_index,
uint32_t dex_pc)
: HExpression(kUnresolvedInstanceFieldSet, SideEffects::AllExceptGCDependency(), dex_pc),
field_index_(field_index) {
SetPackedField<FieldTypeField>(field_type);
DCHECK_EQ(DataType::Kind(field_type), DataType::Kind(value->GetType()));
SetRawInputAt(0, obj);
SetRawInputAt(1, value);
}
bool IsClonable() const override { return true; }
bool NeedsEnvironment() const override { return true; }
bool CanThrow() const override { return true; }
DataType::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
uint32_t GetFieldIndex() const { return field_index_; }
DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
protected:
DEFAULT_COPY_CONSTRUCTOR(UnresolvedInstanceFieldSet);
private:
static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
static constexpr size_t kFieldFieldTypeSize =
MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
kFieldFieldType + kFieldFieldTypeSize;
static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
"Too many packed fields.");
using FieldTypeField = BitField<DataType::Type, kFieldFieldType, kFieldFieldTypeSize>;
const uint32_t field_index_;
};
class HUnresolvedStaticFieldGet final : public HExpression<0> {
public:
HUnresolvedStaticFieldGet(DataType::Type field_type,
uint32_t field_index,
uint32_t dex_pc)
: HExpression(kUnresolvedStaticFieldGet,
field_type,
SideEffects::AllExceptGCDependency(),
dex_pc),
field_index_(field_index) {
}
bool IsClonable() const override { return true; }
bool NeedsEnvironment() const override { return true; }
bool CanThrow() const override { return true; }
DataType::Type GetFieldType() const { return GetType(); }
uint32_t GetFieldIndex() const { return field_index_; }
DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
protected:
DEFAULT_COPY_CONSTRUCTOR(UnresolvedStaticFieldGet);
private:
const uint32_t field_index_;
};
class HUnresolvedStaticFieldSet final : public HExpression<1> {
public:
HUnresolvedStaticFieldSet(HInstruction* value,
DataType::Type field_type,
uint32_t field_index,
uint32_t dex_pc)
: HExpression(kUnresolvedStaticFieldSet, SideEffects::AllExceptGCDependency(), dex_pc),
field_index_(field_index) {
SetPackedField<FieldTypeField>(field_type);
DCHECK_EQ(DataType::Kind(field_type), DataType::Kind(value->GetType()));
SetRawInputAt(0, value);
}
bool IsClonable() const override { return true; }
bool NeedsEnvironment() const override { return true; }
bool CanThrow() const override { return true; }
DataType::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
uint32_t GetFieldIndex() const { return field_index_; }
DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
protected:
DEFAULT_COPY_CONSTRUCTOR(UnresolvedStaticFieldSet);
private:
static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
static constexpr size_t kFieldFieldTypeSize =
MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast));
static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
kFieldFieldType + kFieldFieldTypeSize;
static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
"Too many packed fields.");
using FieldTypeField = BitField<DataType::Type, kFieldFieldType, kFieldFieldTypeSize>;
const uint32_t field_index_;
};
// Implement the move-exception DEX instruction.
class HLoadException final : public HExpression<0> {
public:
explicit HLoadException(uint32_t dex_pc = kNoDexPc)
: HExpression(kLoadException, DataType::Type::kReference, SideEffects::None(), dex_pc) {
}
bool CanBeNull() const override { return false; }
DECLARE_INSTRUCTION(LoadException);
protected:
DEFAULT_COPY_CONSTRUCTOR(LoadException);
};
// Implicit part of move-exception which clears thread-local exception storage.
// Must not be removed because the runtime expects the TLS to get cleared.
class HClearException final : public HExpression<0> {
public:
explicit HClearException(uint32_t dex_pc = kNoDexPc)
: HExpression(kClearException, SideEffects::AllWrites(), dex_pc) {
}
DECLARE_INSTRUCTION(ClearException);
protected:
DEFAULT_COPY_CONSTRUCTOR(ClearException);
};
class HThrow final : public HExpression<1> {
public:
HThrow(HInstruction* exception, uint32_t dex_pc)
: HExpression(kThrow, SideEffects::CanTriggerGC(), dex_pc) {
SetRawInputAt(0, exception);
}
bool IsControlFlow() const override { return true; }
bool NeedsEnvironment() const override { return true; }
bool CanThrow() const override { return true; }
bool AlwaysThrows() const override { return true; }
DECLARE_INSTRUCTION(Throw);
protected:
DEFAULT_COPY_CONSTRUCTOR(Throw);
};
/**
* Implementation strategies for the code generator of a HInstanceOf
* or `HCheckCast`.
