| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_COMPILER_OPTIMIZING_LOAD_STORE_ANALYSIS_H_ |
| #define ART_COMPILER_OPTIMIZING_LOAD_STORE_ANALYSIS_H_ |
| |
| #include "base/arena_allocator.h" |
| #include "base/arena_bit_vector.h" |
| #include "base/bit_vector-inl.h" |
| #include "base/macros.h" |
| #include "base/scoped_arena_allocator.h" |
| #include "base/scoped_arena_containers.h" |
| #include "base/stl_util.h" |
| #include "escape.h" |
| #include "execution_subgraph.h" |
| #include "nodes.h" |
| #include "optimizing/optimizing_compiler_stats.h" |
| |
| namespace art HIDDEN { |
| |
| enum class LoadStoreAnalysisType { |
| kBasic, |
| kNoPredicatedInstructions, |
| kFull, |
| }; |
| |
| // A ReferenceInfo contains additional info about a reference such as |
| // whether it's a singleton, returned, etc. |
| class ReferenceInfo : public DeletableArenaObject<kArenaAllocLSA> { |
| public: |
| ReferenceInfo(HInstruction* reference, |
| ScopedArenaAllocator* allocator, |
| size_t pos, |
| LoadStoreAnalysisType elimination_type) |
| : reference_(reference), |
| position_(pos), |
| is_singleton_(true), |
| is_singleton_and_not_returned_(true), |
| is_singleton_and_not_deopt_visible_(true), |
| allocator_(allocator), |
| subgraph_(nullptr) { |
| // TODO We can do this in one pass. |
| // TODO NewArray is possible but will need to get a handle on how to deal with the dynamic loads |
| // for now just ignore it. |
| bool can_be_partial = elimination_type != LoadStoreAnalysisType::kBasic && |
| (/* reference_->IsNewArray() || */ reference_->IsNewInstance()); |
| if (can_be_partial) { |
| subgraph_.reset( |
| new (allocator) ExecutionSubgraph(reference->GetBlock()->GetGraph(), allocator)); |
| CollectPartialEscapes(reference_->GetBlock()->GetGraph()); |
| } |
| CalculateEscape(reference_, |
| nullptr, |
| &is_singleton_, |
| &is_singleton_and_not_returned_, |
| &is_singleton_and_not_deopt_visible_); |
| if (can_be_partial) { |
| if (elimination_type == LoadStoreAnalysisType::kNoPredicatedInstructions) { |
| // This is to mark writes to partially escaped values as also part of the escaped subset. |
| // TODO We can avoid this if we have a 'ConditionalWrite' instruction. Will require testing |
| // to see if the additional branches are worth it. |
| PrunePartialEscapeWrites(); |
| } |
| DCHECK(subgraph_ != nullptr); |
| subgraph_->Finalize(); |
| } else { |
| DCHECK(subgraph_ == nullptr); |
| } |
| } |
| |
| const ExecutionSubgraph* GetNoEscapeSubgraph() const { |
| DCHECK(IsPartialSingleton()); |
| return subgraph_.get(); |
| } |
| |
| HInstruction* GetReference() const { |
| return reference_; |
| } |
| |
| size_t GetPosition() const { |
| return position_; |
| } |
| |
| // Returns true if reference_ is the only name that can refer to its value during |
| // the lifetime of the method. So it's guaranteed to not have any alias in |
| // the method (including its callees). |
| bool IsSingleton() const { |
| return is_singleton_; |
| } |
| |
| // This is a singleton and there are paths that don't escape the method |
| bool IsPartialSingleton() const { |
| auto ref = GetReference(); |
| // TODO NewArray is possible but will need to get a handle on how to deal with the dynamic loads |
| // for now just ignore it. |
| return (/* ref->IsNewArray() || */ ref->IsNewInstance()) && |
| subgraph_ != nullptr && |
| subgraph_->IsValid(); |
| } |
| |
| // Returns true if reference_ is a singleton and not returned to the caller or |
| // used as an environment local of an HDeoptimize instruction. |
