blob: 56bf5ea87d99512b1cdb9f5bc229bc28c4d9b98f [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "intrinsics_x86_64.h"
#include <limits>
#include "arch/x86_64/instruction_set_features_x86_64.h"
#include "art_method.h"
#include "base/bit_utils.h"
#include "code_generator_x86_64.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "heap_poisoning.h"
#include "intrinsics.h"
#include "intrinsics_utils.h"
#include "lock_word.h"
#include "mirror/array-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/reference.h"
#include "mirror/string.h"
#include "scoped_thread_state_change-inl.h"
#include "thread-current-inl.h"
#include "utils/x86_64/assembler_x86_64.h"
#include "utils/x86_64/constants_x86_64.h"
namespace art HIDDEN {
namespace x86_64 {
IntrinsicLocationsBuilderX86_64::IntrinsicLocationsBuilderX86_64(CodeGeneratorX86_64* codegen)
: allocator_(codegen->GetGraph()->GetAllocator()), codegen_(codegen) {
}
X86_64Assembler* IntrinsicCodeGeneratorX86_64::GetAssembler() {
return down_cast<X86_64Assembler*>(codegen_->GetAssembler());
}
ArenaAllocator* IntrinsicCodeGeneratorX86_64::GetAllocator() {
return codegen_->GetGraph()->GetAllocator();
}
bool IntrinsicLocationsBuilderX86_64::TryDispatch(HInvoke* invoke) {
Dispatch(invoke);
LocationSummary* res = invoke->GetLocations();
if (res == nullptr) {
return false;
}
return res->Intrinsified();
}
using IntrinsicSlowPathX86_64 = IntrinsicSlowPath<InvokeDexCallingConventionVisitorX86_64>;
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
#define __ down_cast<X86_64Assembler*>(codegen->GetAssembler())-> // NOLINT
// Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers.
class ReadBarrierSystemArrayCopySlowPathX86_64 : public SlowPathCode {
public:
explicit ReadBarrierSystemArrayCopySlowPathX86_64(HInstruction* instruction)
: SlowPathCode(instruction) {
DCHECK(gUseReadBarrier);
DCHECK(kUseBakerReadBarrier);
}
void EmitNativeCode(CodeGenerator* codegen) override {
CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen);
LocationSummary* locations = instruction_->GetLocations();
DCHECK(locations->CanCall());
DCHECK(instruction_->IsInvokeStaticOrDirect())
<< "Unexpected instruction in read barrier arraycopy slow path: "
<< instruction_->DebugName();
DCHECK(instruction_->GetLocations()->Intrinsified());
DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy);
int32_t element_size = DataType::Size(DataType::Type::kReference);
CpuRegister src_curr_addr = locations->GetTemp(0).AsRegister<CpuRegister>();
CpuRegister dst_curr_addr = locations->GetTemp(1).AsRegister<CpuRegister>();
CpuRegister src_stop_addr = locations->GetTemp(2).AsRegister<CpuRegister>();
__ Bind(GetEntryLabel());
NearLabel loop;
__ Bind(&loop);
__ movl(CpuRegister(TMP), Address(src_curr_addr, 0));
__ MaybeUnpoisonHeapReference(CpuRegister(TMP));
// TODO: Inline the mark bit check before calling the runtime?
// TMP = ReadBarrier::Mark(TMP);
// No need to save live registers; it's taken care of by the
// entrypoint. Also, there is no need to update the stack mask,
// as this runtime call will not trigger a garbage collection.
int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset<kX86_64PointerSize>(TMP);
// This runtime call does not require a stack map.
x86_64_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
__ MaybePoisonHeapReference(CpuRegister(TMP));
__ movl(Address(dst_curr_addr, 0), CpuRegister(TMP));
__ addl(src_curr_addr, Immediate(element_size));
__ addl(dst_curr_addr, Immediate(element_size));
__ cmpl(src_curr_addr, src_stop_addr);
__ j(kNotEqual, &loop);
__ jmp(GetExitLabel());
}
const char* GetDescription() const override { return "ReadBarrierSystemArrayCopySlowPathX86_64"; }
private:
DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathX86_64);
};
#undef __
#define __ assembler->
static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
}
static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
}
static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) {
Location input = locations->InAt(0);
Location output = locations->Out();
__ movd(output.AsRegister<CpuRegister>(), input.AsFpuRegister<XmmRegister>(), is64bit);
}
static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) {
Location input = locations->InAt(0);
Location output = locations->Out();
__ movd(output.AsFpuRegister<XmmRegister>(), input.AsRegister<CpuRegister>(), is64bit);
}
void IntrinsicLocationsBuilderX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
CreateIntToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), /* is64bit= */ true, GetAssembler());
}
void IntrinsicCodeGeneratorX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), /* is64bit= */ true, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
CreateIntToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), /* is64bit= */ false, GetAssembler());
}
void IntrinsicCodeGeneratorX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), /* is64bit= */ false, GetAssembler());
}
static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerReverseBytes(HInvoke* invoke) {
codegen_->GetInstructionCodegen()->Bswap(invoke->GetLocations()->Out(), DataType::Type::kInt32);
}
void IntrinsicLocationsBuilderX86_64::VisitLongReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitLongReverseBytes(HInvoke* invoke) {
codegen_->GetInstructionCodegen()->Bswap(invoke->GetLocations()->Out(), DataType::Type::kInt64);
}
void IntrinsicLocationsBuilderX86_64::VisitShortReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitShortReverseBytes(HInvoke* invoke) {
codegen_->GetInstructionCodegen()->Bswap(invoke->GetLocations()->Out(), DataType::Type::kInt16);
}
static void GenIsInfinite(LocationSummary* locations,
bool is64bit,
CodeGeneratorX86_64* codegen) {
X86_64Assembler* assembler = codegen->GetAssembler();
XmmRegister input = locations->InAt(0).AsFpuRegister<XmmRegister>();
CpuRegister output = locations->Out().AsRegister<CpuRegister>();
NearLabel done1, done2;
if (is64bit) {
double kPositiveInfinity = std::numeric_limits<double>::infinity();
double kNegativeInfinity = -1 * kPositiveInfinity;
__ xorq(output, output);
__ comisd(input, codegen->LiteralDoubleAddress(kPositiveInfinity));
__ j(kNotEqual, &done1);
__ j(kParityEven, &done2);
__ movq(output, Immediate(1));
__ jmp(&done2);
__ Bind(&done1);
__ comisd(input, codegen->LiteralDoubleAddress(kNegativeInfinity));
__ j(kNotEqual, &done2);
__ j(kParityEven, &done2);
__ movq(output, Immediate(1));
__ Bind(&done2);
} else {
float kPositiveInfinity = std::numeric_limits<float>::infinity();
float kNegativeInfinity = -1 * kPositiveInfinity;
__ xorl(output, output);
__ comiss(input, codegen->LiteralFloatAddress(kPositiveInfinity));
__ j(kNotEqual, &done1);
__ j(kParityEven, &done2);
__ movl(output, Immediate(1));
__ jmp(&done2);
__ Bind(&done1);
__ comiss(input, codegen->LiteralFloatAddress(kNegativeInfinity));
__ j(kNotEqual, &done2);
__ j(kParityEven, &done2);
__ movl(output, Immediate(1));
__ Bind(&done2);
}
}
void IntrinsicLocationsBuilderX86_64::VisitFloatIsInfinite(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitFloatIsInfinite(HInvoke* invoke) {
GenIsInfinite(invoke->GetLocations(), /* is64bit=*/ false, codegen_);
}
void IntrinsicLocationsBuilderX86_64::VisitDoubleIsInfinite(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitDoubleIsInfinite(HInvoke* invoke) {
GenIsInfinite(invoke->GetLocations(), /* is64bit=*/ true, codegen_);
}
static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister());
}
void IntrinsicLocationsBuilderX86_64::VisitMathSqrt(HInvoke* invoke) {
CreateFPToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathSqrt(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
GetAssembler()->sqrtsd(out, in);
}
static void CreateSSE41FPToFPLocations(ArenaAllocator* allocator,
HInvoke* invoke,
CodeGeneratorX86_64* codegen) {
// Do we have instruction support?
if (!codegen->GetInstructionSetFeatures().HasSSE4_1()) {
return;
}
CreateFPToFPLocations(allocator, invoke);
}
static void GenSSE41FPToFPIntrinsic(HInvoke* invoke, X86_64Assembler* assembler, int round_mode) {
LocationSummary* locations = invoke->GetLocations();
DCHECK(!locations->WillCall());
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
__ roundsd(out, in, Immediate(round_mode));
}
void IntrinsicLocationsBuilderX86_64::VisitMathCeil(HInvoke* invoke) {
CreateSSE41FPToFPLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitMathCeil(HInvoke* invoke) {
GenSSE41FPToFPIntrinsic(invoke, GetAssembler(), 2);
}
void IntrinsicLocationsBuilderX86_64::VisitMathFloor(HInvoke* invoke) {
CreateSSE41FPToFPLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitMathFloor(HInvoke* invoke) {
GenSSE41FPToFPIntrinsic(invoke, GetAssembler(), 1);
}
void IntrinsicLocationsBuilderX86_64::VisitMathRint(HInvoke* invoke) {
CreateSSE41FPToFPLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitMathRint(HInvoke* invoke) {
GenSSE41FPToFPIntrinsic(invoke, GetAssembler(), 0);
}
static void CreateSSE41FPToIntLocations(ArenaAllocator* allocator,
HInvoke* invoke,
CodeGeneratorX86_64* codegen) {
// Do we have instruction support?
if (!codegen->GetInstructionSetFeatures().HasSSE4_1()) {
return;
}
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
}
void IntrinsicLocationsBuilderX86_64::VisitMathRoundFloat(HInvoke* invoke) {
CreateSSE41FPToIntLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitMathRoundFloat(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
DCHECK(!locations->WillCall());
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
XmmRegister t1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
XmmRegister t2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
NearLabel skip_incr, done;
X86_64Assembler* assembler = GetAssembler();
// Since no direct x86 rounding instruction matches the required semantics,
// this intrinsic is implemented as follows:
// result = floor(in);
// if (in - result >= 0.5f)
// result = result + 1.0f;
__ movss(t2, in);
__ roundss(t1, in, Immediate(1));
__ subss(t2, t1);
__ comiss(t2, codegen_->LiteralFloatAddress(0.5f));
__ j(kBelow, &skip_incr);
__ addss(t1, codegen_->LiteralFloatAddress(1.0f));
__ Bind(&skip_incr);
// Final conversion to an integer. Unfortunately this also does not have a
// direct x86 instruction, since NaN should map to 0 and large positive
// values need to be clipped to the extreme value.
codegen_->Load32BitValue(out, kPrimIntMax);
__ cvtsi2ss(t2, out);
__ comiss(t1, t2);
__ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered
__ movl(out, Immediate(0)); // does not change flags
__ j(kUnordered, &done); // NaN mapped to 0 (just moved in out)
__ cvttss2si(out, t1);
__ Bind(&done);
}
void IntrinsicLocationsBuilderX86_64::VisitMathRoundDouble(HInvoke* invoke) {
CreateSSE41FPToIntLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitMathRoundDouble(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
DCHECK(!locations->WillCall());
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
XmmRegister t1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
XmmRegister t2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
NearLabel skip_incr, done;
X86_64Assembler* assembler = GetAssembler();
// Since no direct x86 rounding instruction matches the required semantics,
// this intrinsic is implemented as follows:
// result = floor(in);
// if (in - result >= 0.5)
// result = result + 1.0f;
__ movsd(t2, in);
__ roundsd(t1, in, Immediate(1));
__ subsd(t2, t1);
__ comisd(t2, codegen_->LiteralDoubleAddress(0.5));
__ j(kBelow, &skip_incr);
__ addsd(t1, codegen_->LiteralDoubleAddress(1.0f));
__ Bind(&skip_incr);
// Final conversion to an integer. Unfortunately this also does not have a
// direct x86 instruction, since NaN should map to 0 and large positive
// values need to be clipped to the extreme value.
codegen_->Load64BitValue(out, kPrimLongMax);
__ cvtsi2sd(t2, out, /* is64bit= */ true);
__ comisd(t1, t2);
__ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered
__ movl(out, Immediate(0)); // does not change flags, implicit zero extension to 64-bit
__ j(kUnordered, &done); // NaN mapped to 0 (just moved in out)
__ cvttsd2si(out, t1, /* is64bit= */ true);
__ Bind(&done);
}
static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetOut(Location::FpuRegisterLocation(XMM0));
CodeGeneratorX86_64::BlockNonVolatileXmmRegisters(locations);
}
static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorX86_64* codegen,
QuickEntrypointEnum entry) {
LocationSummary* locations = invoke->GetLocations();
DCHECK(locations->WillCall());
DCHECK(invoke->IsInvokeStaticOrDirect());
codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderX86_64::VisitMathCos(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathCos(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickCos);
}
void IntrinsicLocationsBuilderX86_64::VisitMathSin(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathSin(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickSin);
}
void IntrinsicLocationsBuilderX86_64::VisitMathAcos(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathAcos(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAcos);
}
void IntrinsicLocationsBuilderX86_64::VisitMathAsin(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathAsin(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAsin);
}
void IntrinsicLocationsBuilderX86_64::VisitMathAtan(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathAtan(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAtan);
}
void IntrinsicLocationsBuilderX86_64::VisitMathCbrt(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathCbrt(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickCbrt);
}
void IntrinsicLocationsBuilderX86_64::VisitMathCosh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathCosh(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickCosh);
}
void IntrinsicLocationsBuilderX86_64::VisitMathExp(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathExp(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickExp);
}
void IntrinsicLocationsBuilderX86_64::VisitMathExpm1(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathExpm1(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickExpm1);
}
void IntrinsicLocationsBuilderX86_64::VisitMathLog(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathLog(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickLog);
}
void IntrinsicLocationsBuilderX86_64::VisitMathLog10(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathLog10(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickLog10);
}
void IntrinsicLocationsBuilderX86_64::VisitMathSinh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathSinh(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickSinh);
}
void IntrinsicLocationsBuilderX86_64::VisitMathTan(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathTan(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickTan);
}
void IntrinsicLocationsBuilderX86_64::VisitMathTanh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathTanh(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickTanh);
}
static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
locations->SetOut(Location::FpuRegisterLocation(XMM0));
CodeGeneratorX86_64::BlockNonVolatileXmmRegisters(locations);
}
static void CreateFPFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
DCHECK_EQ(invoke->GetNumberOfArguments(), 3U);
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetInAt(2, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
}
void IntrinsicLocationsBuilderX86_64::VisitMathAtan2(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathAtan2(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAtan2);
}
void IntrinsicLocationsBuilderX86_64::VisitMathPow(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathPow(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickPow);
}
void IntrinsicLocationsBuilderX86_64::VisitMathHypot(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathHypot(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickHypot);
}
void IntrinsicLocationsBuilderX86_64::VisitMathNextAfter(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathNextAfter(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickNextAfter);
}
static void CreateSystemArrayCopyLocations(HInvoke* invoke) {
// Check to see if we have known failures that will cause us to have to bail out
// to the runtime, and just generate the runtime call directly.
HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
// The positions must be non-negative.
if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
(dest_pos != nullptr && dest_pos->GetValue() < 0)) {
// We will have to fail anyways.
return;
}
// The length must be > 0.
HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
if (length != nullptr) {
int32_t len = length->GetValue();
if (len < 0) {
// Just call as normal.
return;
}
}
LocationSummary* locations =
new (invoke->GetBlock()->GetGraph()->GetAllocator()) LocationSummary
(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
// arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
// And we need some temporaries. We will use REP MOVSW, so we need fixed registers.
locations->AddTemp(Location::RegisterLocation(RSI));
locations->AddTemp(Location::RegisterLocation(RDI));
locations->AddTemp(Location::RegisterLocation(RCX));
}
static void CheckPosition(X86_64Assembler* assembler,
Location pos,
CpuRegister input,
Location length,
SlowPathCode* slow_path,
CpuRegister temp,
bool length_is_input_length = false) {
// Where is the length in the Array?
const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
if (pos.IsConstant()) {
int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue();
if (pos_const == 0) {
if (!length_is_input_length) {
// Check that length(input) >= length.
if (length.IsConstant()) {
__ cmpl(Address(input, length_offset),
Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ cmpl(Address(input, length_offset), length.AsRegister<CpuRegister>());
}
__ j(kLess, slow_path->GetEntryLabel());
}
} else {
// Check that length(input) >= pos.
__ movl(temp, Address(input, length_offset));
__ subl(temp, Immediate(pos_const));
__ j(kLess, slow_path->GetEntryLabel());
// Check that (length(input) - pos) >= length.
if (length.IsConstant()) {
__ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ cmpl(temp, length.AsRegister<CpuRegister>());
}
__ j(kLess, slow_path->GetEntryLabel());
}
} else if (length_is_input_length) {
// The only way the copy can succeed is if pos is zero.
CpuRegister pos_reg = pos.AsRegister<CpuRegister>();
__ testl(pos_reg, pos_reg);
__ j(kNotEqual, slow_path->GetEntryLabel());
} else {
// Check that pos >= 0.
CpuRegister pos_reg = pos.AsRegister<CpuRegister>();
__ testl(pos_reg, pos_reg);
__ j(kLess, slow_path->GetEntryLabel());
// Check that pos <= length(input).
__ cmpl(Address(input, length_offset), pos_reg);
__ j(kLess, slow_path->GetEntryLabel());
// Check that (length(input) - pos) >= length.
__ movl(temp, Address(input, length_offset));
__ subl(temp, pos_reg);
if (length.IsConstant()) {
__ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ cmpl(temp, length.AsRegister<CpuRegister>());
}
__ j(kLess, slow_path->GetEntryLabel());
}
}
static void SystemArrayCopyPrimitive(HInvoke* invoke,
X86_64Assembler* assembler,
CodeGeneratorX86_64* codegen,
DataType::Type type) {
LocationSummary* locations = invoke->GetLocations();
CpuRegister src = locations->InAt(0).AsRegister<CpuRegister>();
Location src_pos = locations->InAt(1);
CpuRegister dest = locations->InAt(2).AsRegister<CpuRegister>();
Location dest_pos = locations->InAt(3);
Location length = locations->InAt(4);
// Temporaries that we need for MOVSB/W/L.
CpuRegister src_base = locations->GetTemp(0).AsRegister<CpuRegister>();
DCHECK_EQ(src_base.AsRegister(), RSI);
CpuRegister dest_base = locations->GetTemp(1).AsRegister<CpuRegister>();
DCHECK_EQ(dest_base.AsRegister(), RDI);
CpuRegister count = locations->GetTemp(2).AsRegister<CpuRegister>();
DCHECK_EQ(count.AsRegister(), RCX);
SlowPathCode* slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen->AddSlowPath(slow_path);
// Bail out if the source and destination are the same.
__ cmpl(src, dest);
__ j(kEqual, slow_path->GetEntryLabel());
// Bail out if the source is null.
__ testl(src, src);
__ j(kEqual, slow_path->GetEntryLabel());
// Bail out if the destination is null.
__ testl(dest, dest);
__ j(kEqual, slow_path->GetEntryLabel());
// If the length is negative, bail out.
// We have already checked in the LocationsBuilder for the constant case.
if (!length.IsConstant()) {
__ testl(length.AsRegister<CpuRegister>(), length.AsRegister<CpuRegister>());
__ j(kLess, slow_path->GetEntryLabel());
}
// Validity checks: source. Use src_base as a temporary register.
CheckPosition(assembler, src_pos, src, length, slow_path, src_base);
// Validity checks: dest. Use src_base as a temporary register.
CheckPosition(assembler, dest_pos, dest, length, slow_path, src_base);
// We need the count in RCX.
if (length.IsConstant()) {
__ movl(count, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ movl(count, length.AsRegister<CpuRegister>());
}
// Okay, everything checks out. Finally time to do the copy.