*/
enum class TypeCheckKind { // private marker to avoid generate-operator-out.py from processing.
kUnresolvedCheck, // Check against an unresolved type.
kExactCheck, // Can do a single class compare.
kClassHierarchyCheck, // Can just walk the super class chain.
kAbstractClassCheck, // Can just walk the super class chain, starting one up.
kInterfaceCheck, // No optimization yet when checking against an interface.
kArrayObjectCheck, // Can just check if the array is not primitive.
kArrayCheck, // No optimization yet when checking against a generic array.
kBitstringCheck, // Compare the type check bitstring.
kLast = kArrayCheck
};
std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs);
// Note: HTypeCheckInstruction is just a helper class, not an abstract instruction with an
// `IsTypeCheckInstruction()`. (New virtual methods in the HInstruction class have a high cost.)
class HTypeCheckInstruction : public HVariableInputSizeInstruction {
public:
HTypeCheckInstruction(InstructionKind kind,
DataType::Type type,
HInstruction* object,
HInstruction* target_class_or_null,
TypeCheckKind check_kind,
Handle<mirror::Class> klass,
uint32_t dex_pc,
ArenaAllocator* allocator,
HIntConstant* bitstring_path_to_root,
HIntConstant* bitstring_mask,
SideEffects side_effects)
: HVariableInputSizeInstruction(
kind,
type,
side_effects,
dex_pc,
allocator,
/* number_of_inputs= */ check_kind == TypeCheckKind::kBitstringCheck ? 4u : 2u,
kArenaAllocTypeCheckInputs),
klass_(klass) {
SetPackedField<TypeCheckKindField>(check_kind);
SetPackedFlag<kFlagMustDoNullCheck>(true);
SetPackedFlag<kFlagValidTargetClassRTI>(false);
SetRawInputAt(0, object);
SetRawInputAt(1, target_class_or_null);
DCHECK_EQ(check_kind == TypeCheckKind::kBitstringCheck, bitstring_path_to_root != nullptr);
DCHECK_EQ(check_kind == TypeCheckKind::kBitstringCheck, bitstring_mask != nullptr);
if (check_kind == TypeCheckKind::kBitstringCheck) {
DCHECK(target_class_or_null->IsNullConstant());
SetRawInputAt(2, bitstring_path_to_root);
SetRawInputAt(3, bitstring_mask);
} else {
DCHECK(target_class_or_null->IsLoadClass());
}
}
HLoadClass* GetTargetClass() const {
DCHECK_NE(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck);
HInstruction* load_class = InputAt(1);
DCHECK(load_class->IsLoadClass());
return load_class->AsLoadClass();
}
uint32_t GetBitstringPathToRoot() const {
DCHECK_EQ(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck);
HInstruction* path_to_root = InputAt(2);
DCHECK(path_to_root->IsIntConstant());
return static_cast<uint32_t>(path_to_root->AsIntConstant()->GetValue());
}
uint32_t GetBitstringMask() const {
DCHECK_EQ(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck);
HInstruction* mask = InputAt(3);
DCHECK(mask->IsIntConstant());
return static_cast<uint32_t>(mask->AsIntConstant()->GetValue());
}
bool IsClonable() const override { return true; }
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other) const override {
DCHECK(other->IsInstanceOf() || other->IsCheckCast()) << other->DebugName();
return GetPackedFields() == down_cast<const HTypeCheckInstruction*>(other)->GetPackedFields();
}
bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); }
void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); }
TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); }
bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; }
ReferenceTypeInfo GetTargetClassRTI() {
if (GetPackedFlag<kFlagValidTargetClassRTI>()) {
// Note: The is_exact flag from the return value should not be used.
return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true);
} else {
return ReferenceTypeInfo::CreateInvalid();
}
}
// Target class RTI is marked as valid by RTP if the klass_ is admissible.
void SetValidTargetClassRTI() {
DCHECK(klass_ != nullptr);
SetPackedFlag<kFlagValidTargetClassRTI>(true);
}
Handle<mirror::Class> GetClass() const {
return klass_;
}
protected:
DEFAULT_COPY_CONSTRUCTOR(TypeCheckInstruction);
private:
static constexpr size_t kFieldTypeCheckKind = kNumberOfGenericPackedBits;
static constexpr size_t kFieldTypeCheckKindSize =
MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast));
static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize;
static constexpr size_t kFlagValidTargetClassRTI = kFlagMustDoNullCheck + 1;
static constexpr size_t kNumberOfInstanceOfPackedBits = kFlagValidTargetClassRTI + 1;
static_assert(kNumberOfInstanceOfPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>;
Handle<mirror::Class> klass_;
};
class HInstanceOf final : public HTypeCheckInstruction {
public:
HInstanceOf(HInstruction* object,
HInstruction* target_class_or_null,
TypeCheckKind check_kind,
Handle<mirror::Class> klass,
uint32_t dex_pc,
ArenaAllocator* allocator,
HIntConstant* bitstring_path_to_root,
HIntConstant* bitstring_mask)
: HTypeCheckInstruction(kInstanceOf,
DataType::Type::kBool,
object,
target_class_or_null,
check_kind,
klass,
dex_pc,
allocator,
bitstring_path_to_root,
bitstring_mask,
SideEffectsForArchRuntimeCalls(check_kind)) {}
bool IsClonable() const override { return true; }
bool NeedsEnvironment() const override {
return CanCallRuntime(GetTypeCheckKind());
}
static bool CanCallRuntime(TypeCheckKind check_kind) {
// TODO: Re-evaluate now that mips codegen has been removed.