| // The allocation and stores into reference_ may be eliminated for such cases. |
| bool IsSingletonAndRemovable() const { |
| return is_singleton_and_not_returned_ && is_singleton_and_not_deopt_visible_; |
| } |
| |
| // Returns true if reference_ is a singleton and returned to the caller or |
| // used as an environment local of an HDeoptimize instruction. |
| bool IsSingletonAndNonRemovable() const { |
| return is_singleton_ && |
| (!is_singleton_and_not_returned_ || !is_singleton_and_not_deopt_visible_); |
| } |
| |
| private: |
| void CollectPartialEscapes(HGraph* graph); |
| void HandleEscape(HBasicBlock* escape) { |
| DCHECK(subgraph_ != nullptr); |
| subgraph_->RemoveBlock(escape); |
| } |
| void HandleEscape(HInstruction* escape) { |
| HandleEscape(escape->GetBlock()); |
| } |
| |
| // Make sure we mark any writes/potential writes to heap-locations within partially |
| // escaped values as escaping. |
| void PrunePartialEscapeWrites(); |
| |
| HInstruction* const reference_; |
| const size_t position_; // position in HeapLocationCollector's ref_info_array_. |
| |
| // Can only be referred to by a single name in the method. |
| bool is_singleton_; |
| // Is singleton and not returned to caller. |
| bool is_singleton_and_not_returned_; |
| // Is singleton and not used as an environment local of HDeoptimize. |
| bool is_singleton_and_not_deopt_visible_; |
| |
| ScopedArenaAllocator* allocator_; |
| |
| std::unique_ptr<ExecutionSubgraph> subgraph_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReferenceInfo); |
| }; |
| |
| // A heap location is a reference-offset/index pair that a value can be loaded from |
| // or stored to. |
| class HeapLocation : public ArenaObject<kArenaAllocLSA> { |
| public: |
| static constexpr size_t kInvalidFieldOffset = -1; |
| // Default value for heap locations which are not vector data. |
| static constexpr size_t kScalar = 1; |
| // TODO: more fine-grained array types. |
| static constexpr int16_t kDeclaringClassDefIndexForArrays = -1; |
| |
| HeapLocation(ReferenceInfo* ref_info, |
| DataType::Type type, |
| size_t offset, |
| HInstruction* index, |
| size_t vector_length, |
| int16_t declaring_class_def_index, |
| bool is_vec_op) |
| : ref_info_(ref_info), |
| type_(DataType::ToSigned(type)), |
| offset_(offset), |
| index_(index), |
| vector_length_(vector_length), |
| declaring_class_def_index_(declaring_class_def_index), |
| has_aliased_locations_(false), |
| is_vec_op_(is_vec_op) { |
| DCHECK(ref_info != nullptr); |
| DCHECK((offset == kInvalidFieldOffset && index != nullptr) || |
| (offset != kInvalidFieldOffset && index == nullptr)); |
| } |
| |
| ReferenceInfo* GetReferenceInfo() const { return ref_info_; } |
| DataType::Type GetType() const { return type_; } |
| size_t GetOffset() const { return offset_; } |
| HInstruction* GetIndex() const { return index_; } |
| size_t GetVectorLength() const { return vector_length_; } |
| bool IsVecOp() const { return is_vec_op_; } |
| |
| // Returns the definition of declaring class' dex index. |
| // It's kDeclaringClassDefIndexForArrays for an array element. |
| int16_t GetDeclaringClassDefIndex() const { |
| return declaring_class_def_index_; |
| } |
| |
| bool IsArray() const { |
| return index_ != nullptr; |
| } |
| |
| bool HasAliasedLocations() const { |
| return has_aliased_locations_; |
| } |
| |
| void SetHasAliasedLocations(bool val) { |
| has_aliased_locations_ = val; |
| } |
| |
| private: |
| // Reference for instance/static field, array element or vector data. |
| ReferenceInfo* const ref_info_; |
| // Type of data residing at HeapLocation (always signed for integral |
