| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "intrinsics_x86_64.h" |
| |
| #include <limits> |
| |
| #include "arch/x86_64/instruction_set_features_x86_64.h" |
| #include "art_method.h" |
| #include "base/bit_utils.h" |
| #include "code_generator_x86_64.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "heap_poisoning.h" |
| #include "intrinsics.h" |
| #include "intrinsics_utils.h" |
| #include "lock_word.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/reference.h" |
| #include "mirror/string.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "thread-current-inl.h" |
| #include "utils/x86_64/assembler_x86_64.h" |
| #include "utils/x86_64/constants_x86_64.h" |
| |
| namespace art HIDDEN { |
| |
| namespace x86_64 { |
| |
| IntrinsicLocationsBuilderX86_64::IntrinsicLocationsBuilderX86_64(CodeGeneratorX86_64* codegen) |
| : allocator_(codegen->GetGraph()->GetAllocator()), codegen_(codegen) { |
| } |
| |
| X86_64Assembler* IntrinsicCodeGeneratorX86_64::GetAssembler() { |
| return down_cast<X86_64Assembler*>(codegen_->GetAssembler()); |
| } |
| |
| ArenaAllocator* IntrinsicCodeGeneratorX86_64::GetAllocator() { |
| return codegen_->GetGraph()->GetAllocator(); |
| } |
| |
| bool IntrinsicLocationsBuilderX86_64::TryDispatch(HInvoke* invoke) { |
| Dispatch(invoke); |
| LocationSummary* res = invoke->GetLocations(); |
| if (res == nullptr) { |
| return false; |
| } |
| return res->Intrinsified(); |
| } |
| |
| using IntrinsicSlowPathX86_64 = IntrinsicSlowPath<InvokeDexCallingConventionVisitorX86_64>; |
| |
| // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. |
| #define __ down_cast<X86_64Assembler*>(codegen->GetAssembler())-> // NOLINT |
| |
| // Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers. |
| class ReadBarrierSystemArrayCopySlowPathX86_64 : public SlowPathCode { |
| public: |
| explicit ReadBarrierSystemArrayCopySlowPathX86_64(HInstruction* instruction) |
| : SlowPathCode(instruction) { |
| DCHECK(gUseReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(locations->CanCall()); |
| DCHECK(instruction_->IsInvokeStaticOrDirect()) |
| << "Unexpected instruction in read barrier arraycopy slow path: " |
| << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy); |
| |
| int32_t element_size = DataType::Size(DataType::Type::kReference); |
| |
| CpuRegister src_curr_addr = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| CpuRegister dst_curr_addr = locations->GetTemp(1).AsRegister<CpuRegister>(); |
| CpuRegister src_stop_addr = locations->GetTemp(2).AsRegister<CpuRegister>(); |
| |
| __ Bind(GetEntryLabel()); |
| NearLabel loop; |
| __ Bind(&loop); |
| __ movl(CpuRegister(TMP), Address(src_curr_addr, 0)); |
| __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); |
| // TODO: Inline the mark bit check before calling the runtime? |
| // TMP = ReadBarrier::Mark(TMP); |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset<kX86_64PointerSize>(TMP); |
| // This runtime call does not require a stack map. |
| x86_64_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); |
| __ MaybePoisonHeapReference(CpuRegister(TMP)); |
| __ movl(Address(dst_curr_addr, 0), CpuRegister(TMP)); |
| __ addl(src_curr_addr, Immediate(element_size)); |
| __ addl(dst_curr_addr, Immediate(element_size)); |
| __ cmpl(src_curr_addr, src_stop_addr); |
| __ j(kNotEqual, &loop); |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "ReadBarrierSystemArrayCopySlowPathX86_64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathX86_64); |
| }; |
| |
| #undef __ |
| |
| #define __ assembler-> |
| |
| static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } |
| |
| static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) { |
| Location input = locations->InAt(0); |
| Location output = locations->Out(); |
| __ movd(output.AsRegister<CpuRegister>(), input.AsFpuRegister<XmmRegister>(), is64bit); |
| } |
| |
| static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) { |
| Location input = locations->InAt(0); |
| Location output = locations->Out(); |
| __ movd(output.AsFpuRegister<XmmRegister>(), input.AsRegister<CpuRegister>(), is64bit); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) { |
| CreateIntToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { |
| MoveFPToInt(invoke->GetLocations(), /* is64bit= */ true, GetAssembler()); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) { |
| MoveIntToFP(invoke->GetLocations(), /* is64bit= */ true, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) { |
| CreateIntToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) { |
| MoveFPToInt(invoke->GetLocations(), /* is64bit= */ false, GetAssembler()); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) { |
| MoveIntToFP(invoke->GetLocations(), /* is64bit= */ false, GetAssembler()); |
| } |
| |
| static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitIntegerReverseBytes(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitIntegerReverseBytes(HInvoke* invoke) { |
| codegen_->GetInstructionCodegen()->Bswap(invoke->GetLocations()->Out(), DataType::Type::kInt32); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitLongReverseBytes(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitLongReverseBytes(HInvoke* invoke) { |
| codegen_->GetInstructionCodegen()->Bswap(invoke->GetLocations()->Out(), DataType::Type::kInt64); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitShortReverseBytes(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitShortReverseBytes(HInvoke* invoke) { |
| codegen_->GetInstructionCodegen()->Bswap(invoke->GetLocations()->Out(), DataType::Type::kInt16); |
| } |
| |
| static void GenIsInfinite(LocationSummary* locations, |
| bool is64bit, |
| CodeGeneratorX86_64* codegen) { |
| X86_64Assembler* assembler = codegen->GetAssembler(); |
| |
| XmmRegister input = locations->InAt(0).AsFpuRegister<XmmRegister>(); |
| CpuRegister output = locations->Out().AsRegister<CpuRegister>(); |
| |
| NearLabel done1, done2; |
| |
| if (is64bit) { |
| double kPositiveInfinity = std::numeric_limits<double>::infinity(); |
| double kNegativeInfinity = -1 * kPositiveInfinity; |
| |
| __ xorq(output, output); |
| __ comisd(input, codegen->LiteralDoubleAddress(kPositiveInfinity)); |
| __ j(kNotEqual, &done1); |
| __ j(kParityEven, &done2); |
| __ movq(output, Immediate(1)); |
| __ jmp(&done2); |
| __ Bind(&done1); |
| __ comisd(input, codegen->LiteralDoubleAddress(kNegativeInfinity)); |
| __ j(kNotEqual, &done2); |
| __ j(kParityEven, &done2); |
| __ movq(output, Immediate(1)); |
| __ Bind(&done2); |
| } else { |
| float kPositiveInfinity = std::numeric_limits<float>::infinity(); |
| float kNegativeInfinity = -1 * kPositiveInfinity; |
| |
| __ xorl(output, output); |
| __ comiss(input, codegen->LiteralFloatAddress(kPositiveInfinity)); |
| __ j(kNotEqual, &done1); |
| __ j(kParityEven, &done2); |
| __ movl(output, Immediate(1)); |
| __ jmp(&done2); |
| __ Bind(&done1); |
| __ comiss(input, codegen->LiteralFloatAddress(kNegativeInfinity)); |
| __ j(kNotEqual, &done2); |
| __ j(kParityEven, &done2); |
| __ movl(output, Immediate(1)); |
| __ Bind(&done2); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitFloatIsInfinite(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitFloatIsInfinite(HInvoke* invoke) { |
| GenIsInfinite(invoke->GetLocations(), /* is64bit=*/ false, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitDoubleIsInfinite(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitDoubleIsInfinite(HInvoke* invoke) { |
| GenIsInfinite(invoke->GetLocations(), /* is64bit=*/ true, codegen_); |
| } |
| |
| static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathSqrt(HInvoke* invoke) { |
| CreateFPToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathSqrt(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>(); |
| |
| GetAssembler()->sqrtsd(out, in); |
| } |
| |
| static void CreateSSE41FPToFPLocations(ArenaAllocator* allocator, |
| HInvoke* invoke, |
| CodeGeneratorX86_64* codegen) { |
| // Do we have instruction support? |
| if (!codegen->GetInstructionSetFeatures().HasSSE4_1()) { |
| return; |
| } |
| |
| CreateFPToFPLocations(allocator, invoke); |
| } |
| |
| static void GenSSE41FPToFPIntrinsic(HInvoke* invoke, X86_64Assembler* assembler, int round_mode) { |
| LocationSummary* locations = invoke->GetLocations(); |
| DCHECK(!locations->WillCall()); |
| XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>(); |
| __ roundsd(out, in, Immediate(round_mode)); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathCeil(HInvoke* invoke) { |
| CreateSSE41FPToFPLocations(allocator_, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathCeil(HInvoke* invoke) { |
| GenSSE41FPToFPIntrinsic(invoke, GetAssembler(), 2); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathFloor(HInvoke* invoke) { |
| CreateSSE41FPToFPLocations(allocator_, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathFloor(HInvoke* invoke) { |
| GenSSE41FPToFPIntrinsic(invoke, GetAssembler(), 1); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathRint(HInvoke* invoke) { |
| CreateSSE41FPToFPLocations(allocator_, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathRint(HInvoke* invoke) { |
| GenSSE41FPToFPIntrinsic(invoke, GetAssembler(), 0); |
| } |
| |
| static void CreateSSE41FPToIntLocations(ArenaAllocator* allocator, |
| HInvoke* invoke, |
| CodeGeneratorX86_64* codegen) { |
| // Do we have instruction support? |
| if (!codegen->GetInstructionSetFeatures().HasSSE4_1()) { |
| return; |
| } |
| |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathRoundFloat(HInvoke* invoke) { |
| CreateSSE41FPToIntLocations(allocator_, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathRoundFloat(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| DCHECK(!locations->WillCall()); |
| |
| XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| XmmRegister t1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister t2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); |
| NearLabel skip_incr, done; |
| X86_64Assembler* assembler = GetAssembler(); |
| |
| // Since no direct x86 rounding instruction matches the required semantics, |
| // this intrinsic is implemented as follows: |
| // result = floor(in); |
| // if (in - result >= 0.5f) |
| // result = result + 1.0f; |
| __ movss(t2, in); |
| __ roundss(t1, in, Immediate(1)); |
| __ subss(t2, t1); |
| __ comiss(t2, codegen_->LiteralFloatAddress(0.5f)); |
| __ j(kBelow, &skip_incr); |
| __ addss(t1, codegen_->LiteralFloatAddress(1.0f)); |
| __ Bind(&skip_incr); |
| |
| // Final conversion to an integer. Unfortunately this also does not have a |
| // direct x86 instruction, since NaN should map to 0 and large positive |
| // values need to be clipped to the extreme value. |
| codegen_->Load32BitValue(out, kPrimIntMax); |
| __ cvtsi2ss(t2, out); |
| __ comiss(t1, t2); |
| __ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered |
| __ movl(out, Immediate(0)); // does not change flags |
| __ j(kUnordered, &done); // NaN mapped to 0 (just moved in out) |
| __ cvttss2si(out, t1); |
| __ Bind(&done); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathRoundDouble(HInvoke* invoke) { |
| CreateSSE41FPToIntLocations(allocator_, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathRoundDouble(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| DCHECK(!locations->WillCall()); |
| |
| XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| XmmRegister t1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister t2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); |
| NearLabel skip_incr, done; |
| X86_64Assembler* assembler = GetAssembler(); |
| |
| // Since no direct x86 rounding instruction matches the required semantics, |
| // this intrinsic is implemented as follows: |
| // result = floor(in); |
| // if (in - result >= 0.5) |
| // result = result + 1.0f; |
| __ movsd(t2, in); |
| __ roundsd(t1, in, Immediate(1)); |
| __ subsd(t2, t1); |
| __ comisd(t2, codegen_->LiteralDoubleAddress(0.5)); |
| __ j(kBelow, &skip_incr); |
| __ addsd(t1, codegen_->LiteralDoubleAddress(1.0f)); |
| __ Bind(&skip_incr); |
| |
| // Final conversion to an integer. Unfortunately this also does not have a |
| // direct x86 instruction, since NaN should map to 0 and large positive |
| // values need to be clipped to the extreme value. |
| codegen_->Load64BitValue(out, kPrimLongMax); |
| __ cvtsi2sd(t2, out, /* is64bit= */ true); |
| __ comisd(t1, t2); |
| __ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered |
| __ movl(out, Immediate(0)); // does not change flags, implicit zero extension to 64-bit |
| __ j(kUnordered, &done); // NaN mapped to 0 (just moved in out) |
| __ cvttsd2si(out, t1, /* is64bit= */ true); |
| __ Bind(&done); |
| } |
| |
| static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetOut(Location::FpuRegisterLocation(XMM0)); |
| |
| CodeGeneratorX86_64::BlockNonVolatileXmmRegisters(locations); |
| } |
| |
| static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorX86_64* codegen, |
| QuickEntrypointEnum entry) { |
| LocationSummary* locations = invoke->GetLocations(); |
| DCHECK(locations->WillCall()); |
| DCHECK(invoke->IsInvokeStaticOrDirect()); |
| |
| codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathCos(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathCos(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickCos); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathSin(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathSin(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickSin); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathAcos(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathAcos(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAcos); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathAsin(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathAsin(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAsin); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathAtan(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathAtan(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAtan); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathCbrt(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathCbrt(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickCbrt); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathCosh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathCosh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickCosh); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathExp(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathExp(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickExp); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathExpm1(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathExpm1(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickExpm1); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathLog(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathLog(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickLog); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathLog10(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathLog10(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickLog10); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathSinh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathSinh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickSinh); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathTan(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathTan(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickTan); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathTanh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathTanh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickTanh); |
| } |
| |
| static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); |
| locations->SetOut(Location::FpuRegisterLocation(XMM0)); |
| |
| CodeGeneratorX86_64::BlockNonVolatileXmmRegisters(locations); |
| } |
| |
| static void CreateFPFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| DCHECK_EQ(invoke->GetNumberOfArguments(), 3U); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetInAt(2, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathAtan2(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathAtan2(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAtan2); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathPow(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathPow(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickPow); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathHypot(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathHypot(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickHypot); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathNextAfter(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathNextAfter(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickNextAfter); |
| } |
| |
| static void CreateSystemArrayCopyLocations(HInvoke* invoke) { |
| // Check to see if we have known failures that will cause us to have to bail out |
| // to the runtime, and just generate the runtime call directly. |
| HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); |
| HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); |
| |
| // The positions must be non-negative. |
| if ((src_pos != nullptr && src_pos->GetValue() < 0) || |
| (dest_pos != nullptr && dest_pos->GetValue() < 0)) { |
| // We will have to fail anyways. |
| return; |
| } |
| |
| // The length must be > 0. |
| HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); |
| if (length != nullptr) { |
| int32_t len = length->GetValue(); |
| if (len < 0) { |
| // Just call as normal. |
| return; |
| } |
| } |
| LocationSummary* locations = |
| new (invoke->GetBlock()->GetGraph()->GetAllocator()) LocationSummary |
| (invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); |
| // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length). |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3))); |
| locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4))); |
| |
| // And we need some temporaries. We will use REP MOVSW, so we need fixed registers. |
| locations->AddTemp(Location::RegisterLocation(RSI)); |
| locations->AddTemp(Location::RegisterLocation(RDI)); |
| locations->AddTemp(Location::RegisterLocation(RCX)); |
| } |
| |
| static void CheckPosition(X86_64Assembler* assembler, |
| Location pos, |
| CpuRegister input, |
| Location length, |
| SlowPathCode* slow_path, |
| CpuRegister temp, |
| bool length_is_input_length = false) { |
| // Where is the length in the Array? |
| const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); |
| |
| if (pos.IsConstant()) { |
| int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue(); |
| if (pos_const == 0) { |
| if (!length_is_input_length) { |
| // Check that length(input) >= length. |
| if (length.IsConstant()) { |
| __ cmpl(Address(input, length_offset), |
| Immediate(length.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ cmpl(Address(input, length_offset), length.AsRegister<CpuRegister>()); |
| } |
| __ j(kLess, slow_path->GetEntryLabel()); |
| } |
| } else { |
| // Check that length(input) >= pos. |
| __ movl(temp, Address(input, length_offset)); |
| __ subl(temp, Immediate(pos_const)); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| |
| // Check that (length(input) - pos) >= length. |
| if (length.IsConstant()) { |
| __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ cmpl(temp, length.AsRegister<CpuRegister>()); |
| } |
| __ j(kLess, slow_path->GetEntryLabel()); |
| } |
| } else if (length_is_input_length) { |
| // The only way the copy can succeed is if pos is zero. |
| CpuRegister pos_reg = pos.AsRegister<CpuRegister>(); |
| __ testl(pos_reg, pos_reg); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| } else { |
| // Check that pos >= 0. |
| CpuRegister pos_reg = pos.AsRegister<CpuRegister>(); |
| __ testl(pos_reg, pos_reg); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| |
| // Check that pos <= length(input). |
| __ cmpl(Address(input, length_offset), pos_reg); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| |
| // Check that (length(input) - pos) >= length. |
| __ movl(temp, Address(input, length_offset)); |
| __ subl(temp, pos_reg); |
| if (length.IsConstant()) { |
| __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ cmpl(temp, length.AsRegister<CpuRegister>()); |
| } |
| __ j(kLess, slow_path->GetEntryLabel()); |
| } |
| } |
| |
| static void SystemArrayCopyPrimitive(HInvoke* invoke, |
| X86_64Assembler* assembler, |
| CodeGeneratorX86_64* codegen, |
| DataType::Type type) { |
| LocationSummary* locations = invoke->GetLocations(); |
| CpuRegister src = locations->InAt(0).AsRegister<CpuRegister>(); |
| Location src_pos = locations->InAt(1); |
| CpuRegister dest = locations->InAt(2).AsRegister<CpuRegister>(); |
| Location dest_pos = locations->InAt(3); |
| Location length = locations->InAt(4); |
| |
| // Temporaries that we need for MOVSB/W/L. |
| CpuRegister src_base = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| DCHECK_EQ(src_base.AsRegister(), RSI); |
| CpuRegister dest_base = locations->GetTemp(1).AsRegister<CpuRegister>(); |
| DCHECK_EQ(dest_base.AsRegister(), RDI); |
| CpuRegister count = locations->GetTemp(2).AsRegister<CpuRegister>(); |
| DCHECK_EQ(count.AsRegister(), RCX); |
| |
| SlowPathCode* slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); |
| codegen->AddSlowPath(slow_path); |
| |
| // Bail out if the source and destination are the same. |
| __ cmpl(src, dest); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| // Bail out if the source is null. |
| __ testl(src, src); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| // Bail out if the destination is null. |