return check_kind != TypeCheckKind::kExactCheck;
}
static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
return CanCallRuntime(check_kind) ? SideEffects::CanTriggerGC() : SideEffects::None();
}
DECLARE_INSTRUCTION(InstanceOf);
protected:
DEFAULT_COPY_CONSTRUCTOR(InstanceOf);
};
class HBoundType final : public HExpression<1> {
public:
explicit HBoundType(HInstruction* input, uint32_t dex_pc = kNoDexPc)
: HExpression(kBoundType, DataType::Type::kReference, SideEffects::None(), dex_pc),
upper_bound_(ReferenceTypeInfo::CreateInvalid()) {
SetPackedFlag<kFlagUpperCanBeNull>(true);
SetPackedFlag<kFlagCanBeNull>(true);
DCHECK_EQ(input->GetType(), DataType::Type::kReference);
SetRawInputAt(0, input);
}
bool InstructionDataEquals(const HInstruction* other) const override;
bool IsClonable() const override { return true; }
// {Get,Set}Upper* should only be used in reference type propagation.
const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
bool GetUpperCanBeNull() const { return GetPackedFlag<kFlagUpperCanBeNull>(); }
void SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null);
void SetCanBeNull(bool can_be_null) {
DCHECK(GetUpperCanBeNull() || !can_be_null);
SetPackedFlag<kFlagCanBeNull>(can_be_null);
}
bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); }
DECLARE_INSTRUCTION(BoundType);
protected:
DEFAULT_COPY_CONSTRUCTOR(BoundType);
private:
// Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
// is false then CanBeNull() cannot be true).
static constexpr size_t kFlagUpperCanBeNull = kNumberOfGenericPackedBits;
static constexpr size_t kFlagCanBeNull = kFlagUpperCanBeNull + 1;
static constexpr size_t kNumberOfBoundTypePackedBits = kFlagCanBeNull + 1;
static_assert(kNumberOfBoundTypePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
// Encodes the most upper class that this instruction can have. In other words
// it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
// It is used to bound the type in cases like:
// if (x instanceof ClassX) {
// // uper_bound_ will be ClassX
// }
ReferenceTypeInfo upper_bound_;
};
class HCheckCast final : public HTypeCheckInstruction {
public:
HCheckCast(HInstruction* object,
HInstruction* target_class_or_null,
TypeCheckKind check_kind,
Handle<mirror::Class> klass,
uint32_t dex_pc,
ArenaAllocator* allocator,
HIntConstant* bitstring_path_to_root,
HIntConstant* bitstring_mask)
: HTypeCheckInstruction(kCheckCast,
DataType::Type::kVoid,
object,
target_class_or_null,
check_kind,
klass,
dex_pc,
allocator,
bitstring_path_to_root,
bitstring_mask,
SideEffects::CanTriggerGC()) {}
bool IsClonable() const override { return true; }
bool NeedsEnvironment() const override {
// Instruction may throw a CheckCastError.
return true;
}
bool CanThrow() const override { return true; }
DECLARE_INSTRUCTION(CheckCast);
protected:
DEFAULT_COPY_CONSTRUCTOR(CheckCast);
};
/**
* @brief Memory barrier types (see "The JSR-133 Cookbook for Compiler Writers").
* @details We define the combined barrier types that are actually required
* by the Java Memory Model, rather than using exactly the terminology from
* the JSR-133 cookbook. These should, in many cases, be replaced by acquire/release
* primitives. Note that the JSR-133 cookbook generally does not deal with
* store atomicity issues, and the recipes there are not always entirely sufficient.
* The current recipe is as follows:
* -# Use AnyStore ~= (LoadStore | StoreStore) ~= release barrier before volatile store.
* -# Use AnyAny barrier after volatile store. (StoreLoad is as expensive.)
* -# Use LoadAny barrier ~= (LoadLoad | LoadStore) ~= acquire barrier after each volatile load.
* -# Use StoreStore barrier after all stores but before return from any constructor whose
* class has final fields.
* -# Use NTStoreStore to order non-temporal stores with respect to all later
* store-to-memory instructions. Only generated together with non-temporal stores.