| // data since e.g. a[i] and a[i] & 0xff are represented by differently |
| // signed types; char vs short are disambiguated through the reference). |
| const DataType::Type type_; |
| // Offset of static/instance field. |
| // Invalid when this HeapLocation is not field. |
| const size_t offset_; |
| // Index of an array element or starting index of vector data. |
| // Invalid when this HeapLocation is not array. |
| HInstruction* const index_; |
| // Vector length of vector data. |
| // When this HeapLocation is not vector data, it's value is kScalar. |
| const size_t vector_length_; |
| // Declaring class's def's dex index. |
| // Invalid when this HeapLocation is not field access. |
| const int16_t declaring_class_def_index_; |
| // Has aliased heap locations in the method, due to either the |
| // reference is aliased or the array element is aliased via different |
| // index names. |
| bool has_aliased_locations_; |
| // Whether this HeapLocation represents a vector operation. |
| bool is_vec_op_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HeapLocation); |
| }; |
| |
| // A HeapLocationCollector collects all relevant heap locations and keeps |
| // an aliasing matrix for all locations. |
| class HeapLocationCollector : public HGraphVisitor { |
| public: |
| static constexpr size_t kHeapLocationNotFound = -1; |
| // Start with a single uint32_t word. That's enough bits for pair-wise |
| // aliasing matrix of 8 heap locations. |
| static constexpr uint32_t kInitialAliasingMatrixBitVectorSize = 32; |
| |
| HeapLocationCollector(HGraph* graph, |
| ScopedArenaAllocator* allocator, |
| LoadStoreAnalysisType lse_type) |
| : HGraphVisitor(graph), |
| allocator_(allocator), |
| ref_info_array_(allocator->Adapter(kArenaAllocLSA)), |
| heap_locations_(allocator->Adapter(kArenaAllocLSA)), |
| aliasing_matrix_(allocator, kInitialAliasingMatrixBitVectorSize, true, kArenaAllocLSA), |
| has_heap_stores_(false), |
| lse_type_(lse_type) { |
| aliasing_matrix_.ClearAllBits(); |
| } |
| |
| ~HeapLocationCollector() { |
| CleanUp(); |
| } |
| |
| void CleanUp() { |
| heap_locations_.clear(); |
| STLDeleteContainerPointers(ref_info_array_.begin(), ref_info_array_.end()); |
| ref_info_array_.clear(); |
| } |
| |
| size_t CountPartialSingletons() const { |
| return std::count_if(ref_info_array_.begin(), |
| ref_info_array_.end(), |
| [](ReferenceInfo* ri) { return ri->IsPartialSingleton(); }); |
| } |
| |
| size_t GetNumberOfHeapLocations() const { |
| return heap_locations_.size(); |
| } |
| |
| HeapLocation* GetHeapLocation(size_t index) const { |
| return heap_locations_[index]; |
| } |
| |
| size_t GetHeapLocationIndex(const HeapLocation* hl) const { |
| auto res = std::find(heap_locations_.cbegin(), heap_locations_.cend(), hl); |
| return std::distance(heap_locations_.cbegin(), res); |
| } |
| |
| HInstruction* HuntForOriginalReference(HInstruction* ref) const { |
| // An original reference can be transformed by instructions like: |
| // i0 NewArray |
| // i1 HInstruction(i0) <-- NullCheck, BoundType, IntermediateAddress. |
| // i2 ArrayGet(i1, index) |
| DCHECK(ref != nullptr); |
| while (ref->IsNullCheck() || ref->IsBoundType() || ref->IsIntermediateAddress()) { |
| ref = ref->InputAt(0); |
| } |
| return ref; |
| } |
| |
| ReferenceInfo* FindReferenceInfoOf(HInstruction* ref) const { |
| for (size_t i = 0; i < ref_info_array_.size(); i++) { |
| ReferenceInfo* ref_info = ref_info_array_[i]; |
| if (ref_info->GetReference() == ref) { |
| DCHECK_EQ(i, ref_info->GetPosition()); |