// Check assumption that sizeof(Char) is 2 (used in scaling below).
const size_t data_size = DataType::Size(type);
const ScaleFactor scale_factor = CodeGenerator::ScaleFactorForType(type);
const uint32_t data_offset = mirror::Array::DataOffset(data_size).Uint32Value();
if (src_pos.IsConstant()) {
int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue();
__ leal(src_base, Address(src, data_size * src_pos_const + data_offset));
} else {
__ leal(src_base, Address(src, src_pos.AsRegister<CpuRegister>(), scale_factor, data_offset));
}
if (dest_pos.IsConstant()) {
int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue();
__ leal(dest_base, Address(dest, data_size * dest_pos_const + data_offset));
} else {
__ leal(dest_base,
Address(dest, dest_pos.AsRegister<CpuRegister>(), scale_factor, data_offset));
}
// Do the move.
switch (type) {
case DataType::Type::kInt8:
__ rep_movsb();
break;
case DataType::Type::kUint16:
__ rep_movsw();
break;
case DataType::Type::kInt32:
__ rep_movsl();
break;
default:
LOG(FATAL) << "Unexpected data type for intrinsic";
}
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) {
CreateSystemArrayCopyLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
SystemArrayCopyPrimitive(invoke, assembler, codegen_, DataType::Type::kUint16);
}
void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopyByte(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
SystemArrayCopyPrimitive(invoke, assembler, codegen_, DataType::Type::kInt8);
}
void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopyByte(HInvoke* invoke) {
CreateSystemArrayCopyLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopyInt(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
SystemArrayCopyPrimitive(invoke, assembler, codegen_, DataType::Type::kInt32);
}
void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopyInt(HInvoke* invoke) {
CreateSystemArrayCopyLocations(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopy(HInvoke* invoke) {
// The only read barrier implementation supporting the
// SystemArrayCopy intrinsic is the Baker-style read barriers.
if (gUseReadBarrier && !kUseBakerReadBarrier) {
return;
}
CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke);
}
// Compute base source address, base destination address, and end
// source address for the System.arraycopy intrinsic in `src_base`,
// `dst_base` and `src_end` respectively.
static void GenSystemArrayCopyAddresses(X86_64Assembler* assembler,
DataType::Type type,
const CpuRegister& src,
const Location& src_pos,
const CpuRegister& dst,
const Location& dst_pos,
const Location& copy_length,
const CpuRegister& src_base,
const CpuRegister& dst_base,
const CpuRegister& src_end) {
// This routine is only used by the SystemArrayCopy intrinsic.
DCHECK_EQ(type, DataType::Type::kReference);
const int32_t element_size = DataType::Size(type);
const ScaleFactor scale_factor = static_cast<ScaleFactor>(DataType::SizeShift(type));
const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value();
if (src_pos.IsConstant()) {
int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
__ leal(src_base, Address(src, element_size * constant + data_offset));
} else {
__ leal(src_base, Address(src, src_pos.AsRegister<CpuRegister>(), scale_factor, data_offset));
}
if (dst_pos.IsConstant()) {
int32_t constant = dst_pos.GetConstant()->AsIntConstant()->GetValue();
__ leal(dst_base, Address(dst, element_size * constant + data_offset));
} else {
__ leal(dst_base, Address(dst, dst_pos.AsRegister<CpuRegister>(), scale_factor, data_offset));
}
if (copy_length.IsConstant()) {
int32_t constant = copy_length.GetConstant()->AsIntConstant()->GetValue();
__ leal(src_end, Address(src_base, element_size * constant));
} else {
__ leal(src_end, Address(src_base, copy_length.AsRegister<CpuRegister>(), scale_factor, 0));
}
}
void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopy(HInvoke* invoke) {
// The only read barrier implementation supporting the
// SystemArrayCopy intrinsic is the Baker-style read barriers.
DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier);
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
CpuRegister src = locations->InAt(0).AsRegister<CpuRegister>();
Location src_pos = locations->InAt(1);
CpuRegister dest = locations->InAt(2).AsRegister<CpuRegister>();
Location dest_pos = locations->InAt(3);
Location length = locations->InAt(4);
Location temp1_loc = locations->GetTemp(0);
CpuRegister temp1 = temp1_loc.AsRegister<CpuRegister>();
Location temp2_loc = locations->GetTemp(1);
CpuRegister temp2 = temp2_loc.AsRegister<CpuRegister>();
Location temp3_loc = locations->GetTemp(2);
CpuRegister temp3 = temp3_loc.AsRegister<CpuRegister>();
Location TMP_loc = Location::RegisterLocation(TMP);
SlowPathCode* intrinsic_slow_path =
new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen_->AddSlowPath(intrinsic_slow_path);
NearLabel conditions_on_positions_validated;
SystemArrayCopyOptimizations optimizations(invoke);
// If source and destination are the same, we go to slow path if we need to do
// forward copying.
if (src_pos.IsConstant()) {
int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
if (dest_pos.IsConstant()) {
int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
if (optimizations.GetDestinationIsSource()) {
// Checked when building locations.
DCHECK_GE(src_pos_constant, dest_pos_constant);
} else if (src_pos_constant < dest_pos_constant) {
__ cmpl(src, dest);
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
}
} else {
if (!optimizations.GetDestinationIsSource()) {
__ cmpl(src, dest);
__ j(kNotEqual, &conditions_on_positions_validated);
}
__ cmpl(dest_pos.AsRegister<CpuRegister>(), Immediate(src_pos_constant));
__ j(kGreater, intrinsic_slow_path->GetEntryLabel());
}
} else {
if (!optimizations.GetDestinationIsSource()) {
__ cmpl(src, dest);
__ j(kNotEqual, &conditions_on_positions_validated);
}
if (dest_pos.IsConstant()) {
int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
__ cmpl(src_pos.AsRegister<CpuRegister>(), Immediate(dest_pos_constant));
__ j(kLess, intrinsic_slow_path->GetEntryLabel());
} else {
__ cmpl(src_pos.AsRegister<CpuRegister>(), dest_pos.AsRegister<CpuRegister>());
__ j(kLess, intrinsic_slow_path->GetEntryLabel());
}
}
__ Bind(&conditions_on_positions_validated);
if (!optimizations.GetSourceIsNotNull()) {
// Bail out if the source is null.
__ testl(src, src);
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
}
if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) {
// Bail out if the destination is null.
__ testl(dest, dest);
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
}
// If the length is negative, bail out.
// We have already checked in the LocationsBuilder for the constant case.
if (!length.IsConstant() &&
!optimizations.GetCountIsSourceLength() &&
!optimizations.GetCountIsDestinationLength()) {
__ testl(length.AsRegister<CpuRegister>(), length.AsRegister<CpuRegister>());
__ j(kLess, intrinsic_slow_path->GetEntryLabel());
}
// Validity checks: source.
CheckPosition(assembler,
src_pos,
src,
length,
intrinsic_slow_path,
temp1,
optimizations.GetCountIsSourceLength());
// Validity checks: dest.
CheckPosition(assembler,
dest_pos,
dest,
length,
intrinsic_slow_path,
temp1,
optimizations.GetCountIsDestinationLength());
if (!optimizations.GetDoesNotNeedTypeCheck()) {
// Check whether all elements of the source array are assignable to the component
// type of the destination array. We do two checks: the classes are the same,
// or the destination is Object[]. If none of these checks succeed, we go to the
// slow path.
bool did_unpoison = false;
if (gUseReadBarrier && kUseBakerReadBarrier) {
// /* HeapReference<Class> */ temp1 = dest->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp1_loc, dest, class_offset, /* needs_null_check= */ false);
// Register `temp1` is not trashed by the read barrier emitted
// by GenerateFieldLoadWithBakerReadBarrier below, as that
// method produces a call to a ReadBarrierMarkRegX entry point,
// which saves all potentially live registers, including
// temporaries such a `temp1`.
// /* HeapReference<Class> */ temp2 = src->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp2_loc, src, class_offset, /* needs_null_check= */ false);
// If heap poisoning is enabled, `temp1` and `temp2` have been
// unpoisoned by the the previous calls to
// GenerateFieldLoadWithBakerReadBarrier.
} else {
// /* HeapReference<Class> */ temp1 = dest->klass_
__ movl(temp1, Address(dest, class_offset));
// /* HeapReference<Class> */ temp2 = src->klass_
__ movl(temp2, Address(src, class_offset));
if (!optimizations.GetDestinationIsNonPrimitiveArray() ||
!optimizations.GetSourceIsNonPrimitiveArray()) {
// One or two of the references need to be unpoisoned. Unpoison them
// both to make the identity check valid.
__ MaybeUnpoisonHeapReference(temp1);
__ MaybeUnpoisonHeapReference(temp2);
did_unpoison = true;
}
}
if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
// Bail out if the destination is not a non primitive array.
if (gUseReadBarrier && kUseBakerReadBarrier) {
// /* HeapReference<Class> */ TMP = temp1->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, TMP_loc, temp1, component_offset, /* needs_null_check= */ false);
__ testl(CpuRegister(TMP), CpuRegister(TMP));
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
// If heap poisoning is enabled, `TMP` has been unpoisoned by
// the the previous call to GenerateFieldLoadWithBakerReadBarrier.
} else {
// /* HeapReference<Class> */ TMP = temp1->component_type_
__ movl(CpuRegister(TMP), Address(temp1, component_offset));
__ testl(CpuRegister(TMP), CpuRegister(TMP));
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
__ MaybeUnpoisonHeapReference(CpuRegister(TMP));
}
__ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot));
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
}
if (!optimizations.GetSourceIsNonPrimitiveArray()) {
// Bail out if the source is not a non primitive array.
if (gUseReadBarrier && kUseBakerReadBarrier) {
// For the same reason given earlier, `temp1` is not trashed by the
// read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below.
// /* HeapReference<Class> */ TMP = temp2->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, TMP_loc, temp2, component_offset, /* needs_null_check= */ false);
__ testl(CpuRegister(TMP), CpuRegister(TMP));
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
// If heap poisoning is enabled, `TMP` has been unpoisoned by
// the the previous call to GenerateFieldLoadWithBakerReadBarrier.
} else {
// /* HeapReference<Class> */ TMP = temp2->component_type_
__ movl(CpuRegister(TMP), Address(temp2, component_offset));
__ testl(CpuRegister(TMP), CpuRegister(TMP));
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
__ MaybeUnpoisonHeapReference(CpuRegister(TMP));
}
__ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot));
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
}
__ cmpl(temp1, temp2);
if (optimizations.GetDestinationIsTypedObjectArray()) {
NearLabel do_copy;
__ j(kEqual, &do_copy);
if (gUseReadBarrier && kUseBakerReadBarrier) {
// /* HeapReference<Class> */ temp1 = temp1->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp1_loc, temp1, component_offset, /* needs_null_check= */ false);
// We do not need to emit a read barrier for the following
// heap reference load, as `temp1` is only used in a
// comparison with null below, and this reference is not
// kept afterwards.
__ cmpl(Address(temp1, super_offset), Immediate(0));
} else {
if (!did_unpoison) {
__ MaybeUnpoisonHeapReference(temp1);
}
// /* HeapReference<Class> */ temp1 = temp1->component_type_
__ movl(temp1, Address(temp1, component_offset));
__ MaybeUnpoisonHeapReference(temp1);
// No need to unpoison the following heap reference load, as
// we're comparing against null.
__ cmpl(Address(temp1, super_offset), Immediate(0));
}
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
__ Bind(&do_copy);
} else {
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
}
} else if (!optimizations.GetSourceIsNonPrimitiveArray()) {
DCHECK(optimizations.GetDestinationIsNonPrimitiveArray());
// Bail out if the source is not a non primitive array.
if (gUseReadBarrier && kUseBakerReadBarrier) {
// /* HeapReference<Class> */ temp1 = src->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp1_loc, src, class_offset, /* needs_null_check= */ false);
// /* HeapReference<Class> */ TMP = temp1->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, TMP_loc, temp1, component_offset, /* needs_null_check= */ false);
__ testl(CpuRegister(TMP), CpuRegister(TMP));
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
} else {
// /* HeapReference<Class> */ temp1 = src->klass_
__ movl(temp1, Address(src, class_offset));
__ MaybeUnpoisonHeapReference(temp1);
// /* HeapReference<Class> */ TMP = temp1->component_type_
__ movl(CpuRegister(TMP), Address(temp1, component_offset));
// No need to unpoison `TMP` now, as we're comparing against null.
__ testl(CpuRegister(TMP), CpuRegister(TMP));
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
__ MaybeUnpoisonHeapReference(CpuRegister(TMP));
}
__ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot));
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
}
const DataType::Type type = DataType::Type::kReference;
const int32_t element_size = DataType::Size(type);
// Compute base source address, base destination address, and end
// source address in `temp1`, `temp2` and `temp3` respectively.
GenSystemArrayCopyAddresses(
GetAssembler(), type, src, src_pos, dest, dest_pos, length, temp1, temp2, temp3);
if (gUseReadBarrier && kUseBakerReadBarrier) {
// SystemArrayCopy implementation for Baker read barriers (see
// also CodeGeneratorX86_64::GenerateReferenceLoadWithBakerReadBarrier):
//
// if (src_ptr != end_ptr) {
// uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
// bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// // Slow-path copy.
// do {
// *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++)));
// } while (src_ptr != end_ptr)
// } else {
// // Fast-path copy.
// do {
// *dest_ptr++ = *src_ptr++;
// } while (src_ptr != end_ptr)
// }
// }
NearLabel loop, done;
// Don't enter copy loop if `length == 0`.
__ cmpl(temp1, temp3);
__ j(kEqual, &done);
// Given the numeric representation, it's enough to check the low bit of the rb_state.
static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte;
constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte;
constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position);
// if (rb_state == ReadBarrier::GrayState())
// goto slow_path;
// At this point, just do the "if" and make sure that flags are preserved until the branch.
__ testb(Address(src, monitor_offset + gray_byte_position), Immediate(test_value));
// Load fence to prevent load-load reordering.
// Note that this is a no-op, thanks to the x86-64 memory model.
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
// Slow path used to copy array when `src` is gray.
SlowPathCode* read_barrier_slow_path =
new (codegen_->GetScopedAllocator()) ReadBarrierSystemArrayCopySlowPathX86_64(invoke);
codegen_->AddSlowPath(read_barrier_slow_path);
// We have done the "if" of the gray bit check above, now branch based on the flags.
__ j(kNotZero, read_barrier_slow_path->GetEntryLabel());
// Fast-path copy.
// Iterate over the arrays and do a raw copy of the objects. We don't need to
// poison/unpoison.
__ Bind(&loop);
__ movl(CpuRegister(TMP), Address(temp1, 0));
__ movl(Address(temp2, 0), CpuRegister(TMP));
__ addl(temp1, Immediate(element_size));
__ addl(temp2, Immediate(element_size));
__ cmpl(temp1, temp3);
__ j(kNotEqual, &loop);
__ Bind(read_barrier_slow_path->GetExitLabel());
__ Bind(&done);
} else {
// Non read barrier code.
// Iterate over the arrays and do a raw copy of the objects. We don't need to
// poison/unpoison.
NearLabel loop, done;
__ cmpl(temp1, temp3);
__ j(kEqual, &done);
__ Bind(&loop);
__ movl(CpuRegister(TMP), Address(temp1, 0));
__ movl(Address(temp2, 0), CpuRegister(TMP));
__ addl(temp1, Immediate(element_size));
__ addl(temp2, Immediate(element_size));
__ cmpl(temp1, temp3);
__ j(kNotEqual, &loop);
__ Bind(&done);
}
// We only need one card marking on the destination array.
codegen_->MarkGCCard(temp1, temp2, dest, CpuRegister(kNoRegister), /* emit_null_check= */ false);
__ Bind(intrinsic_slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86_64::VisitStringCompareTo(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetOut(Location::RegisterLocation(RAX));
}
void IntrinsicCodeGeneratorX86_64::VisitStringCompareTo(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
CpuRegister argument = locations->InAt(1).AsRegister<CpuRegister>();
__ testl(argument, argument);
SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen_->AddSlowPath(slow_path);
__ j(kEqual, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path);
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86_64::VisitStringEquals(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// Request temporary registers, RCX and RDI needed for repe_cmpsq instruction.
locations->AddTemp(Location::RegisterLocation(RCX));
locations->AddTemp(Location::RegisterLocation(RDI));
// Set output, RSI needed for repe_cmpsq instruction anyways.
locations->SetOut(Location::RegisterLocation(RSI), Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorX86_64::VisitStringEquals(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister str = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister arg = locations->InAt(1).AsRegister<CpuRegister>();
CpuRegister rcx = locations->GetTemp(0).AsRegister<CpuRegister>();
CpuRegister rdi = locations->GetTemp(1).AsRegister<CpuRegister>();
CpuRegister rsi = locations->Out().AsRegister<CpuRegister>();
NearLabel end, return_true, return_false;
// Get offsets of count, value, and class fields within a string object.
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
StringEqualsOptimizations optimizations(invoke);
if (!optimizations.GetArgumentNotNull()) {
// Check if input is null, return false if it is.
__ testl(arg, arg);
__ j(kEqual, &return_false);
}
if (!optimizations.GetArgumentIsString()) {
// Instanceof check for the argument by comparing class fields.
// All string objects must have the same type since String cannot be subclassed.
// Receiver must be a string object, so its class field is equal to all strings' class fields.
// If the argument is a string object, its class field must be equal to receiver's class field.
//
// As the String class is expected to be non-movable, we can read the class
// field from String.equals' arguments without read barriers.
AssertNonMovableStringClass();
// Also, because we use the loaded class references only to compare them, we
// don't need to unpoison them.
// /* HeapReference<Class> */ rcx = str->klass_
__ movl(rcx, Address(str, class_offset));
// if (rcx != /* HeapReference<Class> */ arg->klass_) return false
__ cmpl(rcx, Address(arg, class_offset));
__ j(kNotEqual, &return_false);
}
// Reference equality check, return true if same reference.
__ cmpl(str, arg);
__ j(kEqual, &return_true);
// Load length and compression flag of receiver string.
__ movl(rcx, Address(str, count_offset));
// Check if lengths and compressiond flags are equal, return false if they're not.
// Two identical strings will always have same compression style since
// compression style is decided on alloc.
__ cmpl(rcx, Address(arg, count_offset));
__ j(kNotEqual, &return_false);
// Return true if both strings are empty. Even with string compression `count == 0` means empty.
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
__ jrcxz(&return_true);
if (mirror::kUseStringCompression) {
NearLabel string_uncompressed;
// Extract length and differentiate between both compressed or both uncompressed.
// Different compression style is cut above.
__ shrl(rcx, Immediate(1));
__ j(kCarrySet, &string_uncompressed);
// Divide string length by 2, rounding up, and continue as if uncompressed.
// Merge clearing the compression flag with +1 for rounding.
__ addl(rcx, Immediate(1));
__ shrl(rcx, Immediate(1));
__ Bind(&string_uncompressed);
}
// Load starting addresses of string values into RSI/RDI as required for repe_cmpsq instruction.
__ leal(rsi, Address(str, value_offset));
__ leal(rdi, Address(arg, value_offset));
// Divide string length by 4 and adjust for lengths not divisible by 4.
__ addl(rcx, Immediate(3));
__ shrl(rcx, Immediate(2));
// Assertions that must hold in order to compare strings 4 characters (uncompressed)
// or 8 characters (compressed) at a time.
DCHECK_ALIGNED(value_offset, 8);
static_assert(IsAligned<8>(kObjectAlignment), "String is not zero padded");
// Loop to compare strings four characters at a time starting at the beginning of the string.
__ repe_cmpsq();
// If strings are not equal, zero flag will be cleared.
__ j(kNotEqual, &return_false);
// Return true and exit the function.