| __ testl(dest, dest); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| // If the length is negative, bail out. |
| // We have already checked in the LocationsBuilder for the constant case. |
| if (!length.IsConstant()) { |
| __ testl(length.AsRegister<CpuRegister>(), length.AsRegister<CpuRegister>()); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| } |
| |
| // Validity checks: source. Use src_base as a temporary register. |
| CheckPosition(assembler, src_pos, src, length, slow_path, src_base); |
| |
| // Validity checks: dest. Use src_base as a temporary register. |
| CheckPosition(assembler, dest_pos, dest, length, slow_path, src_base); |
| |
| // We need the count in RCX. |
| if (length.IsConstant()) { |
| __ movl(count, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ movl(count, length.AsRegister<CpuRegister>()); |
| } |
| |
| // Okay, everything checks out. Finally time to do the copy. |
| // Check assumption that sizeof(Char) is 2 (used in scaling below). |
| const size_t data_size = DataType::Size(type); |
| const ScaleFactor scale_factor = CodeGenerator::ScaleFactorForType(type); |
| const uint32_t data_offset = mirror::Array::DataOffset(data_size).Uint32Value(); |
| |
| if (src_pos.IsConstant()) { |
| int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue(); |
| __ leal(src_base, Address(src, data_size * src_pos_const + data_offset)); |
| } else { |
| __ leal(src_base, Address(src, src_pos.AsRegister<CpuRegister>(), scale_factor, data_offset)); |
| } |
| if (dest_pos.IsConstant()) { |
| int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue(); |
| __ leal(dest_base, Address(dest, data_size * dest_pos_const + data_offset)); |
| } else { |
| __ leal(dest_base, |
| Address(dest, dest_pos.AsRegister<CpuRegister>(), scale_factor, data_offset)); |
| } |
| |
| // Do the move. |
| switch (type) { |
| case DataType::Type::kInt8: |
| __ rep_movsb(); |
| break; |
| case DataType::Type::kUint16: |
| __ rep_movsw(); |
| break; |
| case DataType::Type::kInt32: |
| __ rep_movsl(); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected data type for intrinsic"; |
| } |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) { |
| CreateSystemArrayCopyLocations(invoke); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| SystemArrayCopyPrimitive(invoke, assembler, codegen_, DataType::Type::kUint16); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopyByte(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| SystemArrayCopyPrimitive(invoke, assembler, codegen_, DataType::Type::kInt8); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopyByte(HInvoke* invoke) { |
| CreateSystemArrayCopyLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopyInt(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| SystemArrayCopyPrimitive(invoke, assembler, codegen_, DataType::Type::kInt32); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopyInt(HInvoke* invoke) { |
| CreateSystemArrayCopyLocations(invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopy(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // SystemArrayCopy intrinsic is the Baker-style read barriers. |
| if (gUseReadBarrier && !kUseBakerReadBarrier) { |
| return; |
| } |
| |
| CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke); |
| } |
| |
| // Compute base source address, base destination address, and end |
| // source address for the System.arraycopy intrinsic in `src_base`, |
| // `dst_base` and `src_end` respectively. |
| static void GenSystemArrayCopyAddresses(X86_64Assembler* assembler, |
| DataType::Type type, |
| const CpuRegister& src, |
| const Location& src_pos, |
| const CpuRegister& dst, |
| const Location& dst_pos, |
| const Location& copy_length, |
| const CpuRegister& src_base, |
| const CpuRegister& dst_base, |
| const CpuRegister& src_end) { |
| // This routine is only used by the SystemArrayCopy intrinsic. |
| DCHECK_EQ(type, DataType::Type::kReference); |
| const int32_t element_size = DataType::Size(type); |
| const ScaleFactor scale_factor = static_cast<ScaleFactor>(DataType::SizeShift(type)); |
| const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value(); |
| |
| if (src_pos.IsConstant()) { |
| int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); |
| __ leal(src_base, Address(src, element_size * constant + data_offset)); |
| } else { |
| __ leal(src_base, Address(src, src_pos.AsRegister<CpuRegister>(), scale_factor, data_offset)); |
| } |
| |
| if (dst_pos.IsConstant()) { |
| int32_t constant = dst_pos.GetConstant()->AsIntConstant()->GetValue(); |
| __ leal(dst_base, Address(dst, element_size * constant + data_offset)); |
| } else { |
| __ leal(dst_base, Address(dst, dst_pos.AsRegister<CpuRegister>(), scale_factor, data_offset)); |
| } |
| |
| if (copy_length.IsConstant()) { |
| int32_t constant = copy_length.GetConstant()->AsIntConstant()->GetValue(); |
| __ leal(src_end, Address(src_base, element_size * constant)); |
| } else { |
| __ leal(src_end, Address(src_base, copy_length.AsRegister<CpuRegister>(), scale_factor, 0)); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopy(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // SystemArrayCopy intrinsic is the Baker-style read barriers. |
| DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); |
| |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| |
| CpuRegister src = locations->InAt(0).AsRegister<CpuRegister>(); |
| Location src_pos = locations->InAt(1); |
| CpuRegister dest = locations->InAt(2).AsRegister<CpuRegister>(); |
| Location dest_pos = locations->InAt(3); |
| Location length = locations->InAt(4); |
| Location temp1_loc = locations->GetTemp(0); |
| CpuRegister temp1 = temp1_loc.AsRegister<CpuRegister>(); |
| Location temp2_loc = locations->GetTemp(1); |
| CpuRegister temp2 = temp2_loc.AsRegister<CpuRegister>(); |
| Location temp3_loc = locations->GetTemp(2); |
| CpuRegister temp3 = temp3_loc.AsRegister<CpuRegister>(); |
| Location TMP_loc = Location::RegisterLocation(TMP); |
| |
| SlowPathCode* intrinsic_slow_path = |
| new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); |
| codegen_->AddSlowPath(intrinsic_slow_path); |
| |
| NearLabel conditions_on_positions_validated; |
| SystemArrayCopyOptimizations optimizations(invoke); |
| |
| // If source and destination are the same, we go to slow path if we need to do |
| // forward copying. |
| if (src_pos.IsConstant()) { |
| int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); |
| if (dest_pos.IsConstant()) { |
| int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); |
| if (optimizations.GetDestinationIsSource()) { |
| // Checked when building locations. |
| DCHECK_GE(src_pos_constant, dest_pos_constant); |
| } else if (src_pos_constant < dest_pos_constant) { |
| __ cmpl(src, dest); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| } else { |
| if (!optimizations.GetDestinationIsSource()) { |
| __ cmpl(src, dest); |
| __ j(kNotEqual, &conditions_on_positions_validated); |
| } |
| __ cmpl(dest_pos.AsRegister<CpuRegister>(), Immediate(src_pos_constant)); |
| __ j(kGreater, intrinsic_slow_path->GetEntryLabel()); |
| } |
| } else { |
| if (!optimizations.GetDestinationIsSource()) { |
| __ cmpl(src, dest); |
| __ j(kNotEqual, &conditions_on_positions_validated); |
| } |
| if (dest_pos.IsConstant()) { |
| int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); |
| __ cmpl(src_pos.AsRegister<CpuRegister>(), Immediate(dest_pos_constant)); |
| __ j(kLess, intrinsic_slow_path->GetEntryLabel()); |
| } else { |
| __ cmpl(src_pos.AsRegister<CpuRegister>(), dest_pos.AsRegister<CpuRegister>()); |
| __ j(kLess, intrinsic_slow_path->GetEntryLabel()); |
| } |
| } |
| |
| __ Bind(&conditions_on_positions_validated); |
| |
| if (!optimizations.GetSourceIsNotNull()) { |
| // Bail out if the source is null. |
| __ testl(src, src); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) { |
| // Bail out if the destination is null. |
| __ testl(dest, dest); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| // If the length is negative, bail out. |
| // We have already checked in the LocationsBuilder for the constant case. |
| if (!length.IsConstant() && |
| !optimizations.GetCountIsSourceLength() && |
| !optimizations.GetCountIsDestinationLength()) { |
| __ testl(length.AsRegister<CpuRegister>(), length.AsRegister<CpuRegister>()); |
| __ j(kLess, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| // Validity checks: source. |
| CheckPosition(assembler, |
| src_pos, |
| src, |
| length, |
| intrinsic_slow_path, |
| temp1, |
| optimizations.GetCountIsSourceLength()); |
| |
| // Validity checks: dest. |
| CheckPosition(assembler, |
| dest_pos, |
| dest, |
| length, |
| intrinsic_slow_path, |
| temp1, |
| optimizations.GetCountIsDestinationLength()); |
| |
| if (!optimizations.GetDoesNotNeedTypeCheck()) { |
| // Check whether all elements of the source array are assignable to the component |
| // type of the destination array. We do two checks: the classes are the same, |
| // or the destination is Object[]. If none of these checks succeed, we go to the |
| // slow path. |
| |
| bool did_unpoison = false; |
| if (gUseReadBarrier && kUseBakerReadBarrier) { |
| // /* HeapReference<Class> */ temp1 = dest->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp1_loc, dest, class_offset, /* needs_null_check= */ false); |
| // Register `temp1` is not trashed by the read barrier emitted |
| // by GenerateFieldLoadWithBakerReadBarrier below, as that |
| // method produces a call to a ReadBarrierMarkRegX entry point, |
| // which saves all potentially live registers, including |
| // temporaries such a `temp1`. |
| // /* HeapReference<Class> */ temp2 = src->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp2_loc, src, class_offset, /* needs_null_check= */ false); |
| // If heap poisoning is enabled, `temp1` and `temp2` have been |
| // unpoisoned by the the previous calls to |
| // GenerateFieldLoadWithBakerReadBarrier. |
| } else { |
| // /* HeapReference<Class> */ temp1 = dest->klass_ |
| __ movl(temp1, Address(dest, class_offset)); |
| // /* HeapReference<Class> */ temp2 = src->klass_ |
| __ movl(temp2, Address(src, class_offset)); |
| if (!optimizations.GetDestinationIsNonPrimitiveArray() || |
| !optimizations.GetSourceIsNonPrimitiveArray()) { |
| // One or two of the references need to be unpoisoned. Unpoison them |
| // both to make the identity check valid. |
| __ MaybeUnpoisonHeapReference(temp1); |
| __ MaybeUnpoisonHeapReference(temp2); |
| did_unpoison = true; |
| } |
| } |
| |
| if (!optimizations.GetDestinationIsNonPrimitiveArray()) { |
| // Bail out if the destination is not a non primitive array. |
| if (gUseReadBarrier && kUseBakerReadBarrier) { |
| // /* HeapReference<Class> */ TMP = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, TMP_loc, temp1, component_offset, /* needs_null_check= */ false); |
| __ testl(CpuRegister(TMP), CpuRegister(TMP)); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| // If heap poisoning is enabled, `TMP` has been unpoisoned by |
| // the the previous call to GenerateFieldLoadWithBakerReadBarrier. |
| } else { |
| // /* HeapReference<Class> */ TMP = temp1->component_type_ |
| __ movl(CpuRegister(TMP), Address(temp1, component_offset)); |
| __ testl(CpuRegister(TMP), CpuRegister(TMP)); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); |
| } |
| __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot)); |
| __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| if (!optimizations.GetSourceIsNonPrimitiveArray()) { |
| // Bail out if the source is not a non primitive array. |
| if (gUseReadBarrier && kUseBakerReadBarrier) { |
| // For the same reason given earlier, `temp1` is not trashed by the |
| // read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below. |
| // /* HeapReference<Class> */ TMP = temp2->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, TMP_loc, temp2, component_offset, /* needs_null_check= */ false); |
| __ testl(CpuRegister(TMP), CpuRegister(TMP)); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| // If heap poisoning is enabled, `TMP` has been unpoisoned by |
| // the the previous call to GenerateFieldLoadWithBakerReadBarrier. |
| } else { |
| // /* HeapReference<Class> */ TMP = temp2->component_type_ |
| __ movl(CpuRegister(TMP), Address(temp2, component_offset)); |
| __ testl(CpuRegister(TMP), CpuRegister(TMP)); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); |
| } |
| __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot)); |
| __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| __ cmpl(temp1, temp2); |
| |
| if (optimizations.GetDestinationIsTypedObjectArray()) { |
| NearLabel do_copy; |
| __ j(kEqual, &do_copy); |
| if (gUseReadBarrier && kUseBakerReadBarrier) { |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp1_loc, temp1, component_offset, /* needs_null_check= */ false); |
| // We do not need to emit a read barrier for the following |
| // heap reference load, as `temp1` is only used in a |
| // comparison with null below, and this reference is not |
| // kept afterwards. |
| __ cmpl(Address(temp1, super_offset), Immediate(0)); |
| } else { |
| if (!did_unpoison) { |
| __ MaybeUnpoisonHeapReference(temp1); |
| } |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| __ movl(temp1, Address(temp1, component_offset)); |
| __ MaybeUnpoisonHeapReference(temp1); |
| // No need to unpoison the following heap reference load, as |
| // we're comparing against null. |
| __ cmpl(Address(temp1, super_offset), Immediate(0)); |
| } |
| __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); |
| __ Bind(&do_copy); |
| } else { |
| __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| } else if (!optimizations.GetSourceIsNonPrimitiveArray()) { |
| DCHECK(optimizations.GetDestinationIsNonPrimitiveArray()); |
| // Bail out if the source is not a non primitive array. |
| if (gUseReadBarrier && kUseBakerReadBarrier) { |
| // /* HeapReference<Class> */ temp1 = src->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp1_loc, src, class_offset, /* needs_null_check= */ false); |
| // /* HeapReference<Class> */ TMP = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, TMP_loc, temp1, component_offset, /* needs_null_check= */ false); |
| __ testl(CpuRegister(TMP), CpuRegister(TMP)); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| } else { |
| // /* HeapReference<Class> */ temp1 = src->klass_ |
| __ movl(temp1, Address(src, class_offset)); |
| __ MaybeUnpoisonHeapReference(temp1); |
| // /* HeapReference<Class> */ TMP = temp1->component_type_ |
| __ movl(CpuRegister(TMP), Address(temp1, component_offset)); |
| // No need to unpoison `TMP` now, as we're comparing against null. |
| __ testl(CpuRegister(TMP), CpuRegister(TMP)); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); |
| } |
| __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot)); |
| __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| const DataType::Type type = DataType::Type::kReference; |
| const int32_t element_size = DataType::Size(type); |
| |
| // Compute base source address, base destination address, and end |
| // source address in `temp1`, `temp2` and `temp3` respectively. |
| GenSystemArrayCopyAddresses( |
| GetAssembler(), type, src, src_pos, dest, dest_pos, length, temp1, temp2, temp3); |
| |
| if (gUseReadBarrier && kUseBakerReadBarrier) { |
| // SystemArrayCopy implementation for Baker read barriers (see |
| // also CodeGeneratorX86_64::GenerateReferenceLoadWithBakerReadBarrier): |
| // |
| // if (src_ptr != end_ptr) { |
| // uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // bool is_gray = (rb_state == ReadBarrier::GrayState()); |
| // if (is_gray) { |
| // // Slow-path copy. |
| // do { |
| // *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++))); |
| // } while (src_ptr != end_ptr) |
| // } else { |
| // // Fast-path copy. |
| // do { |
| // *dest_ptr++ = *src_ptr++; |
| // } while (src_ptr != end_ptr) |
| // } |
| // } |
| |
| NearLabel loop, done; |
| |
| // Don't enter copy loop if `length == 0`. |
| __ cmpl(temp1, temp3); |
| __ j(kEqual, &done); |
| |
| // Given the numeric representation, it's enough to check the low bit of the rb_state. |
| static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0"); |
| static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); |
| constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte; |
| constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte; |
| constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position); |
| |
| // if (rb_state == ReadBarrier::GrayState()) |
| // goto slow_path; |
| // At this point, just do the "if" and make sure that flags are preserved until the branch. |
| __ testb(Address(src, monitor_offset + gray_byte_position), Immediate(test_value)); |
| |
| // Load fence to prevent load-load reordering. |
| // Note that this is a no-op, thanks to the x86-64 memory model. |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| |
| // Slow path used to copy array when `src` is gray. |
| SlowPathCode* read_barrier_slow_path = |
| new (codegen_->GetScopedAllocator()) ReadBarrierSystemArrayCopySlowPathX86_64(invoke); |
| codegen_->AddSlowPath(read_barrier_slow_path); |
| |
| // We have done the "if" of the gray bit check above, now branch based on the flags. |
| __ j(kNotZero, read_barrier_slow_path->GetEntryLabel()); |
| |
| // Fast-path copy. |
| // Iterate over the arrays and do a raw copy of the objects. We don't need to |
| // poison/unpoison. |
| __ Bind(&loop); |
| __ movl(CpuRegister(TMP), Address(temp1, 0)); |
| __ movl(Address(temp2, 0), CpuRegister(TMP)); |
| __ addl(temp1, Immediate(element_size)); |
| __ addl(temp2, Immediate(element_size)); |
| __ cmpl(temp1, temp3); |
| __ j(kNotEqual, &loop); |
| |
| __ Bind(read_barrier_slow_path->GetExitLabel()); |
| __ Bind(&done); |
| } else { |
| // Non read barrier code. |
| |
| // Iterate over the arrays and do a raw copy of the objects. We don't need to |
| // poison/unpoison. |
| NearLabel loop, done; |
| __ cmpl(temp1, temp3); |
| __ j(kEqual, &done); |
| __ Bind(&loop); |
| __ movl(CpuRegister(TMP), Address(temp1, 0)); |
| __ movl(Address(temp2, 0), CpuRegister(TMP)); |
| __ addl(temp1, Immediate(element_size)); |
| __ addl(temp2, Immediate(element_size)); |
| __ cmpl(temp1, temp3); |
| __ j(kNotEqual, &loop); |
| __ Bind(&done); |
| } |
| |
| // We only need one card marking on the destination array. |
| codegen_->MarkGCCard(temp1, temp2, dest, CpuRegister(kNoRegister), /* emit_null_check= */ false); |
| |
| __ Bind(intrinsic_slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitStringCompareTo(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| locations->SetOut(Location::RegisterLocation(RAX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitStringCompareTo(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| CpuRegister argument = locations->InAt(1).AsRegister<CpuRegister>(); |
| __ testl(argument, argument); |
| SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitStringEquals(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| |
| // Request temporary registers, RCX and RDI needed for repe_cmpsq instruction. |
| locations->AddTemp(Location::RegisterLocation(RCX)); |
| locations->AddTemp(Location::RegisterLocation(RDI)); |
| |
| // Set output, RSI needed for repe_cmpsq instruction anyways. |
| locations->SetOut(Location::RegisterLocation(RSI), Location::kOutputOverlap); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitStringEquals(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| CpuRegister str = locations->InAt(0).AsRegister<CpuRegister>(); |
| CpuRegister arg = locations->InAt(1).AsRegister<CpuRegister>(); |
| CpuRegister rcx = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| CpuRegister rdi = locations->GetTemp(1).AsRegister<CpuRegister>(); |
| CpuRegister rsi = locations->Out().AsRegister<CpuRegister>(); |
| |
| NearLabel end, return_true, return_false; |
| |
| // Get offsets of count, value, and class fields within a string object. |
| const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); |
| const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| StringEqualsOptimizations optimizations(invoke); |
| if (!optimizations.GetArgumentNotNull()) { |
| // Check if input is null, return false if it is. |
| __ testl(arg, arg); |
| __ j(kEqual, &return_false); |
| } |
| |
| if (!optimizations.GetArgumentIsString()) { |
| // Instanceof check for the argument by comparing class fields. |
| // All string objects must have the same type since String cannot be subclassed. |
| // Receiver must be a string object, so its class field is equal to all strings' class fields. |
| // If the argument is a string object, its class field must be equal to receiver's class field. |
| // |
| // As the String class is expected to be non-movable, we can read the class |
| // field from String.equals' arguments without read barriers. |
| AssertNonMovableStringClass(); |
| // Also, because we use the loaded class references only to compare them, we |
| // don't need to unpoison them. |
| // /* HeapReference<Class> */ rcx = str->klass_ |
| __ movl(rcx, Address(str, class_offset)); |
| // if (rcx != /* HeapReference<Class> */ arg->klass_) return false |
| __ cmpl(rcx, Address(arg, class_offset)); |
| __ j(kNotEqual, &return_false); |
| } |
| |
| // Reference equality check, return true if same reference. |
| __ cmpl(str, arg); |
| __ j(kEqual, &return_true); |
| |
| // Load length and compression flag of receiver string. |
| __ movl(rcx, Address(str, count_offset)); |
| // Check if lengths and compressiond flags are equal, return false if they're not. |
| // Two identical strings will always have same compression style since |
| // compression style is decided on alloc. |
| __ cmpl(rcx, Address(arg, count_offset)); |
| __ j(kNotEqual, &return_false); |