| return ref_info; |
| } |
| } |
| return nullptr; |
| } |
| |
| size_t GetFieldHeapLocation(HInstruction* object, const FieldInfo* field) const { |
| DCHECK(object != nullptr); |
| DCHECK(field != nullptr); |
| return FindHeapLocationIndex(FindReferenceInfoOf(HuntForOriginalReference(object)), |
| field->GetFieldType(), |
| field->GetFieldOffset().SizeValue(), |
| nullptr, |
| HeapLocation::kScalar, |
| field->GetDeclaringClassDefIndex(), |
| /*is_vec_op=*/false); |
| } |
| |
| size_t GetArrayHeapLocation(HInstruction* instruction) const { |
| DCHECK(instruction != nullptr); |
| HInstruction* array = instruction->InputAt(0); |
| HInstruction* index = instruction->InputAt(1); |
| DataType::Type type = instruction->GetType(); |
| size_t vector_length = HeapLocation::kScalar; |
| const bool is_vec_op = instruction->IsVecStore() || instruction->IsVecLoad(); |
| if (instruction->IsArraySet()) { |
| type = instruction->AsArraySet()->GetComponentType(); |
| } else if (is_vec_op) { |
| HVecOperation* vec_op = instruction->AsVecOperation(); |
| type = vec_op->GetPackedType(); |
| vector_length = vec_op->GetVectorLength(); |
| } else { |
| DCHECK(instruction->IsArrayGet()); |
| } |
| return FindHeapLocationIndex(FindReferenceInfoOf(HuntForOriginalReference(array)), |
| type, |
| HeapLocation::kInvalidFieldOffset, |
| index, |
| vector_length, |
| HeapLocation::kDeclaringClassDefIndexForArrays, |
| is_vec_op); |
| } |
| |
| bool HasHeapStores() const { |
| return has_heap_stores_; |
| } |
| |
| // Find and return the heap location index in heap_locations_. |
| // NOTE: When heap locations are created, potentially aliasing/overlapping |
| // accesses are given different indexes. This find function also |
| // doesn't take aliasing/overlapping into account. For example, |
| // this function returns three different indexes for: |
| // - ref_info=array, index=i, vector_length=kScalar; |
| // - ref_info=array, index=i, vector_length=2; |
| // - ref_info=array, index=i, vector_length=4; |
| // In later analysis, ComputeMayAlias() and MayAlias() compute and tell whether |
| // these indexes alias. |
| size_t FindHeapLocationIndex(ReferenceInfo* ref_info, |
| DataType::Type type, |
| size_t offset, |
| HInstruction* index, |
| size_t vector_length, |
| int16_t declaring_class_def_index, |
| bool is_vec_op) const { |
| DataType::Type lookup_type = DataType::ToSigned(type); |
| for (size_t i = 0; i < heap_locations_.size(); i++) { |
| HeapLocation* loc = heap_locations_[i]; |
| if (loc->GetReferenceInfo() == ref_info && |
| loc->GetType() == lookup_type && |
| loc->GetOffset() == offset && |
| loc->GetIndex() == index && |
| loc->GetVectorLength() == vector_length && |
| loc->GetDeclaringClassDefIndex() == declaring_class_def_index && |
| loc->IsVecOp() == is_vec_op) { |
| return i; |
| } |
| } |
| return kHeapLocationNotFound; |
| } |
| |
| bool InstructionEligibleForLSERemoval(HInstruction* inst) const; |
| |
| // Get some estimated statistics based on our analysis. |
| void DumpReferenceStats(OptimizingCompilerStats* stats); |
| |
| // Returns true if heap_locations_[index1] and heap_locations_[index2] may alias. |
| bool MayAlias(size_t index1, size_t index2) const { |
| if (index1 < index2) { |
| return aliasing_matrix_.IsBitSet(AliasingMatrixPosition(index1, index2)); |
| } else if (index1 > index2) { |
| return aliasing_matrix_.IsBitSet(AliasingMatrixPosition(index2, index1)); |
| } else { |
| DCHECK(false) << "index1 and index2 are expected to be different"; |
| return true; |
| } |
| } |
| |
| void BuildAliasingMatrix() { |