// If loop does not result in returning false, we return true.
__ Bind(&return_true);
__ movl(rsi, Immediate(1));
__ jmp(&end);
// Return false and exit the function.
__ Bind(&return_false);
__ xorl(rsi, rsi);
__ Bind(&end);
}
static void CreateStringIndexOfLocations(HInvoke* invoke,
ArenaAllocator* allocator,
bool start_at_zero) {
LocationSummary* locations = new (allocator) LocationSummary(invoke,
LocationSummary::kCallOnSlowPath,
kIntrinsified);
// The data needs to be in RDI for scasw. So request that the string is there, anyways.
locations->SetInAt(0, Location::RegisterLocation(RDI));
// If we look for a constant char, we'll still have to copy it into RAX. So just request the
// allocator to do that, anyways. We can still do the constant check by checking the parameter
// of the instruction explicitly.
// Note: This works as we don't clobber RAX anywhere.
locations->SetInAt(1, Location::RegisterLocation(RAX));
if (!start_at_zero) {
locations->SetInAt(2, Location::RequiresRegister()); // The starting index.
}
// As we clobber RDI during execution anyways, also use it as the output.
locations->SetOut(Location::SameAsFirstInput());
// repne scasw uses RCX as the counter.
locations->AddTemp(Location::RegisterLocation(RCX));
// Need another temporary to be able to compute the result.
locations->AddTemp(Location::RequiresRegister());
}
static void GenerateStringIndexOf(HInvoke* invoke,
X86_64Assembler* assembler,
CodeGeneratorX86_64* codegen,
bool start_at_zero) {
LocationSummary* locations = invoke->GetLocations();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
CpuRegister string_obj = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister search_value = locations->InAt(1).AsRegister<CpuRegister>();
CpuRegister counter = locations->GetTemp(0).AsRegister<CpuRegister>();
CpuRegister string_length = locations->GetTemp(1).AsRegister<CpuRegister>();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
// Check our assumptions for registers.
DCHECK_EQ(string_obj.AsRegister(), RDI);
DCHECK_EQ(search_value.AsRegister(), RAX);
DCHECK_EQ(counter.AsRegister(), RCX);
DCHECK_EQ(out.AsRegister(), RDI);
// Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
// or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
SlowPathCode* slow_path = nullptr;
HInstruction* code_point = invoke->InputAt(1);
if (code_point->IsIntConstant()) {
if (static_cast<uint32_t>(code_point->AsIntConstant()->GetValue()) >
std::numeric_limits<uint16_t>::max()) {
// Always needs the slow-path. We could directly dispatch to it, but this case should be
// rare, so for simplicity just put the full slow-path down and branch unconditionally.
slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen->AddSlowPath(slow_path);
__ jmp(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
return;
}
} else if (code_point->GetType() != DataType::Type::kUint16) {
__ cmpl(search_value, Immediate(std::numeric_limits<uint16_t>::max()));
slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen->AddSlowPath(slow_path);
__ j(kAbove, slow_path->GetEntryLabel());
}
// From here down, we know that we are looking for a char that fits in
// 16 bits (uncompressed) or 8 bits (compressed).
// Location of reference to data array within the String object.
int32_t value_offset = mirror::String::ValueOffset().Int32Value();
// Location of count within the String object.
int32_t count_offset = mirror::String::CountOffset().Int32Value();
// Load the count field of the string containing the length and compression flag.
__ movl(string_length, Address(string_obj, count_offset));
// Do a zero-length check. Even with string compression `count == 0` means empty.
// TODO: Support jecxz.
NearLabel not_found_label;
__ testl(string_length, string_length);
__ j(kEqual, &not_found_label);
if (mirror::kUseStringCompression) {
// Use TMP to keep string_length_flagged.
__ movl(CpuRegister(TMP), string_length);
// Mask out first bit used as compression flag.
__ shrl(string_length, Immediate(1));
}
if (start_at_zero) {
// Number of chars to scan is the same as the string length.
__ movl(counter, string_length);
// Move to the start of the string.
__ addq(string_obj, Immediate(value_offset));
} else {
CpuRegister start_index = locations->InAt(2).AsRegister<CpuRegister>();
// Do a start_index check.
__ cmpl(start_index, string_length);
__ j(kGreaterEqual, &not_found_label);
// Ensure we have a start index >= 0;
__ xorl(counter, counter);
__ cmpl(start_index, Immediate(0));
__ cmov(kGreater, counter, start_index, /* is64bit= */ false); // 32-bit copy is enough.
if (mirror::kUseStringCompression) {
NearLabel modify_counter, offset_uncompressed_label;
__ testl(CpuRegister(TMP), Immediate(1));
__ j(kNotZero, &offset_uncompressed_label);
__ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_1, value_offset));
__ jmp(&modify_counter);
// Move to the start of the string: string_obj + value_offset + 2 * start_index.
__ Bind(&offset_uncompressed_label);
__ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset));
__ Bind(&modify_counter);
} else {
__ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset));
}
// Now update ecx, the work counter: it's gonna be string.length - start_index.
__ negq(counter); // Needs to be 64-bit negation, as the address computation is 64-bit.
__ leaq(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0));
}
if (mirror::kUseStringCompression) {
NearLabel uncompressed_string_comparison;
NearLabel comparison_done;
__ testl(CpuRegister(TMP), Immediate(1));
__ j(kNotZero, &uncompressed_string_comparison);
// Check if RAX (search_value) is ASCII.
__ cmpl(search_value, Immediate(127));
__ j(kGreater, &not_found_label);
// Comparing byte-per-byte.
__ repne_scasb();
__ jmp(&comparison_done);
// Everything is set up for repne scasw:
// * Comparison address in RDI.
// * Counter in ECX.
__ Bind(&uncompressed_string_comparison);
__ repne_scasw();
__ Bind(&comparison_done);
} else {
__ repne_scasw();
}
// Did we find a match?
__ j(kNotEqual, &not_found_label);
// Yes, we matched. Compute the index of the result.
__ subl(string_length, counter);
__ leal(out, Address(string_length, -1));
NearLabel done;
__ jmp(&done);
// Failed to match; return -1.
__ Bind(&not_found_label);
__ movl(out, Immediate(-1));
// And join up at the end.
__ Bind(&done);
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
}
void IntrinsicLocationsBuilderX86_64::VisitStringIndexOf(HInvoke* invoke) {
CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero= */ true);
}
void IntrinsicCodeGeneratorX86_64::VisitStringIndexOf(HInvoke* invoke) {
GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ true);
}
void IntrinsicLocationsBuilderX86_64::VisitStringIndexOfAfter(HInvoke* invoke) {
CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero= */ false);
}
void IntrinsicCodeGeneratorX86_64::VisitStringIndexOfAfter(HInvoke* invoke) {
GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ false);
}
void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
locations->SetOut(Location::RegisterLocation(RAX));
}
void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister byte_array = locations->InAt(0).AsRegister<CpuRegister>();
__ testl(byte_array, byte_array);
SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen_->AddSlowPath(slow_path);
__ j(kEqual, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc());
CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>();
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromChars(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetOut(Location::RegisterLocation(RAX));
}
void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromChars(HInvoke* invoke) {
// No need to emit code checking whether `locations->InAt(2)` is a null
// pointer, as callers of the native method
//
// java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
//
// all include a null check on `data` before calling that method.
codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>();
}
void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromString(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetOut(Location::RegisterLocation(RAX));
}
void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromString(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister string_to_copy = locations->InAt(0).AsRegister<CpuRegister>();
__ testl(string_to_copy, string_to_copy);
SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen_->AddSlowPath(slow_path);
__ j(kEqual, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc());
CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>();
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) {
// public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
locations->SetInAt(4, Location::RequiresRegister());
// And we need some temporaries. We will use REP MOVSW, so we need fixed registers.
locations->AddTemp(Location::RegisterLocation(RSI));
locations->AddTemp(Location::RegisterLocation(RDI));
locations->AddTemp(Location::RegisterLocation(RCX));
}
void IntrinsicCodeGeneratorX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
size_t char_component_size = DataType::Size(DataType::Type::kUint16);
// Location of data in char array buffer.
const uint32_t data_offset = mirror::Array::DataOffset(char_component_size).Uint32Value();
// Location of char array data in string.
const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
// public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>();
Location srcBegin = locations->InAt(1);
int srcBegin_value =
srcBegin.IsConstant() ? srcBegin.GetConstant()->AsIntConstant()->GetValue() : 0;
CpuRegister srcEnd = locations->InAt(2).AsRegister<CpuRegister>();
CpuRegister dst = locations->InAt(3).AsRegister<CpuRegister>();
CpuRegister dstBegin = locations->InAt(4).AsRegister<CpuRegister>();
// Check assumption that sizeof(Char) is 2 (used in scaling below).
const size_t char_size = DataType::Size(DataType::Type::kUint16);
DCHECK_EQ(char_size, 2u);
NearLabel done;
// Compute the number of chars (words) to move.
__ movl(CpuRegister(RCX), srcEnd);
if (srcBegin.IsConstant()) {
__ subl(CpuRegister(RCX), Immediate(srcBegin_value));
} else {
DCHECK(srcBegin.IsRegister());
__ subl(CpuRegister(RCX), srcBegin.AsRegister<CpuRegister>());
}
if (mirror::kUseStringCompression) {
NearLabel copy_uncompressed, copy_loop;
const size_t c_char_size = DataType::Size(DataType::Type::kInt8);
DCHECK_EQ(c_char_size, 1u);
// Location of count in string.
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
__ testl(Address(obj, count_offset), Immediate(1));
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
__ j(kNotZero, &copy_uncompressed);
// Compute the address of the source string by adding the number of chars from
// the source beginning to the value offset of a string.
__ leaq(CpuRegister(RSI),
CodeGeneratorX86_64::ArrayAddress(obj, srcBegin, TIMES_1, value_offset));
// Start the loop to copy String's value to Array of Char.
__ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset));
__ Bind(&copy_loop);
__ jrcxz(&done);
// Use TMP as temporary (convert byte from RSI to word).
// TODO: Selecting RAX as the temporary and using LODSB/STOSW.
__ movzxb(CpuRegister(TMP), Address(CpuRegister(RSI), 0));
__ movw(Address(CpuRegister(RDI), 0), CpuRegister(TMP));
__ leaq(CpuRegister(RDI), Address(CpuRegister(RDI), char_size));
__ leaq(CpuRegister(RSI), Address(CpuRegister(RSI), c_char_size));
// TODO: Add support for LOOP to X86_64Assembler.
__ subl(CpuRegister(RCX), Immediate(1));
__ jmp(&copy_loop);
__ Bind(&copy_uncompressed);
}
__ leaq(CpuRegister(RSI),
CodeGeneratorX86_64::ArrayAddress(obj, srcBegin, TIMES_2, value_offset));
// Compute the address of the destination buffer.
__ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset));
// Do the move.
__ rep_movsw();
__ Bind(&done);
}
static void GenPeek(LocationSummary* locations, DataType::Type size, X86_64Assembler* assembler) {
CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister out = locations->Out().AsRegister<CpuRegister>(); // == address, here for clarity.
// x86 allows unaligned access. We do not have to check the input or use specific instructions
// to avoid a SIGBUS.
switch (size) {
case DataType::Type::kInt8:
__ movsxb(out, Address(address, 0));
break;
case DataType::Type::kInt16:
__ movsxw(out, Address(address, 0));
break;
case DataType::Type::kInt32:
__ movl(out, Address(address, 0));
break;
case DataType::Type::kInt64:
__ movq(out, Address(address, 0));
break;
default:
LOG(FATAL) << "Type not recognized for peek: " << size;
UNREACHABLE();
}
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekByte(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekByte(HInvoke* invoke) {
GenPeek(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) {
GenPeek(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) {
GenPeek(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) {
GenPeek(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler());
}
static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrInt32Constant(invoke->InputAt(1)));
}
static void GenPoke(LocationSummary* locations, DataType::Type size, X86_64Assembler* assembler) {
CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>();
Location value = locations->InAt(1);
// x86 allows unaligned access. We do not have to check the input or use specific instructions
// to avoid a SIGBUS.
switch (size) {
case DataType::Type::kInt8:
if (value.IsConstant()) {
__ movb(Address(address, 0),
Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
} else {
__ movb(Address(address, 0), value.AsRegister<CpuRegister>());
}
break;
case DataType::Type::kInt16:
if (value.IsConstant()) {
__ movw(Address(address, 0),
Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
} else {
__ movw(Address(address, 0), value.AsRegister<CpuRegister>());
}
break;
case DataType::Type::kInt32:
if (value.IsConstant()) {
__ movl(Address(address, 0),
Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
} else {
__ movl(Address(address, 0), value.AsRegister<CpuRegister>());
}
break;
case DataType::Type::kInt64:
if (value.IsConstant()) {
int64_t v = value.GetConstant()->AsLongConstant()->GetValue();
DCHECK(IsInt<32>(v));
int32_t v_32 = v;
__ movq(Address(address, 0), Immediate(v_32));
} else {
__ movq(Address(address, 0), value.AsRegister<CpuRegister>());
}
break;
default:
LOG(FATAL) << "Type not recognized for poke: " << size;
UNREACHABLE();
}
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeByte(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeByte(HInvoke* invoke) {
GenPoke(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) {
GenPoke(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) {
GenPoke(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) {
GenPoke(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitThreadCurrentThread(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorX86_64::VisitThreadCurrentThread(HInvoke* invoke) {
CpuRegister out = invoke->GetLocations()->Out().AsRegister<CpuRegister>();
GetAssembler()->gs()->movl(out, Address::Absolute(Thread::PeerOffset<kX86_64PointerSize>(),
/* no_rip= */ true));
}
static void GenUnsafeGet(HInvoke* invoke,
DataType::Type type,
bool is_volatile ATTRIBUTE_UNUSED,
CodeGeneratorX86_64* codegen) {
X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
LocationSummary* locations = invoke->GetLocations();
Location base_loc = locations->InAt(1);
CpuRegister base = base_loc.AsRegister<CpuRegister>();
Location offset_loc = locations->InAt(2);
CpuRegister offset = offset_loc.AsRegister<CpuRegister>();
Location output_loc = locations->Out();
CpuRegister output = output_loc.AsRegister<CpuRegister>();
switch (type) {
case DataType::Type::kInt8:
__ movsxb(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
break;
case DataType::Type::kInt32:
__ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
break;
case DataType::Type::kReference: {
if (gUseReadBarrier) {
if (kUseBakerReadBarrier) {
Address src(base, offset, ScaleFactor::TIMES_1, 0);
codegen->GenerateReferenceLoadWithBakerReadBarrier(
invoke, output_loc, base, src, /* needs_null_check= */ false);
} else {
__ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
codegen->GenerateReadBarrierSlow(
invoke, output_loc, output_loc, base_loc, 0U, offset_loc);
}
} else {
__ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
__ MaybeUnpoisonHeapReference(output);
}
break;
}
case DataType::Type::kInt64:
__ movq(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
break;
default:
LOG(FATAL) << "Unsupported op size " << type;
UNREACHABLE();
}
}
static bool UnsafeGetIntrinsicOnCallList(Intrinsics intrinsic) {
switch (intrinsic) {
case Intrinsics::kUnsafeGetObject:
case Intrinsics::kUnsafeGetObjectVolatile:
case Intrinsics::kJdkUnsafeGetObject:
case Intrinsics::kJdkUnsafeGetObjectVolatile:
case Intrinsics::kJdkUnsafeGetObjectAcquire:
return true;
default:
break;
}
return false;
}
static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
bool can_call = gUseReadBarrier && UnsafeGetIntrinsicOnCallList(invoke->GetIntrinsic());
LocationSummary* locations =
new (allocator) LocationSummary(invoke,
can_call
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall,
kIntrinsified);
if (can_call && kUseBakerReadBarrier) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(),
(can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGet(HInvoke* invoke) {
VisitJdkUnsafeGet(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) {
VisitJdkUnsafeGetVolatile(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLong(HInvoke* invoke) {
VisitJdkUnsafeGetLong(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
VisitJdkUnsafeGetLongVolatile(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObject(HInvoke* invoke) {
VisitJdkUnsafeGetObject(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
VisitJdkUnsafeGetObjectVolatile(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetByte(HInvoke* invoke) {
VisitJdkUnsafeGetByte(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGet(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetAcquire(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetLong(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetLongVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetLongAcquire(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetObject(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetObjectVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetObjectAcquire(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetByte(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGet(HInvoke* invoke) {
VisitJdkUnsafeGet(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) {
VisitJdkUnsafeGetVolatile(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLong(HInvoke* invoke) {
VisitJdkUnsafeGetLong(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
VisitJdkUnsafeGetLongVolatile(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObject(HInvoke* invoke) {
VisitJdkUnsafeGetObject(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
VisitJdkUnsafeGetObjectVolatile(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetByte(HInvoke* invoke) {
VisitJdkUnsafeGetByte(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGet(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt32, /*is_volatile=*/ false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt32, /*is_volatile=*/ true, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetAcquire(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt32, /*is_volatile=*/ true, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetLong(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt64, /*is_volatile=*/ false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetLongVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt64, /*is_volatile=*/ true, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetLongAcquire(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt64, /*is_volatile=*/ true, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetObject(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kReference, /*is_volatile=*/ false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetObjectVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kReference, /*is_volatile=*/ true, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetObjectAcquire(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kReference, /*is_volatile=*/ true, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetByte(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt8, /*is_volatile=*/false, codegen_);
}
static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* allocator,
DataType::Type type,
HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
if (type == DataType::Type::kReference) {
// Need temp registers for card-marking.
locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too.
locations->AddTemp(Location::RequiresRegister());
}
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePut(HInvoke* invoke) {
VisitJdkUnsafePut(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutOrdered(HInvoke* invoke) {
VisitJdkUnsafePutOrdered(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutVolatile(HInvoke* invoke) {
VisitJdkUnsafePutVolatile(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObject(HInvoke* invoke) {
VisitJdkUnsafePutObject(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
VisitJdkUnsafePutObjectOrdered(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
VisitJdkUnsafePutObjectVolatile(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLong(HInvoke* invoke) {
VisitJdkUnsafePutLong(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
VisitJdkUnsafePutLongOrdered(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
VisitJdkUnsafePutLongVolatile(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutByte(HInvoke* invoke) {
VisitJdkUnsafePut(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePut(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutRelease(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutObject(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutObjectOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutObjectVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutObjectRelease(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutLong(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutLongOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutLongVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutLongRelease(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutByte(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kUint8, invoke);
}
// We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86
// memory model.
static void GenUnsafePut(LocationSummary* locations, DataType::Type type, bool is_volatile,
CodeGeneratorX86_64* codegen) {
X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>();
CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>();
CpuRegister value = locations->InAt(3).AsRegister<CpuRegister>();
if (type == DataType::Type::kInt64) {
__ movq(Address(base, offset, ScaleFactor::TIMES_1, 0), value);
} else if (kPoisonHeapReferences && type == DataType::Type::kReference) {
CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
__ movl(temp, value);
__ PoisonHeapReference(temp);
__ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), temp);
} else {
__ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value);
}
if (is_volatile) {
codegen->MemoryFence();
}
if (type == DataType::Type::kReference) {
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MarkGCCard(locations->GetTemp(0).AsRegister<CpuRegister>(),
locations->GetTemp(1).AsRegister<CpuRegister>(),
base,
value,
value_can_be_null);
}
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePut(HInvoke* invoke) {
VisitJdkUnsafePut(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutOrdered(HInvoke* invoke) {
VisitJdkUnsafePutOrdered(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutVolatile(HInvoke* invoke) {
VisitJdkUnsafePutVolatile(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObject(HInvoke* invoke) {
VisitJdkUnsafePutObject(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
VisitJdkUnsafePutObjectOrdered(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
VisitJdkUnsafePutObjectVolatile(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLong(HInvoke* invoke) {
VisitJdkUnsafePutLong(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
VisitJdkUnsafePutLongOrdered(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
VisitJdkUnsafePutLongVolatile(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutByte(HInvoke* invoke) {
VisitJdkUnsafePutByte(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePut(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /*is_volatile=*/ false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /*is_volatile=*/ false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /*is_volatile=*/ true, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutRelease(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile= */ true, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutObject(HInvoke* invoke) {
GenUnsafePut(
invoke->GetLocations(), DataType::Type::kReference, /*is_volatile=*/ false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutObjectOrdered(HInvoke* invoke) {
GenUnsafePut(
invoke->GetLocations(), DataType::Type::kReference, /*is_volatile=*/ false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutObjectVolatile(HInvoke* invoke) {
GenUnsafePut(
invoke->GetLocations(), DataType::Type::kReference, /*is_volatile=*/ true, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutObjectRelease(HInvoke* invoke) {
GenUnsafePut(
invoke->GetLocations(), DataType::Type::kReference, /*is_volatile=*/ true, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutLong(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /*is_volatile=*/ false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutLongOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /*is_volatile=*/ false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutLongVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /*is_volatile=*/ true, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutLongRelease(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /*is_volatile=*/ true, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutByte(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt8, /*is_volatile=*/false, codegen_);
}
static void CreateUnsafeCASLocations(ArenaAllocator* allocator,
DataType::Type type,
HInvoke* invoke) {
const bool can_call = gUseReadBarrier &&
kUseBakerReadBarrier &&
IsUnsafeCASObject(invoke);
LocationSummary* locations =
new (allocator) LocationSummary(invoke,
can_call
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
// expected value must be in EAX/RAX.
locations->SetInAt(3, Location::RegisterLocation(RAX));
locations->SetInAt(4, Location::RequiresRegister());
// RAX is clobbered in CMPXCHG, but we set it as out so no need to add it as temporary.
locations->SetOut(Location::RegisterLocation(RAX));
if (type == DataType::Type::kReference) {
// Need two temporaries for MarkGCCard.
locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too.
locations->AddTemp(Location::RequiresRegister());
if (gUseReadBarrier) {
// Need three temporaries for GenerateReferenceLoadWithBakerReadBarrier.