| // Return true if both strings are empty. Even with string compression `count == 0` means empty. |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ jrcxz(&return_true); |
| |
| if (mirror::kUseStringCompression) { |
| NearLabel string_uncompressed; |
| // Extract length and differentiate between both compressed or both uncompressed. |
| // Different compression style is cut above. |
| __ shrl(rcx, Immediate(1)); |
| __ j(kCarrySet, &string_uncompressed); |
| // Divide string length by 2, rounding up, and continue as if uncompressed. |
| // Merge clearing the compression flag with +1 for rounding. |
| __ addl(rcx, Immediate(1)); |
| __ shrl(rcx, Immediate(1)); |
| __ Bind(&string_uncompressed); |
| } |
| // Load starting addresses of string values into RSI/RDI as required for repe_cmpsq instruction. |
| __ leal(rsi, Address(str, value_offset)); |
| __ leal(rdi, Address(arg, value_offset)); |
| |
| // Divide string length by 4 and adjust for lengths not divisible by 4. |
| __ addl(rcx, Immediate(3)); |
| __ shrl(rcx, Immediate(2)); |
| |
| // Assertions that must hold in order to compare strings 4 characters (uncompressed) |
| // or 8 characters (compressed) at a time. |
| DCHECK_ALIGNED(value_offset, 8); |
| static_assert(IsAligned<8>(kObjectAlignment), "String is not zero padded"); |
| |
| // Loop to compare strings four characters at a time starting at the beginning of the string. |
| __ repe_cmpsq(); |
| // If strings are not equal, zero flag will be cleared. |
| __ j(kNotEqual, &return_false); |
| |
| // Return true and exit the function. |
| // If loop does not result in returning false, we return true. |
| __ Bind(&return_true); |
| __ movl(rsi, Immediate(1)); |
| __ jmp(&end); |
| |
| // Return false and exit the function. |
| __ Bind(&return_false); |
| __ xorl(rsi, rsi); |
| __ Bind(&end); |
| } |
| |
| static void CreateStringIndexOfLocations(HInvoke* invoke, |
| ArenaAllocator* allocator, |
| bool start_at_zero) { |
| LocationSummary* locations = new (allocator) LocationSummary(invoke, |
| LocationSummary::kCallOnSlowPath, |
| kIntrinsified); |
| // The data needs to be in RDI for scasw. So request that the string is there, anyways. |
| locations->SetInAt(0, Location::RegisterLocation(RDI)); |
| // If we look for a constant char, we'll still have to copy it into RAX. So just request the |
| // allocator to do that, anyways. We can still do the constant check by checking the parameter |
| // of the instruction explicitly. |
| // Note: This works as we don't clobber RAX anywhere. |
| locations->SetInAt(1, Location::RegisterLocation(RAX)); |
| if (!start_at_zero) { |
| locations->SetInAt(2, Location::RequiresRegister()); // The starting index. |
| } |
| // As we clobber RDI during execution anyways, also use it as the output. |
| locations->SetOut(Location::SameAsFirstInput()); |
| |
| // repne scasw uses RCX as the counter. |
| locations->AddTemp(Location::RegisterLocation(RCX)); |
| // Need another temporary to be able to compute the result. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| static void GenerateStringIndexOf(HInvoke* invoke, |
| X86_64Assembler* assembler, |
| CodeGeneratorX86_64* codegen, |
| bool start_at_zero) { |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| CpuRegister string_obj = locations->InAt(0).AsRegister<CpuRegister>(); |
| CpuRegister search_value = locations->InAt(1).AsRegister<CpuRegister>(); |
| CpuRegister counter = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| CpuRegister string_length = locations->GetTemp(1).AsRegister<CpuRegister>(); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| |
| // Check our assumptions for registers. |
| DCHECK_EQ(string_obj.AsRegister(), RDI); |
| DCHECK_EQ(search_value.AsRegister(), RAX); |
| DCHECK_EQ(counter.AsRegister(), RCX); |
| DCHECK_EQ(out.AsRegister(), RDI); |
| |
| // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, |
| // or directly dispatch for a large constant, or omit slow-path for a small constant or a char. |
| SlowPathCode* slow_path = nullptr; |
| HInstruction* code_point = invoke->InputAt(1); |
| if (code_point->IsIntConstant()) { |
| if (static_cast<uint32_t>(code_point->AsIntConstant()->GetValue()) > |
| std::numeric_limits<uint16_t>::max()) { |
| // Always needs the slow-path. We could directly dispatch to it, but this case should be |
| // rare, so for simplicity just put the full slow-path down and branch unconditionally. |
| slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); |
| codegen->AddSlowPath(slow_path); |
| __ jmp(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| return; |
| } |
| } else if (code_point->GetType() != DataType::Type::kUint16) { |
| __ cmpl(search_value, Immediate(std::numeric_limits<uint16_t>::max())); |
| slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); |
| codegen->AddSlowPath(slow_path); |
| __ j(kAbove, slow_path->GetEntryLabel()); |
| } |
| |
| // From here down, we know that we are looking for a char that fits in |
| // 16 bits (uncompressed) or 8 bits (compressed). |
| // Location of reference to data array within the String object. |
| int32_t value_offset = mirror::String::ValueOffset().Int32Value(); |
| // Location of count within the String object. |
| int32_t count_offset = mirror::String::CountOffset().Int32Value(); |
| |
| // Load the count field of the string containing the length and compression flag. |
| __ movl(string_length, Address(string_obj, count_offset)); |
| |
| // Do a zero-length check. Even with string compression `count == 0` means empty. |
| // TODO: Support jecxz. |
| NearLabel not_found_label; |
| __ testl(string_length, string_length); |
| __ j(kEqual, ¬_found_label); |
| |
| if (mirror::kUseStringCompression) { |
| // Use TMP to keep string_length_flagged. |
| __ movl(CpuRegister(TMP), string_length); |
| // Mask out first bit used as compression flag. |
| __ shrl(string_length, Immediate(1)); |
| } |
| |
| if (start_at_zero) { |
| // Number of chars to scan is the same as the string length. |
| __ movl(counter, string_length); |
| // Move to the start of the string. |
| __ addq(string_obj, Immediate(value_offset)); |
| } else { |
| CpuRegister start_index = locations->InAt(2).AsRegister<CpuRegister>(); |
| |
| // Do a start_index check. |
| __ cmpl(start_index, string_length); |
| __ j(kGreaterEqual, ¬_found_label); |
| |
| // Ensure we have a start index >= 0; |
| __ xorl(counter, counter); |
| __ cmpl(start_index, Immediate(0)); |
| __ cmov(kGreater, counter, start_index, /* is64bit= */ false); // 32-bit copy is enough. |
| |
| if (mirror::kUseStringCompression) { |
| NearLabel modify_counter, offset_uncompressed_label; |
| __ testl(CpuRegister(TMP), Immediate(1)); |
| __ j(kNotZero, &offset_uncompressed_label); |
| __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_1, value_offset)); |
| __ jmp(&modify_counter); |
| // Move to the start of the string: string_obj + value_offset + 2 * start_index. |
| __ Bind(&offset_uncompressed_label); |
| __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset)); |
| __ Bind(&modify_counter); |
| } else { |
| __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset)); |
| } |
| // Now update ecx, the work counter: it's gonna be string.length - start_index. |
| __ negq(counter); // Needs to be 64-bit negation, as the address computation is 64-bit. |
| __ leaq(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0)); |
| } |
| |
| if (mirror::kUseStringCompression) { |
| NearLabel uncompressed_string_comparison; |
| NearLabel comparison_done; |
| __ testl(CpuRegister(TMP), Immediate(1)); |
| __ j(kNotZero, &uncompressed_string_comparison); |
| // Check if RAX (search_value) is ASCII. |
| __ cmpl(search_value, Immediate(127)); |
| __ j(kGreater, ¬_found_label); |
| // Comparing byte-per-byte. |
| __ repne_scasb(); |
| __ jmp(&comparison_done); |
| // Everything is set up for repne scasw: |
| // * Comparison address in RDI. |
| // * Counter in ECX. |
| __ Bind(&uncompressed_string_comparison); |
| __ repne_scasw(); |
| __ Bind(&comparison_done); |
| } else { |
| __ repne_scasw(); |
| } |
| // Did we find a match? |
| __ j(kNotEqual, ¬_found_label); |
| |
| // Yes, we matched. Compute the index of the result. |
| __ subl(string_length, counter); |
| __ leal(out, Address(string_length, -1)); |
| |
| NearLabel done; |
| __ jmp(&done); |
| |
| // Failed to match; return -1. |
| __ Bind(¬_found_label); |
| __ movl(out, Immediate(-1)); |
| |
| // And join up at the end. |
| __ Bind(&done); |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitStringIndexOf(HInvoke* invoke) { |
| CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero= */ true); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitStringIndexOf(HInvoke* invoke) { |
| GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ true); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitStringIndexOfAfter(HInvoke* invoke) { |
| CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero= */ false); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitStringIndexOfAfter(HInvoke* invoke) { |
| GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero= */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); |
| locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3))); |
| locations->SetOut(Location::RegisterLocation(RAX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| CpuRegister byte_array = locations->InAt(0).AsRegister<CpuRegister>(); |
| __ testl(byte_array, byte_array); |
| SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>(); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromChars(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); |
| locations->SetOut(Location::RegisterLocation(RAX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromChars(HInvoke* invoke) { |
| // No need to emit code checking whether `locations->InAt(2)` is a null |
| // pointer, as callers of the native method |
| // |
| // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) |
| // |
| // all include a null check on `data` before calling that method. |
| codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>(); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromString(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetOut(Location::RegisterLocation(RAX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromString(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| CpuRegister string_to_copy = locations->InAt(0).AsRegister<CpuRegister>(); |
| __ testl(string_to_copy, string_to_copy); |
| SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>(); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) { |
| // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| locations->SetInAt(4, Location::RequiresRegister()); |
| |
| // And we need some temporaries. We will use REP MOVSW, so we need fixed registers. |
| locations->AddTemp(Location::RegisterLocation(RSI)); |
| locations->AddTemp(Location::RegisterLocation(RDI)); |
| locations->AddTemp(Location::RegisterLocation(RCX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| size_t char_component_size = DataType::Size(DataType::Type::kUint16); |
| // Location of data in char array buffer. |
| const uint32_t data_offset = mirror::Array::DataOffset(char_component_size).Uint32Value(); |
| // Location of char array data in string. |
| const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); |
| |
| // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); |
| CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>(); |
| Location srcBegin = locations->InAt(1); |
| int srcBegin_value = |
| srcBegin.IsConstant() ? srcBegin.GetConstant()->AsIntConstant()->GetValue() : 0; |
| CpuRegister srcEnd = locations->InAt(2).AsRegister<CpuRegister>(); |
| CpuRegister dst = locations->InAt(3).AsRegister<CpuRegister>(); |
| CpuRegister dstBegin = locations->InAt(4).AsRegister<CpuRegister>(); |
| |
| // Check assumption that sizeof(Char) is 2 (used in scaling below). |
| const size_t char_size = DataType::Size(DataType::Type::kUint16); |
| DCHECK_EQ(char_size, 2u); |
| |
| NearLabel done; |
| // Compute the number of chars (words) to move. |
| __ movl(CpuRegister(RCX), srcEnd); |
| if (srcBegin.IsConstant()) { |
| __ subl(CpuRegister(RCX), Immediate(srcBegin_value)); |
| } else { |
| DCHECK(srcBegin.IsRegister()); |
| __ subl(CpuRegister(RCX), srcBegin.AsRegister<CpuRegister>()); |
| } |
| if (mirror::kUseStringCompression) { |
| NearLabel copy_uncompressed, copy_loop; |
| const size_t c_char_size = DataType::Size(DataType::Type::kInt8); |
| DCHECK_EQ(c_char_size, 1u); |
| // Location of count in string. |
| const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| |
| __ testl(Address(obj, count_offset), Immediate(1)); |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ j(kNotZero, ©_uncompressed); |
| // Compute the address of the source string by adding the number of chars from |
| // the source beginning to the value offset of a string. |
| __ leaq(CpuRegister(RSI), |
| CodeGeneratorX86_64::ArrayAddress(obj, srcBegin, TIMES_1, value_offset)); |
| // Start the loop to copy String's value to Array of Char. |
| __ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset)); |
| |
| __ Bind(©_loop); |
| __ jrcxz(&done); |
| // Use TMP as temporary (convert byte from RSI to word). |
| // TODO: Selecting RAX as the temporary and using LODSB/STOSW. |
| __ movzxb(CpuRegister(TMP), Address(CpuRegister(RSI), 0)); |
| __ movw(Address(CpuRegister(RDI), 0), CpuRegister(TMP)); |
| __ leaq(CpuRegister(RDI), Address(CpuRegister(RDI), char_size)); |
| __ leaq(CpuRegister(RSI), Address(CpuRegister(RSI), c_char_size)); |
| // TODO: Add support for LOOP to X86_64Assembler. |
| __ subl(CpuRegister(RCX), Immediate(1)); |
| __ jmp(©_loop); |
| |
| __ Bind(©_uncompressed); |
| } |
| |
| __ leaq(CpuRegister(RSI), |
| CodeGeneratorX86_64::ArrayAddress(obj, srcBegin, TIMES_2, value_offset)); |
| // Compute the address of the destination buffer. |
| __ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset)); |
| // Do the move. |
| __ rep_movsw(); |
| |
| __ Bind(&done); |
| } |
| |
| static void GenPeek(LocationSummary* locations, DataType::Type size, X86_64Assembler* assembler) { |
| CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>(); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); // == address, here for clarity. |
| // x86 allows unaligned access. We do not have to check the input or use specific instructions |
| // to avoid a SIGBUS. |
| switch (size) { |
| case DataType::Type::kInt8: |
| __ movsxb(out, Address(address, 0)); |
| break; |
| case DataType::Type::kInt16: |
| __ movsxw(out, Address(address, 0)); |
| break; |
| case DataType::Type::kInt32: |
| __ movl(out, Address(address, 0)); |
| break; |
| case DataType::Type::kInt64: |
| __ movq(out, Address(address, 0)); |
| break; |
| default: |
| LOG(FATAL) << "Type not recognized for peek: " << size; |
| UNREACHABLE(); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekByte(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekByte(HInvoke* invoke) { |
| GenPeek(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) { |
| GenPeek(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) { |
| GenPeek(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) { |
| GenPeek(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler()); |
| } |
| |
| static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrInt32Constant(invoke->InputAt(1))); |
| } |
| |
| static void GenPoke(LocationSummary* locations, DataType::Type size, X86_64Assembler* assembler) { |
| CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>(); |
| Location value = locations->InAt(1); |
| // x86 allows unaligned access. We do not have to check the input or use specific instructions |
| // to avoid a SIGBUS. |
| switch (size) { |
| case DataType::Type::kInt8: |
| if (value.IsConstant()) { |
| __ movb(Address(address, 0), |
| Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant()))); |
| } else { |
| __ movb(Address(address, 0), value.AsRegister<CpuRegister>()); |
| } |
| break; |
| case DataType::Type::kInt16: |
| if (value.IsConstant()) { |
| __ movw(Address(address, 0), |
| Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant()))); |
| } else { |
| __ movw(Address(address, 0), value.AsRegister<CpuRegister>()); |
| } |
| break; |
| case DataType::Type::kInt32: |
| if (value.IsConstant()) { |
| __ movl(Address(address, 0), |
| Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant()))); |
| } else { |
| __ movl(Address(address, 0), value.AsRegister<CpuRegister>()); |
| } |
| break; |
| case DataType::Type::kInt64: |
| if (value.IsConstant()) { |
| int64_t v = value.GetConstant()->AsLongConstant()->GetValue(); |
| DCHECK(IsInt<32>(v)); |
| int32_t v_32 = v; |
| __ movq(Address(address, 0), Immediate(v_32)); |
| } else { |
| __ movq(Address(address, 0), value.AsRegister<CpuRegister>()); |
| } |
| break; |
| default: |
| LOG(FATAL) << "Type not recognized for poke: " << size; |
| UNREACHABLE(); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeByte(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeByte(HInvoke* invoke) { |
| GenPoke(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) { |
| GenPoke(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) { |
| GenPoke(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) { |
| GenPoke(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitThreadCurrentThread(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitThreadCurrentThread(HInvoke* invoke) { |
| CpuRegister out = invoke->GetLocations()->Out().AsRegister<CpuRegister>(); |
| GetAssembler()->gs()->movl(out, Address::Absolute(Thread::PeerOffset<kX86_64PointerSize>(), |
| /* no_rip= */ true)); |
| } |
| |
| static void GenUnsafeGet(HInvoke* invoke, |
| DataType::Type type, |
| bool is_volatile ATTRIBUTE_UNUSED, |
| CodeGeneratorX86_64* codegen) { |
| X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler()); |
| LocationSummary* locations = invoke->GetLocations(); |
| Location base_loc = locations->InAt(1); |
| CpuRegister base = base_loc.AsRegister<CpuRegister>(); |
| Location offset_loc = locations->InAt(2); |
| CpuRegister offset = offset_loc.AsRegister<CpuRegister>(); |
| Location output_loc = locations->Out(); |
| CpuRegister output = output_loc.AsRegister<CpuRegister>(); |
| |
| switch (type) { |
| case DataType::Type::kInt8: |
| __ movsxb(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| break; |
| |
| case DataType::Type::kInt32: |
| __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| break; |
| |
| case DataType::Type::kReference: { |
| if (gUseReadBarrier) { |
| if (kUseBakerReadBarrier) { |
| Address src(base, offset, ScaleFactor::TIMES_1, 0); |
| codegen->GenerateReferenceLoadWithBakerReadBarrier( |
| invoke, output_loc, base, src, /* needs_null_check= */ false); |
| } else { |
| __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| codegen->GenerateReadBarrierSlow( |
| invoke, output_loc, output_loc, base_loc, 0U, offset_loc); |
| } |
| } else { |
| __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| __ MaybeUnpoisonHeapReference(output); |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt64: |
| __ movq(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unsupported op size " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| static bool UnsafeGetIntrinsicOnCallList(Intrinsics intrinsic) { |
| switch (intrinsic) { |
| case Intrinsics::kUnsafeGetObject: |
| case Intrinsics::kUnsafeGetObjectVolatile: |
| case Intrinsics::kJdkUnsafeGetObject: |
| case Intrinsics::kJdkUnsafeGetObjectVolatile: |
| case Intrinsics::kJdkUnsafeGetObjectAcquire: |
| return true; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| bool can_call = gUseReadBarrier && UnsafeGetIntrinsicOnCallList(invoke->GetIntrinsic()); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, |
| can_call |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall, |
| kIntrinsified); |
| if (can_call && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), |
| (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap)); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeGet(HInvoke* invoke) { |
| VisitJdkUnsafeGet(invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) { |
| VisitJdkUnsafeGetVolatile(invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLong(HInvoke* invoke) { |
| VisitJdkUnsafeGetLong(invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) { |
| VisitJdkUnsafeGetLongVolatile(invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObject(HInvoke* invoke) { |
| VisitJdkUnsafeGetObject(invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { |
| VisitJdkUnsafeGetObjectVolatile(invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetByte(HInvoke* invoke) { |
| VisitJdkUnsafeGetByte(invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGet(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetAcquire(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetLong(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetLongVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetLongAcquire(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetObject(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetObjectVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetObjectAcquire(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeGetByte(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeGet(HInvoke* invoke) { |
| VisitJdkUnsafeGet(invoke); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) { |
| VisitJdkUnsafeGetVolatile(invoke); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLong(HInvoke* invoke) { |
| VisitJdkUnsafeGetLong(invoke); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) { |
| VisitJdkUnsafeGetLongVolatile(invoke); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObject(HInvoke* invoke) { |