| const size_t number_of_locations = heap_locations_.size(); |
| if (number_of_locations == 0) { |
| return; |
| } |
| size_t pos = 0; |
| // Compute aliasing info between every pair of different heap locations. |
| // Save the result in a matrix represented as a BitVector. |
| for (size_t i = 0; i < number_of_locations - 1; i++) { |
| for (size_t j = i + 1; j < number_of_locations; j++) { |
| if (ComputeMayAlias(i, j)) { |
| aliasing_matrix_.SetBit(CheckedAliasingMatrixPosition(i, j, pos)); |
| } |
| pos++; |
| } |
| } |
| } |
| |
| static bool CanReferencesAlias(ReferenceInfo* ref_info1, ReferenceInfo* ref_info2) { |
| if (ref_info1 == ref_info2) { |
| return true; |
| } else if (ref_info1->IsSingleton()) { |
| return false; |
| } else if (ref_info2->IsSingleton()) { |
| return false; |
| } else if (!MayAliasWithPreexistenceChecking(ref_info1, ref_info2) || |
| !MayAliasWithPreexistenceChecking(ref_info2, ref_info1)) { |
| return false; |
| } |
| return true; |
| } |
| |
| private: |
| // An allocation cannot alias with a name which already exists at the point |
| // of the allocation, such as a parameter or a load happening before the allocation. |
| static bool MayAliasWithPreexistenceChecking(ReferenceInfo* ref_info1, ReferenceInfo* ref_info2) { |
| if (ref_info1->GetReference()->IsNewInstance() || ref_info1->GetReference()->IsNewArray()) { |
| // Any reference that can alias with the allocation must appear after it in the block/in |
| // the block's successors. In reverse post order, those instructions will be visited after |
| // the allocation. |
| return ref_info2->GetPosition() >= ref_info1->GetPosition(); |
| } |
| return true; |
| } |
| |
| bool CanArrayElementsAlias(const HInstruction* idx1, |
| const size_t vector_length1, |
| const HInstruction* idx2, |
| const size_t vector_length2) const; |
| |
| // `index1` and `index2` are indices in the array of collected heap locations. |
| // Returns the position in the bit vector that tracks whether the two heap |
| // locations may alias. |
| size_t AliasingMatrixPosition(size_t index1, size_t index2) const { |
| DCHECK(index2 > index1); |
| const size_t number_of_locations = heap_locations_.size(); |
| // It's (num_of_locations - 1) + ... + (num_of_locations - index1) + (index2 - index1 - 1). |
| return (number_of_locations * index1 - (1 + index1) * index1 / 2 + (index2 - index1 - 1)); |
| } |
| |
| // An additional position is passed in to make sure the calculated position is correct. |
| size_t CheckedAliasingMatrixPosition(size_t index1, size_t index2, size_t position) { |
| size_t calculated_position = AliasingMatrixPosition(index1, index2); |
| DCHECK_EQ(calculated_position, position); |
| return calculated_position; |
| } |
| |
| // Compute if two locations may alias to each other. |
| bool ComputeMayAlias(size_t index1, size_t index2) const { |
| DCHECK_NE(index1, index2); |
| HeapLocation* loc1 = heap_locations_[index1]; |
| HeapLocation* loc2 = heap_locations_[index2]; |
| if (loc1->GetOffset() != loc2->GetOffset()) { |
| // Either two different instance fields, or one is an instance |
| // field and the other is an array data. |
| return false; |
| } |
| if (loc1->GetDeclaringClassDefIndex() != loc2->GetDeclaringClassDefIndex()) { |
| // Different types. |
| return false; |
| } |
| if (!CanReferencesAlias(loc1->GetReferenceInfo(), loc2->GetReferenceInfo())) { |
| return false; |
| } |
| if (loc1->IsArray() && loc2->IsArray()) { |
| HInstruction* idx1 = loc1->GetIndex(); |
| HInstruction* idx2 = loc2->GetIndex(); |
| size_t vector_length1 = loc1->GetVectorLength(); |