DCHECK(kUseBakerReadBarrier);
locations->AddTemp(Location::RequiresRegister());
}
}
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASInt(HInvoke* invoke) {
VisitJdkUnsafeCASInt(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASLong(HInvoke* invoke) {
VisitJdkUnsafeCASLong(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASObject(HInvoke* invoke) {
VisitJdkUnsafeCASObject(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeCASInt(HInvoke* invoke) {
// `jdk.internal.misc.Unsafe.compareAndSwapInt` has compare-and-set semantics (see javadoc).
VisitJdkUnsafeCompareAndSetInt(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeCASLong(HInvoke* invoke) {
// `jdk.internal.misc.Unsafe.compareAndSwapLong` has compare-and-set semantics (see javadoc).
VisitJdkUnsafeCompareAndSetLong(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeCASObject(HInvoke* invoke) {
// `jdk.internal.misc.Unsafe.compareAndSwapObject` has compare-and-set semantics (see javadoc).
VisitJdkUnsafeCompareAndSetObject(invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeCompareAndSetInt(HInvoke* invoke) {
CreateUnsafeCASLocations(allocator_, DataType::Type::kInt32, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeCompareAndSetLong(HInvoke* invoke) {
CreateUnsafeCASLocations(allocator_, DataType::Type::kInt64, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeCompareAndSetObject(HInvoke* invoke) {
// The only supported read barrier implementation is the Baker-style read barriers.
if (gUseReadBarrier && !kUseBakerReadBarrier) {
return;
}
CreateUnsafeCASLocations(allocator_, DataType::Type::kReference, invoke);
}
// Convert ZF into the Boolean result.
static inline void GenZFlagToResult(X86_64Assembler* assembler, CpuRegister out) {
__ setcc(kZero, out);
__ movzxb(out, out);
}
// This function assumes that expected value for CMPXCHG and output are in RAX.
static void GenCompareAndSetOrExchangeInt(CodeGeneratorX86_64* codegen,
DataType::Type type,
Address field_addr,
Location value,
bool is_cmpxchg,
bool byte_swap) {
X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
InstructionCodeGeneratorX86_64* instr_codegen = codegen->GetInstructionCodegen();
if (byte_swap) {
instr_codegen->Bswap(Location::RegisterLocation(RAX), type);
instr_codegen->Bswap(value, type);
}
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kInt8:
__ LockCmpxchgb(field_addr, value.AsRegister<CpuRegister>());
break;
case DataType::Type::kInt16:
case DataType::Type::kUint16:
__ LockCmpxchgw(field_addr, value.AsRegister<CpuRegister>());
break;
case DataType::Type::kInt32:
case DataType::Type::kUint32:
__ LockCmpxchgl(field_addr, value.AsRegister<CpuRegister>());
break;
case DataType::Type::kInt64:
case DataType::Type::kUint64:
__ LockCmpxchgq(field_addr, value.AsRegister<CpuRegister>());
break;
default:
LOG(FATAL) << "Unexpected non-integral CAS type " << type;
}
// LOCK CMPXCHG has full barrier semantics, so we don't need barriers here.
if (byte_swap) {
// Restore byte order for value.
instr_codegen->Bswap(value, type);
}
CpuRegister rax(RAX);
if (is_cmpxchg) {
if (byte_swap) {
instr_codegen->Bswap(Location::RegisterLocation(RAX), type);
}
// Sign-extend or zero-extend the result as necessary.
switch (type) {
case DataType::Type::kBool:
__ movzxb(rax, rax);
break;
case DataType::Type::kInt8:
__ movsxb(rax, rax);
break;
case DataType::Type::kInt16:
__ movsxw(rax, rax);
break;
case DataType::Type::kUint16:
__ movzxw(rax, rax);
break;
default:
break; // No need to do anything.
}
} else {
GenZFlagToResult(assembler, rax);
}
}
static void GenCompareAndSetOrExchangeFP(CodeGeneratorX86_64* codegen,
Address field_addr,
CpuRegister temp,
Location value,
Location expected,
Location out,
bool is64bit,
bool is_cmpxchg,
bool byte_swap) {
X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
InstructionCodeGeneratorX86_64* instr_codegen = codegen->GetInstructionCodegen();
Location rax_loc = Location::RegisterLocation(RAX);
Location temp_loc = Location::RegisterLocation(temp.AsRegister());
DataType::Type type = is64bit ? DataType::Type::kUint64 : DataType::Type::kUint32;
// Copy `expected` to RAX (required by the CMPXCHG instruction).
codegen->Move(rax_loc, expected);
// Copy value to some other register (ensure it's not RAX).
DCHECK_NE(temp.AsRegister(), RAX);
codegen->Move(temp_loc, value);
if (byte_swap) {
instr_codegen->Bswap(rax_loc, type);
instr_codegen->Bswap(temp_loc, type);
}
if (is64bit) {
__ LockCmpxchgq(field_addr, temp);
} else {
__ LockCmpxchgl(field_addr, temp);
}
// LOCK CMPXCHG has full barrier semantics, so we don't need barriers here.
// No need to restore byte order for temporary register.
if (is_cmpxchg) {
if (byte_swap) {
instr_codegen->Bswap(rax_loc, type);
}
__ movd(out.AsFpuRegister<XmmRegister>(), CpuRegister(RAX), is64bit);
} else {
GenZFlagToResult(assembler, out.AsRegister<CpuRegister>());
}
}
// This function assumes that expected value for CMPXCHG and output are in RAX.
static void GenCompareAndSetOrExchangeRef(CodeGeneratorX86_64* codegen,
HInvoke* invoke,
CpuRegister base,
CpuRegister offset,
CpuRegister value,
CpuRegister temp1,
CpuRegister temp2,
CpuRegister temp3,
bool is_cmpxchg) {
// The only supported read barrier implementation is the Baker-style read barriers.
DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier);
X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
// Mark card for object assuming new value is stored.
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MarkGCCard(temp1, temp2, base, value, value_can_be_null);
Address field_addr(base, offset, TIMES_1, 0);
if (gUseReadBarrier && kUseBakerReadBarrier) {
// Need to make sure the reference stored in the field is a to-space
// one before attempting the CAS or the CAS could fail incorrectly.
codegen->GenerateReferenceLoadWithBakerReadBarrier(
invoke,
Location::RegisterLocation(temp3.AsRegister()),
base,
field_addr,
/* needs_null_check= */ false,
/* always_update_field= */ true,
&temp1,
&temp2);
} else {
// Nothing to do, the value will be loaded into the out register by CMPXCHG.
}
bool base_equals_value = (base.AsRegister() == value.AsRegister());
Register value_reg = value.AsRegister();
if (kPoisonHeapReferences) {
if (base_equals_value) {
// If `base` and `value` are the same register location, move `value_reg` to a temporary
// register. This way, poisoning `value_reg` won't invalidate `base`.
value_reg = temp1.AsRegister();
__ movl(CpuRegister(value_reg), base);
}
// Check that the register allocator did not assign the location of expected value (RAX) to
// `value` nor to `base`, so that heap poisoning (when enabled) works as intended below.
// - If `value` were equal to RAX, both references would be poisoned twice, meaning they would
// not be poisoned at all, as heap poisoning uses address negation.
// - If `base` were equal to RAX, poisoning RAX would invalidate `base`.
DCHECK_NE(RAX, value_reg);
DCHECK_NE(RAX, base.AsRegister());
__ PoisonHeapReference(CpuRegister(RAX));
__ PoisonHeapReference(CpuRegister(value_reg));
}
__ LockCmpxchgl(field_addr, CpuRegister(value_reg));
// LOCK CMPXCHG has full barrier semantics, so we don't need barriers.
if (is_cmpxchg) {
// Output is in RAX, so we can rely on CMPXCHG and do nothing.
__ MaybeUnpoisonHeapReference(CpuRegister(RAX));
} else {
GenZFlagToResult(assembler, CpuRegister(RAX));
}
// If heap poisoning is enabled, we need to unpoison the values that were poisoned earlier.
if (kPoisonHeapReferences) {
if (base_equals_value) {
// `value_reg` has been moved to a temporary register, no need to unpoison it.
} else {
// Ensure `value` is not RAX, so that unpoisoning the former does not invalidate the latter.
DCHECK_NE(RAX, value_reg);
__ UnpoisonHeapReference(CpuRegister(value_reg));
}
}
}
// In debug mode, return true if all registers are pairwise different. In release mode, do nothing
// and always return true.
static bool RegsAreAllDifferent(const std::vector<CpuRegister>& regs) {
if (kIsDebugBuild) {
for (size_t i = 0; i < regs.size(); ++i) {
for (size_t j = 0; j < i; ++j) {
if (regs[i].AsRegister() == regs[j].AsRegister()) {
return false;
}
}
}
}
return true;
}
// GenCompareAndSetOrExchange handles all value types and therefore accepts generic locations and
// temporary indices that may not correspond to real registers for code paths that do not use them.
static void GenCompareAndSetOrExchange(CodeGeneratorX86_64* codegen,
HInvoke* invoke,
DataType::Type type,
CpuRegister base,
CpuRegister offset,
uint32_t temp1_index,
uint32_t temp2_index,
uint32_t temp3_index,
Location new_value,
Location expected,
Location out,
bool is_cmpxchg,
bool byte_swap) {
LocationSummary* locations = invoke->GetLocations();
Address field_address(base, offset, TIMES_1, 0);
if (DataType::IsFloatingPointType(type)) {
bool is64bit = (type == DataType::Type::kFloat64);
CpuRegister temp = locations->GetTemp(temp1_index).AsRegister<CpuRegister>();
DCHECK(RegsAreAllDifferent({base, offset, temp, CpuRegister(RAX)}));
GenCompareAndSetOrExchangeFP(
codegen, field_address, temp, new_value, expected, out, is64bit, is_cmpxchg, byte_swap);
} else {
// Both the expected value for CMPXCHG and the output are in RAX.
DCHECK_EQ(RAX, expected.AsRegister<Register>());
DCHECK_EQ(RAX, out.AsRegister<Register>());
if (type == DataType::Type::kReference) {
CpuRegister new_value_reg = new_value.AsRegister<CpuRegister>();
CpuRegister temp1 = locations->GetTemp(temp1_index).AsRegister<CpuRegister>();
CpuRegister temp2 = locations->GetTemp(temp2_index).AsRegister<CpuRegister>();
CpuRegister temp3 = gUseReadBarrier
? locations->GetTemp(temp3_index).AsRegister<CpuRegister>()
: CpuRegister(kNoRegister);
DCHECK(RegsAreAllDifferent({base, offset, temp1, temp2, temp3}));
DCHECK(!byte_swap);
GenCompareAndSetOrExchangeRef(
codegen, invoke, base, offset, new_value_reg, temp1, temp2, temp3, is_cmpxchg);
} else {
GenCompareAndSetOrExchangeInt(codegen, type, field_address, new_value, is_cmpxchg, byte_swap);
}
}
}
static void GenCAS(DataType::Type type, HInvoke* invoke, CodeGeneratorX86_64* codegen) {
LocationSummary* locations = invoke->GetLocations();
GenCompareAndSetOrExchange(codegen,
invoke,
type,
/*base=*/ locations->InAt(1).AsRegister<CpuRegister>(),
/*offset=*/ locations->InAt(2).AsRegister<CpuRegister>(),
/*temp1_index=*/ 0,
/*temp2_index=*/ 1,
/*temp3_index=*/ 2,
/*new_value=*/ locations->InAt(4),
/*expected=*/ locations->InAt(3),
locations->Out(),
/*is_cmpxchg=*/ false,
/*byte_swap=*/ false);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASInt(HInvoke* invoke) {
VisitJdkUnsafeCASInt(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASLong(HInvoke* invoke) {
VisitJdkUnsafeCASLong(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASObject(HInvoke* invoke) {
VisitJdkUnsafeCASObject(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeCASInt(HInvoke* invoke) {
// `jdk.internal.misc.Unsafe.compareAndSwapInt` has compare-and-set semantics (see javadoc).
VisitJdkUnsafeCompareAndSetInt(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeCASLong(HInvoke* invoke) {
// `jdk.internal.misc.Unsafe.compareAndSwapLong` has compare-and-set semantics (see javadoc).
VisitJdkUnsafeCompareAndSetLong(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeCASObject(HInvoke* invoke) {
// `jdk.internal.misc.Unsafe.compareAndSwapObject` has compare-and-set semantics (see javadoc).
VisitJdkUnsafeCompareAndSetObject(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeCompareAndSetInt(HInvoke* invoke) {
GenCAS(DataType::Type::kInt32, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeCompareAndSetLong(HInvoke* invoke) {
GenCAS(DataType::Type::kInt64, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeCompareAndSetObject(HInvoke* invoke) {
// The only supported read barrier implementation is the Baker-style read barriers.
DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier);
GenCAS(DataType::Type::kReference, invoke, codegen_);
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerReverse(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresRegister());
}
static void SwapBits(CpuRegister reg, CpuRegister temp, int32_t shift, int32_t mask,
X86_64Assembler* assembler) {
Immediate imm_shift(shift);
Immediate imm_mask(mask);
__ movl(temp, reg);
__ shrl(reg, imm_shift);
__ andl(temp, imm_mask);
__ andl(reg, imm_mask);
__ shll(temp, imm_shift);
__ orl(reg, temp);
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerReverse(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
/*
* Use one bswap instruction to reverse byte order first and then use 3 rounds of
* swapping bits to reverse bits in a number x. Using bswap to save instructions
* compared to generic luni implementation which has 5 rounds of swapping bits.
* x = bswap x
* x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555;
* x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333;
* x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F;
*/
__ bswapl(reg);
SwapBits(reg, temp, 1, 0x55555555, assembler);
SwapBits(reg, temp, 2, 0x33333333, assembler);
SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler);
}
void IntrinsicLocationsBuilderX86_64::VisitLongReverse(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
static void SwapBits64(CpuRegister reg, CpuRegister temp, CpuRegister temp_mask,
int32_t shift, int64_t mask, X86_64Assembler* assembler) {
Immediate imm_shift(shift);
__ movq(temp_mask, Immediate(mask));
__ movq(temp, reg);
__ shrq(reg, imm_shift);
__ andq(temp, temp_mask);
__ andq(reg, temp_mask);
__ shlq(temp, imm_shift);
__ orq(reg, temp);
}
void IntrinsicCodeGeneratorX86_64::VisitLongReverse(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister temp1 = locations->GetTemp(0).AsRegister<CpuRegister>();
CpuRegister temp2 = locations->GetTemp(1).AsRegister<CpuRegister>();
/*
* Use one bswap instruction to reverse byte order first and then use 3 rounds of
* swapping bits to reverse bits in a long number x. Using bswap to save instructions
* compared to generic luni implementation which has 5 rounds of swapping bits.
* x = bswap x
* x = (x & 0x5555555555555555) << 1 | (x >> 1) & 0x5555555555555555;
* x = (x & 0x3333333333333333) << 2 | (x >> 2) & 0x3333333333333333;
* x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F0F0F0F0F;
*/
__ bswapq(reg);
SwapBits64(reg, temp1, temp2, 1, INT64_C(0x5555555555555555), assembler);
SwapBits64(reg, temp1, temp2, 2, INT64_C(0x3333333333333333), assembler);
SwapBits64(reg, temp1, temp2, 4, INT64_C(0x0f0f0f0f0f0f0f0f), assembler);
}
static void CreateBitCountLocations(
ArenaAllocator* allocator, CodeGeneratorX86_64* codegen, HInvoke* invoke) {
if (!codegen->GetInstructionSetFeatures().HasPopCnt()) {
// Do nothing if there is no popcnt support. This results in generating
// a call for the intrinsic rather than direct code.
return;
}
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister());
}
static void GenBitCount(X86_64Assembler* assembler,
CodeGeneratorX86_64* codegen,
HInvoke* invoke,
bool is_long) {
LocationSummary* locations = invoke->GetLocations();
Location src = locations->InAt(0);
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
if (invoke->InputAt(0)->IsConstant()) {
// Evaluate this at compile time.
int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
int32_t result = is_long
? POPCOUNT(static_cast<uint64_t>(value))
: POPCOUNT(static_cast<uint32_t>(value));
codegen->Load32BitValue(out, result);
return;
}
if (src.IsRegister()) {
if (is_long) {
__ popcntq(out, src.AsRegister<CpuRegister>());
} else {
__ popcntl(out, src.AsRegister<CpuRegister>());
}
} else if (is_long) {
DCHECK(src.IsDoubleStackSlot());
__ popcntq(out, Address(CpuRegister(RSP), src.GetStackIndex()));
} else {
DCHECK(src.IsStackSlot());
__ popcntl(out, Address(CpuRegister(RSP), src.GetStackIndex()));
}
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerBitCount(HInvoke* invoke) {
CreateBitCountLocations(allocator_, codegen_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerBitCount(HInvoke* invoke) {
GenBitCount(GetAssembler(), codegen_, invoke, /* is_long= */ false);
}
void IntrinsicLocationsBuilderX86_64::VisitLongBitCount(HInvoke* invoke) {
CreateBitCountLocations(allocator_, codegen_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitLongBitCount(HInvoke* invoke) {
GenBitCount(GetAssembler(), codegen_, invoke, /* is_long= */ true);
}
static void CreateOneBitLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is_high) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(is_high ? Location::RegisterLocation(RCX) // needs CL
: Location::RequiresRegister()); // any will do
}
static void GenOneBit(X86_64Assembler* assembler,
CodeGeneratorX86_64* codegen,
HInvoke* invoke,
bool is_high, bool is_long) {
LocationSummary* locations = invoke->GetLocations();
Location src = locations->InAt(0);
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
if (invoke->InputAt(0)->IsConstant()) {
// Evaluate this at compile time.
int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
if (value == 0) {
__ xorl(out, out); // Clears upper bits too.
return;
}
// Nonzero value.
if (is_high) {
value = is_long ? 63 - CLZ(static_cast<uint64_t>(value))
: 31 - CLZ(static_cast<uint32_t>(value));
} else {
value = is_long ? CTZ(static_cast<uint64_t>(value))
: CTZ(static_cast<uint32_t>(value));
}
if (is_long) {
codegen->Load64BitValue(out, 1ULL << value);
} else {
codegen->Load32BitValue(out, 1 << value);
}
return;
}
// Handle the non-constant cases.
if (!is_high && codegen->GetInstructionSetFeatures().HasAVX2() &&
src.IsRegister()) {
__ blsi(out, src.AsRegister<CpuRegister>());
} else {
CpuRegister tmp = locations->GetTemp(0).AsRegister<CpuRegister>();
if (is_high) {
// Use architectural support: basically 1 << bsr.
if (src.IsRegister()) {
if (is_long) {
__ bsrq(tmp, src.AsRegister<CpuRegister>());
} else {
__ bsrl(tmp, src.AsRegister<CpuRegister>());
}
} else if (is_long) {
DCHECK(src.IsDoubleStackSlot());
__ bsrq(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
} else {
DCHECK(src.IsStackSlot());
__ bsrl(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
}
// BSR sets ZF if the input was zero.