| VisitJdkUnsafeGetObject(invoke); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { |
| VisitJdkUnsafeGetObjectVolatile(invoke); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetByte(HInvoke* invoke) { |
| VisitJdkUnsafeGetByte(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGet(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt32, /*is_volatile=*/ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt32, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetAcquire(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt32, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetLong(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt64, /*is_volatile=*/ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetLongVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt64, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetLongAcquire(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt64, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetObject(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kReference, /*is_volatile=*/ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetObjectVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kReference, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetObjectAcquire(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kReference, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeGetByte(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt8, /*is_volatile=*/false, codegen_); |
| } |
| |
| static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* allocator, |
| DataType::Type type, |
| HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| if (type == DataType::Type::kReference) { |
| // Need temp registers for card-marking. |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePut(HInvoke* invoke) { |
| VisitJdkUnsafePut(invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePutOrdered(HInvoke* invoke) { |
| VisitJdkUnsafePutOrdered(invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePutVolatile(HInvoke* invoke) { |
| VisitJdkUnsafePutVolatile(invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObject(HInvoke* invoke) { |
| VisitJdkUnsafePutObject(invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) { |
| VisitJdkUnsafePutObjectOrdered(invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) { |
| VisitJdkUnsafePutObjectVolatile(invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLong(HInvoke* invoke) { |
| VisitJdkUnsafePutLong(invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) { |
| VisitJdkUnsafePutLongOrdered(invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) { |
| VisitJdkUnsafePutLongVolatile(invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePutByte(HInvoke* invoke) { |
| VisitJdkUnsafePut(invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePut(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutRelease(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutObject(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutObjectOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutObjectVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutObjectRelease(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutLong(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutLongOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutLongVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutLongRelease(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafePutByte(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kUint8, invoke); |
| } |
| |
| // We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86 |
| // memory model. |
| static void GenUnsafePut(LocationSummary* locations, DataType::Type type, bool is_volatile, |
| CodeGeneratorX86_64* codegen) { |
| X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler()); |
| CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>(); |
| CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>(); |
| CpuRegister value = locations->InAt(3).AsRegister<CpuRegister>(); |
| |
| if (type == DataType::Type::kInt64) { |
| __ movq(Address(base, offset, ScaleFactor::TIMES_1, 0), value); |
| } else if (kPoisonHeapReferences && type == DataType::Type::kReference) { |
| CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| __ movl(temp, value); |
| __ PoisonHeapReference(temp); |
| __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), temp); |
| } else { |
| __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value); |
| } |
| |
| if (is_volatile) { |
| codegen->MemoryFence(); |
| } |
| |
| if (type == DataType::Type::kReference) { |
| bool value_can_be_null = true; // TODO: Worth finding out this information? |
| codegen->MarkGCCard(locations->GetTemp(0).AsRegister<CpuRegister>(), |
| locations->GetTemp(1).AsRegister<CpuRegister>(), |
| base, |
| value, |
| value_can_be_null); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePut(HInvoke* invoke) { |
| VisitJdkUnsafePut(invoke); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePutOrdered(HInvoke* invoke) { |
| VisitJdkUnsafePutOrdered(invoke); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePutVolatile(HInvoke* invoke) { |
| VisitJdkUnsafePutVolatile(invoke); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObject(HInvoke* invoke) { |
| VisitJdkUnsafePutObject(invoke); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) { |
| VisitJdkUnsafePutObjectOrdered(invoke); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) { |
| VisitJdkUnsafePutObjectVolatile(invoke); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLong(HInvoke* invoke) { |
| VisitJdkUnsafePutLong(invoke); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) { |
| VisitJdkUnsafePutLongOrdered(invoke); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) { |
| VisitJdkUnsafePutLongVolatile(invoke); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePutByte(HInvoke* invoke) { |
| VisitJdkUnsafePutByte(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePut(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /*is_volatile=*/ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutOrdered(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /*is_volatile=*/ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutVolatile(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutRelease(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile= */ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutObject(HInvoke* invoke) { |
| GenUnsafePut( |
| invoke->GetLocations(), DataType::Type::kReference, /*is_volatile=*/ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutObjectOrdered(HInvoke* invoke) { |
| GenUnsafePut( |
| invoke->GetLocations(), DataType::Type::kReference, /*is_volatile=*/ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutObjectVolatile(HInvoke* invoke) { |
| GenUnsafePut( |
| invoke->GetLocations(), DataType::Type::kReference, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutObjectRelease(HInvoke* invoke) { |
| GenUnsafePut( |
| invoke->GetLocations(), DataType::Type::kReference, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutLong(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /*is_volatile=*/ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutLongOrdered(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /*is_volatile=*/ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutLongVolatile(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutLongRelease(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /*is_volatile=*/ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafePutByte(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt8, /*is_volatile=*/false, codegen_); |
| } |
| |
| static void CreateUnsafeCASLocations(ArenaAllocator* allocator, |
| DataType::Type type, |
| HInvoke* invoke) { |
| const bool can_call = gUseReadBarrier && |
| kUseBakerReadBarrier && |
| IsUnsafeCASObject(invoke); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, |
| can_call |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| // expected value must be in EAX/RAX. |
| locations->SetInAt(3, Location::RegisterLocation(RAX)); |
| locations->SetInAt(4, Location::RequiresRegister()); |
| |
| // RAX is clobbered in CMPXCHG, but we set it as out so no need to add it as temporary. |
| locations->SetOut(Location::RegisterLocation(RAX)); |
| |
| if (type == DataType::Type::kReference) { |
| // Need two temporaries for MarkGCCard. |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. |
| locations->AddTemp(Location::RequiresRegister()); |
| if (gUseReadBarrier) { |
| // Need three temporaries for GenerateReferenceLoadWithBakerReadBarrier. |
| DCHECK(kUseBakerReadBarrier); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASInt(HInvoke* invoke) { |
| VisitJdkUnsafeCASInt(invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASLong(HInvoke* invoke) { |
| VisitJdkUnsafeCASLong(invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASObject(HInvoke* invoke) { |
| VisitJdkUnsafeCASObject(invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeCASInt(HInvoke* invoke) { |
| // `jdk.internal.misc.Unsafe.compareAndSwapInt` has compare-and-set semantics (see javadoc). |
| VisitJdkUnsafeCompareAndSetInt(invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeCASLong(HInvoke* invoke) { |
| // `jdk.internal.misc.Unsafe.compareAndSwapLong` has compare-and-set semantics (see javadoc). |
| VisitJdkUnsafeCompareAndSetLong(invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeCASObject(HInvoke* invoke) { |
| // `jdk.internal.misc.Unsafe.compareAndSwapObject` has compare-and-set semantics (see javadoc). |
| VisitJdkUnsafeCompareAndSetObject(invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeCompareAndSetInt(HInvoke* invoke) { |
| CreateUnsafeCASLocations(allocator_, DataType::Type::kInt32, invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeCompareAndSetLong(HInvoke* invoke) { |
| CreateUnsafeCASLocations(allocator_, DataType::Type::kInt64, invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitJdkUnsafeCompareAndSetObject(HInvoke* invoke) { |
| // The only supported read barrier implementation is the Baker-style read barriers. |
| if (gUseReadBarrier && !kUseBakerReadBarrier) { |
| return; |
| } |
| |
| CreateUnsafeCASLocations(allocator_, DataType::Type::kReference, invoke); |
| } |
| |
| // Convert ZF into the Boolean result. |
| static inline void GenZFlagToResult(X86_64Assembler* assembler, CpuRegister out) { |
| __ setcc(kZero, out); |
| __ movzxb(out, out); |
| } |
| |
| // This function assumes that expected value for CMPXCHG and output are in RAX. |
| static void GenCompareAndSetOrExchangeInt(CodeGeneratorX86_64* codegen, |
| DataType::Type type, |
| Address field_addr, |
| Location value, |
| bool is_cmpxchg, |
| bool byte_swap) { |
| X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler()); |
| InstructionCodeGeneratorX86_64* instr_codegen = codegen->GetInstructionCodegen(); |
| |
| if (byte_swap) { |
| instr_codegen->Bswap(Location::RegisterLocation(RAX), type); |
| instr_codegen->Bswap(value, type); |
| } |
| |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kInt8: |
| __ LockCmpxchgb(field_addr, value.AsRegister<CpuRegister>()); |
| break; |
| case DataType::Type::kInt16: |
| case DataType::Type::kUint16: |
| __ LockCmpxchgw(field_addr, value.AsRegister<CpuRegister>()); |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kUint32: |
| __ LockCmpxchgl(field_addr, value.AsRegister<CpuRegister>()); |
| break; |
| case DataType::Type::kInt64: |
| case DataType::Type::kUint64: |
| __ LockCmpxchgq(field_addr, value.AsRegister<CpuRegister>()); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected non-integral CAS type " << type; |
| } |
| // LOCK CMPXCHG has full barrier semantics, so we don't need barriers here. |
| |
| if (byte_swap) { |
| // Restore byte order for value. |
| instr_codegen->Bswap(value, type); |
| } |
| |
| CpuRegister rax(RAX); |
| if (is_cmpxchg) { |
| if (byte_swap) { |
| instr_codegen->Bswap(Location::RegisterLocation(RAX), type); |
| } |
| // Sign-extend or zero-extend the result as necessary. |
| switch (type) { |
| case DataType::Type::kBool: |
| __ movzxb(rax, rax); |
| break; |
| case DataType::Type::kInt8: |
| __ movsxb(rax, rax); |
| break; |
| case DataType::Type::kInt16: |
| __ movsxw(rax, rax); |
| break; |
| case DataType::Type::kUint16: |
| __ movzxw(rax, rax); |
| break; |
| default: |
| break; // No need to do anything. |
| } |
| } else { |
| GenZFlagToResult(assembler, rax); |
| } |
| } |
| |
| static void GenCompareAndSetOrExchangeFP(CodeGeneratorX86_64* codegen, |
| Address field_addr, |
| CpuRegister temp, |
| Location value, |
| Location expected, |
| Location out, |
| bool is64bit, |
| bool is_cmpxchg, |
| bool byte_swap) { |
| X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler()); |
| InstructionCodeGeneratorX86_64* instr_codegen = codegen->GetInstructionCodegen(); |
| |
| Location rax_loc = Location::RegisterLocation(RAX); |
| Location temp_loc = Location::RegisterLocation(temp.AsRegister()); |
| |
| DataType::Type type = is64bit ? DataType::Type::kUint64 : DataType::Type::kUint32; |
| |
| // Copy `expected` to RAX (required by the CMPXCHG instruction). |
| codegen->Move(rax_loc, expected); |
| |
| // Copy value to some other register (ensure it's not RAX). |
| DCHECK_NE(temp.AsRegister(), RAX); |
| codegen->Move(temp_loc, value); |
| |
| if (byte_swap) { |
| instr_codegen->Bswap(rax_loc, type); |
| instr_codegen->Bswap(temp_loc, type); |
| } |
| |
| if (is64bit) { |
| __ LockCmpxchgq(field_addr, temp); |
| } else { |
| __ LockCmpxchgl(field_addr, temp); |
| } |
| // LOCK CMPXCHG has full barrier semantics, so we don't need barriers here. |
| // No need to restore byte order for temporary register. |
| |
| if (is_cmpxchg) { |
| if (byte_swap) { |
| instr_codegen->Bswap(rax_loc, type); |
| } |
| __ movd(out.AsFpuRegister<XmmRegister>(), CpuRegister(RAX), is64bit); |
| } else { |
| GenZFlagToResult(assembler, out.AsRegister<CpuRegister>()); |
| } |
| } |
| |
| // This function assumes that expected value for CMPXCHG and output are in RAX. |
| static void GenCompareAndSetOrExchangeRef(CodeGeneratorX86_64* codegen, |
| HInvoke* invoke, |
| CpuRegister base, |
| CpuRegister offset, |
| CpuRegister value, |
| CpuRegister temp1, |
| CpuRegister temp2, |
| CpuRegister temp3, |
| bool is_cmpxchg) { |
| // The only supported read barrier implementation is the Baker-style read barriers. |
| DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); |
| |
| X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler()); |
| |
| // Mark card for object assuming new value is stored. |
| bool value_can_be_null = true; // TODO: Worth finding out this information? |
| codegen->MarkGCCard(temp1, temp2, base, value, value_can_be_null); |
| |
| Address field_addr(base, offset, TIMES_1, 0); |
| if (gUseReadBarrier && kUseBakerReadBarrier) { |
| // Need to make sure the reference stored in the field is a to-space |
| // one before attempting the CAS or the CAS could fail incorrectly. |
| codegen->GenerateReferenceLoadWithBakerReadBarrier( |
| invoke, |
| Location::RegisterLocation(temp3.AsRegister()), |
| base, |
| field_addr, |
| /* needs_null_check= */ false, |
| /* always_update_field= */ true, |
| &temp1, |
| &temp2); |
| } else { |
| // Nothing to do, the value will be loaded into the out register by CMPXCHG. |
| } |
| |
| bool base_equals_value = (base.AsRegister() == value.AsRegister()); |
| Register value_reg = value.AsRegister(); |
| if (kPoisonHeapReferences) { |
| if (base_equals_value) { |
| // If `base` and `value` are the same register location, move `value_reg` to a temporary |
| // register. This way, poisoning `value_reg` won't invalidate `base`. |
| value_reg = temp1.AsRegister(); |
| __ movl(CpuRegister(value_reg), base); |
| } |
| |
| // Check that the register allocator did not assign the location of expected value (RAX) to |
| // `value` nor to `base`, so that heap poisoning (when enabled) works as intended below. |
| // - If `value` were equal to RAX, both references would be poisoned twice, meaning they would |
| // not be poisoned at all, as heap poisoning uses address negation. |
| // - If `base` were equal to RAX, poisoning RAX would invalidate `base`. |
| DCHECK_NE(RAX, value_reg); |
| DCHECK_NE(RAX, base.AsRegister()); |
| |
| __ PoisonHeapReference(CpuRegister(RAX)); |
| __ PoisonHeapReference(CpuRegister(value_reg)); |
| } |
| |
| __ LockCmpxchgl(field_addr, CpuRegister(value_reg)); |
| // LOCK CMPXCHG has full barrier semantics, so we don't need barriers. |
| |
| if (is_cmpxchg) { |
| // Output is in RAX, so we can rely on CMPXCHG and do nothing. |
| __ MaybeUnpoisonHeapReference(CpuRegister(RAX)); |
| } else { |
| GenZFlagToResult(assembler, CpuRegister(RAX)); |
| } |
| |
| // If heap poisoning is enabled, we need to unpoison the values that were poisoned earlier. |
| if (kPoisonHeapReferences) { |
| if (base_equals_value) { |
| // `value_reg` has been moved to a temporary register, no need to unpoison it. |
| } else { |
| // Ensure `value` is not RAX, so that unpoisoning the former does not invalidate the latter. |
| DCHECK_NE(RAX, value_reg); |
| __ UnpoisonHeapReference(CpuRegister(value_reg)); |
| } |
| } |
| } |
| |
| // In debug mode, return true if all registers are pairwise different. In release mode, do nothing |
| // and always return true. |
| static bool RegsAreAllDifferent(const std::vector<CpuRegister>& regs) { |
| if (kIsDebugBuild) { |
| for (size_t i = 0; i < regs.size(); ++i) { |
| for (size_t j = 0; j < i; ++j) { |
| if (regs[i].AsRegister() == regs[j].AsRegister()) { |
| return false; |
| } |
| } |
| } |
| } |
| return true; |
| } |
| |
| // GenCompareAndSetOrExchange handles all value types and therefore accepts generic locations and |
| // temporary indices that may not correspond to real registers for code paths that do not use them. |
| static void GenCompareAndSetOrExchange(CodeGeneratorX86_64* codegen, |
| HInvoke* invoke, |
| DataType::Type type, |
| CpuRegister base, |
| CpuRegister offset, |
| uint32_t temp1_index, |
| uint32_t temp2_index, |
| uint32_t temp3_index, |
| Location new_value, |
| Location expected, |
| Location out, |
| bool is_cmpxchg, |
| bool byte_swap) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Address field_address(base, offset, TIMES_1, 0); |
| |
| if (DataType::IsFloatingPointType(type)) { |
| bool is64bit = (type == DataType::Type::kFloat64); |
| CpuRegister temp = locations->GetTemp(temp1_index).AsRegister<CpuRegister>(); |
| DCHECK(RegsAreAllDifferent({base, offset, temp, CpuRegister(RAX)})); |
| |
| GenCompareAndSetOrExchangeFP( |
| codegen, field_address, temp, new_value, expected, out, is64bit, is_cmpxchg, byte_swap); |
| } else { |
| // Both the expected value for CMPXCHG and the output are in RAX. |
| DCHECK_EQ(RAX, expected.AsRegister<Register>()); |
| DCHECK_EQ(RAX, out.AsRegister<Register>()); |
| |
| if (type == DataType::Type::kReference) { |
| CpuRegister new_value_reg = new_value.AsRegister<CpuRegister>(); |
| CpuRegister temp1 = locations->GetTemp(temp1_index).AsRegister<CpuRegister>(); |
| CpuRegister temp2 = locations->GetTemp(temp2_index).AsRegister<CpuRegister>(); |
| CpuRegister temp3 = gUseReadBarrier |
| ? locations->GetTemp(temp3_index).AsRegister<CpuRegister>() |
| : CpuRegister(kNoRegister); |
| DCHECK(RegsAreAllDifferent({base, offset, temp1, temp2, temp3})); |
| |
| DCHECK(!byte_swap); |
| GenCompareAndSetOrExchangeRef( |
| codegen, invoke, base, offset, new_value_reg, temp1, temp2, temp3, is_cmpxchg); |
| } else { |
| GenCompareAndSetOrExchangeInt(codegen, type, field_address, new_value, is_cmpxchg, byte_swap); |
| } |
| } |
| } |
| |
| static void GenCAS(DataType::Type type, HInvoke* invoke, CodeGeneratorX86_64* codegen) { |
| LocationSummary* locations = invoke->GetLocations(); |
| GenCompareAndSetOrExchange(codegen, |
| invoke, |
| type, |
| /*base=*/ locations->InAt(1).AsRegister<CpuRegister>(), |
| /*offset=*/ locations->InAt(2).AsRegister<CpuRegister>(), |
| /*temp1_index=*/ 0, |
| /*temp2_index=*/ 1, |
| /*temp3_index=*/ 2, |
| /*new_value=*/ locations->InAt(4), |
| /*expected=*/ locations->InAt(3), |
| locations->Out(), |
| /*is_cmpxchg=*/ false, |
| /*byte_swap=*/ false); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASInt(HInvoke* invoke) { |
| VisitJdkUnsafeCASInt(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASLong(HInvoke* invoke) { |
| VisitJdkUnsafeCASLong(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASObject(HInvoke* invoke) { |
| VisitJdkUnsafeCASObject(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeCASInt(HInvoke* invoke) { |
| // `jdk.internal.misc.Unsafe.compareAndSwapInt` has compare-and-set semantics (see javadoc). |
| VisitJdkUnsafeCompareAndSetInt(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeCASLong(HInvoke* invoke) { |
| // `jdk.internal.misc.Unsafe.compareAndSwapLong` has compare-and-set semantics (see javadoc). |
| VisitJdkUnsafeCompareAndSetLong(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeCASObject(HInvoke* invoke) { |
| // `jdk.internal.misc.Unsafe.compareAndSwapObject` has compare-and-set semantics (see javadoc). |
| VisitJdkUnsafeCompareAndSetObject(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeCompareAndSetInt(HInvoke* invoke) { |
| GenCAS(DataType::Type::kInt32, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeCompareAndSetLong(HInvoke* invoke) { |
| GenCAS(DataType::Type::kInt64, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitJdkUnsafeCompareAndSetObject(HInvoke* invoke) { |
| // The only supported read barrier implementation is the Baker-style read barriers. |
| DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); |
| |