| size_t vector_length2 = loc2->GetVectorLength(); |
| if (!CanArrayElementsAlias(idx1, vector_length1, idx2, vector_length2)) { |
| return false; |
| } |
| } |
| loc1->SetHasAliasedLocations(true); |
| loc2->SetHasAliasedLocations(true); |
| return true; |
| } |
| |
| ReferenceInfo* GetOrCreateReferenceInfo(HInstruction* instruction) { |
| ReferenceInfo* ref_info = FindReferenceInfoOf(instruction); |
| if (ref_info == nullptr) { |
| size_t pos = ref_info_array_.size(); |
| ref_info = new (allocator_) ReferenceInfo(instruction, allocator_, pos, lse_type_); |
| ref_info_array_.push_back(ref_info); |
| } |
| return ref_info; |
| } |
| |
| void CreateReferenceInfoForReferenceType(HInstruction* instruction) { |
| if (instruction->GetType() != DataType::Type::kReference) { |
| return; |
| } |
| DCHECK(FindReferenceInfoOf(instruction) == nullptr); |
| GetOrCreateReferenceInfo(instruction); |
| } |
| |
| void MaybeCreateHeapLocation(HInstruction* ref, |
| DataType::Type type, |
| size_t offset, |
| HInstruction* index, |
| size_t vector_length, |
| int16_t declaring_class_def_index, |
| bool is_vec_op) { |
| HInstruction* original_ref = HuntForOriginalReference(ref); |
| ReferenceInfo* ref_info = GetOrCreateReferenceInfo(original_ref); |
| size_t heap_location_idx = FindHeapLocationIndex( |
| ref_info, type, offset, index, vector_length, declaring_class_def_index, is_vec_op); |
| if (heap_location_idx == kHeapLocationNotFound) { |
| HeapLocation* heap_loc = new (allocator_) HeapLocation( |
| ref_info, type, offset, index, vector_length, declaring_class_def_index, is_vec_op); |
| heap_locations_.push_back(heap_loc); |
| } |
| } |
| |
| void VisitFieldAccess(HInstruction* ref, const FieldInfo& field_info) { |
| DataType::Type type = field_info.GetFieldType(); |
| const uint16_t declaring_class_def_index = field_info.GetDeclaringClassDefIndex(); |
| const size_t offset = field_info.GetFieldOffset().SizeValue(); |
| MaybeCreateHeapLocation(ref, |
| type, |
| offset, |
| nullptr, |
| HeapLocation::kScalar, |
| declaring_class_def_index, |
| /*is_vec_op=*/false); |
| } |
| |
| void VisitArrayAccess(HInstruction* array, |
| HInstruction* index, |
| DataType::Type type, |
| size_t vector_length, |
| bool is_vec_op) { |
| MaybeCreateHeapLocation(array, |
| type, |
| HeapLocation::kInvalidFieldOffset, |
| index, |
| vector_length, |
| HeapLocation::kDeclaringClassDefIndexForArrays, |
| is_vec_op); |
| } |
| |
| void VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet* instruction) override { |
| VisitFieldAccess(instruction->GetTarget(), instruction->GetFieldInfo()); |
| CreateReferenceInfoForReferenceType(instruction); |
| } |
| void VisitInstanceFieldGet(HInstanceFieldGet* instruction) override { |
| VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); |
| CreateReferenceInfoForReferenceType(instruction); |
| } |
| |
| void VisitInstanceFieldSet(HInstanceFieldSet* instruction) override { |
| VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); |
| has_heap_stores_ = true; |
| } |
| |
| void VisitStaticFieldGet(HStaticFieldGet* instruction) override { |
| VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); |
| CreateReferenceInfoForReferenceType(instruction); |
| } |
| |
| void VisitStaticFieldSet(HStaticFieldSet* instruction) override { |
| VisitFieldAccess(instruction->InputAt(0), instruction->GetFieldInfo()); |
| has_heap_stores_ = true; |
| } |
| |
| // We intentionally don't collect HUnresolvedInstanceField/HUnresolvedStaticField accesses |
| // since we cannot accurately track the fields. |