*/
enum MemBarrierKind {
kAnyStore,
kLoadAny,
kStoreStore,
kAnyAny,
kNTStoreStore,
kLastBarrierKind = kNTStoreStore
};
std::ostream& operator<<(std::ostream& os, MemBarrierKind kind);
class HMemoryBarrier final : public HExpression<0> {
public:
explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
: HExpression(kMemoryBarrier,
SideEffects::AllWritesAndReads(), // Assume write/read on all fields/arrays.
dex_pc) {
SetPackedField<BarrierKindField>(barrier_kind);
}
bool IsClonable() const override { return true; }
MemBarrierKind GetBarrierKind() { return GetPackedField<BarrierKindField>(); }
DECLARE_INSTRUCTION(MemoryBarrier);
protected:
DEFAULT_COPY_CONSTRUCTOR(MemoryBarrier);
private:
static constexpr size_t kFieldBarrierKind = HInstruction::kNumberOfGenericPackedBits;
static constexpr size_t kFieldBarrierKindSize =
MinimumBitsToStore(static_cast<size_t>(kLastBarrierKind));
static constexpr size_t kNumberOfMemoryBarrierPackedBits =
kFieldBarrierKind + kFieldBarrierKindSize;
static_assert(kNumberOfMemoryBarrierPackedBits <= kMaxNumberOfPackedBits,
"Too many packed fields.");
using BarrierKindField = BitField<MemBarrierKind, kFieldBarrierKind, kFieldBarrierKindSize>;
};
// A constructor fence orders all prior stores to fields that could be accessed via a final field of
// the specified object(s), with respect to any subsequent store that might "publish"
// (i.e. make visible) the specified object to another thread.
//
// JLS 17.5.1 "Semantics of final fields" states that a freeze action happens
// for all final fields (that were set) at the end of the invoked constructor.
//
// The constructor fence models the freeze actions for the final fields of an object
// being constructed (semantically at the end of the constructor). Constructor fences
// have a per-object affinity; two separate objects being constructed get two separate
// constructor fences.
//
// (Note: that if calling a super-constructor or forwarding to another constructor,
// the freezes would happen at the end of *that* constructor being invoked).
//
// The memory model guarantees that when the object being constructed is "published" after
// constructor completion (i.e. escapes the current thread via a store), then any final field
// writes must be observable on other threads (once they observe that publication).
//
// Further, anything written before the freeze, and read by dereferencing through the final field,
// must also be visible (so final object field could itself have an object with non-final fields;
// yet the freeze must also extend to them).
//
// Constructor example:
//
// class HasFinal {
// final int field; Optimizing IR for <init>()V:
// HasFinal() {
// field = 123; HInstanceFieldSet(this, HasFinal.field, 123)
// // freeze(this.field); HConstructorFence(this)
// } HReturn
// }
//
// HConstructorFence can serve double duty as a fence for new-instance/new-array allocations of
// already-initialized classes; in that case the allocation must act as a "default-initializer"
// of the object which effectively writes the class pointer "final field".
//
// For example, we can model default-initialiation as roughly the equivalent of the following:
//
// class Object {
// private final Class header;
// }
//
// Java code: Optimizing IR:
//
// T new_instance<T>() {
// Object obj = allocate_memory(T.class.size); obj = HInvoke(art_quick_alloc_object, T)
// obj.header = T.class; // header write is done by above call.
// // freeze(obj.header) HConstructorFence(obj)
// return (T)obj;
// }
//
// See also:
// * DexCompilationUnit::RequiresConstructorBarrier
// * QuasiAtomic::ThreadFenceForConstructor
//
class HConstructorFence final : public HVariableInputSizeInstruction {
// A fence has variable inputs because the inputs can be removed
// after prepare_for_register_allocation phase.
// (TODO: In the future a fence could freeze multiple objects
// after merging two fences together.)
public:
// `fence_object` is the reference that needs to be protected for correct publication.
//
// It makes sense in the following situations:
// * <init> constructors, it's the "this" parameter (i.e. HParameterValue, s.t. IsThis() == true).
// * new-instance-like instructions, it's the return value (i.e. HNewInstance).
//
// After construction the `fence_object` becomes the 0th input.
// This is not an input in a real sense, but just a convenient place to stash the information
// about the associated object.
HConstructorFence(HInstruction* fence_object,
uint32_t dex_pc,
ArenaAllocator* allocator)
// We strongly suspect there is not a more accurate way to describe the fine-grained reordering
// constraints described in the class header. We claim that these SideEffects constraints
// enforce a superset of the real constraints.
//
// The ordering described above is conservatively modeled with SideEffects as follows:
//
// * To prevent reordering of the publication stores:
// ----> "Reads of objects" is the initial SideEffect.