| GenCAS(DataType::Type::kReference, invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitIntegerReverse(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| static void SwapBits(CpuRegister reg, CpuRegister temp, int32_t shift, int32_t mask, |
| X86_64Assembler* assembler) { |
| Immediate imm_shift(shift); |
| Immediate imm_mask(mask); |
| __ movl(temp, reg); |
| __ shrl(reg, imm_shift); |
| __ andl(temp, imm_mask); |
| __ andl(reg, imm_mask); |
| __ shll(temp, imm_shift); |
| __ orl(reg, temp); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitIntegerReverse(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>(); |
| CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| |
| /* |
| * Use one bswap instruction to reverse byte order first and then use 3 rounds of |
| * swapping bits to reverse bits in a number x. Using bswap to save instructions |
| * compared to generic luni implementation which has 5 rounds of swapping bits. |
| * x = bswap x |
| * x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555; |
| * x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333; |
| * x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F; |
| */ |
| __ bswapl(reg); |
| SwapBits(reg, temp, 1, 0x55555555, assembler); |
| SwapBits(reg, temp, 2, 0x33333333, assembler); |
| SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitLongReverse(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| static void SwapBits64(CpuRegister reg, CpuRegister temp, CpuRegister temp_mask, |
| int32_t shift, int64_t mask, X86_64Assembler* assembler) { |
| Immediate imm_shift(shift); |
| __ movq(temp_mask, Immediate(mask)); |
| __ movq(temp, reg); |
| __ shrq(reg, imm_shift); |
| __ andq(temp, temp_mask); |
| __ andq(reg, temp_mask); |
| __ shlq(temp, imm_shift); |
| __ orq(reg, temp); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitLongReverse(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>(); |
| CpuRegister temp1 = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| CpuRegister temp2 = locations->GetTemp(1).AsRegister<CpuRegister>(); |
| |
| /* |
| * Use one bswap instruction to reverse byte order first and then use 3 rounds of |
| * swapping bits to reverse bits in a long number x. Using bswap to save instructions |
| * compared to generic luni implementation which has 5 rounds of swapping bits. |
| * x = bswap x |
| * x = (x & 0x5555555555555555) << 1 | (x >> 1) & 0x5555555555555555; |
| * x = (x & 0x3333333333333333) << 2 | (x >> 2) & 0x3333333333333333; |
| * x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F0F0F0F0F; |
| */ |
| __ bswapq(reg); |
| SwapBits64(reg, temp1, temp2, 1, INT64_C(0x5555555555555555), assembler); |
| SwapBits64(reg, temp1, temp2, 2, INT64_C(0x3333333333333333), assembler); |
| SwapBits64(reg, temp1, temp2, 4, INT64_C(0x0f0f0f0f0f0f0f0f), assembler); |
| } |
| |
| static void CreateBitCountLocations( |
| ArenaAllocator* allocator, CodeGeneratorX86_64* codegen, HInvoke* invoke) { |
| if (!codegen->GetInstructionSetFeatures().HasPopCnt()) { |
| // Do nothing if there is no popcnt support. This results in generating |
| // a call for the intrinsic rather than direct code. |
| return; |
| } |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void GenBitCount(X86_64Assembler* assembler, |
| CodeGeneratorX86_64* codegen, |
| HInvoke* invoke, |
| bool is_long) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location src = locations->InAt(0); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| |
| if (invoke->InputAt(0)->IsConstant()) { |
| // Evaluate this at compile time. |
| int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); |
| int32_t result = is_long |
| ? POPCOUNT(static_cast<uint64_t>(value)) |
| : POPCOUNT(static_cast<uint32_t>(value)); |
| codegen->Load32BitValue(out, result); |
| return; |
| } |
| |
| if (src.IsRegister()) { |
| if (is_long) { |
| __ popcntq(out, src.AsRegister<CpuRegister>()); |
| } else { |
| __ popcntl(out, src.AsRegister<CpuRegister>()); |
| } |
| } else if (is_long) { |
| DCHECK(src.IsDoubleStackSlot()); |
| __ popcntq(out, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } else { |
| DCHECK(src.IsStackSlot()); |
| __ popcntl(out, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitIntegerBitCount(HInvoke* invoke) { |
| CreateBitCountLocations(allocator_, codegen_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitIntegerBitCount(HInvoke* invoke) { |
| GenBitCount(GetAssembler(), codegen_, invoke, /* is_long= */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitLongBitCount(HInvoke* invoke) { |
| CreateBitCountLocations(allocator_, codegen_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitLongBitCount(HInvoke* invoke) { |
| GenBitCount(GetAssembler(), codegen_, invoke, /* is_long= */ true); |
| } |
| |
| static void CreateOneBitLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is_high) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(is_high ? Location::RegisterLocation(RCX) // needs CL |
| : Location::RequiresRegister()); // any will do |
| } |
| |
| static void GenOneBit(X86_64Assembler* assembler, |
| CodeGeneratorX86_64* codegen, |
| HInvoke* invoke, |
| bool is_high, bool is_long) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location src = locations->InAt(0); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| |
| if (invoke->InputAt(0)->IsConstant()) { |
| // Evaluate this at compile time. |
| int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); |
| if (value == 0) { |
| __ xorl(out, out); // Clears upper bits too. |
| return; |
| } |
| // Nonzero value. |
| if (is_high) { |
| value = is_long ? 63 - CLZ(static_cast<uint64_t>(value)) |
| : 31 - CLZ(static_cast<uint32_t>(value)); |
| } else { |
| value = is_long ? CTZ(static_cast<uint64_t>(value)) |
| : CTZ(static_cast<uint32_t>(value)); |
| } |
| if (is_long) { |
| codegen->Load64BitValue(out, 1ULL << value); |
| } else { |
| codegen->Load32BitValue(out, 1 << value); |
| } |
| return; |
| } |
| |
| // Handle the non-constant cases. |
| if (!is_high && codegen->GetInstructionSetFeatures().HasAVX2() && |
| src.IsRegister()) { |
| __ blsi(out, src.AsRegister<CpuRegister>()); |
| } else { |
| CpuRegister tmp = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| if (is_high) { |
| // Use architectural support: basically 1 << bsr. |
| if (src.IsRegister()) { |
| if (is_long) { |
| __ bsrq(tmp, src.AsRegister<CpuRegister>()); |
| } else { |
| __ bsrl(tmp, src.AsRegister<CpuRegister>()); |
| } |
| } else if (is_long) { |
| DCHECK(src.IsDoubleStackSlot()); |
| __ bsrq(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } else { |
| DCHECK(src.IsStackSlot()); |
| __ bsrl(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } |
| // BSR sets ZF if the input was zero. |
| NearLabel is_zero, done; |
| __ j(kEqual, &is_zero); |
| __ movl(out, Immediate(1)); // Clears upper bits too. |
| if (is_long) { |
| __ shlq(out, tmp); |
| } else { |
| __ shll(out, tmp); |
| } |
| __ jmp(&done); |
| __ Bind(&is_zero); |
| __ xorl(out, out); // Clears upper bits too. |
| __ Bind(&done); |
| } else { |
| // Copy input into temporary. |
| if (src.IsRegister()) { |
| if (is_long) { |
| __ movq(tmp, src.AsRegister<CpuRegister>()); |
| } else { |
| __ movl(tmp, src.AsRegister<CpuRegister>()); |
| } |
| } else if (is_long) { |
| DCHECK(src.IsDoubleStackSlot()); |
| __ movq(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } else { |
| DCHECK(src.IsStackSlot()); |
| __ movl(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } |
| // Do the bit twiddling: basically tmp & -tmp; |
| if (is_long) { |
| __ movq(out, tmp); |
| __ negq(tmp); |
| __ andq(out, tmp); |
| } else { |
| __ movl(out, tmp); |
| __ negl(tmp); |
| __ andl(out, tmp); |
| } |
| } |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) { |
| CreateOneBitLocations(allocator_, invoke, /* is_high= */ true); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) { |
| GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ true, /* is_long= */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitLongHighestOneBit(HInvoke* invoke) { |
| CreateOneBitLocations(allocator_, invoke, /* is_high= */ true); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitLongHighestOneBit(HInvoke* invoke) { |
| GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ true, /* is_long= */ true); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) { |
| CreateOneBitLocations(allocator_, invoke, /* is_high= */ false); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) { |
| GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ false, /* is_long= */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitLongLowestOneBit(HInvoke* invoke) { |
| CreateOneBitLocations(allocator_, invoke, /* is_high= */ false); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitLongLowestOneBit(HInvoke* invoke) { |
| GenOneBit(GetAssembler(), codegen_, invoke, /* is_high= */ false, /* is_long= */ true); |
| } |
| |
| static void CreateLeadingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void GenLeadingZeros(X86_64Assembler* assembler, |
| CodeGeneratorX86_64* codegen, |
| HInvoke* invoke, bool is_long) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location src = locations->InAt(0); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| |
| int zero_value_result = is_long ? 64 : 32; |
| if (invoke->InputAt(0)->IsConstant()) { |
| // Evaluate this at compile time. |
| int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); |
| if (value == 0) { |
| value = zero_value_result; |
| } else { |
| value = is_long ? CLZ(static_cast<uint64_t>(value)) : CLZ(static_cast<uint32_t>(value)); |
| } |
| codegen->Load32BitValue(out, value); |
| return; |
| } |
| |
| // Handle the non-constant cases. |
| if (src.IsRegister()) { |
| if (is_long) { |
| __ bsrq(out, src.AsRegister<CpuRegister>()); |
| } else { |
| __ bsrl(out, src.AsRegister<CpuRegister>()); |
| } |
| } else if (is_long) { |
| DCHECK(src.IsDoubleStackSlot()); |
| __ bsrq(out, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } else { |
| DCHECK(src.IsStackSlot()); |
| __ bsrl(out, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } |
| |
| // BSR sets ZF if the input was zero, and the output is undefined. |
| NearLabel is_zero, done; |
| __ j(kEqual, &is_zero); |
| |
| // Correct the result from BSR to get the CLZ result. |
| __ xorl(out, Immediate(zero_value_result - 1)); |
| __ jmp(&done); |
| |
| // Fix the zero case with the expected result. |
| __ Bind(&is_zero); |
| __ movl(out, Immediate(zero_value_result)); |
| |
| __ Bind(&done); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { |
| CreateLeadingZeroLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { |
| GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { |
| CreateLeadingZeroLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { |
| GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ true); |
| } |
| |
| static void CreateTrailingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void GenTrailingZeros(X86_64Assembler* assembler, |
| CodeGeneratorX86_64* codegen, |
| HInvoke* invoke, bool is_long) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location src = locations->InAt(0); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| |
| int zero_value_result = is_long ? 64 : 32; |
| if (invoke->InputAt(0)->IsConstant()) { |
| // Evaluate this at compile time. |
| int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); |
| if (value == 0) { |
| value = zero_value_result; |
| } else { |
| value = is_long ? CTZ(static_cast<uint64_t>(value)) : CTZ(static_cast<uint32_t>(value)); |
| } |
| codegen->Load32BitValue(out, value); |
| return; |
| } |
| |
| // Handle the non-constant cases. |
| if (src.IsRegister()) { |
| if (is_long) { |
| __ bsfq(out, src.AsRegister<CpuRegister>()); |
| } else { |
| __ bsfl(out, src.AsRegister<CpuRegister>()); |
| } |
| } else if (is_long) { |
| DCHECK(src.IsDoubleStackSlot()); |
| __ bsfq(out, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } else { |
| DCHECK(src.IsStackSlot()); |
| __ bsfl(out, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } |
| |
| // BSF sets ZF if the input was zero, and the output is undefined. |
| NearLabel done; |
| __ j(kNotEqual, &done); |
| |
| // Fix the zero case with the expected result. |
| __ movl(out, Immediate(zero_value_result)); |
| |
| __ Bind(&done); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { |
| CreateTrailingZeroLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { |
| GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { |
| CreateTrailingZeroLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { |
| GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long= */ true); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitIntegerValueOf(HInvoke* invoke) { |
| InvokeRuntimeCallingConvention calling_convention; |
| IntrinsicVisitor::ComputeIntegerValueOfLocations( |
| invoke, |
| codegen_, |
| Location::RegisterLocation(RAX), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitIntegerValueOf(HInvoke* invoke) { |
| IntrinsicVisitor::IntegerValueOfInfo info = |
| IntrinsicVisitor::ComputeIntegerValueOfInfo(invoke, codegen_->GetCompilerOptions()); |
| LocationSummary* locations = invoke->GetLocations(); |
| X86_64Assembler* assembler = GetAssembler(); |
| |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| InvokeRuntimeCallingConvention calling_convention; |
| CpuRegister argument = CpuRegister(calling_convention.GetRegisterAt(0)); |
| auto allocate_instance = [&]() { |
| codegen_->LoadIntrinsicDeclaringClass(argument, invoke); |
| codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); |
| }; |
| if (invoke->InputAt(0)->IsIntConstant()) { |
| int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue(); |
| if (static_cast<uint32_t>(value - info.low) < info.length) { |
| // Just embed the j.l.Integer in the code. |
| DCHECK_NE(info.value_boot_image_reference, IntegerValueOfInfo::kInvalidReference); |
| codegen_->LoadBootImageAddress(out, info.value_boot_image_reference); |
| } else { |
| DCHECK(locations->CanCall()); |
| // Allocate and initialize a new j.l.Integer. |
| // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the |
| // JIT object table. |
| allocate_instance(); |
| __ movl(Address(out, info.value_offset), Immediate(value)); |
| } |
| } else { |
| DCHECK(locations->CanCall()); |
| CpuRegister in = locations->InAt(0).AsRegister<CpuRegister>(); |
| // Check bounds of our cache. |
| __ leal(out, Address(in, -info.low)); |
| __ cmpl(out, Immediate(info.length)); |
| NearLabel allocate, done; |
| __ j(kAboveEqual, &allocate); |
| // If the value is within the bounds, load the j.l.Integer directly from the array. |
| DCHECK_NE(out.AsRegister(), argument.AsRegister()); |
| codegen_->LoadBootImageAddress(argument, info.array_data_boot_image_reference); |
| static_assert((1u << TIMES_4) == sizeof(mirror::HeapReference<mirror::Object>), |
| "Check heap reference size."); |
| __ movl(out, Address(argument, out, TIMES_4, 0)); |
| __ MaybeUnpoisonHeapReference(out); |
| __ jmp(&done); |
| __ Bind(&allocate); |
| // Otherwise allocate and initialize a new j.l.Integer. |
| allocate_instance(); |
| __ movl(Address(out, info.value_offset), in); |
| __ Bind(&done); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitReferenceGetReferent(HInvoke* invoke) { |
| IntrinsicVisitor::CreateReferenceGetReferentLocations(invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitReferenceGetReferent(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Location obj = locations->InAt(0); |
| Location out = locations->Out(); |
| |
| SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathX86_64(invoke); |
| codegen_->AddSlowPath(slow_path); |
| |
| if (gUseReadBarrier) { |
| // Check self->GetWeakRefAccessEnabled(). |
| ThreadOffset64 offset = Thread::WeakRefAccessEnabledOffset<kX86_64PointerSize>(); |
| __ gs()->cmpl(Address::Absolute(offset, /* no_rip= */ true), |
| Immediate(enum_cast<int32_t>(WeakRefAccessState::kVisiblyEnabled))); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| } |
| |
| // Load the java.lang.ref.Reference class, use the output register as a temporary. |
| codegen_->LoadIntrinsicDeclaringClass(out.AsRegister<CpuRegister>(), invoke); |
| |
| // Check static fields java.lang.ref.Reference.{disableIntrinsic,slowPathEnabled} together. |
| MemberOffset disable_intrinsic_offset = IntrinsicVisitor::GetReferenceDisableIntrinsicOffset(); |
| DCHECK_ALIGNED(disable_intrinsic_offset.Uint32Value(), 2u); |
| DCHECK_EQ(disable_intrinsic_offset.Uint32Value() + 1u, |
| IntrinsicVisitor::GetReferenceSlowPathEnabledOffset().Uint32Value()); |
| __ cmpw(Address(out.AsRegister<CpuRegister>(), disable_intrinsic_offset.Uint32Value()), |
| Immediate(0)); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| |
| // Load the value from the field. |
| uint32_t referent_offset = mirror::Reference::ReferentOffset().Uint32Value(); |
| if (gUseReadBarrier && kUseBakerReadBarrier) { |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| out, |
| obj.AsRegister<CpuRegister>(), |
| referent_offset, |
| /*needs_null_check=*/ true); |
| // Note that the fence is a no-op, thanks to the x86-64 memory model. |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // `referent` is volatile. |
| } else { |
| __ movl(out.AsRegister<CpuRegister>(), Address(obj.AsRegister<CpuRegister>(), referent_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(invoke); |
| // Note that the fence is a no-op, thanks to the x86-64 memory model. |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // `referent` is volatile. |
| codegen_->MaybeGenerateReadBarrierSlow(invoke, out, out, obj, referent_offset); |
| } |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitReferenceRefersTo(HInvoke* invoke) { |
| IntrinsicVisitor::CreateReferenceRefersToLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitReferenceRefersTo(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>(); |
| CpuRegister other = locations->InAt(1).AsRegister<CpuRegister>(); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| |
| uint32_t referent_offset = mirror::Reference::ReferentOffset().Uint32Value(); |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| |
| __ movl(out, Address(obj, referent_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(invoke); |
| __ MaybeUnpoisonHeapReference(out); |
| // Note that the fence is a no-op, thanks to the x86-64 memory model. |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // `referent` is volatile. |
| |
| __ cmpl(out, other); |
| |
| if (gUseReadBarrier) { |
| DCHECK(kUseBakerReadBarrier); |
| |
| NearLabel calculate_result; |
| __ j(kEqual, &calculate_result); // ZF set if taken. |
| |
| // Check if the loaded reference is null in a way that leaves ZF clear for null. |
| __ cmpl(out, Immediate(1)); |
| __ j(kBelow, &calculate_result); // ZF clear if taken. |
| |
| // For correct memory visibility, we need a barrier before loading the lock word |
| // but we already have the barrier emitted for volatile load above which is sufficient. |
| |
| // Load the lockword and check if it is a forwarding address. |
| static_assert(LockWord::kStateShift == 30u); |
| static_assert(LockWord::kStateForwardingAddress == 3u); |
| __ movl(out, Address(out, monitor_offset)); |
| __ cmpl(out, Immediate(static_cast<int32_t>(0xc0000000))); |
| __ j(kBelow, &calculate_result); // ZF clear if taken. |
| |
| // Extract the forwarding address and compare with `other`. |
| __ shll(out, Immediate(LockWord::kForwardingAddressShift)); |
| __ cmpl(out, other); |
| |
| __ Bind(&calculate_result); |
| } |
| |
| // Convert ZF into the Boolean result. |
| __ setcc(kEqual, out); |
| __ movzxb(out, out); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitThreadInterrupted(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitThreadInterrupted(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| CpuRegister out = invoke->GetLocations()->Out().AsRegister<CpuRegister>(); |
| Address address = Address::Absolute |
| (Thread::InterruptedOffset<kX86_64PointerSize>().Int32Value(), /* no_rip= */ true); |
| NearLabel done; |
| __ gs()->movl(out, address); |
| __ testl(out, out); |
| __ j(kEqual, &done); |
| __ gs()->movl(address, Immediate(0)); |
| codegen_->MemoryFence(); |
| __ Bind(&done); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitReachabilityFence(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::Any()); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { } |
| |
| static void CreateDivideUnsignedLocations(HInvoke* invoke, ArenaAllocator* allocator) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); |
| locations->SetInAt(0, Location::RegisterLocation(RAX)); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| // Intel uses edx:eax as the dividend. |
| locations->AddTemp(Location::RegisterLocation(RDX)); |
| } |
| |
| static void GenerateDivideUnsigned(HInvoke* invoke, |
| CodeGeneratorX86_64* codegen, |
| DataType::Type data_type) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location out = locations->Out(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| CpuRegister rdx = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| CpuRegister second_reg = second.AsRegister<CpuRegister>(); |
| |
| DCHECK_EQ(RAX, first.AsRegister<Register>()); |
| DCHECK_EQ(RAX, out.AsRegister<Register>()); |
| DCHECK_EQ(RDX, rdx.AsRegister()); |
| |
| // We check if the divisor is zero and bail to the slow path to handle if so. |
| auto* slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); |
| codegen->AddSlowPath(slow_path); |
| |
| X86_64Assembler* assembler = codegen->GetAssembler(); |
| if (data_type == DataType::Type::kInt32) { |
| __ testl(second_reg, second_reg); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| __ xorl(rdx, rdx); |
| __ divl(second_reg); |
| } else { |