NearLabel is_zero, done;
__ j(kEqual, &is_zero);
__ movl(out, Immediate(1)); // Clears upper bits too.
if (is_long) {
__ shlq(out, tmp);
} else {
__ shll(out, tmp);
}
__ jmp(&done);
__ Bind(&is_zero);
__ xorl(out, out); // Clears upper bits too.
__ Bind(&done);
} else {
// Copy input into temporary.
if (src.IsRegister()) {
if (is_long) {
__ movq(tmp, src.AsRegister<CpuRegister>());
} else {
__ movl(tmp, src.AsRegister<CpuRegister>());
}
} else if (is_long) {
DCHECK(src.IsDoubleStackSlot());
__ movq(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
} else {
DCHECK(src.IsStackSlot());
__ movl(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
}
// Do the bit twiddling: basically tmp & -tmp;
if (is_long) {
__ movq(out, tmp);
__ negq(tmp);
__ andq(out, tmp);
} else {
__ movl(out, tmp);
__ negl(tmp);
__ andl(out, tmp);
}
}
}
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) {
CreateOneBitLocations(allocator_, invoke, /* is_high= */ true);
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) {
GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ true, /* is_long= */ false);
}
void IntrinsicLocationsBuilderX86_64::VisitLongHighestOneBit(HInvoke* invoke) {
CreateOneBitLocations(allocator_, invoke, /* is_high= */ true);
}
void IntrinsicCodeGeneratorX86_64::VisitLongHighestOneBit(HInvoke* invoke) {
GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ true, /* is_long= */ true);
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) {
CreateOneBitLocations(allocator_, invoke, /* is_high= */ false);
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) {
GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ false, /* is_long= */ false);
}
void IntrinsicLocationsBuilderX86_64::VisitLongLowestOneBit(HInvoke* invoke) {
CreateOneBitLocations(allocator_, invoke, /* is_high= */ false);
}
void IntrinsicCodeGeneratorX86_64::VisitLongLowestOneBit(HInvoke* invoke) {
GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ false, /* is_long= */ true);
}
static void CreateLeadingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister());
}
static void GenLeadingZeros(X86_64Assembler* assembler,
CodeGeneratorX86_64* codegen,
HInvoke* invoke, bool is_long) {
LocationSummary* locations = invoke->GetLocations();
Location src = locations->InAt(0);
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
int zero_value_result = is_long ? 64 : 32;
if (invoke->InputAt(0)->IsConstant()) {
// Evaluate this at compile time.
int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
if (value == 0) {
value = zero_value_result;
} else {
value = is_long ? CLZ(static_cast<uint64_t>(value)) : CLZ(static_cast<uint32_t>(value));
}
codegen->Load32BitValue(out, value);
return;
}
// Handle the non-constant cases.
if (src.IsRegister()) {
if (is_long) {
__ bsrq(out, src.AsRegister<CpuRegister>());
} else {
__ bsrl(out, src.AsRegister<CpuRegister>());
}
} else if (is_long) {
DCHECK(src.IsDoubleStackSlot());
__ bsrq(out, Address(CpuRegister(RSP), src.GetStackIndex()));
} else {
DCHECK(src.IsStackSlot());
__ bsrl(out, Address(CpuRegister(RSP), src.GetStackIndex()));
}
// BSR sets ZF if the input was zero, and the output is undefined.
NearLabel is_zero, done;
__ j(kEqual, &is_zero);
// Correct the result from BSR to get the CLZ result.
__ xorl(out, Immediate(zero_value_result - 1));
__ jmp(&done);
// Fix the zero case with the expected result.
__ Bind(&is_zero);
__ movl(out, Immediate(zero_value_result));
__ Bind(&done);
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
CreateLeadingZeroLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ false);
}
void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
CreateLeadingZeroLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ true);
}
static void CreateTrailingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister());
}
static void GenTrailingZeros(X86_64Assembler* assembler,
CodeGeneratorX86_64* codegen,
HInvoke* invoke, bool is_long) {
LocationSummary* locations = invoke->GetLocations();
Location src = locations->InAt(0);
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
int zero_value_result = is_long ? 64 : 32;
if (invoke->InputAt(0)->IsConstant()) {
// Evaluate this at compile time.
int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
if (value == 0) {
value = zero_value_result;
} else {
value = is_long ? CTZ(static_cast<uint64_t>(value)) : CTZ(static_cast<uint32_t>(value));
}
codegen->Load32BitValue(out, value);
return;
}
// Handle the non-constant cases.
if (src.IsRegister()) {
if (is_long) {
__ bsfq(out, src.AsRegister<CpuRegister>());
} else {
__ bsfl(out, src.AsRegister<CpuRegister>());
}
} else if (is_long) {
DCHECK(src.IsDoubleStackSlot());
__ bsfq(out, Address(CpuRegister(RSP), src.GetStackIndex()));
} else {
DCHECK(src.IsStackSlot());
__ bsfl(out, Address(CpuRegister(RSP), src.GetStackIndex()));
}
// BSF sets ZF if the input was zero, and the output is undefined.
NearLabel done;
__ j(kNotEqual, &done);
// Fix the zero case with the expected result.
__ movl(out, Immediate(zero_value_result));
__ Bind(&done);
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
CreateTrailingZeroLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ false);
}
void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
CreateTrailingZeroLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ true);
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerValueOf(HInvoke* invoke) {
InvokeRuntimeCallingConvention calling_convention;
IntrinsicVisitor::ComputeIntegerValueOfLocations(
invoke,
codegen_,
Location::RegisterLocation(RAX),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerValueOf(HInvoke* invoke) {
IntrinsicVisitor::IntegerValueOfInfo info =
IntrinsicVisitor::ComputeIntegerValueOfInfo(invoke, codegen_->GetCompilerOptions());
LocationSummary* locations = invoke->GetLocations();
X86_64Assembler* assembler = GetAssembler();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
InvokeRuntimeCallingConvention calling_convention;
CpuRegister argument = CpuRegister(calling_convention.GetRegisterAt(0));
auto allocate_instance = [&]() {
codegen_->LoadIntrinsicDeclaringClass(argument, invoke);
codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
};
if (invoke->InputAt(0)->IsIntConstant()) {
int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue();
if (static_cast<uint32_t>(value - info.low) < info.length) {
// Just embed the j.l.Integer in the code.
DCHECK_NE(info.value_boot_image_reference, IntegerValueOfInfo::kInvalidReference);
codegen_->LoadBootImageAddress(out, info.value_boot_image_reference);
} else {
DCHECK(locations->CanCall());
// Allocate and initialize a new j.l.Integer.
// TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the
// JIT object table.
allocate_instance();
__ movl(Address(out, info.value_offset), Immediate(value));
}
} else {
DCHECK(locations->CanCall());
CpuRegister in = locations->InAt(0).AsRegister<CpuRegister>();
// Check bounds of our cache.
__ leal(out, Address(in, -info.low));
__ cmpl(out, Immediate(info.length));
NearLabel allocate, done;
__ j(kAboveEqual, &allocate);
// If the value is within the bounds, load the j.l.Integer directly from the array.
DCHECK_NE(out.AsRegister(), argument.AsRegister());
codegen_->LoadBootImageAddress(argument, info.array_data_boot_image_reference);
static_assert((1u << TIMES_4) == sizeof(mirror::HeapReference<mirror::Object>),
"Check heap reference size.");
__ movl(out, Address(argument, out, TIMES_4, 0));
__ MaybeUnpoisonHeapReference(out);
__ jmp(&done);
__ Bind(&allocate);
// Otherwise allocate and initialize a new j.l.Integer.
allocate_instance();
__ movl(Address(out, info.value_offset), in);
__ Bind(&done);
}
}
void IntrinsicLocationsBuilderX86_64::VisitReferenceGetReferent(HInvoke* invoke) {
IntrinsicVisitor::CreateReferenceGetReferentLocations(invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitReferenceGetReferent(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Location obj = locations->InAt(0);
Location out = locations->Out();
SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen_->AddSlowPath(slow_path);
if (gUseReadBarrier) {
// Check self->GetWeakRefAccessEnabled().
ThreadOffset64 offset = Thread::WeakRefAccessEnabledOffset<kX86_64PointerSize>();
__ gs()->cmpl(Address::Absolute(offset, /* no_rip= */ true),
Immediate(enum_cast<int32_t>(WeakRefAccessState::kVisiblyEnabled)));
__ j(kNotEqual, slow_path->GetEntryLabel());
}
// Load the java.lang.ref.Reference class, use the output register as a temporary.
codegen_->LoadIntrinsicDeclaringClass(out.AsRegister<CpuRegister>(), invoke);
// Check static fields java.lang.ref.Reference.{disableIntrinsic,slowPathEnabled} together.
MemberOffset disable_intrinsic_offset = IntrinsicVisitor::GetReferenceDisableIntrinsicOffset();
DCHECK_ALIGNED(disable_intrinsic_offset.Uint32Value(), 2u);
DCHECK_EQ(disable_intrinsic_offset.Uint32Value() + 1u,
IntrinsicVisitor::GetReferenceSlowPathEnabledOffset().Uint32Value());
__ cmpw(Address(out.AsRegister<CpuRegister>(), disable_intrinsic_offset.Uint32Value()),
Immediate(0));
__ j(kNotEqual, slow_path->GetEntryLabel());
// Load the value from the field.
uint32_t referent_offset = mirror::Reference::ReferentOffset().Uint32Value();
if (gUseReadBarrier && kUseBakerReadBarrier) {
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
out,
obj.AsRegister<CpuRegister>(),
referent_offset,
/*needs_null_check=*/ true);
// Note that the fence is a no-op, thanks to the x86-64 memory model.
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // `referent` is volatile.
} else {
__ movl(out.AsRegister<CpuRegister>(), Address(obj.AsRegister<CpuRegister>(), referent_offset));
codegen_->MaybeRecordImplicitNullCheck(invoke);
// Note that the fence is a no-op, thanks to the x86-64 memory model.
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // `referent` is volatile.
codegen_->MaybeGenerateReadBarrierSlow(invoke, out, out, obj, referent_offset);
}
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86_64::VisitReferenceRefersTo(HInvoke* invoke) {
IntrinsicVisitor::CreateReferenceRefersToLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitReferenceRefersTo(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister other = locations->InAt(1).AsRegister<CpuRegister>();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
uint32_t referent_offset = mirror::Reference::ReferentOffset().Uint32Value();
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
__ movl(out, Address(obj, referent_offset));
codegen_->MaybeRecordImplicitNullCheck(invoke);
__ MaybeUnpoisonHeapReference(out);
// Note that the fence is a no-op, thanks to the x86-64 memory model.
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // `referent` is volatile.
__ cmpl(out, other);
if (gUseReadBarrier) {
DCHECK(kUseBakerReadBarrier);
NearLabel calculate_result;
__ j(kEqual, &calculate_result); // ZF set if taken.
// Check if the loaded reference is null in a way that leaves ZF clear for null.
__ cmpl(out, Immediate(1));
__ j(kBelow, &calculate_result); // ZF clear if taken.
// For correct memory visibility, we need a barrier before loading the lock word
// but we already have the barrier emitted for volatile load above which is sufficient.
// Load the lockword and check if it is a forwarding address.
static_assert(LockWord::kStateShift == 30u);
static_assert(LockWord::kStateForwardingAddress == 3u);
__ movl(out, Address(out, monitor_offset));
__ cmpl(out, Immediate(static_cast<int32_t>(0xc0000000)));
__ j(kBelow, &calculate_result); // ZF clear if taken.
// Extract the forwarding address and compare with `other`.
__ shll(out, Immediate(LockWord::kForwardingAddressShift));
__ cmpl(out, other);
__ Bind(&calculate_result);
}
// Convert ZF into the Boolean result.
__ setcc(kEqual, out);
__ movzxb(out, out);
}
void IntrinsicLocationsBuilderX86_64::VisitThreadInterrupted(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorX86_64::VisitThreadInterrupted(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
CpuRegister out = invoke->GetLocations()->Out().AsRegister<CpuRegister>();
Address address = Address::Absolute
(Thread::InterruptedOffset<kX86_64PointerSize>().Int32Value(), /* no_rip= */ true);
NearLabel done;
__ gs()->movl(out, address);
__ testl(out, out);
__ j(kEqual, &done);
__ gs()->movl(address, Immediate(0));
codegen_->MemoryFence();
__ Bind(&done);
}
void IntrinsicLocationsBuilderX86_64::VisitReachabilityFence(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::Any());
}
void IntrinsicCodeGeneratorX86_64::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { }
static void CreateDivideUnsignedLocations(HInvoke* invoke, ArenaAllocator* allocator) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
locations->SetInAt(0, Location::RegisterLocation(RAX));
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
// Intel uses edx:eax as the dividend.
locations->AddTemp(Location::RegisterLocation(RDX));
}
static void GenerateDivideUnsigned(HInvoke* invoke,
CodeGeneratorX86_64* codegen,
DataType::Type data_type) {
LocationSummary* locations = invoke->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
CpuRegister rdx = locations->GetTemp(0).AsRegister<CpuRegister>();
CpuRegister second_reg = second.AsRegister<CpuRegister>();
DCHECK_EQ(RAX, first.AsRegister<Register>());
DCHECK_EQ(RAX, out.AsRegister<Register>());
DCHECK_EQ(RDX, rdx.AsRegister());
// We check if the divisor is zero and bail to the slow path to handle if so.
auto* slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen->AddSlowPath(slow_path);
X86_64Assembler* assembler = codegen->GetAssembler();
if (data_type == DataType::Type::kInt32) {
__ testl(second_reg, second_reg);
__ j(kEqual, slow_path->GetEntryLabel());
__ xorl(rdx, rdx);
__ divl(second_reg);
} else {
DCHECK(data_type == DataType::Type::kInt64);
__ testq(second_reg, second_reg);
__ j(kEqual, slow_path->GetEntryLabel());
__ xorq(rdx, rdx);
__ divq(second_reg);
}
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerDivideUnsigned(HInvoke* invoke) {
CreateDivideUnsignedLocations(invoke, allocator_);
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerDivideUnsigned(HInvoke* invoke) {
GenerateDivideUnsigned(invoke, codegen_, DataType::Type::kInt32);
}
void IntrinsicLocationsBuilderX86_64::VisitLongDivideUnsigned(HInvoke* invoke) {
CreateDivideUnsignedLocations(invoke, allocator_);
}
void IntrinsicCodeGeneratorX86_64::VisitLongDivideUnsigned(HInvoke* invoke) {
GenerateDivideUnsigned(invoke, codegen_, DataType::Type::kInt64);
}
void IntrinsicLocationsBuilderX86_64::VisitMathMultiplyHigh(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RegisterLocation(RAX));
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RegisterLocation(RDX));
locations->AddTemp(Location::RegisterLocation(RAX));
}
void IntrinsicCodeGeneratorX86_64::VisitMathMultiplyHigh(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister y = locations->InAt(1).AsRegister<CpuRegister>();
DCHECK_EQ(locations->InAt(0).AsRegister<Register>(), RAX);
DCHECK_EQ(locations->Out().AsRegister<Register>(), RDX);
__ imulq(y);
}
enum class GetAndUpdateOp {
kSet,
kAdd,
kBitwiseAnd,
kBitwiseOr,
kBitwiseXor
};
class VarHandleSlowPathX86_64 : public IntrinsicSlowPathX86_64 {
public:
explicit VarHandleSlowPathX86_64(HInvoke* invoke)
: IntrinsicSlowPathX86_64(invoke) {
}
void SetVolatile(bool is_volatile) {
is_volatile_ = is_volatile;
}
void SetAtomic(bool is_atomic) {
is_atomic_ = is_atomic;
}
void SetNeedAnyStoreBarrier(bool need_any_store_barrier) {
need_any_store_barrier_ = need_any_store_barrier;
}
void SetNeedAnyAnyBarrier(bool need_any_any_barrier) {
need_any_any_barrier_ = need_any_any_barrier;
}
void SetGetAndUpdateOp(GetAndUpdateOp get_and_update_op) {
get_and_update_op_ = get_and_update_op;
}
Label* GetByteArrayViewCheckLabel() {
return &byte_array_view_check_label_;
}
Label* GetNativeByteOrderLabel() {
return &native_byte_order_label_;
}
void EmitNativeCode(CodeGenerator* codegen) override {
if (GetByteArrayViewCheckLabel()->IsLinked()) {
EmitByteArrayViewCode(down_cast<CodeGeneratorX86_64*>(codegen));
}
IntrinsicSlowPathX86_64::EmitNativeCode(codegen);
}
private:
HInvoke* GetInvoke() const {
return GetInstruction()->AsInvoke();
}
mirror::VarHandle::AccessModeTemplate GetAccessModeTemplate() const {
return mirror::VarHandle::GetAccessModeTemplateByIntrinsic(GetInvoke()->GetIntrinsic());
}
void EmitByteArrayViewCode(CodeGeneratorX86_64* codegen);
Label byte_array_view_check_label_;
Label native_byte_order_label_;
// Arguments forwarded to specific methods.
bool is_volatile_;
bool is_atomic_;
bool need_any_store_barrier_;
bool need_any_any_barrier_;
GetAndUpdateOp get_and_update_op_;
};
static void GenerateMathFma(HInvoke* invoke, CodeGeneratorX86_64* codegen) {
DCHECK(DataType::IsFloatingPointType(invoke->GetType()));
X86_64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
DCHECK(locations->InAt(0).Equals(locations->Out()));
XmmRegister left = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister right = locations->InAt(1).AsFpuRegister<XmmRegister>();
XmmRegister accumulator = locations->InAt(2).AsFpuRegister<XmmRegister>();
if (invoke->GetType() == DataType::Type::kFloat32) {
__ vfmadd213ss(left, right, accumulator);
} else {
DCHECK_EQ(invoke->GetType(), DataType::Type::kFloat64);
__ vfmadd213sd(left, right, accumulator);
}
}
void IntrinsicCodeGeneratorX86_64::VisitMathFmaDouble(HInvoke* invoke) {
DCHECK(codegen_->GetInstructionSetFeatures().HasAVX2());
GenerateMathFma(invoke, codegen_);
}
void IntrinsicLocationsBuilderX86_64::VisitMathFmaDouble(HInvoke* invoke) {
if (codegen_->GetInstructionSetFeatures().HasAVX2()) {
CreateFPFPFPToFPCallLocations(allocator_, invoke);
}
}
void IntrinsicCodeGeneratorX86_64::VisitMathFmaFloat(HInvoke* invoke) {
DCHECK(codegen_->GetInstructionSetFeatures().HasAVX2());
GenerateMathFma(invoke, codegen_);
}
void IntrinsicLocationsBuilderX86_64::VisitMathFmaFloat(HInvoke* invoke) {
if (codegen_->GetInstructionSetFeatures().HasAVX2()) {
CreateFPFPFPToFPCallLocations(allocator_, invoke);
}
}
// Generate subtype check without read barriers.
static void GenerateSubTypeObjectCheckNoReadBarrier(CodeGeneratorX86_64* codegen,
VarHandleSlowPathX86_64* slow_path,
CpuRegister object,
CpuRegister temp,
Address type_address,
bool object_can_be_null = true) {
X86_64Assembler* assembler = codegen->GetAssembler();
const MemberOffset class_offset = mirror::Object::ClassOffset();
const MemberOffset super_class_offset = mirror::Class::SuperClassOffset();
NearLabel check_type_compatibility, type_matched;
// If the object is null, there is no need to check the type
if (object_can_be_null) {
__ testl(object, object);
__ j(kZero, &type_matched);
}
// Do not unpoison for in-memory comparison.