// * For every primitive final field store in the constructor:
// ----> Union that field's type as a read (e.g. "Read of T") into the SideEffect.
// * If there are any stores to reference final fields in the constructor:
// ----> Use a more conservative "AllReads" SideEffect because any stores to any references
// that are reachable from `fence_object` also need to be prevented for reordering
// (and we do not want to do alias analysis to figure out what those stores are).
//
// In the implementation, this initially starts out as an "all reads" side effect; this is an
// even more conservative approach than the one described above, and prevents all of the
// above reordering without analyzing any of the instructions in the constructor.
//
// If in a later phase we discover that there are no writes to reference final fields,
// we can refine the side effect to a smaller set of type reads (see above constraints).
: HVariableInputSizeInstruction(kConstructorFence,
SideEffects::AllReads(),
dex_pc,
allocator,
/* number_of_inputs= */ 1,
kArenaAllocConstructorFenceInputs) {
DCHECK(fence_object != nullptr);
SetRawInputAt(0, fence_object);
}
// The object associated with this constructor fence.
//
// (Note: This will be null after the prepare_for_register_allocation phase,
// as all constructor fence inputs are removed there).
HInstruction* GetFenceObject() const {
return InputAt(0);
}
// Find all the HConstructorFence uses (`fence_use`) for `this` and:
// - Delete `fence_use` from `this`'s use list.
// - Delete `this` from `fence_use`'s inputs list.
// - If the `fence_use` is dead, remove it from the graph.
//
// A fence is considered dead once it no longer has any uses
// and all of the inputs are dead.
//
// This must *not* be called during/after prepare_for_register_allocation,
// because that removes all the inputs to the fences but the fence is actually
// still considered live.
//
// Returns how many HConstructorFence instructions were removed from graph.
static size_t RemoveConstructorFences(HInstruction* instruction);
// Combine all inputs of `this` and `other` instruction and remove
// `other` from the graph.
//
// Inputs are unique after the merge.
//
// Requirement: `this` must not be the same as `other.
void Merge(HConstructorFence* other);
// Check if this constructor fence is protecting
// an HNewInstance or HNewArray that is also the immediate
// predecessor of `this`.
//
// If `ignore_inputs` is true, then the immediate predecessor doesn't need
// to be one of the inputs of `this`.
//
// Returns the associated HNewArray or HNewInstance,
// or null otherwise.
HInstruction* GetAssociatedAllocation(bool ignore_inputs = false);
DECLARE_INSTRUCTION(ConstructorFence);
protected:
DEFAULT_COPY_CONSTRUCTOR(ConstructorFence);
};
class HMonitorOperation final : public HExpression<1> {
public:
enum class OperationKind {
kEnter,
kExit,
kLast = kExit
};
HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
: HExpression(kMonitorOperation,
SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays.
dex_pc) {
SetPackedField<OperationKindField>(kind);
SetRawInputAt(0, object);
}
// Instruction may go into runtime, so we need an environment.
bool NeedsEnvironment() const override { return true; }
bool CanThrow() const override {
// Verifier guarantees that monitor-exit cannot throw.
// This is important because it allows the HGraphBuilder to remove
// a dead throw-catch loop generated for `synchronized` blocks/methods.
return IsEnter();
}
OperationKind GetOperationKind() const { return GetPackedField<OperationKindField>(); }
bool IsEnter() const { return GetOperationKind() == OperationKind::kEnter; }
DECLARE_INSTRUCTION(MonitorOperation);
protected:
DEFAULT_COPY_CONSTRUCTOR(MonitorOperation);
private:
static constexpr size_t kFieldOperationKind = HInstruction::kNumberOfGenericPackedBits;
static constexpr size_t kFieldOperationKindSize =
MinimumBitsToStore(static_cast<size_t>(OperationKind::kLast));
static constexpr size_t kNumberOfMonitorOperationPackedBits =
kFieldOperationKind + kFieldOperationKindSize;
static_assert(kNumberOfMonitorOperationPackedBits <= HInstruction::kMaxNumberOfPackedBits,
"Too many packed fields.");
using OperationKindField = BitField<OperationKind, kFieldOperationKind, kFieldOperationKindSize>;
};
class HSelect final : public HExpression<3> {
public:
HSelect(HInstruction* condition,
HInstruction* true_value,
HInstruction* false_value,
uint32_t dex_pc)
: HExpression(kSelect, HPhi::ToPhiType(true_value->GetType()), SideEffects::None(), dex_pc) {
DCHECK_EQ(HPhi::ToPhiType(true_value->GetType()), HPhi::ToPhiType(false_value->GetType()));
// First input must be `true_value` or `false_value` to allow codegens to
// use the SameAsFirstInput allocation policy. We make it `false_value`, so
// that architectures which implement HSelect as a conditional move also
// will not need to invert the condition.