| |
| void VisitArrayGet(HArrayGet* instruction) override { |
| HInstruction* array = instruction->InputAt(0); |
| HInstruction* index = instruction->InputAt(1); |
| DataType::Type type = instruction->GetType(); |
| VisitArrayAccess(array, index, type, HeapLocation::kScalar, /*is_vec_op=*/false); |
| CreateReferenceInfoForReferenceType(instruction); |
| } |
| |
| void VisitArraySet(HArraySet* instruction) override { |
| HInstruction* array = instruction->InputAt(0); |
| HInstruction* index = instruction->InputAt(1); |
| DataType::Type type = instruction->GetComponentType(); |
| VisitArrayAccess(array, index, type, HeapLocation::kScalar, /*is_vec_op=*/false); |
| has_heap_stores_ = true; |
| } |
| |
| void VisitVecLoad(HVecLoad* instruction) override { |
| HInstruction* array = instruction->InputAt(0); |
| HInstruction* index = instruction->InputAt(1); |
| DataType::Type type = instruction->GetPackedType(); |
| VisitArrayAccess(array, index, type, instruction->GetVectorLength(), /*is_vec_op=*/true); |
| CreateReferenceInfoForReferenceType(instruction); |
| } |
| |
| void VisitVecStore(HVecStore* instruction) override { |
| HInstruction* array = instruction->InputAt(0); |
| HInstruction* index = instruction->InputAt(1); |
| DataType::Type type = instruction->GetPackedType(); |
| VisitArrayAccess(array, index, type, instruction->GetVectorLength(), /*is_vec_op=*/true); |
| has_heap_stores_ = true; |
| } |
| |
| void VisitInstruction(HInstruction* instruction) override { |
| // Any new-instance or new-array cannot alias with references that |
| // pre-exist the new-instance/new-array. We append entries into |
| // ref_info_array_ which keeps track of the order of creation |
| // of reference values since we visit the blocks in reverse post order. |
| // |
| // By default, VisitXXX() (including VisitPhi()) calls VisitInstruction(), |
| // unless VisitXXX() is overridden. VisitInstanceFieldGet() etc. above |
| // also call CreateReferenceInfoForReferenceType() explicitly. |
| CreateReferenceInfoForReferenceType(instruction); |
| } |
| |
| ScopedArenaAllocator* allocator_; |
| ScopedArenaVector<ReferenceInfo*> ref_info_array_; // All references used for heap accesses. |
| ScopedArenaVector<HeapLocation*> heap_locations_; // All heap locations. |
| ArenaBitVector aliasing_matrix_; // aliasing info between each pair of locations. |
| bool has_heap_stores_; // If there is no heap stores, LSE acts as GVN with better |
| // alias analysis and won't be as effective. |
| LoadStoreAnalysisType lse_type_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HeapLocationCollector); |
| }; |
| |
| class LoadStoreAnalysis { |
| public: |
| // for_elimination controls whether we should keep track of escapes at a per-block level for |
| // partial LSE. |
| explicit LoadStoreAnalysis(HGraph* graph, |
| OptimizingCompilerStats* stats, |
| ScopedArenaAllocator* local_allocator, |
| LoadStoreAnalysisType lse_type) |
| : graph_(graph), |
| stats_(stats), |
| heap_location_collector_( |
| graph, |
| local_allocator, |
| ExecutionSubgraph::CanAnalyse(graph_) ? lse_type : LoadStoreAnalysisType::kBasic) {} |
| |
| const HeapLocationCollector& GetHeapLocationCollector() const { |
| return heap_location_collector_; |
| } |
| |
| bool Run(); |
| |
| private: |
| HGraph* graph_; |
| OptimizingCompilerStats* stats_; |
| HeapLocationCollector heap_location_collector_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadStoreAnalysis); |
| }; |
| |
| } // namespace art |
| |
| #endif // ART_COMPILER_OPTIMIZING_LOAD_STORE_ANALYSIS_H_ |