| DCHECK(data_type == DataType::Type::kInt64); |
| __ testq(second_reg, second_reg); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| __ xorq(rdx, rdx); |
| __ divq(second_reg); |
| } |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitIntegerDivideUnsigned(HInvoke* invoke) { |
| CreateDivideUnsignedLocations(invoke, allocator_); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitIntegerDivideUnsigned(HInvoke* invoke) { |
| GenerateDivideUnsigned(invoke, codegen_, DataType::Type::kInt32); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitLongDivideUnsigned(HInvoke* invoke) { |
| CreateDivideUnsignedLocations(invoke, allocator_); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitLongDivideUnsigned(HInvoke* invoke) { |
| GenerateDivideUnsigned(invoke, codegen_, DataType::Type::kInt64); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathMultiplyHigh(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RegisterLocation(RAX)); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RegisterLocation(RDX)); |
| locations->AddTemp(Location::RegisterLocation(RAX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathMultiplyHigh(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| CpuRegister y = locations->InAt(1).AsRegister<CpuRegister>(); |
| |
| DCHECK_EQ(locations->InAt(0).AsRegister<Register>(), RAX); |
| DCHECK_EQ(locations->Out().AsRegister<Register>(), RDX); |
| |
| __ imulq(y); |
| } |
| |
| enum class GetAndUpdateOp { |
| kSet, |
| kAdd, |
| kBitwiseAnd, |
| kBitwiseOr, |
| kBitwiseXor |
| }; |
| |
| class VarHandleSlowPathX86_64 : public IntrinsicSlowPathX86_64 { |
| public: |
| explicit VarHandleSlowPathX86_64(HInvoke* invoke) |
| : IntrinsicSlowPathX86_64(invoke) { |
| } |
| |
| void SetVolatile(bool is_volatile) { |
| is_volatile_ = is_volatile; |
| } |
| |
| void SetAtomic(bool is_atomic) { |
| is_atomic_ = is_atomic; |
| } |
| |
| void SetNeedAnyStoreBarrier(bool need_any_store_barrier) { |
| need_any_store_barrier_ = need_any_store_barrier; |
| } |
| |
| void SetNeedAnyAnyBarrier(bool need_any_any_barrier) { |
| need_any_any_barrier_ = need_any_any_barrier; |
| } |
| |
| void SetGetAndUpdateOp(GetAndUpdateOp get_and_update_op) { |
| get_and_update_op_ = get_and_update_op; |
| } |
| |
| Label* GetByteArrayViewCheckLabel() { |
| return &byte_array_view_check_label_; |
| } |
| |
| Label* GetNativeByteOrderLabel() { |
| return &native_byte_order_label_; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| if (GetByteArrayViewCheckLabel()->IsLinked()) { |
| EmitByteArrayViewCode(down_cast<CodeGeneratorX86_64*>(codegen)); |
| } |
| IntrinsicSlowPathX86_64::EmitNativeCode(codegen); |
| } |
| |
| private: |
| HInvoke* GetInvoke() const { |
| return GetInstruction()->AsInvoke(); |
| } |
| |
| mirror::VarHandle::AccessModeTemplate GetAccessModeTemplate() const { |
| return mirror::VarHandle::GetAccessModeTemplateByIntrinsic(GetInvoke()->GetIntrinsic()); |
| } |
| |
| void EmitByteArrayViewCode(CodeGeneratorX86_64* codegen); |
| |
| Label byte_array_view_check_label_; |
| Label native_byte_order_label_; |
| |
| // Arguments forwarded to specific methods. |
| bool is_volatile_; |
| bool is_atomic_; |
| bool need_any_store_barrier_; |
| bool need_any_any_barrier_; |
| GetAndUpdateOp get_and_update_op_; |
| }; |
| |
| static void GenerateMathFma(HInvoke* invoke, CodeGeneratorX86_64* codegen) { |
| DCHECK(DataType::IsFloatingPointType(invoke->GetType())); |
| X86_64Assembler* assembler = codegen->GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| DCHECK(locations->InAt(0).Equals(locations->Out())); |
| XmmRegister left = locations->InAt(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister right = locations->InAt(1).AsFpuRegister<XmmRegister>(); |
| XmmRegister accumulator = locations->InAt(2).AsFpuRegister<XmmRegister>(); |
| if (invoke->GetType() == DataType::Type::kFloat32) { |
| __ vfmadd213ss(left, right, accumulator); |
| } else { |
| DCHECK_EQ(invoke->GetType(), DataType::Type::kFloat64); |
| __ vfmadd213sd(left, right, accumulator); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathFmaDouble(HInvoke* invoke) { |
| DCHECK(codegen_->GetInstructionSetFeatures().HasAVX2()); |
| GenerateMathFma(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathFmaDouble(HInvoke* invoke) { |
| if (codegen_->GetInstructionSetFeatures().HasAVX2()) { |
| CreateFPFPFPToFPCallLocations(allocator_, invoke); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathFmaFloat(HInvoke* invoke) { |
| DCHECK(codegen_->GetInstructionSetFeatures().HasAVX2()); |
| GenerateMathFma(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathFmaFloat(HInvoke* invoke) { |
| if (codegen_->GetInstructionSetFeatures().HasAVX2()) { |
| CreateFPFPFPToFPCallLocations(allocator_, invoke); |
| } |
| } |
| |
| // Generate subtype check without read barriers. |
| static void GenerateSubTypeObjectCheckNoReadBarrier(CodeGeneratorX86_64* codegen, |
| VarHandleSlowPathX86_64* slow_path, |
| CpuRegister object, |
| CpuRegister temp, |
| Address type_address, |
| bool object_can_be_null = true) { |
| X86_64Assembler* assembler = codegen->GetAssembler(); |
| |
| const MemberOffset class_offset = mirror::Object::ClassOffset(); |
| const MemberOffset super_class_offset = mirror::Class::SuperClassOffset(); |
| |
| NearLabel check_type_compatibility, type_matched; |
| |
| // If the object is null, there is no need to check the type |
| if (object_can_be_null) { |
| __ testl(object, object); |
| __ j(kZero, &type_matched); |
| } |
| |
| // Do not unpoison for in-memory comparison. |
| // We deliberately avoid the read barrier, letting the slow path handle the false negatives. |
| __ movl(temp, Address(object, class_offset)); |
| __ Bind(&check_type_compatibility); |
| __ cmpl(temp, type_address); |
| __ j(kEqual, &type_matched); |
| // Load the super class. |
| __ MaybeUnpoisonHeapReference(temp); |
| __ movl(temp, Address(temp, super_class_offset)); |
| // If the super class is null, we reached the root of the hierarchy without a match. |
| // We let the slow path handle uncovered cases (e.g. interfaces). |
| __ testl(temp, temp); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| __ jmp(&check_type_compatibility); |
| __ Bind(&type_matched); |
| } |
| |
| // Check access mode and the primitive type from VarHandle.varType. |
| // Check reference arguments against the VarHandle.varType; for references this is a subclass |
| // check without read barrier, so it can have false negatives which we handle in the slow path. |
| static void GenerateVarHandleAccessModeAndVarTypeChecks(HInvoke* invoke, |
| CodeGeneratorX86_64* codegen, |
| VarHandleSlowPathX86_64* slow_path, |
| DataType::Type type) { |
| X86_64Assembler* assembler = codegen->GetAssembler(); |
| |
| LocationSummary* locations = invoke->GetLocations(); |
| CpuRegister varhandle = locations->InAt(0).AsRegister<CpuRegister>(); |
| CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| |
| mirror::VarHandle::AccessMode access_mode = |
| mirror::VarHandle::GetAccessModeByIntrinsic(invoke->GetIntrinsic()); |
| Primitive::Type primitive_type = DataTypeToPrimitive(type); |
| |
| const MemberOffset var_type_offset = mirror::VarHandle::VarTypeOffset(); |
| const MemberOffset access_mode_bit_mask_offset = mirror::VarHandle::AccessModesBitMaskOffset(); |
| const MemberOffset primitive_type_offset = mirror::Class::PrimitiveTypeOffset(); |
| |
| // Check that the operation is permitted. |
| __ testl(Address(varhandle, access_mode_bit_mask_offset), |
| Immediate(1u << static_cast<uint32_t>(access_mode))); |
| __ j(kZero, slow_path->GetEntryLabel()); |
| |
| // For primitive types, we do not need a read barrier when loading a reference only for loading |
| // constant field through the reference. For reference types, we deliberately avoid the read |
| // barrier, letting the slow path handle the false negatives. |
| __ movl(temp, Address(varhandle, var_type_offset)); |
| __ MaybeUnpoisonHeapReference(temp); |
| |
| // Check check the varType.primitiveType field against the type we're trying to retrieve. |
| __ cmpw(Address(temp, primitive_type_offset), Immediate(static_cast<uint16_t>(primitive_type))); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| |
| if (type == DataType::Type::kReference) { |
| // Check reference arguments against the varType. |
| // False negatives due to varType being an interface or array type |
| // or due to the missing read barrier are handled by the slow path. |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| uint32_t arguments_start = /* VarHandle object */ 1u + expected_coordinates_count; |
| uint32_t number_of_arguments = invoke->GetNumberOfArguments(); |
| for (size_t arg_index = arguments_start; arg_index != number_of_arguments; ++arg_index) { |
| HInstruction* arg = invoke->InputAt(arg_index); |
| DCHECK_EQ(arg->GetType(), DataType::Type::kReference); |
| if (!arg->IsNullConstant()) { |
| CpuRegister arg_reg = invoke->GetLocations()->InAt(arg_index).AsRegister<CpuRegister>(); |
| Address type_addr(varhandle, var_type_offset); |
| GenerateSubTypeObjectCheckNoReadBarrier(codegen, slow_path, arg_reg, temp, type_addr); |
| } |
| } |
| } |
| } |
| |
| static void GenerateVarHandleStaticFieldCheck(HInvoke* invoke, |
| CodeGeneratorX86_64* codegen, |
| VarHandleSlowPathX86_64* slow_path) { |
| X86_64Assembler* assembler = codegen->GetAssembler(); |
| |
| LocationSummary* locations = invoke->GetLocations(); |
| CpuRegister varhandle = locations->InAt(0).AsRegister<CpuRegister>(); |
| |
| const MemberOffset coordinate_type0_offset = mirror::VarHandle::CoordinateType0Offset(); |
| |
| // Check that the VarHandle references a static field by checking that coordinateType0 == null. |
| // Do not emit read barrier (or unpoison the reference) for comparing to null. |
| __ cmpl(Address(varhandle, coordinate_type0_offset), Immediate(0)); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| } |
| |
| static void GenerateVarHandleInstanceFieldChecks(HInvoke* invoke, |
| CodeGeneratorX86_64* codegen, |
| VarHandleSlowPathX86_64* slow_path) { |
| VarHandleOptimizations optimizations(invoke); |
| X86_64Assembler* assembler = codegen->GetAssembler(); |
| |
| LocationSummary* locations = invoke->GetLocations(); |
| CpuRegister varhandle = locations->InAt(0).AsRegister<CpuRegister>(); |
| CpuRegister object = locations->InAt(1).AsRegister<CpuRegister>(); |
| CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| |
| const MemberOffset coordinate_type0_offset = mirror::VarHandle::CoordinateType0Offset(); |
| const MemberOffset coordinate_type1_offset = mirror::VarHandle::CoordinateType1Offset(); |
| |
| // Null-check the object. |
| if (!optimizations.GetSkipObjectNullCheck()) { |
| __ testl(object, object); |
| __ j(kZero, slow_path->GetEntryLabel()); |
| } |
| |
| if (!optimizations.GetUseKnownBootImageVarHandle()) { |
| // Check that the VarHandle references an instance field by checking that |
| // coordinateType1 == null. coordinateType0 should be not null, but this is handled by the |
| // type compatibility check with the source object's type, which will fail for null. |
| __ cmpl(Address(varhandle, coordinate_type1_offset), Immediate(0)); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| |
| // Check that the object has the correct type. |
| // We deliberately avoid the read barrier, letting the slow path handle the false negatives. |
| GenerateSubTypeObjectCheckNoReadBarrier(codegen, |
| slow_path, |
| object, |
| temp, |
| Address(varhandle, coordinate_type0_offset), |
| /*object_can_be_null=*/ false); |
| } |
| } |
| |
| static void GenerateVarHandleArrayChecks(HInvoke* invoke, |
| CodeGeneratorX86_64* codegen, |
| VarHandleSlowPathX86_64* slow_path) { |
| VarHandleOptimizations optimizations(invoke); |
| X86_64Assembler* assembler = codegen->GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| CpuRegister varhandle = locations->InAt(0).AsRegister<CpuRegister>(); |
| CpuRegister object = locations->InAt(1).AsRegister<CpuRegister>(); |
| CpuRegister index = locations->InAt(2).AsRegister<CpuRegister>(); |
| DataType::Type value_type = |
| GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u); |
| Primitive::Type primitive_type = DataTypeToPrimitive(value_type); |
| |
| const MemberOffset coordinate_type0_offset = mirror::VarHandle::CoordinateType0Offset(); |
| const MemberOffset coordinate_type1_offset = mirror::VarHandle::CoordinateType1Offset(); |
| const MemberOffset component_type_offset = mirror::Class::ComponentTypeOffset(); |
| const MemberOffset primitive_type_offset = mirror::Class::PrimitiveTypeOffset(); |
| const MemberOffset class_offset = mirror::Object::ClassOffset(); |
| const MemberOffset array_length_offset = mirror::Array::LengthOffset(); |
| |
| // Null-check the object. |
| if (!optimizations.GetSkipObjectNullCheck()) { |
| __ testl(object, object); |
| __ j(kZero, slow_path->GetEntryLabel()); |
| } |
| |
| CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| |
| // Check that the VarHandle references an array, byte array view or ByteBuffer by checking |
| // that coordinateType1 != null. If that's true, coordinateType1 shall be int.class and |
| // coordinateType0 shall not be null but we do not explicitly verify that. |
| // No need for read barrier or unpoisoning of coordinateType1 for comparison with null. |
| __ cmpl(Address(varhandle, coordinate_type1_offset.Int32Value()), Immediate(0)); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| // Check object class against componentType0. |
| // |
| // This is an exact check and we defer other cases to the runtime. This includes |
| // conversion to array of superclass references, which is valid but subsequently |
| // requires all update operations to check that the value can indeed be stored. |
| // We do not want to perform such extra checks in the intrinsified code. |
| // |
| // We do this check without read barrier, so there can be false negatives which we |
| // defer to the slow path. There shall be no false negatives for array classes in the |
| // boot image (including Object[] and primitive arrays) because they are non-movable. |
| __ movl(temp, Address(object, class_offset.Int32Value())); |
| __ cmpl(temp, Address(varhandle, coordinate_type0_offset.Int32Value())); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| |
| // Check that the coordinateType0 is an array type. We do not need a read barrier |
| // for loading constant reference fields (or chains of them) for comparison with null, |
| // nor for finally loading a constant primitive field (primitive type) below. |
| codegen->GetAssembler()->MaybeUnpoisonHeapReference(temp); |
| __ movl(temp, Address(temp, component_type_offset.Int32Value())); |
| codegen->GetAssembler()->MaybeUnpoisonHeapReference(temp); |
| __ testl(temp, temp); |
| __ j(kZero, slow_path->GetEntryLabel()); |
| |
| // Check that the array component type matches the primitive type. |
| Label* slow_path_label; |
| if (primitive_type == Primitive::kPrimNot) { |
| slow_path_label = slow_path->GetEntryLabel(); |
| } else { |
| // With the exception of `kPrimNot` (handled above), `kPrimByte` and `kPrimBoolean`, |
| // we shall check for a byte array view in the slow path. |
| // The check requires the ByteArrayViewVarHandle.class to be in the boot image, |
| // so we cannot emit that if we're JITting without boot image. |
| bool boot_image_available = |
| codegen->GetCompilerOptions().IsBootImage() || |
| !Runtime::Current()->GetHeap()->GetBootImageSpaces().empty(); |
| bool can_be_view = (DataType::Size(value_type) != 1u) && boot_image_available; |
| slow_path_label = |
| can_be_view ? slow_path->GetByteArrayViewCheckLabel() : slow_path->GetEntryLabel(); |
| } |
| __ cmpw(Address(temp, primitive_type_offset), Immediate(static_cast<uint16_t>(primitive_type))); |
| __ j(kNotEqual, slow_path_label); |
| |
| // Check for array index out of bounds. |
| __ cmpl(index, Address(object, array_length_offset.Int32Value())); |
| __ j(kAboveEqual, slow_path->GetEntryLabel()); |
| } |
| |
| static void GenerateVarHandleCoordinateChecks(HInvoke* invoke, |
| CodeGeneratorX86_64* codegen, |
| VarHandleSlowPathX86_64* slow_path) { |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| if (expected_coordinates_count == 0u) { |
| GenerateVarHandleStaticFieldCheck(invoke, codegen, slow_path); |
| } else if (expected_coordinates_count == 1u) { |
| GenerateVarHandleInstanceFieldChecks(invoke, codegen, slow_path); |
| } else { |
| DCHECK_EQ(expected_coordinates_count, 2u); |
| GenerateVarHandleArrayChecks(invoke, codegen, slow_path); |
| } |
| } |
| |
| static VarHandleSlowPathX86_64* GenerateVarHandleChecks(HInvoke* invoke, |
| CodeGeneratorX86_64* codegen, |
| DataType::Type type) { |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| VarHandleOptimizations optimizations(invoke); |
| if (optimizations.GetUseKnownBootImageVarHandle()) { |
| DCHECK_NE(expected_coordinates_count, 2u); |
| if (expected_coordinates_count == 0u || optimizations.GetSkipObjectNullCheck()) { |
| return nullptr; |
| } |
| } |
| |
| VarHandleSlowPathX86_64* slow_path = |
| new (codegen->GetScopedAllocator()) VarHandleSlowPathX86_64(invoke); |
| codegen->AddSlowPath(slow_path); |
| |
| if (!optimizations.GetUseKnownBootImageVarHandle()) { |
| GenerateVarHandleAccessModeAndVarTypeChecks(invoke, codegen, slow_path, type); |
| } |
| GenerateVarHandleCoordinateChecks(invoke, codegen, slow_path); |
| |
| return slow_path; |
| } |
| |
| struct VarHandleTarget { |
| Register object; // The object holding the value to operate on. |
| Register offset; // The offset of the value to operate on. |
| }; |
| |
| static VarHandleTarget GetVarHandleTarget(HInvoke* invoke) { |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| VarHandleTarget target; |
| // The temporary allocated for loading the offset. |
| target.offset = locations->GetTemp(0).AsRegister<CpuRegister>().AsRegister(); |
| // The reference to the object that holds the value to operate on. |
| target.object = (expected_coordinates_count == 0u) |
| ? locations->GetTemp(1).AsRegister<CpuRegister>().AsRegister() |
| : locations->InAt(1).AsRegister<CpuRegister>().AsRegister(); |
| return target; |
| } |
| |
| static void GenerateVarHandleTarget(HInvoke* invoke, |
| const VarHandleTarget& target, |
| CodeGeneratorX86_64* codegen) { |
| LocationSummary* locations = invoke->GetLocations(); |
| X86_64Assembler* assembler = codegen->GetAssembler(); |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| |
| CpuRegister varhandle = locations->InAt(0).AsRegister<CpuRegister>(); |
| |
| if (expected_coordinates_count <= 1u) { |
| if (VarHandleOptimizations(invoke).GetUseKnownBootImageVarHandle()) { |
| ScopedObjectAccess soa(Thread::Current()); |
| ArtField* target_field = GetBootImageVarHandleField(invoke); |
| if (expected_coordinates_count == 0u) { |
| ObjPtr<mirror::Class> declaring_class = target_field->GetDeclaringClass(); |
| __ movl(CpuRegister(target.object), |
| Address::Absolute(CodeGeneratorX86_64::kPlaceholder32BitOffset, /*no_rip=*/ false)); |
| if (Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(declaring_class)) { |
| codegen->RecordBootImageRelRoPatch(CodeGenerator::GetBootImageOffset(declaring_class)); |
| } else { |
| codegen->RecordBootImageTypePatch(declaring_class->GetDexFile(), |
| declaring_class->GetDexTypeIndex()); |
| } |
| } |
| __ movl(CpuRegister(target.offset), Immediate(target_field->GetOffset().Uint32Value())); |
| } else { |
| // For static fields, we need to fill the `target.object` with the declaring class, |
| // so we can use `target.object` as temporary for the `ArtMethod*`. For instance fields, |
| // we do not need the declaring class, so we can forget the `ArtMethod*` when |
| // we load the `target.offset`, so use the `target.offset` to hold the `ArtMethod*`. |
| CpuRegister method((expected_coordinates_count == 0) ? target.object : target.offset); |
| |
| const MemberOffset art_field_offset = mirror::FieldVarHandle::ArtFieldOffset(); |
| const MemberOffset offset_offset = ArtField::OffsetOffset(); |
| |
| // Load the ArtField, the offset and, if needed, declaring class. |
| __ movq(method, Address(varhandle, art_field_offset)); |
| __ movl(CpuRegister(target.offset), Address(method, offset_offset)); |
| if (expected_coordinates_count == 0u) { |
| InstructionCodeGeneratorX86_64* instr_codegen = codegen->GetInstructionCodegen(); |
| instr_codegen->GenerateGcRootFieldLoad(invoke, |
| Location::RegisterLocation(target.object), |
| Address(method, ArtField::DeclaringClassOffset()), |
| /*fixup_label=*/ nullptr, |
| gCompilerReadBarrierOption); |
| } |
| } |
| } else { |
| DCHECK_EQ(expected_coordinates_count, 2u); |
| |
| DataType::Type value_type = |
| GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u); |
| ScaleFactor scale = CodeGenerator::ScaleFactorForType(value_type); |
| MemberOffset data_offset = mirror::Array::DataOffset(DataType::Size(value_type)); |
| CpuRegister index = locations->InAt(2).AsRegister<CpuRegister>(); |
| |
| // The effect of LEA is `target.offset = index * scale + data_offset`. |
| __ leal(CpuRegister(target.offset), Address(index, scale, data_offset.Int32Value())); |
| } |
| } |
| |
| static bool HasVarHandleIntrinsicImplementation(HInvoke* invoke) { |
| // The only supported read barrier implementation is the Baker-style read barriers. |
| if (gUseReadBarrier && !kUseBakerReadBarrier) { |
| return false; |
| } |
| |
| VarHandleOptimizations optimizations(invoke); |
| if (optimizations.GetDoNotIntrinsify()) { |
| return false; |
| } |
| |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| DCHECK_LE(expected_coordinates_count, 2u); // Filtered by the `DoNotIntrinsify` flag above. |
| return true; |
| } |
| |
| static LocationSummary* CreateVarHandleCommonLocations(HInvoke* invoke) { |