SetRawInputAt(0, false_value);
SetRawInputAt(1, true_value);
SetRawInputAt(2, condition);
}
bool IsClonable() const override { return true; }
HInstruction* GetFalseValue() const { return InputAt(0); }
HInstruction* GetTrueValue() const { return InputAt(1); }
HInstruction* GetCondition() const { return InputAt(2); }
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
return true;
}
bool CanBeNull() const override {
return GetTrueValue()->CanBeNull() || GetFalseValue()->CanBeNull();
}
DECLARE_INSTRUCTION(Select);
protected:
DEFAULT_COPY_CONSTRUCTOR(Select);
};
class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
public:
MoveOperands(Location source,
Location destination,
DataType::Type type,
HInstruction* instruction)
: source_(source), destination_(destination), type_(type), instruction_(instruction) {}
Location GetSource() const { return source_; }
Location GetDestination() const { return destination_; }
void SetSource(Location value) { source_ = value; }
void SetDestination(Location value) { destination_ = value; }
// The parallel move resolver marks moves as "in-progress" by clearing the
// destination (but not the source).
Location MarkPending() {
DCHECK(!IsPending());
Location dest = destination_;
destination_ = Location::NoLocation();
return dest;
}
void ClearPending(Location dest) {
DCHECK(IsPending());
destination_ = dest;
}
bool IsPending() const {
DCHECK(source_.IsValid() || destination_.IsInvalid());
return destination_.IsInvalid() && source_.IsValid();
}
// True if this blocks a move from the given location.
bool Blocks(Location loc) const {
return !IsEliminated() && source_.OverlapsWith(loc);
}
// A move is redundant if it's been eliminated, if its source and
// destination are the same, or if its destination is unneeded.
bool IsRedundant() const {
return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
}
// We clear both operands to indicate move that's been eliminated.
void Eliminate() {
source_ = destination_ = Location::NoLocation();
}
bool IsEliminated() const {
DCHECK_IMPLIES(source_.IsInvalid(), destination_.IsInvalid());
return source_.IsInvalid();
}
DataType::Type GetType() const { return type_; }
bool Is64BitMove() const {
return DataType::Is64BitType(type_);
}
HInstruction* GetInstruction() const { return instruction_; }
private:
Location source_;
Location destination_;
// The type this move is for.
DataType::Type type_;
// The instruction this move is assocatied with. Null when this move is
// for moving an input in the expected locations of user (including a phi user).
// This is only used in debug mode, to ensure we do not connect interval siblings
// in the same parallel move.
HInstruction* instruction_;
};
std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs);
static constexpr size_t kDefaultNumberOfMoves = 4;
class HParallelMove final : public HExpression<0> {
public:
explicit HParallelMove(ArenaAllocator* allocator, uint32_t dex_pc = kNoDexPc)
: HExpression(kParallelMove, SideEffects::None(), dex_pc),
moves_(allocator->Adapter(kArenaAllocMoveOperands)) {
moves_.reserve(kDefaultNumberOfMoves);
}
void AddMove(Location source,
Location destination,
DataType::Type type,
HInstruction* instruction) {
DCHECK(source.IsValid());
DCHECK(destination.IsValid());
if (kIsDebugBuild) {
if (instruction != nullptr) {
for (const MoveOperands& move : moves_) {
if (move.GetInstruction() == instruction) {
// Special case the situation where the move is for the spill slot
// of the instruction.
if ((GetPrevious() == instruction)
|| ((GetPrevious() == nullptr)
&& instruction->IsPhi()
&& instruction->GetBlock() == GetBlock())) {
DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
<< "Doing parallel moves for the same instruction.";
} else {
DCHECK(false) << "Doing parallel moves for the same instruction.";
}
}
}
}
for (const MoveOperands& move : moves_) {
DCHECK(!destination.OverlapsWith(move.GetDestination()))
<< "Overlapped destination for two moves in a parallel move: "
<< move.GetSource() << " ==> " << move.GetDestination() << " and "
<< source << " ==> " << destination << " for " << SafePrint(instruction);
}
}
moves_.emplace_back(source, destination, type, instruction);
}
MoveOperands* MoveOperandsAt(size_t index) {
return &moves_[index];
}
size_t NumMoves() const { return moves_.size(); }
DECLARE_INSTRUCTION(ParallelMove);
protected:
DEFAULT_COPY_CONSTRUCTOR(ParallelMove);
private:
ArenaVector<MoveOperands> moves_;
};
// This instruction computes an intermediate address pointing in the 'middle' of an object. The
// result pointer cannot be handled by GC, so extra care is taken to make sure that this value is
// never used across anything that can trigger GC.