// We deliberately avoid the read barrier, letting the slow path handle the false negatives.
__ movl(temp, Address(object, class_offset));
__ Bind(&check_type_compatibility);
__ cmpl(temp, type_address);
__ j(kEqual, &type_matched);
// Load the super class.
__ MaybeUnpoisonHeapReference(temp);
__ movl(temp, Address(temp, super_class_offset));
// If the super class is null, we reached the root of the hierarchy without a match.
// We let the slow path handle uncovered cases (e.g. interfaces).
__ testl(temp, temp);
__ j(kEqual, slow_path->GetEntryLabel());
__ jmp(&check_type_compatibility);
__ Bind(&type_matched);
}
// Check access mode and the primitive type from VarHandle.varType.
// Check reference arguments against the VarHandle.varType; for references this is a subclass
// check without read barrier, so it can have false negatives which we handle in the slow path.
static void GenerateVarHandleAccessModeAndVarTypeChecks(HInvoke* invoke,
CodeGeneratorX86_64* codegen,
VarHandleSlowPathX86_64* slow_path,
DataType::Type type) {
X86_64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister varhandle = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
mirror::VarHandle::AccessMode access_mode =
mirror::VarHandle::GetAccessModeByIntrinsic(invoke->GetIntrinsic());
Primitive::Type primitive_type = DataTypeToPrimitive(type);
const MemberOffset var_type_offset = mirror::VarHandle::VarTypeOffset();
const MemberOffset access_mode_bit_mask_offset = mirror::VarHandle::AccessModesBitMaskOffset();
const MemberOffset primitive_type_offset = mirror::Class::PrimitiveTypeOffset();
// Check that the operation is permitted.
__ testl(Address(varhandle, access_mode_bit_mask_offset),
Immediate(1u << static_cast<uint32_t>(access_mode)));
__ j(kZero, slow_path->GetEntryLabel());
// For primitive types, we do not need a read barrier when loading a reference only for loading
// constant field through the reference. For reference types, we deliberately avoid the read
// barrier, letting the slow path handle the false negatives.
__ movl(temp, Address(varhandle, var_type_offset));
__ MaybeUnpoisonHeapReference(temp);
// Check check the varType.primitiveType field against the type we're trying to retrieve.
__ cmpw(Address(temp, primitive_type_offset), Immediate(static_cast<uint16_t>(primitive_type)));
__ j(kNotEqual, slow_path->GetEntryLabel());
if (type == DataType::Type::kReference) {
// Check reference arguments against the varType.
// False negatives due to varType being an interface or array type
// or due to the missing read barrier are handled by the slow path.
size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke);
uint32_t arguments_start = /* VarHandle object */ 1u + expected_coordinates_count;
uint32_t number_of_arguments = invoke->GetNumberOfArguments();
for (size_t arg_index = arguments_start; arg_index != number_of_arguments; ++arg_index) {
HInstruction* arg = invoke->InputAt(arg_index);
DCHECK_EQ(arg->GetType(), DataType::Type::kReference);
if (!arg->IsNullConstant()) {
CpuRegister arg_reg = invoke->GetLocations()->InAt(arg_index).AsRegister<CpuRegister>();
Address type_addr(varhandle, var_type_offset);
GenerateSubTypeObjectCheckNoReadBarrier(codegen, slow_path, arg_reg, temp, type_addr);
}
}
}
}
static void GenerateVarHandleStaticFieldCheck(HInvoke* invoke,
CodeGeneratorX86_64* codegen,
VarHandleSlowPathX86_64* slow_path) {
X86_64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister varhandle = locations->InAt(0).AsRegister<CpuRegister>();
const MemberOffset coordinate_type0_offset = mirror::VarHandle::CoordinateType0Offset();
// Check that the VarHandle references a static field by checking that coordinateType0 == null.
// Do not emit read barrier (or unpoison the reference) for comparing to null.
__ cmpl(Address(varhandle, coordinate_type0_offset), Immediate(0));
__ j(kNotEqual, slow_path->GetEntryLabel());
}
static void GenerateVarHandleInstanceFieldChecks(HInvoke* invoke,
CodeGeneratorX86_64* codegen,
VarHandleSlowPathX86_64* slow_path) {
VarHandleOptimizations optimizations(invoke);
X86_64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister varhandle = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister object = locations->InAt(1).AsRegister<CpuRegister>();
CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
const MemberOffset coordinate_type0_offset = mirror::VarHandle::CoordinateType0Offset();
const MemberOffset coordinate_type1_offset = mirror::VarHandle::CoordinateType1Offset();
// Null-check the object.
if (!optimizations.GetSkipObjectNullCheck()) {
__ testl(object, object);
__ j(kZero, slow_path->GetEntryLabel());
}
if (!optimizations.GetUseKnownBootImageVarHandle()) {
// Check that the VarHandle references an instance field by checking that
// coordinateType1 == null. coordinateType0 should be not null, but this is handled by the
// type compatibility check with the source object's type, which will fail for null.
__ cmpl(Address(varhandle, coordinate_type1_offset), Immediate(0));
__ j(kNotEqual, slow_path->GetEntryLabel());
// Check that the object has the correct type.
// We deliberately avoid the read barrier, letting the slow path handle the false negatives.
GenerateSubTypeObjectCheckNoReadBarrier(codegen,
slow_path,
object,
temp,
Address(varhandle, coordinate_type0_offset),
/*object_can_be_null=*/ false);
}
}
static void GenerateVarHandleArrayChecks(HInvoke* invoke,
CodeGeneratorX86_64* codegen,
VarHandleSlowPathX86_64* slow_path) {
VarHandleOptimizations optimizations(invoke);
X86_64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister varhandle = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister object = locations->InAt(1).AsRegister<CpuRegister>();
CpuRegister index = locations->InAt(2).AsRegister<CpuRegister>();
DataType::Type value_type =
GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u);
Primitive::Type primitive_type = DataTypeToPrimitive(value_type);
const MemberOffset coordinate_type0_offset = mirror::VarHandle::CoordinateType0Offset();
const MemberOffset coordinate_type1_offset = mirror::VarHandle::CoordinateType1Offset();
const MemberOffset component_type_offset = mirror::Class::ComponentTypeOffset();
const MemberOffset primitive_type_offset = mirror::Class::PrimitiveTypeOffset();
const MemberOffset class_offset = mirror::Object::ClassOffset();
const MemberOffset array_length_offset = mirror::Array::LengthOffset();
// Null-check the object.
if (!optimizations.GetSkipObjectNullCheck()) {
__ testl(object, object);
__ j(kZero, slow_path->GetEntryLabel());
}
CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
// Check that the VarHandle references an array, byte array view or ByteBuffer by checking
// that coordinateType1 != null. If that's true, coordinateType1 shall be int.class and
// coordinateType0 shall not be null but we do not explicitly verify that.
// No need for read barrier or unpoisoning of coordinateType1 for comparison with null.
__ cmpl(Address(varhandle, coordinate_type1_offset.Int32Value()), Immediate(0));
__ j(kEqual, slow_path->GetEntryLabel());
// Check object class against componentType0.
//
// This is an exact check and we defer other cases to the runtime. This includes
// conversion to array of superclass references, which is valid but subsequently
// requires all update operations to check that the value can indeed be stored.
// We do not want to perform such extra checks in the intrinsified code.
//
// We do this check without read barrier, so there can be false negatives which we
// defer to the slow path. There shall be no false negatives for array classes in the
// boot image (including Object[] and primitive arrays) because they are non-movable.
__ movl(temp, Address(object, class_offset.Int32Value()));
__ cmpl(temp, Address(varhandle, coordinate_type0_offset.Int32Value()));
__ j(kNotEqual, slow_path->GetEntryLabel());
// Check that the coordinateType0 is an array type. We do not need a read barrier
// for loading constant reference fields (or chains of them) for comparison with null,
// nor for finally loading a constant primitive field (primitive type) below.
codegen->GetAssembler()->MaybeUnpoisonHeapReference(temp);
__ movl(temp, Address(temp, component_type_offset.Int32Value()));
codegen->GetAssembler()->MaybeUnpoisonHeapReference(temp);
__ testl(temp, temp);
__ j(kZero, slow_path->GetEntryLabel());
// Check that the array component type matches the primitive type.
Label* slow_path_label;
if (primitive_type == Primitive::kPrimNot) {
slow_path_label = slow_path->GetEntryLabel();
} else {
// With the exception of `kPrimNot` (handled above), `kPrimByte` and `kPrimBoolean`,
// we shall check for a byte array view in the slow path.
// The check requires the ByteArrayViewVarHandle.class to be in the boot image,
// so we cannot emit that if we're JITting without boot image.
bool boot_image_available =
codegen->GetCompilerOptions().IsBootImage() ||
!Runtime::Current()->GetHeap()->GetBootImageSpaces().empty();
bool can_be_view = (DataType::Size(value_type) != 1u) && boot_image_available;
slow_path_label =
can_be_view ? slow_path->GetByteArrayViewCheckLabel() : slow_path->GetEntryLabel();
}
__ cmpw(Address(temp, primitive_type_offset), Immediate(static_cast<uint16_t>(primitive_type)));
__ j(kNotEqual, slow_path_label);
// Check for array index out of bounds.
__ cmpl(index, Address(object, array_length_offset.Int32Value()));
__ j(kAboveEqual, slow_path->GetEntryLabel());
}
static void GenerateVarHandleCoordinateChecks(HInvoke* invoke,
CodeGeneratorX86_64* codegen,
VarHandleSlowPathX86_64* slow_path) {
size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke);
if (expected_coordinates_count == 0u) {
GenerateVarHandleStaticFieldCheck(invoke, codegen, slow_path);
} else if (expected_coordinates_count == 1u) {
GenerateVarHandleInstanceFieldChecks(invoke, codegen, slow_path);
} else {
DCHECK_EQ(expected_coordinates_count, 2u);
GenerateVarHandleArrayChecks(invoke, codegen, slow_path);
}
}
static VarHandleSlowPathX86_64* GenerateVarHandleChecks(HInvoke* invoke,
CodeGeneratorX86_64* codegen,
DataType::Type type) {
size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke);
VarHandleOptimizations optimizations(invoke);
if (optimizations.GetUseKnownBootImageVarHandle()) {
DCHECK_NE(expected_coordinates_count, 2u);
if (expected_coordinates_count == 0u || optimizations.GetSkipObjectNullCheck()) {
return nullptr;
}
}
VarHandleSlowPathX86_64* slow_path =
new (codegen->GetScopedAllocator()) VarHandleSlowPathX86_64(invoke);
codegen->AddSlowPath(slow_path);
if (!optimizations.GetUseKnownBootImageVarHandle()) {
GenerateVarHandleAccessModeAndVarTypeChecks(invoke, codegen, slow_path, type);
}
GenerateVarHandleCoordinateChecks(invoke, codegen, slow_path);
return slow_path;
}
struct VarHandleTarget {
Register object; // The object holding the value to operate on.
Register offset; // The offset of the value to operate on.
};
static VarHandleTarget GetVarHandleTarget(HInvoke* invoke) {
size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke);
LocationSummary* locations = invoke->GetLocations();
VarHandleTarget target;
// The temporary allocated for loading the offset.
target.offset = locations->GetTemp(0).AsRegister<CpuRegister>().AsRegister();
// The reference to the object that holds the value to operate on.
target.object = (expected_coordinates_count == 0u)
? locations->GetTemp(1).AsRegister<CpuRegister>().AsRegister()
: locations->InAt(1).AsRegister<CpuRegister>().AsRegister();
return target;
}
static void GenerateVarHandleTarget(HInvoke* invoke,
const VarHandleTarget& target,
CodeGeneratorX86_64* codegen) {
LocationSummary* locations = invoke->GetLocations();
X86_64Assembler* assembler = codegen->GetAssembler();
size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke);
CpuRegister varhandle = locations->InAt(0).AsRegister<CpuRegister>();
if (expected_coordinates_count <= 1u) {
if (VarHandleOptimizations(invoke).GetUseKnownBootImageVarHandle()) {
ScopedObjectAccess soa(Thread::Current());
ArtField* target_field = GetBootImageVarHandleField(invoke);
if (expected_coordinates_count == 0u) {
ObjPtr<mirror::Class> declaring_class = target_field->GetDeclaringClass();
__ movl(CpuRegister(target.object),
Address::Absolute(CodeGeneratorX86_64::kPlaceholder32BitOffset, /*no_rip=*/ false));
if (Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(declaring_class)) {
codegen->RecordBootImageRelRoPatch(CodeGenerator::GetBootImageOffset(declaring_class));
} else {
codegen->RecordBootImageTypePatch(declaring_class->GetDexFile(),
declaring_class->GetDexTypeIndex());
}
}
__ movl(CpuRegister(target.offset), Immediate(target_field->GetOffset().Uint32Value()));
} else {
// For static fields, we need to fill the `target.object` with the declaring class,
// so we can use `target.object` as temporary for the `ArtMethod*`. For instance fields,
// we do not need the declaring class, so we can forget the `ArtMethod*` when
// we load the `target.offset`, so use the `target.offset` to hold the `ArtMethod*`.
CpuRegister method((expected_coordinates_count == 0) ? target.object : target.offset);
const MemberOffset art_field_offset = mirror::FieldVarHandle::ArtFieldOffset();
const MemberOffset offset_offset = ArtField::OffsetOffset();
// Load the ArtField, the offset and, if needed, declaring class.
__ movq(method, Address(varhandle, art_field_offset));
__ movl(CpuRegister(target.offset), Address(method, offset_offset));
if (expected_coordinates_count == 0u) {
InstructionCodeGeneratorX86_64* instr_codegen = codegen->GetInstructionCodegen();
instr_codegen->GenerateGcRootFieldLoad(invoke,
Location::RegisterLocation(target.object),
Address(method, ArtField::DeclaringClassOffset()),
/*fixup_label=*/ nullptr,
gCompilerReadBarrierOption);
}
}
} else {
DCHECK_EQ(expected_coordinates_count, 2u);
DataType::Type value_type =
GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u);
ScaleFactor scale = CodeGenerator::ScaleFactorForType(value_type);
MemberOffset data_offset = mirror::Array::DataOffset(DataType::Size(value_type));
CpuRegister index = locations->InAt(2).AsRegister<CpuRegister>();
// The effect of LEA is `target.offset = index * scale + data_offset`.
__ leal(CpuRegister(target.offset), Address(index, scale, data_offset.Int32Value()));
}
}
static bool HasVarHandleIntrinsicImplementation(HInvoke* invoke) {
// The only supported read barrier implementation is the Baker-style read barriers.
if (gUseReadBarrier && !kUseBakerReadBarrier) {
return false;
}
VarHandleOptimizations optimizations(invoke);
if (optimizations.GetDoNotIntrinsify()) {
return false;
}
size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke);
DCHECK_LE(expected_coordinates_count, 2u); // Filtered by the `DoNotIntrinsify` flag above.
return true;
}
static LocationSummary* CreateVarHandleCommonLocations(HInvoke* invoke) {
size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke);
ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
LocationSummary* locations = new (allocator) LocationSummary(
invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
// Require coordinates in registers. These are the object holding the value
// to operate on (except for static fields) and index (for arrays and views).
for (size_t i = 0; i != expected_coordinates_count; ++i) {
locations->SetInAt(/* VarHandle object */ 1u + i, Location::RequiresRegister());
}
uint32_t arguments_start = /* VarHandle object */ 1u + expected_coordinates_count;
uint32_t number_of_arguments = invoke->GetNumberOfArguments();
for (size_t arg_index = arguments_start; arg_index != number_of_arguments; ++arg_index) {
HInstruction* arg = invoke->InputAt(arg_index);
if (DataType::IsFloatingPointType(arg->GetType())) {
locations->SetInAt(arg_index, Location::FpuRegisterOrConstant(arg));
} else {
locations->SetInAt(arg_index, Location::RegisterOrConstant(arg));
}
}
// Add a temporary for offset.
locations->AddTemp(Location::RequiresRegister());
if (expected_coordinates_count == 0u) {
// Add a temporary to hold the declaring class.
locations->AddTemp(Location::RequiresRegister());
}
return locations;
}
static void CreateVarHandleGetLocations(HInvoke* invoke) {
if (!HasVarHandleIntrinsicImplementation(invoke)) {
return;
}
LocationSummary* locations = CreateVarHandleCommonLocations(invoke);
if (DataType::IsFloatingPointType(invoke->GetType())) {
locations->SetOut(Location::RequiresFpuRegister());
} else {
locations->SetOut(Location::RequiresRegister());
}
}
static void GenerateVarHandleGet(HInvoke* invoke,
CodeGeneratorX86_64* codegen,
bool byte_swap = false) {
DataType::Type type = invoke->GetType();
DCHECK_NE(type, DataType::Type::kVoid);
LocationSummary* locations = invoke->GetLocations();
X86_64Assembler* assembler = codegen->GetAssembler();
VarHandleTarget target = GetVarHandleTarget(invoke);
VarHandleSlowPathX86_64* slow_path = nullptr;
if (!byte_swap) {
slow_path = GenerateVarHandleChecks(invoke, codegen, type);
GenerateVarHandleTarget(invoke, target, codegen);
if (slow_path != nullptr) {
__ Bind(slow_path->GetNativeByteOrderLabel());
}
}
// Load the value from the field
Address src(CpuRegister(target.object), CpuRegister(target.offset), TIMES_1, 0);
Location out = locations->Out();
if (type == DataType::Type::kReference) {
if (gUseReadBarrier) {
DCHECK(kUseBakerReadBarrier);
codegen->GenerateReferenceLoadWithBakerReadBarrier(
invoke, out, CpuRegister(target.object), src, /* needs_null_check= */ false);
} else {
__ movl(out.AsRegister<CpuRegister>(), src);
__ MaybeUnpoisonHeapReference(out.AsRegister<CpuRegister>());
}
DCHECK(!byte_swap);
} else {
codegen->LoadFromMemoryNoReference(type, out, src);
if (byte_swap) {
CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
codegen->GetInstructionCodegen()->Bswap(out, type, &temp);
}
}
if (slow_path != nullptr) {
DCHECK(!byte_swap);
__ Bind(slow_path->GetExitLabel());
}
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGet(HInvoke* invoke) {
CreateVarHandleGetLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGet(HInvoke* invoke) {
GenerateVarHandleGet(invoke, codegen_);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAcquire(HInvoke* invoke) {
CreateVarHandleGetLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAcquire(HInvoke* invoke) {
// VarHandleGetAcquire is the same as VarHandleGet on x86-64 due to the x86 memory model.