| size_t expected_coordinates_count = GetExpectedVarHandleCoordinatesCount(invoke); |
| ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); |
| LocationSummary* locations = new (allocator) LocationSummary( |
| invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| // Require coordinates in registers. These are the object holding the value |
| // to operate on (except for static fields) and index (for arrays and views). |
| for (size_t i = 0; i != expected_coordinates_count; ++i) { |
| locations->SetInAt(/* VarHandle object */ 1u + i, Location::RequiresRegister()); |
| } |
| |
| uint32_t arguments_start = /* VarHandle object */ 1u + expected_coordinates_count; |
| uint32_t number_of_arguments = invoke->GetNumberOfArguments(); |
| for (size_t arg_index = arguments_start; arg_index != number_of_arguments; ++arg_index) { |
| HInstruction* arg = invoke->InputAt(arg_index); |
| if (DataType::IsFloatingPointType(arg->GetType())) { |
| locations->SetInAt(arg_index, Location::FpuRegisterOrConstant(arg)); |
| } else { |
| locations->SetInAt(arg_index, Location::RegisterOrConstant(arg)); |
| } |
| } |
| |
| // Add a temporary for offset. |
| locations->AddTemp(Location::RequiresRegister()); |
| |
| if (expected_coordinates_count == 0u) { |
| // Add a temporary to hold the declaring class. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| return locations; |
| } |
| |
| static void CreateVarHandleGetLocations(HInvoke* invoke) { |
| if (!HasVarHandleIntrinsicImplementation(invoke)) { |
| return; |
| } |
| |
| LocationSummary* locations = CreateVarHandleCommonLocations(invoke); |
| if (DataType::IsFloatingPointType(invoke->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } else { |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| } |
| |
| static void GenerateVarHandleGet(HInvoke* invoke, |
| CodeGeneratorX86_64* codegen, |
| bool byte_swap = false) { |
| DataType::Type type = invoke->GetType(); |
| DCHECK_NE(type, DataType::Type::kVoid); |
| |
| LocationSummary* locations = invoke->GetLocations(); |
| X86_64Assembler* assembler = codegen->GetAssembler(); |
| |
| VarHandleTarget target = GetVarHandleTarget(invoke); |
| VarHandleSlowPathX86_64* slow_path = nullptr; |
| if (!byte_swap) { |
| slow_path = GenerateVarHandleChecks(invoke, codegen, type); |
| GenerateVarHandleTarget(invoke, target, codegen); |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetNativeByteOrderLabel()); |
| } |
| } |
| |
| // Load the value from the field |
| Address src(CpuRegister(target.object), CpuRegister(target.offset), TIMES_1, 0); |
| Location out = locations->Out(); |
| |
| if (type == DataType::Type::kReference) { |
| if (gUseReadBarrier) { |
| DCHECK(kUseBakerReadBarrier); |
| codegen->GenerateReferenceLoadWithBakerReadBarrier( |
| invoke, out, CpuRegister(target.object), src, /* needs_null_check= */ false); |
| } else { |
| __ movl(out.AsRegister<CpuRegister>(), src); |
| __ MaybeUnpoisonHeapReference(out.AsRegister<CpuRegister>()); |
| } |
| DCHECK(!byte_swap); |
| } else { |
| codegen->LoadFromMemoryNoReference(type, out, src); |
| if (byte_swap) { |
| CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| codegen->GetInstructionCodegen()->Bswap(out, type, &temp); |
| } |
| } |
| |
| if (slow_path != nullptr) { |
| DCHECK(!byte_swap); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGet(HInvoke* invoke) { |
| CreateVarHandleGetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGet(HInvoke* invoke) { |
| GenerateVarHandleGet(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAcquire(HInvoke* invoke) { |
| CreateVarHandleGetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAcquire(HInvoke* invoke) { |
| // VarHandleGetAcquire is the same as VarHandleGet on x86-64 due to the x86 memory model. |
| GenerateVarHandleGet(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetOpaque(HInvoke* invoke) { |
| CreateVarHandleGetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetOpaque(HInvoke* invoke) { |
| // VarHandleGetOpaque is the same as VarHandleGet on x86-64 due to the x86 memory model. |
| GenerateVarHandleGet(invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetVolatile(HInvoke* invoke) { |
| CreateVarHandleGetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetVolatile(HInvoke* invoke) { |
| // VarHandleGetVolatile is the same as VarHandleGet on x86-64 due to the x86 memory model. |
| GenerateVarHandleGet(invoke, codegen_); |
| } |
| |
| static void CreateVarHandleSetLocations(HInvoke* invoke) { |
| if (!HasVarHandleIntrinsicImplementation(invoke)) { |
| return; |
| } |
| |
| LocationSummary* locations = CreateVarHandleCommonLocations(invoke); |
| |
| // Extra temporary is used for card in MarkGCCard and to move 64-bit constants to memory. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| static void GenerateVarHandleSet(HInvoke* invoke, |
| CodeGeneratorX86_64* codegen, |
| bool is_volatile, |
| bool is_atomic, |
| bool byte_swap = false) { |
| X86_64Assembler* assembler = codegen->GetAssembler(); |
| |
| LocationSummary* locations = invoke->GetLocations(); |
| const uint32_t last_temp_index = locations->GetTempCount() - 1; |
| |
| uint32_t value_index = invoke->GetNumberOfArguments() - 1; |
| DataType::Type value_type = GetDataTypeFromShorty(invoke, value_index); |
| |
| VarHandleTarget target = GetVarHandleTarget(invoke); |
| VarHandleSlowPathX86_64* slow_path = nullptr; |
| if (!byte_swap) { |
| slow_path = GenerateVarHandleChecks(invoke, codegen, value_type); |
| GenerateVarHandleTarget(invoke, target, codegen); |
| if (slow_path != nullptr) { |
| slow_path->SetVolatile(is_volatile); |
| slow_path->SetAtomic(is_atomic); |
| __ Bind(slow_path->GetNativeByteOrderLabel()); |
| } |
| } |
| |
| switch (invoke->GetIntrinsic()) { |
| case Intrinsics::kVarHandleSetRelease: |
| codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); |
| break; |
| case Intrinsics::kVarHandleSetVolatile: |
| // setVolatile needs kAnyStore barrier, but HandleFieldSet takes care of that. |
| break; |
| default: |
| // Other intrinsics don't need a barrier. |
| break; |
| } |
| |
| Address dst(CpuRegister(target.object), CpuRegister(target.offset), TIMES_1, 0); |
| |
| // Store the value to the field. |
| codegen->GetInstructionCodegen()->HandleFieldSet( |
| invoke, |
| value_index, |
| last_temp_index, |
| value_type, |
| dst, |
| CpuRegister(target.object), |
| is_volatile, |
| is_atomic, |
| /*value_can_be_null=*/true, |
| byte_swap, |
| // Value can be null, and this write barrier is not being relied on for other sets. |
| WriteBarrierKind::kEmitWithNullCheck); |
| |
| // setVolatile needs kAnyAny barrier, but HandleFieldSet takes care of that. |
| |
| if (slow_path != nullptr) { |
| DCHECK(!byte_swap); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleSet(HInvoke* invoke) { |
| CreateVarHandleSetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleSet(HInvoke* invoke) { |
| GenerateVarHandleSet(invoke, codegen_, /*is_volatile=*/ false, /*is_atomic=*/ true); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleSetOpaque(HInvoke* invoke) { |
| CreateVarHandleSetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleSetOpaque(HInvoke* invoke) { |
| GenerateVarHandleSet(invoke, codegen_, /*is_volatile=*/ false, /*is_atomic=*/ true); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleSetRelease(HInvoke* invoke) { |
| CreateVarHandleSetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleSetRelease(HInvoke* invoke) { |
| GenerateVarHandleSet(invoke, codegen_, /*is_volatile=*/ false, /*is_atomic=*/ true); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleSetVolatile(HInvoke* invoke) { |
| CreateVarHandleSetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleSetVolatile(HInvoke* invoke) { |
| GenerateVarHandleSet(invoke, codegen_, /*is_volatile=*/ true, /*is_atomic=*/ true); |
| } |
| |
| static void CreateVarHandleCompareAndSetOrExchangeLocations(HInvoke* invoke) { |
| if (!HasVarHandleIntrinsicImplementation(invoke)) { |
| return; |
| } |
| |
| uint32_t number_of_arguments = invoke->GetNumberOfArguments(); |
| uint32_t expected_value_index = number_of_arguments - 2; |
| uint32_t new_value_index = number_of_arguments - 1; |
| DataType::Type return_type = invoke->GetType(); |
| DataType::Type expected_type = GetDataTypeFromShorty(invoke, expected_value_index); |
| DCHECK_EQ(expected_type, GetDataTypeFromShorty(invoke, new_value_index)); |
| |
| LocationSummary* locations = CreateVarHandleCommonLocations(invoke); |
| |
| if (DataType::IsFloatingPointType(return_type)) { |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } else { |
| // Take advantage of the fact that CMPXCHG writes result to RAX. |
| locations->SetOut(Location::RegisterLocation(RAX)); |
| } |
| |
| if (DataType::IsFloatingPointType(expected_type)) { |
| // RAX is needed to load the expected floating-point value into a register for CMPXCHG. |
| locations->AddTemp(Location::RegisterLocation(RAX)); |
| // Another temporary is needed to load the new floating-point value into a register for CMPXCHG. |
| locations->AddTemp(Location::RequiresRegister()); |
| } else { |
| // Ensure that expected value is in RAX, as required by CMPXCHG. |
| locations->SetInAt(expected_value_index, Location::RegisterLocation(RAX)); |
| locations->SetInAt(new_value_index, Location::RequiresRegister()); |
| if (expected_type == DataType::Type::kReference) { |
| // Need two temporaries for MarkGCCard. |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| if (gUseReadBarrier) { |
| // Need three temporaries for GenerateReferenceLoadWithBakerReadBarrier. |
| DCHECK(kUseBakerReadBarrier); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| // RAX is clobbered in CMPXCHG, but no need to mark it as temporary as it's the output register. |
| DCHECK_EQ(RAX, locations->Out().AsRegister<Register>()); |
| } |
| } |
| |
| static void GenerateVarHandleCompareAndSetOrExchange(HInvoke* invoke, |
| CodeGeneratorX86_64* codegen, |
| bool is_cmpxchg, |
| bool byte_swap = false) { |
| DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); |
| |
| X86_64Assembler* assembler = codegen->GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| uint32_t number_of_arguments = invoke->GetNumberOfArguments(); |
| uint32_t expected_value_index = number_of_arguments - 2; |
| uint32_t new_value_index = number_of_arguments - 1; |
| DataType::Type type = GetDataTypeFromShorty(invoke, expected_value_index); |
| |
| VarHandleSlowPathX86_64* slow_path = nullptr; |
| VarHandleTarget target = GetVarHandleTarget(invoke); |
| if (!byte_swap) { |
| slow_path = GenerateVarHandleChecks(invoke, codegen, type); |
| GenerateVarHandleTarget(invoke, target, codegen); |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetNativeByteOrderLabel()); |
| } |
| } |
| |
| uint32_t temp_count = locations->GetTempCount(); |
| GenCompareAndSetOrExchange(codegen, |
| invoke, |
| type, |
| CpuRegister(target.object), |
| CpuRegister(target.offset), |
| /*temp1_index=*/ temp_count - 1, |
| /*temp2_index=*/ temp_count - 2, |
| /*temp3_index=*/ temp_count - 3, |
| locations->InAt(new_value_index), |
| locations->InAt(expected_value_index), |
| locations->Out(), |
| is_cmpxchg, |
| byte_swap); |
| |
| // We are using LOCK CMPXCHG in all cases because there is no CAS equivalent that has weak |
| // failure semantics. LOCK CMPXCHG has full barrier semantics, so we don't need barriers. |
| |
| if (slow_path != nullptr) { |
| DCHECK(!byte_swap); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleCompareAndSet(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleCompareAndSet(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleWeakCompareAndSet(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleWeakCompareAndSet(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleWeakCompareAndSetPlain(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleWeakCompareAndSetPlain(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleWeakCompareAndSetAcquire(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleWeakCompareAndSetAcquire(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleWeakCompareAndSetRelease(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleWeakCompareAndSetRelease(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleCompareAndExchange(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleCompareAndExchange(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ true); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleCompareAndExchangeAcquire(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleCompareAndExchangeAcquire(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ true); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleCompareAndExchangeRelease(HInvoke* invoke) { |
| CreateVarHandleCompareAndSetOrExchangeLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleCompareAndExchangeRelease(HInvoke* invoke) { |
| GenerateVarHandleCompareAndSetOrExchange(invoke, codegen_, /*is_cmpxchg=*/ true); |
| } |
| |
| static void CreateVarHandleGetAndSetLocations(HInvoke* invoke) { |
| if (!HasVarHandleIntrinsicImplementation(invoke)) { |
| return; |
| } |
| |
| uint32_t number_of_arguments = invoke->GetNumberOfArguments(); |
| uint32_t new_value_index = number_of_arguments - 1; |
| DataType::Type type = invoke->GetType(); |
| DCHECK_EQ(type, GetDataTypeFromShorty(invoke, new_value_index)); |
| |
| LocationSummary* locations = CreateVarHandleCommonLocations(invoke); |
| |
| if (DataType::IsFloatingPointType(type)) { |
| locations->SetOut(Location::RequiresFpuRegister()); |
| // A temporary is needed to load the new floating-point value into a register for XCHG. |
| locations->AddTemp(Location::RequiresRegister()); |
| } else { |
| // Use the same register for both the new value and output to take advantage of XCHG. |
| // It doesn't have to be RAX, but we need to choose some to make sure it's the same. |
| locations->SetOut(Location::RegisterLocation(RAX)); |
| locations->SetInAt(new_value_index, Location::RegisterLocation(RAX)); |
| if (type == DataType::Type::kReference) { |
| // Need two temporaries for MarkGCCard. |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| if (gUseReadBarrier) { |
| // Need a third temporary for GenerateReferenceLoadWithBakerReadBarrier. |
| DCHECK(kUseBakerReadBarrier); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| } |
| } |
| |
| static void GenerateVarHandleGetAndSet(HInvoke* invoke, |
| CodeGeneratorX86_64* codegen, |
| Location value, |
| DataType::Type type, |
| Address field_addr, |
| CpuRegister ref, |
| bool byte_swap) { |
| X86_64Assembler* assembler = codegen->GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| Location out = locations->Out(); |
| uint32_t temp_count = locations->GetTempCount(); |
| |
| if (DataType::IsFloatingPointType(type)) { |
| // `getAndSet` for floating-point types: move the new FP value into a register, atomically |
| // exchange it with the field, and move the old value into the output FP register. |
| Location temp = locations->GetTemp(temp_count - 1); |
| codegen->Move(temp, value); |
| bool is64bit = (type == DataType::Type::kFloat64); |
| DataType::Type bswap_type = is64bit ? DataType::Type::kUint64 : DataType::Type::kUint32; |
| if (byte_swap) { |
| codegen->GetInstructionCodegen()->Bswap(temp, bswap_type); |
| } |
| if (is64bit) { |
| __ xchgq(temp.AsRegister<CpuRegister>(), field_addr); |
| } else { |
| __ xchgl(temp.AsRegister<CpuRegister>(), field_addr); |
| } |
| if (byte_swap) { |
| codegen->GetInstructionCodegen()->Bswap(temp, bswap_type); |
| } |
| __ movd(out.AsFpuRegister<XmmRegister>(), temp.AsRegister<CpuRegister>(), is64bit); |
| } else if (type == DataType::Type::kReference) { |
| // `getAndSet` for references: load reference and atomically exchange it with the field. |
| // Output register is the same as the one holding new value, so no need to move the result. |
| DCHECK(!byte_swap); |
| |
| CpuRegister temp1 = locations->GetTemp(temp_count - 1).AsRegister<CpuRegister>(); |
| CpuRegister temp2 = locations->GetTemp(temp_count - 2).AsRegister<CpuRegister>(); |
| CpuRegister valreg = value.AsRegister<CpuRegister>(); |
| |
| if (gUseReadBarrier && kUseBakerReadBarrier) { |
| codegen->GenerateReferenceLoadWithBakerReadBarrier( |
| invoke, |
| locations->GetTemp(temp_count - 3), |
| ref, |
| field_addr, |
| /*needs_null_check=*/ false, |
| /*always_update_field=*/ true, |
| &temp1, |
| &temp2); |
| } |
| codegen->MarkGCCard(temp1, temp2, ref, valreg, /* emit_null_check= */ false); |
| |
| DCHECK_EQ(valreg, out.AsRegister<CpuRegister>()); |
| if (kPoisonHeapReferences) { |
| // Use a temp to avoid poisoning base of the field address, which might happen if `valreg` is |
| // the same as `target.object` (for code like `vh.getAndSet(obj, obj)`). |
| __ movl(temp1, valreg); |
| __ PoisonHeapReference(temp1); |
| __ xchgl(temp1, field_addr); |
| __ UnpoisonHeapReference(temp1); |
| __ movl(valreg, temp1); |
| } else { |
| __ xchgl(valreg, field_addr); |
| } |
| } else { |
| // `getAndSet` for integral types: atomically exchange the new value with the field. Output |
| // register is the same as the one holding new value. Do sign extend / zero extend as needed. |
| if (byte_swap) { |
| codegen->GetInstructionCodegen()->Bswap(value, type); |
| } |
| CpuRegister valreg = value.AsRegister<CpuRegister>(); |
| DCHECK_EQ(valreg, out.AsRegister<CpuRegister>()); |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| __ xchgb(valreg, field_addr); |
| __ movzxb(valreg, valreg); |
| break; |
| case DataType::Type::kInt8: |
| __ xchgb(valreg, field_addr); |
| __ movsxb(valreg, valreg); |
| break; |
| case DataType::Type::kUint16: |
| __ xchgw(valreg, field_addr); |
| __ movzxw(valreg, valreg); |
| break; |
| case DataType::Type::kInt16: |
| __ xchgw(valreg, field_addr); |
| __ movsxw(valreg, valreg); |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kUint32: |
| __ xchgl(valreg, field_addr); |
| break; |
| case DataType::Type::kInt64: |
| case DataType::Type::kUint64: |
| __ xchgq(valreg, field_addr); |
| break; |
| default: |
| DCHECK(false) << "unexpected type in getAndSet intrinsic"; |
| UNREACHABLE(); |
| } |
| if (byte_swap) { |
| codegen->GetInstructionCodegen()->Bswap(value, type); |
| } |
| } |
| } |
| |
| static void CreateVarHandleGetAndBitwiseOpLocations(HInvoke* invoke) { |
| if (!HasVarHandleIntrinsicImplementation(invoke)) { |
| return; |
| } |
| |
| uint32_t number_of_arguments = invoke->GetNumberOfArguments(); |
| uint32_t new_value_index = number_of_arguments - 1; |
| DataType::Type type = invoke->GetType(); |
| DCHECK_EQ(type, GetDataTypeFromShorty(invoke, new_value_index)); |
| |
| LocationSummary* locations = CreateVarHandleCommonLocations(invoke); |
| |
| DCHECK_NE(DataType::Type::kReference, type); |
| DCHECK(!DataType::IsFloatingPointType(type)); |
| |
| // A temporary to compute the bitwise operation on the old and the new values. |
| locations->AddTemp(Location::RequiresRegister()); |
| // We need value to be either in a register, or a 32-bit constant (as there are no arithmetic |
| // instructions that accept 64-bit immediate on x86_64). |
| locations->SetInAt(new_value_index, DataType::Is64BitType(type) |
| ? Location::RequiresRegister() |
| : Location::RegisterOrConstant(invoke->InputAt(new_value_index))); |
| // Output is in RAX to accommodate CMPXCHG. It is also used as a temporary. |
| locations->SetOut(Location::RegisterLocation(RAX)); |
| } |
| |
| static void GenerateVarHandleGetAndOp(HInvoke* invoke, |
| CodeGeneratorX86_64* codegen, |
| Location value, |
| DataType::Type type, |
| Address field_addr, |
| GetAndUpdateOp get_and_update_op, |
| bool byte_swap) { |
| X86_64Assembler* assembler = codegen->GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| Location temp_loc = locations->GetTemp(locations->GetTempCount() - 1); |
| Location rax_loc = locations->Out(); |
| CpuRegister temp = temp_loc.AsRegister<CpuRegister>(); |
| CpuRegister rax = rax_loc.AsRegister<CpuRegister>(); |
| DCHECK_EQ(rax.AsRegister(), RAX); |
| bool is64Bit = DataType::Is64BitType(type); |
| |
| NearLabel retry; |
| __ Bind(&retry); |
| |
| // Load field value into RAX and copy it into a temporary register for the operation. |
| codegen->LoadFromMemoryNoReference(type, Location::RegisterLocation(RAX), field_addr); |
| codegen->Move(temp_loc, rax_loc); |
| if (byte_swap) { |
| // Byte swap the temporary, since we need to perform operation in native endianness. |
| codegen->GetInstructionCodegen()->Bswap(temp_loc, type); |
| } |
| |
| DCHECK_IMPLIES(value.IsConstant(), !is64Bit); |
| int32_t const_value = value.IsConstant() |
| ? CodeGenerator::GetInt32ValueOf(value.GetConstant()) |
| : 0; |
| |
| // Use 32-bit registers for 8/16/32-bit types to save on the REX prefix. |
| switch (get_and_update_op) { |
| case GetAndUpdateOp::kAdd: |
| DCHECK(byte_swap); // The non-byte-swapping path should use a faster XADD instruction. |
| if (is64Bit) { |
| __ addq(temp, value.AsRegister<CpuRegister>()); |
| } else if (value.IsConstant()) { |
| __ addl(temp, Immediate(const_value)); |
| } else { |
| __ addl(temp, value.AsRegister<CpuRegister>()); |
| } |
| break; |
| case GetAndUpdateOp::kBitwiseAnd: |
| if (is64Bit) { |
| __ andq(temp, value.AsRegister<CpuRegister>()); |
| } else if (value.IsConstant()) { |
| __ andl(temp, Immediate(const_value)); |
| } else { |
| __ andl(temp, value.AsRegister<CpuRegister>()); |
| } |
| break; |
| case GetAndUpdateOp::kBitwiseOr: |
| if (is64Bit) { |
| __ orq(temp, value.AsRegister<CpuRegister>()); |
| } else if (value.IsConstant()) { |
| __ orl(temp, Immediate(const_value)); |
| } else { |
| __ orl(temp, value.AsRegister<CpuRegister>()); |
| } |
| break; |
| case GetAndUpdateOp::kBitwiseXor: |
| if (is64Bit) { |