// The result of this instruction is not a pointer in the sense of `DataType::Type::kreference`.
// So we represent it by the type `DataType::Type::kInt`.
class HIntermediateAddress final : public HExpression<2> {
public:
HIntermediateAddress(HInstruction* base_address, HInstruction* offset, uint32_t dex_pc)
: HExpression(kIntermediateAddress,
DataType::Type::kInt32,
SideEffects::DependsOnGC(),
dex_pc) {
DCHECK_EQ(DataType::Size(DataType::Type::kInt32),
DataType::Size(DataType::Type::kReference))
<< "kPrimInt and kPrimNot have different sizes.";
SetRawInputAt(0, base_address);
SetRawInputAt(1, offset);
}
bool IsClonable() const override { return true; }
bool CanBeMoved() const override { return true; }
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override {
return true;
}
bool IsActualObject() const override { return false; }
HInstruction* GetBaseAddress() const { return InputAt(0); }
HInstruction* GetOffset() const { return InputAt(1); }
DECLARE_INSTRUCTION(IntermediateAddress);
protected:
DEFAULT_COPY_CONSTRUCTOR(IntermediateAddress);
};
} // namespace art
#include "nodes_vector.h"
#if defined(ART_ENABLE_CODEGEN_arm) || defined(ART_ENABLE_CODEGEN_arm64)
#include "nodes_shared.h"
#endif
#if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64)
#include "nodes_x86.h"
#endif
namespace art HIDDEN {
class OptimizingCompilerStats;
class HGraphVisitor : public ValueObject {
public:
explicit HGraphVisitor(HGraph* graph, OptimizingCompilerStats* stats = nullptr)
: stats_(stats),
graph_(graph) {}
virtual ~HGraphVisitor() {}
virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
virtual void VisitBasicBlock(HBasicBlock* block);
// Visit the graph following basic block insertion order.
void VisitInsertionOrder();
// Visit the graph following dominator tree reverse post-order.
void VisitReversePostOrder();
HGraph* GetGraph() const { return graph_; }
// Visit functions for instruction classes.
#define DECLARE_VISIT_INSTRUCTION(name, super) \
virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
protected:
OptimizingCompilerStats* stats_;
private:
HGraph* const graph_;
DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
};
class HGraphDelegateVisitor : public HGraphVisitor {
public:
explicit HGraphDelegateVisitor(HGraph* graph, OptimizingCompilerStats* stats = nullptr)
: HGraphVisitor(graph, stats) {}
virtual ~HGraphDelegateVisitor() {}
// Visit functions that delegate to to super class.
#define DECLARE_VISIT_INSTRUCTION(name, super) \
void Visit##name(H##name* instr) override { Visit##super(instr); }
FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
private:
DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
};
// Create a clone of the instruction, insert it into the graph; replace the old one with a new
// and remove the old instruction.
HInstruction* ReplaceInstrOrPhiByClone(HInstruction* instr);
// Create a clone for each clonable instructions/phis and replace the original with the clone.
//
// Used for testing individual instruction cloner.
class CloneAndReplaceInstructionVisitor final : public HGraphDelegateVisitor {
public:
explicit CloneAndReplaceInstructionVisitor(HGraph* graph)
: HGraphDelegateVisitor(graph), instr_replaced_by_clones_count_(0) {}
void VisitInstruction(HInstruction* instruction) override {
if (instruction->IsClonable()) {
ReplaceInstrOrPhiByClone(instruction);
instr_replaced_by_clones_count_++;
}
}
size_t GetInstrReplacedByClonesCount() const { return instr_replaced_by_clones_count_; }
private:
size_t instr_replaced_by_clones_count_;
DISALLOW_COPY_AND_ASSIGN(CloneAndReplaceInstructionVisitor);
};
// Iterator over the blocks that art part of the loop. Includes blocks part
// of an inner loop. The order in which the blocks are iterated is on their
// block id.
class HBlocksInLoopIterator : public ValueObject {
public:
explicit HBlocksInLoopIterator(const HLoopInformation& info)
: blocks_in_loop_(info.GetBlocks()),
blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
index_(0) {
if (!blocks_in_loop_.IsBitSet(index_)) {
Advance();
}
}
bool Done() const { return index_ == blocks_.size(); }
HBasicBlock* Current() const { return blocks_[index_]; }
void Advance() {
++index_;
for (size_t e = blocks_.size(); index_ < e; ++index_) {
if (blocks_in_loop_.IsBitSet(index_)) {
break;
}
}
}
private:
const BitVector& blocks_in_loop_;
const ArenaVector<HBasicBlock*>& blocks_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
};
// Iterator over the blocks that art part of the loop. Includes blocks part
// of an inner loop. The order in which the blocks are iterated is reverse
// post order.