GenerateVarHandleGet(invoke, codegen_);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetOpaque(HInvoke* invoke) {
CreateVarHandleGetLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetOpaque(HInvoke* invoke) {
// VarHandleGetOpaque is the same as VarHandleGet on x86-64 due to the x86 memory model.
GenerateVarHandleGet(invoke, codegen_);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetVolatile(HInvoke* invoke) {
CreateVarHandleGetLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetVolatile(HInvoke* invoke) {
// VarHandleGetVolatile is the same as VarHandleGet on x86-64 due to the x86 memory model.
GenerateVarHandleGet(invoke, codegen_);
}
static void CreateVarHandleSetLocations(HInvoke* invoke) {
if (!HasVarHandleIntrinsicImplementation(invoke)) {
return;
}
LocationSummary* locations = CreateVarHandleCommonLocations(invoke);
// Extra temporary is used for card in MarkGCCard and to move 64-bit constants to memory.
locations->AddTemp(Location::RequiresRegister());
}
static void GenerateVarHandleSet(HInvoke* invoke,
CodeGeneratorX86_64* codegen,
bool is_volatile,
bool is_atomic,
bool byte_swap = false) {
X86_64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
const uint32_t last_temp_index = locations->GetTempCount() - 1;
uint32_t value_index = invoke->GetNumberOfArguments() - 1;
DataType::Type value_type = GetDataTypeFromShorty(invoke, value_index);
VarHandleTarget target = GetVarHandleTarget(invoke);
VarHandleSlowPathX86_64* slow_path = nullptr;
if (!byte_swap) {
slow_path = GenerateVarHandleChecks(invoke, codegen, value_type);
GenerateVarHandleTarget(invoke, target, codegen);
if (slow_path != nullptr) {
slow_path->SetVolatile(is_volatile);
slow_path->SetAtomic(is_atomic);
__ Bind(slow_path->GetNativeByteOrderLabel());
}
}
switch (invoke->GetIntrinsic()) {
case Intrinsics::kVarHandleSetRelease:
codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
break;
case Intrinsics::kVarHandleSetVolatile:
// setVolatile needs kAnyStore barrier, but HandleFieldSet takes care of that.
break;
default:
// Other intrinsics don't need a barrier.
break;
}
Address dst(CpuRegister(target.object), CpuRegister(target.offset), TIMES_1, 0);
// Store the value to the field.
codegen->GetInstructionCodegen()->HandleFieldSet(
invoke,
value_index,
last_temp_index,
value_type,
dst,
CpuRegister(target.object),
is_volatile,
is_atomic,
/*value_can_be_null=*/true,
byte_swap,
// Value can be null, and this write barrier is not being relied on for other sets.
WriteBarrierKind::kEmitWithNullCheck);
// setVolatile needs kAnyAny barrier, but HandleFieldSet takes care of that.
if (slow_path != nullptr) {
DCHECK(!byte_swap);
__ Bind(slow_path->GetExitLabel());
}
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleSet(HInvoke* invoke) {
CreateVarHandleSetLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleSet(HInvoke* invoke) {
GenerateVarHandleSet(invoke, codegen_, /*is_volatile=*/ false, /*is_atomic=*/ true);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleSetOpaque(HInvoke* invoke) {
CreateVarHandleSetLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleSetOpaque(HInvoke* invoke) {
GenerateVarHandleSet(invoke, codegen_, /*is_volatile=*/ false, /*is_atomic=*/ true);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleSetRelease(HInvoke* invoke) {
CreateVarHandleSetLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleSetRelease(HInvoke* invoke) {
GenerateVarHandleSet(invoke, codegen_, /*is_volatile=*/ false, /*is_atomic=*/ true);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleSetVolatile(HInvoke* invoke) {
CreateVarHandleSetLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleSetVolatile(HInvoke* invoke) {
GenerateVarHandleSet(invoke, codegen_, /*is_volatile=*/ true, /*is_atomic=*/ true);
}
static void CreateVarHandleCompareAndSetOrExchangeLocations(HInvoke* invoke) {
if (!HasVarHandleIntrinsicImplementation(invoke)) {
return;
}
uint32_t number_of_arguments = invoke->GetNumberOfArguments();
uint32_t expected_value_index = number_of_arguments - 2;
uint32_t new_value_index = number_of_arguments - 1;
DataType::Type return_type = invoke->GetType();
DataType::Type expected_type = GetDataTypeFromShorty(invoke, expected_value_index);
DCHECK_EQ(expected_type, GetDataTypeFromShorty(invoke, new_value_index));
LocationSummary* locations = CreateVarHandleCommonLocations(invoke);
if (DataType::IsFloatingPointType(return_type)) {
locations->SetOut(Location::RequiresFpuRegister());
} else {
// Take advantage of the fact that CMPXCHG writes result to RAX.
locations->SetOut(Location::RegisterLocation(RAX));
}
if (DataType::IsFloatingPointType(expected_type)) {
// RAX is needed to load the expected floating-point value into a register for CMPXCHG.
locations->AddTemp(Location::RegisterLocation(RAX));
// Another temporary is needed to load the new floating-point value into a register for CMPXCHG.
locations->AddTemp(Location::RequiresRegister());
} else {
// Ensure that expected value is in RAX, as required by CMPXCHG.
locations->SetInAt(expected_value_index, Location::RegisterLocation(RAX));
locations->SetInAt(new_value_index, Location::RequiresRegister());
if (expected_type == DataType::Type::kReference) {
// Need two temporaries for MarkGCCard.
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
if (gUseReadBarrier) {
// Need three temporaries for GenerateReferenceLoadWithBakerReadBarrier.
DCHECK(kUseBakerReadBarrier);
locations->AddTemp(Location::RequiresRegister());
}
}
// RAX is clobbered in CMPXCHG, but no need to mark it as temporary as it's the output register.
DCHECK_EQ(RAX, locations->Out().AsRegister<Register>());
}
}
static void GenerateVarHandleCompareAndSetOrExchange(HInvoke* invoke,
CodeGeneratorX86_64* codegen,
bool is_cmpxchg,
bool byte_swap = false) {
DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier);
X86_64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
uint32_t number_of_arguments = invoke->GetNumberOfArguments();
uint32_t expected_value_index = number_of_arguments - 2;
uint32_t new_value_index = number_of_arguments - 1;
DataType::Type type = GetDataTypeFromShorty(invoke, expected_value_index);
VarHandleSlowPathX86_64* slow_path = nullptr;
VarHandleTarget target = GetVarHandleTarget(invoke);
if (!byte_swap) {
slow_path = GenerateVarHandleChecks(invoke, codegen, type);
GenerateVarHandleTarget(invoke, target, codegen);
if (slow_path != nullptr) {
__ Bind(slow_path->GetNativeByteOrderLabel());
}
}
uint32_t temp_count = locations->GetTempCount();
GenCompareAndSetOrExchange(codegen,
invoke,
type,
CpuRegister(target.object),
CpuRegister(target.offset),
/*temp1_index=*/ temp_count - 1,
/*temp2_index=*/ temp_count - 2,
/*temp3_index=*/ temp_count - 3,
locations->InAt(new_value_index),
locations->InAt(expected_value_index),
locations->Out(),
is_cmpxchg,
byte_swap);
// We are using LOCK CMPXCHG in all cases because there is no CAS equivalent that has weak
// failure semantics. LOCK CMPXCHG has full barrier semantics, so we don't need barriers.
if (slow_path != nullptr) {
DCHECK(!byte_swap);
__ Bind(slow_path->GetExitLabel());
}
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleCompareAndSet(HInvoke* invoke) {
CreateVarHandleCompareAndSetOrExchangeLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleCompareAndSet(HInvoke* invoke) {
GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ false);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleWeakCompareAndSet(HInvoke* invoke) {
CreateVarHandleCompareAndSetOrExchangeLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleWeakCompareAndSet(HInvoke* invoke) {
GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ false);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleWeakCompareAndSetPlain(HInvoke* invoke) {
CreateVarHandleCompareAndSetOrExchangeLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleWeakCompareAndSetPlain(HInvoke* invoke) {
GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ false);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleWeakCompareAndSetAcquire(HInvoke* invoke) {
CreateVarHandleCompareAndSetOrExchangeLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleWeakCompareAndSetAcquire(HInvoke* invoke) {
GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ false);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleWeakCompareAndSetRelease(HInvoke* invoke) {
CreateVarHandleCompareAndSetOrExchangeLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleWeakCompareAndSetRelease(HInvoke* invoke) {
GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ false);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleCompareAndExchange(HInvoke* invoke) {
CreateVarHandleCompareAndSetOrExchangeLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleCompareAndExchange(HInvoke* invoke) {
GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ true);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleCompareAndExchangeAcquire(HInvoke* invoke) {
CreateVarHandleCompareAndSetOrExchangeLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleCompareAndExchangeAcquire(HInvoke* invoke) {
GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ true);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleCompareAndExchangeRelease(HInvoke* invoke) {
CreateVarHandleCompareAndSetOrExchangeLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleCompareAndExchangeRelease(HInvoke* invoke) {
GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ true);
}
static void CreateVarHandleGetAndSetLocations(HInvoke* invoke) {
if (!HasVarHandleIntrinsicImplementation(invoke)) {
return;
}
uint32_t number_of_arguments = invoke->GetNumberOfArguments();
uint32_t new_value_index = number_of_arguments - 1;
DataType::Type type = invoke->GetType();
DCHECK_EQ(type, GetDataTypeFromShorty(invoke, new_value_index));
LocationSummary* locations = CreateVarHandleCommonLocations(invoke);
if (DataType::IsFloatingPointType(type)) {
locations->SetOut(Location::RequiresFpuRegister());
// A temporary is needed to load the new floating-point value into a register for XCHG.
locations->AddTemp(Location::RequiresRegister());
} else {
// Use the same register for both the new value and output to take advantage of XCHG.
// It doesn't have to be RAX, but we need to choose some to make sure it's the same.
locations->SetOut(Location::RegisterLocation(RAX));
locations->SetInAt(new_value_index, Location::RegisterLocation(RAX));
if (type == DataType::Type::kReference) {
// Need two temporaries for MarkGCCard.
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
if (gUseReadBarrier) {
// Need a third temporary for GenerateReferenceLoadWithBakerReadBarrier.
DCHECK(kUseBakerReadBarrier);
locations->AddTemp(Location::RequiresRegister());
}
}
}
}
static void GenerateVarHandleGetAndSet(HInvoke* invoke,
CodeGeneratorX86_64* codegen,
Location value,
DataType::Type type,
Address field_addr,
CpuRegister ref,
bool byte_swap) {
X86_64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Location out = locations->Out();
uint32_t temp_count = locations->GetTempCount();
if (DataType::IsFloatingPointType(type)) {
// `getAndSet` for floating-point types: move the new FP value into a register, atomically
// exchange it with the field, and move the old value into the output FP register.
Location temp = locations->GetTemp(temp_count - 1);
codegen->Move(temp, value);
bool is64bit = (type == DataType::Type::kFloat64);
DataType::Type bswap_type = is64bit ? DataType::Type::kUint64 : DataType::Type::kUint32;
if (byte_swap) {
codegen->GetInstructionCodegen()->Bswap(temp, bswap_type);
}
if (is64bit) {
__ xchgq(temp.AsRegister<CpuRegister>(), field_addr);
} else {
__ xchgl(temp.AsRegister<CpuRegister>(), field_addr);
}
if (byte_swap) {
codegen->GetInstructionCodegen()->Bswap(temp, bswap_type);
}
__ movd(out.AsFpuRegister<XmmRegister>(), temp.AsRegister<CpuRegister>(), is64bit);
} else if (type == DataType::Type::kReference) {
// `getAndSet` for references: load reference and atomically exchange it with the field.
// Output register is the same as the one holding new value, so no need to move the result.
DCHECK(!byte_swap);
CpuRegister temp1 = locations->GetTemp(temp_count - 1).AsRegister<CpuRegister>();
CpuRegister temp2 = locations->GetTemp(temp_count - 2).AsRegister<CpuRegister>();
CpuRegister valreg = value.AsRegister<CpuRegister>();
if (gUseReadBarrier && kUseBakerReadBarrier) {
codegen->GenerateReferenceLoadWithBakerReadBarrier(
invoke,
locations->GetTemp(temp_count - 3),
ref,
field_addr,
/*needs_null_check=*/ false,
/*always_update_field=*/ true,
&temp1,
&temp2);
}
codegen->MarkGCCard(temp1, temp2, ref, valreg, /* emit_null_check= */ false);
DCHECK_EQ(valreg, out.AsRegister<CpuRegister>());
if (kPoisonHeapReferences) {
// Use a temp to avoid poisoning base of the field address, which might happen if `valreg` is
// the same as `target.object` (for code like `vh.getAndSet(obj, obj)`).
__ movl(temp1, valreg);
__ PoisonHeapReference(temp1);
__ xchgl(temp1, field_addr);
__ UnpoisonHeapReference(temp1);
__ movl(valreg, temp1);
} else {
__ xchgl(valreg, field_addr);
}
} else {
// `getAndSet` for integral types: atomically exchange the new value with the field. Output
// register is the same as the one holding new value. Do sign extend / zero extend as needed.
if (byte_swap) {
codegen->GetInstructionCodegen()->Bswap(value, type);
}
CpuRegister valreg = value.AsRegister<CpuRegister>();
DCHECK_EQ(valreg, out.AsRegister<CpuRegister>());
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
__ xchgb(valreg, field_addr);
__ movzxb(valreg, valreg);
break;
case DataType::Type::kInt8:
__ xchgb(valreg, field_addr);
__ movsxb(valreg, valreg);
break;
case DataType::Type::kUint16:
__ xchgw(valreg, field_addr);
__ movzxw(valreg, valreg);
break;
case DataType::Type::kInt16:
__ xchgw(valreg, field_addr);
__ movsxw(valreg, valreg);
break;
case DataType::Type::kInt32:
case DataType::Type::kUint32:
__ xchgl(valreg, field_addr);
break;
case DataType::Type::kInt64:
case DataType::Type::kUint64:
__ xchgq(valreg, field_addr);
break;
default:
DCHECK(false) << "unexpected type in getAndSet intrinsic";
UNREACHABLE();
}
if (byte_swap) {
codegen->GetInstructionCodegen()->Bswap(value, type);
}
}
}
static void CreateVarHandleGetAndBitwiseOpLocations(HInvoke* invoke) {
if (!HasVarHandleIntrinsicImplementation(invoke)) {
return;
}
uint32_t number_of_arguments = invoke->GetNumberOfArguments();
uint32_t new_value_index = number_of_arguments - 1;
DataType::Type type = invoke->GetType();
DCHECK_EQ(type, GetDataTypeFromShorty(invoke, new_value_index));
LocationSummary* locations = CreateVarHandleCommonLocations(invoke);
DCHECK_NE(DataType::Type::kReference, type);
DCHECK(!DataType::IsFloatingPointType(type));
// A temporary to compute the bitwise operation on the old and the new values.
locations->AddTemp(Location::RequiresRegister());
// We need value to be either in a register, or a 32-bit constant (as there are no arithmetic
// instructions that accept 64-bit immediate on x86_64).
locations->SetInAt(new_value_index, DataType::Is64BitType(type)
? Location::RequiresRegister()
: Location::RegisterOrConstant(invoke->InputAt(new_value_index)));
// Output is in RAX to accommodate CMPXCHG. It is also used as a temporary.
locations->SetOut(Location::RegisterLocation(RAX));
}
static void GenerateVarHandleGetAndOp(HInvoke* invoke,
CodeGeneratorX86_64* codegen,
Location value,
DataType::Type type,
Address field_addr,
GetAndUpdateOp get_and_update_op,
bool byte_swap) {
X86_64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Location temp_loc = locations->GetTemp(locations->GetTempCount() - 1);
Location rax_loc = locations->Out();
CpuRegister temp = temp_loc.AsRegister<CpuRegister>();
CpuRegister rax = rax_loc.AsRegister<CpuRegister>();
DCHECK_EQ(rax.AsRegister(), RAX);
bool is64Bit = DataType::Is64BitType(type);
NearLabel retry;
__ Bind(&retry);
// Load field value into RAX and copy it into a temporary register for the operation.
codegen->LoadFromMemoryNoReference(type, Location::RegisterLocation(RAX), field_addr);
codegen->Move(temp_loc, rax_loc);
if (byte_swap) {
// Byte swap the temporary, since we need to perform operation in native endianness.
codegen->GetInstructionCodegen()->Bswap(temp_loc, type);
}
DCHECK_IMPLIES(value.IsConstant(), !is64Bit);
int32_t const_value = value.IsConstant()
? CodeGenerator::GetInt32ValueOf(value.GetConstant())
: 0;
// Use 32-bit registers for 8/16/32-bit types to save on the REX prefix.
switch (get_and_update_op) {
case GetAndUpdateOp::kAdd:
DCHECK(byte_swap); // The non-byte-swapping path should use a faster XADD instruction.
if (is64Bit) {
__ addq(temp, value.AsRegister<CpuRegister>());
} else if (value.IsConstant()) {
__ addl(temp, Immediate(const_value));
} else {
__ addl(temp, value.AsRegister<CpuRegister>());
}
break;
case GetAndUpdateOp::kBitwiseAnd:
if (is64Bit) {
__ andq(temp, value.AsRegister<CpuRegister>());
} else if (value.IsConstant()) {
__ andl(temp, Immediate(const_value));
} else {
__ andl(temp, value.AsRegister<CpuRegister>());
}
break;
case GetAndUpdateOp::kBitwiseOr:
if (is64Bit) {
__ orq(temp, value.AsRegister<CpuRegister>());
} else if (value.IsConstant()) {
__ orl(temp, Immediate(const_value));
} else {
__ orl(temp, value.AsRegister<CpuRegister>());
}
break;
case GetAndUpdateOp::kBitwiseXor:
if (is64Bit) {
__ xorq(temp, value.AsRegister<CpuRegister>());
} else if (value.IsConstant()) {
__ xorl(temp, Immediate(const_value));
} else {
__ xorl(temp, value.AsRegister<CpuRegister>());
}
break;
default:
DCHECK(false) << "unexpected operation";
UNREACHABLE();
}
if (byte_swap) {
// RAX still contains the original value, but we need to byte swap the temporary back.
codegen->GetInstructionCodegen()->Bswap(temp_loc, type);
}
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
__ LockCmpxchgb(field_addr, temp);
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
__ LockCmpxchgw(field_addr, temp);
break;
case DataType::Type::kInt32:
case DataType::Type::kUint32:
__ LockCmpxchgl(field_addr, temp);
break;
case DataType::Type::kInt64:
case DataType::Type::kUint64:
__ LockCmpxchgq(field_addr, temp);
break;
default:
DCHECK(false) << "unexpected type in getAndBitwiseOp intrinsic";
UNREACHABLE();
}
__ j(kNotZero, &retry);
// The result is in RAX after CMPXCHG. Byte swap if necessary, but do not sign/zero extend,
// as it has already been done by `LoadFromMemoryNoReference` above (and not altered by CMPXCHG).
if (byte_swap) {
codegen->GetInstructionCodegen()->Bswap(rax_loc, type);
}
}
static void CreateVarHandleGetAndAddLocations(HInvoke* invoke) {
if (!HasVarHandleIntrinsicImplementation(invoke)) {
return;
}
uint32_t number_of_arguments = invoke->GetNumberOfArguments();
uint32_t new_value_index = number_of_arguments - 1;
DataType::Type type = invoke->GetType();
DCHECK_EQ(type, GetDataTypeFromShorty(invoke, new_value_index));
LocationSummary* locations = CreateVarHandleCommonLocations(invoke);
if (DataType::IsFloatingPointType(type)) {
locations->SetOut(Location::RequiresFpuRegister());
// Require that the new FP value is in a register (and not a constant) for ADDSS/ADDSD.
locations->SetInAt(new_value_index, Location::RequiresFpuRegister());
// CMPXCHG clobbers RAX.
locations->AddTemp(Location::RegisterLocation(RAX));
// An FP temporary to load the old value from the field and perform FP addition.
locations->AddTemp(Location::RequiresFpuRegister());
// A temporary to hold the new value for CMPXCHG.
locations->AddTemp(Location::RequiresRegister());
} else {
DCHECK_NE(type, DataType::Type::kReference);
// Use the same register for both the new value and output to take advantage of XADD.