| __ xorq(temp, value.AsRegister<CpuRegister>()); |
| } else if (value.IsConstant()) { |
| __ xorl(temp, Immediate(const_value)); |
| } else { |
| __ xorl(temp, value.AsRegister<CpuRegister>()); |
| } |
| break; |
| default: |
| DCHECK(false) << "unexpected operation"; |
| UNREACHABLE(); |
| } |
| |
| if (byte_swap) { |
| // RAX still contains the original value, but we need to byte swap the temporary back. |
| codegen->GetInstructionCodegen()->Bswap(temp_loc, type); |
| } |
| |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| __ LockCmpxchgb(field_addr, temp); |
| break; |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| __ LockCmpxchgw(field_addr, temp); |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kUint32: |
| __ LockCmpxchgl(field_addr, temp); |
| break; |
| case DataType::Type::kInt64: |
| case DataType::Type::kUint64: |
| __ LockCmpxchgq(field_addr, temp); |
| break; |
| default: |
| DCHECK(false) << "unexpected type in getAndBitwiseOp intrinsic"; |
| UNREACHABLE(); |
| } |
| |
| __ j(kNotZero, &retry); |
| |
| // The result is in RAX after CMPXCHG. Byte swap if necessary, but do not sign/zero extend, |
| // as it has already been done by `LoadFromMemoryNoReference` above (and not altered by CMPXCHG). |
| if (byte_swap) { |
| codegen->GetInstructionCodegen()->Bswap(rax_loc, type); |
| } |
| } |
| |
| static void CreateVarHandleGetAndAddLocations(HInvoke* invoke) { |
| if (!HasVarHandleIntrinsicImplementation(invoke)) { |
| return; |
| } |
| |
| uint32_t number_of_arguments = invoke->GetNumberOfArguments(); |
| uint32_t new_value_index = number_of_arguments - 1; |
| DataType::Type type = invoke->GetType(); |
| DCHECK_EQ(type, GetDataTypeFromShorty(invoke, new_value_index)); |
| |
| LocationSummary* locations = CreateVarHandleCommonLocations(invoke); |
| |
| if (DataType::IsFloatingPointType(type)) { |
| locations->SetOut(Location::RequiresFpuRegister()); |
| // Require that the new FP value is in a register (and not a constant) for ADDSS/ADDSD. |
| locations->SetInAt(new_value_index, Location::RequiresFpuRegister()); |
| // CMPXCHG clobbers RAX. |
| locations->AddTemp(Location::RegisterLocation(RAX)); |
| // An FP temporary to load the old value from the field and perform FP addition. |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| // A temporary to hold the new value for CMPXCHG. |
| locations->AddTemp(Location::RequiresRegister()); |
| } else { |
| DCHECK_NE(type, DataType::Type::kReference); |
| // Use the same register for both the new value and output to take advantage of XADD. |
| // It should be RAX, because the byte-swapping path of GenerateVarHandleGetAndAdd falls |
| // back to GenerateVarHandleGetAndOp that expects out in RAX. |
| locations->SetOut(Location::RegisterLocation(RAX)); |
| locations->SetInAt(new_value_index, Location::RegisterLocation(RAX)); |
| if (GetExpectedVarHandleCoordinatesCount(invoke) == 2) { |
| // For byte array views with non-native endianness we need extra BSWAP operations, so we |
| // cannot use XADD and have to fallback to a generic implementation based on CMPXCH. In that |
| // case we need two temporary registers: one to hold value instead of RAX (which may get |
| // clobbered by repeated CMPXCHG) and one for performing the operation. At compile time we |
| // cannot distinguish this case from arrays or native-endian byte array views. |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| } |
| |
| static void GenerateVarHandleGetAndAdd(HInvoke* invoke, |
| CodeGeneratorX86_64* codegen, |
| Location value, |
| DataType::Type type, |
| Address field_addr, |
| bool byte_swap) { |
| X86_64Assembler* assembler = codegen->GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| Location out = locations->Out(); |
| uint32_t temp_count = locations->GetTempCount(); |
| |
| if (DataType::IsFloatingPointType(type)) { |
| if (byte_swap) { |
| // This code should never be executed: it is the case of a byte array view (since it requires |
| // a byte swap), and varhandles for byte array views support numeric atomic update access mode |
| // only for int and long, but not for floating-point types (see javadoc comments for |
| // java.lang.invoke.MethodHandles.byteArrayViewVarHandle()). But ART varhandle implementation |
| // for byte array views treats floating-point types them as numeric types in |
| // ByteArrayViewVarHandle::Access(). Terefore we do generate intrinsic code, but it always |
| // fails access mode check at runtime prior to reaching this point. Illegal instruction UD2 |
| // ensures that if control flow gets here by mistake, we will notice. |
| __ ud2(); |
| } |
| |
| // `getAndAdd` for floating-point types: load the old FP value into a temporary FP register and |
| // in RAX for CMPXCHG, add the new FP value to the old one, move it to a non-FP temporary for |
| // CMPXCHG and loop until CMPXCHG succeeds. Move the result from RAX to the output FP register. |
| bool is64bit = (type == DataType::Type::kFloat64); |
| DataType::Type bswap_type = is64bit ? DataType::Type::kUint64 : DataType::Type::kUint32; |
| XmmRegister fptemp = locations->GetTemp(temp_count - 2).AsFpuRegister<XmmRegister>(); |
| Location rax_loc = Location::RegisterLocation(RAX); |
| Location temp_loc = locations->GetTemp(temp_count - 1); |
| CpuRegister temp = temp_loc.AsRegister<CpuRegister>(); |
| |
| NearLabel retry; |
| __ Bind(&retry); |
| |
| // Read value from memory into an FP register and copy in into RAX. |
| if (is64bit) { |
| __ movsd(fptemp, field_addr); |
| } else { |
| __ movss(fptemp, field_addr); |
| } |
| __ movd(CpuRegister(RAX), fptemp, is64bit); |
| // If necessary, byte swap RAX and update the value in FP register to also be byte-swapped. |
| if (byte_swap) { |
| codegen->GetInstructionCodegen()->Bswap(rax_loc, bswap_type); |
| __ movd(fptemp, CpuRegister(RAX), is64bit); |
| } |
| // Perform the FP addition and move it to a temporary register to prepare for CMPXCHG. |
| if (is64bit) { |
| __ addsd(fptemp, value.AsFpuRegister<XmmRegister>()); |
| } else { |
| __ addss(fptemp, value.AsFpuRegister<XmmRegister>()); |
| } |
| __ movd(temp, fptemp, is64bit); |
| // If necessary, byte swap RAX before CMPXCHG and the temporary before copying to FP register. |
| if (byte_swap) { |
| codegen->GetInstructionCodegen()->Bswap(temp_loc, bswap_type); |
| codegen->GetInstructionCodegen()->Bswap(rax_loc, bswap_type); |
| } |
| if (is64bit) { |
| __ LockCmpxchgq(field_addr, temp); |
| } else { |
| __ LockCmpxchgl(field_addr, temp); |
| } |
| |
| __ j(kNotZero, &retry); |
| |
| // The old value is in RAX, byte swap if necessary. |
| if (byte_swap) { |
| codegen->GetInstructionCodegen()->Bswap(rax_loc, bswap_type); |
| } |
| __ movd(out.AsFpuRegister<XmmRegister>(), CpuRegister(RAX), is64bit); |
| } else { |
| if (byte_swap) { |
| // We cannot use XADD since we need to byte-swap the old value when reading it from memory, |
| // and then byte-swap the sum before writing it to memory. So fallback to the slower generic |
| // implementation that is also used for bitwise operations. |
| // Move value from RAX to a temporary register, as RAX may get clobbered by repeated CMPXCHG. |
| DCHECK_EQ(GetExpectedVarHandleCoordinatesCount(invoke), 2u); |
| Location temp = locations->GetTemp(temp_count - 2); |
| codegen->Move(temp, value); |
| GenerateVarHandleGetAndOp( |
| invoke, codegen, temp, type, field_addr, GetAndUpdateOp::kAdd, byte_swap); |
| } else { |
| // `getAndAdd` for integral types: atomically exchange the new value with the field and add |
| // the old value to the field. Output register is the same as the one holding new value. Do |
| // sign extend / zero extend as needed. |
| CpuRegister valreg = value.AsRegister<CpuRegister>(); |
| DCHECK_EQ(valreg, out.AsRegister<CpuRegister>()); |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| __ LockXaddb(field_addr, valreg); |
| __ movzxb(valreg, valreg); |
| break; |
| case DataType::Type::kInt8: |
| __ LockXaddb(field_addr, valreg); |
| __ movsxb(valreg, valreg); |
| break; |
| case DataType::Type::kUint16: |
| __ LockXaddw(field_addr, valreg); |
| __ movzxw(valreg, valreg); |
| break; |
| case DataType::Type::kInt16: |
| __ LockXaddw(field_addr, valreg); |
| __ movsxw(valreg, valreg); |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kUint32: |
| __ LockXaddl(field_addr, valreg); |
| break; |
| case DataType::Type::kInt64: |
| case DataType::Type::kUint64: |
| __ LockXaddq(field_addr, valreg); |
| break; |
| default: |
| DCHECK(false) << "unexpected type in getAndAdd intrinsic"; |
| UNREACHABLE(); |
| } |
| } |
| } |
| } |
| |
| static void GenerateVarHandleGetAndUpdate(HInvoke* invoke, |
| CodeGeneratorX86_64* codegen, |
| GetAndUpdateOp get_and_update_op, |
| bool need_any_store_barrier, |
| bool need_any_any_barrier, |
| bool byte_swap = false) { |
| DCHECK_IMPLIES(gUseReadBarrier, kUseBakerReadBarrier); |
| |
| X86_64Assembler* assembler = codegen->GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| uint32_t number_of_arguments = invoke->GetNumberOfArguments(); |
| Location value = locations->InAt(number_of_arguments - 1); |
| DataType::Type type = invoke->GetType(); |
| |
| VarHandleSlowPathX86_64* slow_path = nullptr; |
| VarHandleTarget target = GetVarHandleTarget(invoke); |
| if (!byte_swap) { |
| slow_path = GenerateVarHandleChecks(invoke, codegen, type); |
| GenerateVarHandleTarget(invoke, target, codegen); |
| if (slow_path != nullptr) { |
| slow_path->SetGetAndUpdateOp(get_and_update_op); |
| slow_path->SetNeedAnyStoreBarrier(need_any_store_barrier); |
| slow_path->SetNeedAnyAnyBarrier(need_any_any_barrier); |
| __ Bind(slow_path->GetNativeByteOrderLabel()); |
| } |
| } |
| |
| CpuRegister ref(target.object); |
| Address field_addr(ref, CpuRegister(target.offset), TIMES_1, 0); |
| |
| if (need_any_store_barrier) { |
| codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); |
| } |
| |
| switch (get_and_update_op) { |
| case GetAndUpdateOp::kSet: |
| GenerateVarHandleGetAndSet(invoke, codegen, value, type, field_addr, ref, byte_swap); |
| break; |
| case GetAndUpdateOp::kAdd: |
| GenerateVarHandleGetAndAdd(invoke, codegen, value, type, field_addr, byte_swap); |
| break; |
| case GetAndUpdateOp::kBitwiseAnd: |
| case GetAndUpdateOp::kBitwiseOr: |
| case GetAndUpdateOp::kBitwiseXor: |
| GenerateVarHandleGetAndOp( |
| invoke, codegen, value, type, field_addr, get_and_update_op, byte_swap); |
| break; |
| } |
| |
| if (need_any_any_barrier) { |
| codegen->GenerateMemoryBarrier(MemBarrierKind::kAnyAny); |
| } |
| |
| if (slow_path != nullptr) { |
| DCHECK(!byte_swap); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndSet(HInvoke* invoke) { |
| CreateVarHandleGetAndSetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndSet(HInvoke* invoke) { |
| // `getAndSet` has `getVolatile` + `setVolatile` semantics, so it needs both barriers. |
| GenerateVarHandleGetAndUpdate(invoke, |
| codegen_, |
| GetAndUpdateOp::kSet, |
| /*need_any_store_barrier=*/ true, |
| /*need_any_any_barrier=*/ true); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndSetAcquire(HInvoke* invoke) { |
| CreateVarHandleGetAndSetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndSetAcquire(HInvoke* invoke) { |
| // `getAndSetAcquire` has `getAcquire` + `set` semantics, so it doesn't need any barriers. |
| GenerateVarHandleGetAndUpdate(invoke, |
| codegen_, |
| GetAndUpdateOp::kSet, |
| /*need_any_store_barrier=*/ false, |
| /*need_any_any_barrier=*/ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndSetRelease(HInvoke* invoke) { |
| CreateVarHandleGetAndSetLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndSetRelease(HInvoke* invoke) { |
| // `getAndSetRelease` has `get` + `setRelease` semantics, so it needs `kAnyStore` barrier. |
| GenerateVarHandleGetAndUpdate(invoke, |
| codegen_, |
| GetAndUpdateOp::kSet, |
| /*need_any_store_barrier=*/ true, |
| /*need_any_any_barrier=*/ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndAdd(HInvoke* invoke) { |
| CreateVarHandleGetAndAddLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndAdd(HInvoke* invoke) { |
| // `getAndAdd` has `getVolatile` + `setVolatile` semantics, so it needs both barriers. |
| GenerateVarHandleGetAndUpdate(invoke, |
| codegen_, |
| GetAndUpdateOp::kAdd, |
| /*need_any_store_barrier=*/ true, |
| /*need_any_any_barrier=*/ true); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndAddAcquire(HInvoke* invoke) { |
| CreateVarHandleGetAndAddLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndAddAcquire(HInvoke* invoke) { |
| // `getAndAddAcquire` has `getAcquire` + `set` semantics, so it doesn't need any barriers. |
| GenerateVarHandleGetAndUpdate(invoke, |
| codegen_, |
| GetAndUpdateOp::kAdd, |
| /*need_any_store_barrier=*/ false, |
| /*need_any_any_barrier=*/ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndAddRelease(HInvoke* invoke) { |
| CreateVarHandleGetAndAddLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndAddRelease(HInvoke* invoke) { |
| // `getAndAddRelease` has `get` + `setRelease` semantics, so it needs `kAnyStore` barrier. |
| GenerateVarHandleGetAndUpdate(invoke, |
| codegen_, |
| GetAndUpdateOp::kAdd, |
| /*need_any_store_barrier=*/ true, |
| /*need_any_any_barrier=*/ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseAnd(HInvoke* invoke) { |
| CreateVarHandleGetAndBitwiseOpLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseAnd(HInvoke* invoke) { |
| // `getAndBitwiseAnd` has `getVolatile` + `setVolatile` semantics, so it needs both barriers. |
| GenerateVarHandleGetAndUpdate(invoke, |
| codegen_, |
| GetAndUpdateOp::kBitwiseAnd, |
| /*need_any_store_barrier=*/ true, |
| /*need_any_any_barrier=*/ true); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseAndAcquire(HInvoke* invoke) { |
| CreateVarHandleGetAndBitwiseOpLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseAndAcquire(HInvoke* invoke) { |
| // `getAndBitwiseAndAcquire` has `getAcquire` + `set` semantics, so it doesn't need any barriers. |
| GenerateVarHandleGetAndUpdate(invoke, |
| codegen_, |
| GetAndUpdateOp::kBitwiseAnd, |
| /*need_any_store_barrier=*/ false, |
| /*need_any_any_barrier=*/ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseAndRelease(HInvoke* invoke) { |
| CreateVarHandleGetAndBitwiseOpLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseAndRelease(HInvoke* invoke) { |
| // `getAndBitwiseAndRelease` has `get` + `setRelease` semantics, so it needs `kAnyStore` barrier. |
| GenerateVarHandleGetAndUpdate(invoke, |
| codegen_, |
| GetAndUpdateOp::kBitwiseAnd, |
| /*need_any_store_barrier=*/ true, |
| /*need_any_any_barrier=*/ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseOr(HInvoke* invoke) { |
| CreateVarHandleGetAndBitwiseOpLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseOr(HInvoke* invoke) { |
| // `getAndBitwiseOr` has `getVolatile` + `setVolatile` semantics, so it needs both barriers. |
| GenerateVarHandleGetAndUpdate(invoke, |
| codegen_, |
| GetAndUpdateOp::kBitwiseOr, |
| /*need_any_store_barrier=*/ true, |
| /*need_any_any_barrier=*/ true); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseOrAcquire(HInvoke* invoke) { |
| CreateVarHandleGetAndBitwiseOpLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseOrAcquire(HInvoke* invoke) { |
| // `getAndBitwiseOrAcquire` has `getAcquire` + `set` semantics, so it doesn't need any barriers. |
| GenerateVarHandleGetAndUpdate(invoke, |
| codegen_, |
| GetAndUpdateOp::kBitwiseOr, |
| /*need_any_store_barrier=*/ false, |
| /*need_any_any_barrier=*/ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseOrRelease(HInvoke* invoke) { |
| CreateVarHandleGetAndBitwiseOpLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseOrRelease(HInvoke* invoke) { |
| // `getAndBitwiseOrRelease` has `get` + `setRelease` semantics, so it needs `kAnyStore` barrier. |
| GenerateVarHandleGetAndUpdate(invoke, |
| codegen_, |
| GetAndUpdateOp::kBitwiseOr, |
| /*need_any_store_barrier=*/ true, |
| /*need_any_any_barrier=*/ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseXor(HInvoke* invoke) { |
| CreateVarHandleGetAndBitwiseOpLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseXor(HInvoke* invoke) { |
| // `getAndBitwiseXor` has `getVolatile` + `setVolatile` semantics, so it needs both barriers. |
| GenerateVarHandleGetAndUpdate(invoke, |
| codegen_, |
| GetAndUpdateOp::kBitwiseXor, |
| /*need_any_store_barrier=*/ true, |
| /*need_any_any_barrier=*/ true); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseXorAcquire(HInvoke* invoke) { |
| CreateVarHandleGetAndBitwiseOpLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseXorAcquire(HInvoke* invoke) { |
| // `getAndBitwiseXorAcquire` has `getAcquire` + `set` semantics, so it doesn't need any barriers. |
| GenerateVarHandleGetAndUpdate(invoke, |
| codegen_, |
| GetAndUpdateOp::kBitwiseXor, |
| /*need_any_store_barrier=*/ false, |
| /*need_any_any_barrier=*/ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitVarHandleGetAndBitwiseXorRelease(HInvoke* invoke) { |
| CreateVarHandleGetAndBitwiseOpLocations(invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitVarHandleGetAndBitwiseXorRelease(HInvoke* invoke) { |
| // `getAndBitwiseXorRelease` has `get` + `setRelease` semantics, so it needs `kAnyStore` barrier. |
| GenerateVarHandleGetAndUpdate(invoke, |
| codegen_, |
| GetAndUpdateOp::kBitwiseXor, |
| /*need_any_store_barrier=*/ true, |
| /*need_any_any_barrier=*/ false); |
| } |
| |
| void VarHandleSlowPathX86_64::EmitByteArrayViewCode(CodeGeneratorX86_64* codegen) { |
| DCHECK(GetByteArrayViewCheckLabel()->IsLinked()); |
| X86_64Assembler* assembler = codegen->GetAssembler(); |
| |
| HInvoke* invoke = GetInvoke(); |
| LocationSummary* locations = invoke->GetLocations(); |
| mirror::VarHandle::AccessModeTemplate access_mode_template = GetAccessModeTemplate(); |
| DataType::Type value_type = |
| GetVarHandleExpectedValueType(invoke, /*expected_coordinates_count=*/ 2u); |
| DCHECK_NE(value_type, DataType::Type::kReference); |
| size_t size = DataType::Size(value_type); |
| DCHECK_GT(size, 1u); |
| |
| CpuRegister varhandle = locations->InAt(0).AsRegister<CpuRegister>(); |
| CpuRegister object = locations->InAt(1).AsRegister<CpuRegister>(); |
| CpuRegister index = locations->InAt(2).AsRegister<CpuRegister>(); |
| CpuRegister temp = locations->GetTemp(locations->GetTempCount() - 1).AsRegister<CpuRegister>(); |
| |
| MemberOffset class_offset = mirror::Object::ClassOffset(); |
| MemberOffset array_length_offset = mirror::Array::LengthOffset(); |
| MemberOffset data_offset = mirror::Array::DataOffset(Primitive::kPrimByte); |
| MemberOffset native_byte_order_offset = mirror::ByteArrayViewVarHandle::NativeByteOrderOffset(); |
| |
| VarHandleTarget target = GetVarHandleTarget(invoke); |
| |
| __ Bind(GetByteArrayViewCheckLabel()); |
| |
| // The main path checked that the coordinateType0 is an array class that matches |
| // the class of the actual coordinate argument but it does not match the value type. |
| // Check if the `varhandle` references a ByteArrayViewVarHandle instance. |
| codegen->LoadClassRootForIntrinsic(temp, ClassRoot::kJavaLangInvokeByteArrayViewVarHandle); |
| assembler->MaybePoisonHeapReference(temp); |
| __ cmpl(temp, Address(varhandle, class_offset.Int32Value())); |
| __ j(kNotEqual, GetEntryLabel()); |
| |
| // Check for array index out of bounds. |
| __ movl(temp, Address(object, array_length_offset.Int32Value())); |
| // SUB sets flags in the same way as CMP. |
| __ subl(temp, index); |
| __ j(kBelowEqual, GetEntryLabel()); |
| // The difference between index and array length must be enough for the `value_type` size. |
| __ cmpl(temp, Immediate(size)); |
| __ j(kBelow, GetEntryLabel()); |
| |
| // Construct the target. |
| __ leal(CpuRegister(target.offset), Address(index, TIMES_1, data_offset.Int32Value())); |
| |
| // Alignment check. For unaligned access, go to the runtime. |
| DCHECK(IsPowerOfTwo(size)); |
| __ testl(CpuRegister(target.offset), Immediate(size - 1u)); |
| __ j(kNotZero, GetEntryLabel()); |
| |
| // Byte order check. For native byte order return to the main path. |
| if (access_mode_template == mirror::VarHandle::AccessModeTemplate::kSet && |
| IsZeroBitPattern(invoke->InputAt(invoke->GetNumberOfArguments() - 1u))) { |
| // There is no reason to differentiate between native byte order and byte-swap |
| // for setting a zero bit pattern. Just return to the main path. |
| __ jmp(GetNativeByteOrderLabel()); |
| return; |
| } |
| __ cmpl(Address(varhandle, native_byte_order_offset.Int32Value()), Immediate(0)); |
| __ j(kNotEqual, GetNativeByteOrderLabel()); |
| |
| switch (access_mode_template) { |
| case mirror::VarHandle::AccessModeTemplate::kGet: |
| GenerateVarHandleGet(invoke, codegen, /*byte_swap=*/ true); |
| break; |
| case mirror::VarHandle::AccessModeTemplate::kSet: |
| GenerateVarHandleSet(invoke, codegen, is_volatile_, is_atomic_, /*byte_swap=*/ true); |
| break; |
| case mirror::VarHandle::AccessModeTemplate::kCompareAndSet: |
| GenerateVarHandleCompareAndSetOrExchange( |
| invoke, codegen, /*is_cmpxchg=*/ false, /*byte_swap=*/ true); |
| break; |
| case mirror::VarHandle::AccessModeTemplate::kCompareAndExchange: |
| GenerateVarHandleCompareAndSetOrExchange( |
| invoke, codegen, /*is_cmpxchg=*/ true, /*byte_swap=*/ true); |
| break; |
| case mirror::VarHandle::AccessModeTemplate::kGetAndUpdate: |
| GenerateVarHandleGetAndUpdate(invoke, |
| codegen, |
| get_and_update_op_, |
| need_any_store_barrier_, |
| need_any_any_barrier_, |
| /*byte_swap=*/ true); |
| break; |
| } |
| |
| __ jmp(GetExitLabel()); |
| } |
| |
| #define MARK_UNIMPLEMENTED(Name) UNIMPLEMENTED_INTRINSIC(X86_64, Name) |
| UNIMPLEMENTED_INTRINSIC_LIST_X86_64(MARK_UNIMPLEMENTED); |
| #undef MARK_UNIMPLEMENTED |
| |
| UNREACHABLE_INTRINSICS(X86_64) |
| |
| #undef __ |
| |
| } // namespace x86_64 |
| } // namespace art |