class HBlocksInLoopReversePostOrderIterator : public ValueObject {
public:
explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
: blocks_in_loop_(info.GetBlocks()),
blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
index_(0) {
if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
Advance();
}
}
bool Done() const { return index_ == blocks_.size(); }
HBasicBlock* Current() const { return blocks_[index_]; }
void Advance() {
++index_;
for (size_t e = blocks_.size(); index_ < e; ++index_) {
if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
break;
}
}
}
private:
const BitVector& blocks_in_loop_;
const ArenaVector<HBasicBlock*>& blocks_;
size_t index_;
DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
};
// Returns int64_t value of a properly typed constant.
inline int64_t Int64FromConstant(HConstant* constant) {
if (constant->IsIntConstant()) {
return constant->AsIntConstant()->GetValue();
} else if (constant->IsLongConstant()) {
return constant->AsLongConstant()->GetValue();
} else {
DCHECK(constant->IsNullConstant()) << constant->DebugName();
return 0;
}
}
// Returns true iff instruction is an integral constant (and sets value on success).
inline bool IsInt64AndGet(HInstruction* instruction, /*out*/ int64_t* value) {
if (instruction->IsIntConstant()) {
*value = instruction->AsIntConstant()->GetValue();
return true;
} else if (instruction->IsLongConstant()) {
*value = instruction->AsLongConstant()->GetValue();
return true;
} else if (instruction->IsNullConstant()) {
*value = 0;
return true;
}
return false;
}
// Returns true iff instruction is the given integral constant.
inline bool IsInt64Value(HInstruction* instruction, int64_t value) {
int64_t val = 0;
return IsInt64AndGet(instruction, &val) && val == value;
}
// Returns true iff instruction is a zero bit pattern.
inline bool IsZeroBitPattern(HInstruction* instruction) {
return instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern();
}
// Implement HInstruction::Is##type() for concrete instructions.
#define INSTRUCTION_TYPE_CHECK(type, super) \
inline bool HInstruction::Is##type() const { return GetKind() == k##type; }
FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
#undef INSTRUCTION_TYPE_CHECK
// Implement HInstruction::Is##type() for abstract instructions.
#define INSTRUCTION_TYPE_CHECK_RESULT(type, super) \
std::is_base_of<BaseType, H##type>::value,
#define INSTRUCTION_TYPE_CHECK(type, super) \
inline bool HInstruction::Is##type() const { \
DCHECK_LT(GetKind(), kLastInstructionKind); \
using BaseType = H##type; \
static constexpr bool results[] = { \
FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK_RESULT) \
}; \
return results[static_cast<size_t>(GetKind())]; \
}
FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
#undef INSTRUCTION_TYPE_CHECK
#undef INSTRUCTION_TYPE_CHECK_RESULT
#define INSTRUCTION_TYPE_CAST(type, super) \
inline const H##type* HInstruction::As##type() const { \
return Is##type() ? down_cast<const H##type*>(this) : nullptr; \
} \
inline H##type* HInstruction::As##type() { \
return Is##type() ? static_cast<H##type*>(this) : nullptr; \
}
FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST)
#undef INSTRUCTION_TYPE_CAST
// Create space in `blocks` for adding `number_of_new_blocks` entries
// starting at location `at`. Blocks after `at` are moved accordingly.
inline void MakeRoomFor(ArenaVector<HBasicBlock*>* blocks,
size_t number_of_new_blocks,
size_t after) {
DCHECK_LT(after, blocks->size());
size_t old_size = blocks->size();
size_t new_size = old_size + number_of_new_blocks;
blocks->resize(new_size);
std::copy_backward(blocks->begin() + after + 1u, blocks->begin() + old_size, blocks->end());
}
/*
* Hunt "under the hood" of array lengths (leading to array references),
* null checks (also leading to array references), and new arrays
* (leading to the actual length). This makes it more likely related
* instructions become actually comparable.
*/
inline HInstruction* HuntForDeclaration(HInstruction* instruction) {
while (instruction->IsArrayLength() ||
instruction->IsNullCheck() ||
instruction->IsNewArray()) {
instruction = instruction->IsNewArray()
? instruction->AsNewArray()->GetLength()
: instruction->InputAt(0);
}
return instruction;
}
inline bool IsAddOrSub(const HInstruction* instruction) {
return instruction->IsAdd() || instruction->IsSub();
}
void RemoveEnvironmentUses(HInstruction* instruction);
bool HasEnvironmentUsedByOthers(HInstruction* instruction);
void ResetEnvironmentInputRecords(HInstruction* instruction);
// Detects an instruction that is >= 0. As long as the value is carried by
// a single instruction, arithmetic wrap-around cannot occur.
bool IsGEZero(HInstruction* instruction);
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_NODES_H_