// It should be RAX, because the byte-swapping path of GenerateVarHandleGetAndAdd falls
// back to GenerateVarHandleGetAndOp that expects out in RAX.
locations->SetOut(Location::RegisterLocation(RAX));
locations->SetInAt(new_value_index, Location::RegisterLocation(RAX));
if (GetExpectedVarHandleCoordinatesCount(invoke) == 2) {
// For byte array views with non-native endianness we need extra BSWAP operations, so we
// cannot use XADD and have to fallback to a generic implementation based on CMPXCH. In that
// case we need two temporary registers: one to hold value instead of RAX (which may get
// clobbered by repeated CMPXCHG) and one for performing the operation. At compile time we
// cannot distinguish this case from arrays or native-endian byte array views.
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
}
}
static void GenerateVarHandleGetAndAdd(HInvoke* invoke,
CodeGeneratorX86_64* codegen,
Location value,
DataType::Type type,
Address field_addr,
bool byte_swap) {
X86_64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
Location out = locations->Out();
uint32_t temp_count = locations->GetTempCount();
if (DataType::IsFloatingPointType(type)) {
if (byte_swap) {
// This code should never be executed: it is the case of a byte array view (since it requires
// a byte swap), and varhandles for byte array views support numeric atomic update access mode
// only for int and long, but not for floating-point types (see javadoc comments for
// java.lang.invoke.MethodHandles.byteArrayViewVarHandle()). But ART varhandle implementation
// for byte array views treats floating-point types them as numeric types in
// ByteArrayViewVarHandle::Access(). Terefore we do generate intrinsic code, but it always
// fails access mode check at runtime prior to reaching this point. Illegal instruction UD2
// ensures that if control flow gets here by mistake, we will notice.
__ ud2();
}
// `getAndAdd` for floating-point types: load the old FP value into a temporary FP register and
// in RAX for CMPXCHG, add the new FP value to the old one, move it to a non-FP temporary for
// CMPXCHG and loop until CMPXCHG succeeds. Move the result from RAX to the output FP register.
bool is64bit = (type == DataType::Type::kFloat64);
DataType::Type bswap_type = is64bit ? DataType::Type::kUint64 : DataType::Type::kUint32;
XmmRegister fptemp = locations->GetTemp(temp_count - 2).AsFpuRegister<XmmRegister>();
Location rax_loc = Location::RegisterLocation(RAX);
Location temp_loc = locations->GetTemp(temp_count - 1);
CpuRegister temp = temp_loc.AsRegister<CpuRegister>();
NearLabel retry;
__ Bind(&retry);
// Read value from memory into an FP register and copy in into RAX.
if (is64bit) {
__ movsd(fptemp, field_addr);
} else {
__ movss(fptemp, field_addr);
}
__ movd(CpuRegister(RAX), fptemp, is64bit);
// If necessary, byte swap RAX and update the value in FP register to also be byte-swapped.
if (byte_swap) {
codegen->GetInstructionCodegen()->Bswap(rax_loc, bswap_type);
__ movd(fptemp, CpuRegister(RAX), is64bit);
}
// Perform the FP addition and move it to a temporary register to prepare for CMPXCHG.
if (is64bit) {
__ addsd(fptemp, value.AsFpuRegister<XmmRegister>());
} else {
__ addss(fptemp, value.AsFpuRegister<XmmRegister>());
}
__ movd(temp, fptemp, is64bit);
// If necessary, byte swap RAX before CMPXCHG and the temporary before copying to FP register.
if (byte_swap) {
codegen->GetInstructionCodegen()->Bswap(temp_loc, bswap_type);
codegen->GetInstructionCodegen()->Bswap(rax_loc, bswap_type);
}
if (is64bit) {
__ LockCmpxchgq(field_addr, temp);
} else {
__ LockCmpxchgl(field_addr, temp);
}
__ j(kNotZero, &retry);
// The old value is in RAX, byte swap if necessary.
if (byte_swap) {
codegen->GetInstructionCodegen()->Bswap(rax_loc, bswap_type);
}
__ movd(out.AsFpuRegister<XmmRegister>(), CpuRegister(RAX), is64bit);
} else {
if (byte_swap) {
// We cannot use XADD since we need to byte-swap the old value when reading it from memory,
// and then byte-swap the sum before writing it to memory. So fallback to the slower generic
// implementation that is also used for bitwise operations.
// Move value from RAX to a temporary register, as RAX may get clobbered by repeated CMPXCHG.
DCHECK_EQ(GetExpectedVarHandleCoordinatesCount(invoke), 2u);
Location temp = locations->GetTemp(temp_count - 2);
codegen->Move(temp, value);
GenerateVarHandleGetAndOp(
invoke, codegen, temp, type, field_addr, GetAndUpdateOp::kAdd, byte_swap);
} else {
// `getAndAdd` for integral types: atomically exchange the new value with the field and add
// the old value to the field. Output register is the same as the one holding new value. Do
// sign extend / zero extend as needed.
CpuRegister valreg = value.AsRegister<CpuRegister>();
DCHECK_EQ(valreg, out.AsRegister<CpuRegister>());
switch (type) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
__ LockXaddb(field_addr, valreg);
__ movzxb(valreg, valreg);
break;
case DataType::Type::kInt8:
__ LockXaddb(field_addr, valreg);
__ movsxb(valreg, valreg);
break;
case DataType::Type::kUint16:
__ LockXaddw(field_addr, valreg);
__ movzxw(valreg, valreg);
break;
case DataType::Type::kInt16:
__ LockXaddw(field_addr, valreg);
__ movsxw(valreg, valreg);
break;
case DataType::Type::kInt32:
case DataType::Type::kUint32:
__ LockXaddl(field_addr, valreg);
break;
case DataType::Type::kInt64:
case DataType::Type::kUint64:
__ LockXaddq(field_addr, valreg);
break;
default:
DCHECK(false) << "unexpected type in getAndAdd intrinsic";
UNREACHABLE();
}
}
}
}
static void GenerateVarHandleGetAndUpdate(HInvoke* invoke,
CodeGeneratorX86_64* codegen,
GetAndUpdateOp get_and_update_op,
bool need_any_store_barrier,
bool need_any_any_barrier,
bool byte_swap = false) {
DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier);
X86_64Assembler* assembler = codegen->GetAssembler();
LocationSummary* locations = invoke->GetLocations();
uint32_t number_of_arguments = invoke->GetNumberOfArguments();
Location value = locations->InAt(number_of_arguments - 1);
DataType::Type type = invoke->GetType();
VarHandleSlowPathX86_64* slow_path = nullptr;
VarHandleTarget target = GetVarHandleTarget(invoke);
if (!byte_swap) {
slow_path = GenerateVarHandleChecks(invoke, codegen, type);
GenerateVarHandleTarget(invoke, target, codegen);
if (slow_path != nullptr) {
slow_path->SetGetAndUpdateOp(get_and_update_op);
slow_path->SetNeedAnyStoreBarrier(need_any_store_barrier);
slow_path->SetNeedAnyAnyBarrier(need_any_any_barrier);
__ Bind(slow_path->GetNativeByteOrderLabel());
}
}
CpuRegister ref(target.object);
Address field_addr(ref, CpuRegister(target.offset), TIMES_1, 0);
if (need_any_store_barrier) {
codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
}
switch (get_and_update_op) {
case GetAndUpdateOp::kSet:
GenerateVarHandleGetAndSet(invoke, codegen, value, type, field_addr, ref, byte_swap);
break;
case GetAndUpdateOp::kAdd:
GenerateVarHandleGetAndAdd(invoke, codegen, value, type, field_addr, byte_swap);
break;
case GetAndUpdateOp::kBitwiseAnd:
case GetAndUpdateOp::kBitwiseOr:
case GetAndUpdateOp::kBitwiseXor:
GenerateVarHandleGetAndOp(
invoke, codegen, value, type, field_addr, get_and_update_op, byte_swap);
break;
}
if (need_any_any_barrier) {
codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
}
if (slow_path != nullptr) {
DCHECK(!byte_swap);
__ Bind(slow_path->GetExitLabel());
}
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndSet(HInvoke* invoke) {
CreateVarHandleGetAndSetLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndSet(HInvoke* invoke) {
// `getAndSet` has `getVolatile` + `setVolatile` semantics, so it needs both barriers.
GenerateVarHandleGetAndUpdate(invoke,
codegen_,
GetAndUpdateOp::kSet,
/*need_any_store_barrier=*/ true,
/*need_any_any_barrier=*/ true);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndSetAcquire(HInvoke* invoke) {
CreateVarHandleGetAndSetLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndSetAcquire(HInvoke* invoke) {
// `getAndSetAcquire` has `getAcquire` + `set` semantics, so it doesn't need any barriers.
GenerateVarHandleGetAndUpdate(invoke,
codegen_,
GetAndUpdateOp::kSet,
/*need_any_store_barrier=*/ false,
/*need_any_any_barrier=*/ false);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndSetRelease(HInvoke* invoke) {
CreateVarHandleGetAndSetLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndSetRelease(HInvoke* invoke) {
// `getAndSetRelease` has `get` + `setRelease` semantics, so it needs `kAnyStore` barrier.
GenerateVarHandleGetAndUpdate(invoke,
codegen_,
GetAndUpdateOp::kSet,
/*need_any_store_barrier=*/ true,
/*need_any_any_barrier=*/ false);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndAdd(HInvoke* invoke) {
CreateVarHandleGetAndAddLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndAdd(HInvoke* invoke) {
// `getAndAdd` has `getVolatile` + `setVolatile` semantics, so it needs both barriers.
GenerateVarHandleGetAndUpdate(invoke,
codegen_,
GetAndUpdateOp::kAdd,
/*need_any_store_barrier=*/ true,
/*need_any_any_barrier=*/ true);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndAddAcquire(HInvoke* invoke) {
CreateVarHandleGetAndAddLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndAddAcquire(HInvoke* invoke) {
// `getAndAddAcquire` has `getAcquire` + `set` semantics, so it doesn't need any barriers.
GenerateVarHandleGetAndUpdate(invoke,
codegen_,
GetAndUpdateOp::kAdd,
/*need_any_store_barrier=*/ false,
/*need_any_any_barrier=*/ false);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndAddRelease(HInvoke* invoke) {
CreateVarHandleGetAndAddLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndAddRelease(HInvoke* invoke) {
// `getAndAddRelease` has `get` + `setRelease` semantics, so it needs `kAnyStore` barrier.
GenerateVarHandleGetAndUpdate(invoke,
codegen_,
GetAndUpdateOp::kAdd,
/*need_any_store_barrier=*/ true,
/*need_any_any_barrier=*/ false);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseAnd(HInvoke* invoke) {
CreateVarHandleGetAndBitwiseOpLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseAnd(HInvoke* invoke) {
// `getAndBitwiseAnd` has `getVolatile` + `setVolatile` semantics, so it needs both barriers.
GenerateVarHandleGetAndUpdate(invoke,
codegen_,
GetAndUpdateOp::kBitwiseAnd,
/*need_any_store_barrier=*/ true,
/*need_any_any_barrier=*/ true);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseAndAcquire(HInvoke* invoke) {
CreateVarHandleGetAndBitwiseOpLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseAndAcquire(HInvoke* invoke) {
// `getAndBitwiseAndAcquire` has `getAcquire` + `set` semantics, so it doesn't need any barriers.
GenerateVarHandleGetAndUpdate(invoke,
codegen_,
GetAndUpdateOp::kBitwiseAnd,
/*need_any_store_barrier=*/ false,
/*need_any_any_barrier=*/ false);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseAndRelease(HInvoke* invoke) {
CreateVarHandleGetAndBitwiseOpLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseAndRelease(HInvoke* invoke) {
// `getAndBitwiseAndRelease` has `get` + `setRelease` semantics, so it needs `kAnyStore` barrier.
GenerateVarHandleGetAndUpdate(invoke,
codegen_,
GetAndUpdateOp::kBitwiseAnd,
/*need_any_store_barrier=*/ true,
/*need_any_any_barrier=*/ false);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseOr(HInvoke* invoke) {
CreateVarHandleGetAndBitwiseOpLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseOr(HInvoke* invoke) {
// `getAndBitwiseOr` has `getVolatile` + `setVolatile` semantics, so it needs both barriers.
GenerateVarHandleGetAndUpdate(invoke,
codegen_,
GetAndUpdateOp::kBitwiseOr,
/*need_any_store_barrier=*/ true,
/*need_any_any_barrier=*/ true);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseOrAcquire(HInvoke* invoke) {
CreateVarHandleGetAndBitwiseOpLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseOrAcquire(HInvoke* invoke) {
// `getAndBitwiseOrAcquire` has `getAcquire` + `set` semantics, so it doesn't need any barriers.
GenerateVarHandleGetAndUpdate(invoke,
codegen_,
GetAndUpdateOp::kBitwiseOr,
/*need_any_store_barrier=*/ false,
/*need_any_any_barrier=*/ false);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseOrRelease(HInvoke* invoke) {
CreateVarHandleGetAndBitwiseOpLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseOrRelease(HInvoke* invoke) {
// `getAndBitwiseOrRelease` has `get` + `setRelease` semantics, so it needs `kAnyStore` barrier.
GenerateVarHandleGetAndUpdate(invoke,
codegen_,
GetAndUpdateOp::kBitwiseOr,
/*need_any_store_barrier=*/ true,
/*need_any_any_barrier=*/ false);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseXor(HInvoke* invoke) {
CreateVarHandleGetAndBitwiseOpLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseXor(HInvoke* invoke) {
// `getAndBitwiseXor` has `getVolatile` + `setVolatile` semantics, so it needs both barriers.
GenerateVarHandleGetAndUpdate(invoke,
codegen_,
GetAndUpdateOp::kBitwiseXor,
/*need_any_store_barrier=*/ true,
/*need_any_any_barrier=*/ true);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseXorAcquire(HInvoke* invoke) {
CreateVarHandleGetAndBitwiseOpLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseXorAcquire(HInvoke* invoke) {
// `getAndBitwiseXorAcquire` has `getAcquire` + `set` semantics, so it doesn't need any barriers.
GenerateVarHandleGetAndUpdate(invoke,
codegen_,
GetAndUpdateOp::kBitwiseXor,
/*need_any_store_barrier=*/ false,
/*need_any_any_barrier=*/ false);
}
void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseXorRelease(HInvoke* invoke) {
CreateVarHandleGetAndBitwiseOpLocations(invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseXorRelease(HInvoke* invoke) {
// `getAndBitwiseXorRelease` has `get` + `setRelease` semantics, so it needs `kAnyStore` barrier.
GenerateVarHandleGetAndUpdate(invoke,
codegen_,
GetAndUpdateOp::kBitwiseXor,
/*need_any_store_barrier=*/ true,
/*need_any_any_barrier=*/ false);
}
void VarHandleSlowPathX86_64::EmitByteArrayViewCode(CodeGeneratorX86_64* codegen) {
DCHECK(GetByteArrayViewCheckLabel()->IsLinked());
X86_64Assembler* assembler = codegen->GetAssembler();
HInvoke* invoke = GetInvoke();
LocationSummary* locations = invoke->GetLocations();
mirror::VarHandle::AccessModeTemplate access_mode_template = GetAccessModeTemplate();
DataType::Type value_type =
GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u);
DCHECK_NE(value_type, DataType::Type::kReference);
size_t size = DataType::Size(value_type);
DCHECK_GT(size, 1u);
CpuRegister varhandle = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister object = locations->InAt(1).AsRegister<CpuRegister>();
CpuRegister index = locations->InAt(2).AsRegister<CpuRegister>();
CpuRegister temp = locations->GetTemp(locations->GetTempCount() - 1).AsRegister<CpuRegister>();
MemberOffset class_offset = mirror::Object::ClassOffset();
MemberOffset array_length_offset = mirror::Array::LengthOffset();
MemberOffset data_offset = mirror::Array::DataOffset(Primitive::kPrimByte);
MemberOffset native_byte_order_offset = mirror::ByteArrayViewVarHandle::NativeByteOrderOffset();
VarHandleTarget target = GetVarHandleTarget(invoke);
__ Bind(GetByteArrayViewCheckLabel());
// The main path checked that the coordinateType0 is an array class that matches
// the class of the actual coordinate argument but it does not match the value type.
// Check if the `varhandle` references a ByteArrayViewVarHandle instance.
codegen->LoadClassRootForIntrinsic(temp, ClassRoot::kJavaLangInvokeByteArrayViewVarHandle);
assembler->MaybePoisonHeapReference(temp);
__ cmpl(temp, Address(varhandle, class_offset.Int32Value()));
__ j(kNotEqual, GetEntryLabel());
// Check for array index out of bounds.
__ movl(temp, Address(object, array_length_offset.Int32Value()));
// SUB sets flags in the same way as CMP.
__ subl(temp, index);
__ j(kBelowEqual, GetEntryLabel());
// The difference between index and array length must be enough for the `value_type` size.
__ cmpl(temp, Immediate(size));
__ j(kBelow, GetEntryLabel());
// Construct the target.
__ leal(CpuRegister(target.offset), Address(index, TIMES_1, data_offset.Int32Value()));
// Alignment check. For unaligned access, go to the runtime.
DCHECK(IsPowerOfTwo(size));
__ testl(CpuRegister(target.offset), Immediate(size - 1u));
__ j(kNotZero, GetEntryLabel());
// Byte order check. For native byte order return to the main path.
if (access_mode_template == mirror::VarHandle::AccessModeTemplate::kSet &&
IsZeroBitPattern(invoke->InputAt(invoke->GetNumberOfArguments() - 1u))) {
// There is no reason to differentiate between native byte order and byte-swap
// for setting a zero bit pattern. Just return to the main path.
__ jmp(GetNativeByteOrderLabel());
return;
}
__ cmpl(Address(varhandle, native_byte_order_offset.Int32Value()), Immediate(0));
__ j(kNotEqual, GetNativeByteOrderLabel());
switch (access_mode_template) {
case mirror::VarHandle::AccessModeTemplate::kGet:
GenerateVarHandleGet(invoke, codegen, /*byte_swap=*/ true);
break;
case mirror::VarHandle::AccessModeTemplate::kSet:
GenerateVarHandleSet(invoke, codegen, is_volatile_, is_atomic_, /*byte_swap=*/ true);
break;
case mirror::VarHandle::AccessModeTemplate::kCompareAndSet:
GenerateVarHandleCompareAndSetOrExchange(
invoke, codegen, /*is_cmpxchg=*/ false, /*byte_swap=*/ true);
break;
case mirror::VarHandle::AccessModeTemplate::kCompareAndExchange:
GenerateVarHandleCompareAndSetOrExchange(
invoke, codegen, /*is_cmpxchg=*/ true, /*byte_swap=*/ true);
break;
case mirror::VarHandle::AccessModeTemplate::kGetAndUpdate:
GenerateVarHandleGetAndUpdate(invoke,
codegen,
get_and_update_op_,
need_any_store_barrier_,
need_any_any_barrier_,
/*byte_swap=*/ true);
break;
}
__ jmp(GetExitLabel());
}
#define MARK_UNIMPLEMENTED(Name) UNIMPLEMENTED_INTRINSIC(X86_64, Name)
UNIMPLEMENTED_INTRINSIC_LIST_X86_64(MARK_UNIMPLEMENTED);
#undef MARK_UNIMPLEMENTED
UNREACHABLE_INTRINSICS(X86_64)
#undef __
} // namespace x86_64
} // namespace art