| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "inliner.h" |
| |
| #include "art_method-inl.h" |
| #include "base/enums.h" |
| #include "base/logging.h" |
| #include "builder.h" |
| #include "class_linker.h" |
| #include "class_root-inl.h" |
| #include "constant_folding.h" |
| #include "data_type-inl.h" |
| #include "dead_code_elimination.h" |
| #include "dex/inline_method_analyser.h" |
| #include "driver/compiler_options.h" |
| #include "driver/dex_compilation_unit.h" |
| #include "instruction_simplifier.h" |
| #include "intrinsics.h" |
| #include "jit/jit.h" |
| #include "jit/jit_code_cache.h" |
| #include "mirror/class_loader.h" |
| #include "mirror/dex_cache.h" |
| #include "mirror/object_array-alloc-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "nodes.h" |
| #include "reference_type_propagation.h" |
| #include "register_allocator_linear_scan.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "sharpening.h" |
| #include "ssa_builder.h" |
| #include "ssa_phi_elimination.h" |
| #include "thread.h" |
| #include "verifier/verifier_compiler_binding.h" |
| |
| namespace art HIDDEN { |
| |
| // Instruction limit to control memory. |
| static constexpr size_t kMaximumNumberOfTotalInstructions = 1024; |
| |
| // Maximum number of instructions for considering a method small, |
| // which we will always try to inline if the other non-instruction limits |
| // are not reached. |
| static constexpr size_t kMaximumNumberOfInstructionsForSmallMethod = 3; |
| |
| // Limit the number of dex registers that we accumulate while inlining |
| // to avoid creating large amount of nested environments. |
| static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 32; |
| |
| // Limit recursive call inlining, which do not benefit from too |
| // much inlining compared to code locality. |
| static constexpr size_t kMaximumNumberOfRecursiveCalls = 4; |
| |
| // Limit recursive polymorphic call inlining to prevent code bloat, since it can quickly get out of |
| // hand in the presence of multiple Wrapper classes. We set this to 0 to disallow polymorphic |
| // recursive calls at all. |
| static constexpr size_t kMaximumNumberOfPolymorphicRecursiveCalls = 0; |
| |
| // Controls the use of inline caches in AOT mode. |
| static constexpr bool kUseAOTInlineCaches = true; |
| |
| // Controls the use of inlining try catches. |
| static constexpr bool kInlineTryCatches = true; |
| |
| // We check for line numbers to make sure the DepthString implementation |
| // aligns the output nicely. |
| #define LOG_INTERNAL(msg) \ |
| static_assert(__LINE__ > 10, "Unhandled line number"); \ |
| static_assert(__LINE__ < 10000, "Unhandled line number"); \ |
| VLOG(compiler) << DepthString(__LINE__) << msg |
| |
| #define LOG_TRY() LOG_INTERNAL("Try inlinining call: ") |
| #define LOG_NOTE() LOG_INTERNAL("Note: ") |
| #define LOG_SUCCESS() LOG_INTERNAL("Success: ") |
| #define LOG_FAIL(stats_ptr, stat) MaybeRecordStat(stats_ptr, stat); LOG_INTERNAL("Fail: ") |
| #define LOG_FAIL_NO_STAT() LOG_INTERNAL("Fail: ") |
| |
| std::string HInliner::DepthString(int line) const { |
| std::string value; |
| // Indent according to the inlining depth. |
| size_t count = depth_; |
| // Line numbers get printed in the log, so add a space if the log's line is less |
| // than 1000, and two if less than 100. 10 cannot be reached as it's the copyright. |
| if (!kIsTargetBuild) { |
| if (line < 100) { |
| value += " "; |
| } |
| if (line < 1000) { |
| value += " "; |
| } |
| // Safeguard if this file reaches more than 10000 lines. |
| DCHECK_LT(line, 10000); |
| } |
| for (size_t i = 0; i < count; ++i) { |
| value += " "; |
| } |
| return value; |
| } |
| |
| static size_t CountNumberOfInstructions(HGraph* graph) { |
| size_t number_of_instructions = 0; |
| for (HBasicBlock* block : graph->GetReversePostOrderSkipEntryBlock()) { |
| for (HInstructionIterator instr_it(block->GetInstructions()); |
| !instr_it.Done(); |
| instr_it.Advance()) { |
| ++number_of_instructions; |
| } |
| } |
| return number_of_instructions; |
| } |
| |
| void HInliner::UpdateInliningBudget() { |
| if (total_number_of_instructions_ >= kMaximumNumberOfTotalInstructions) { |
| // Always try to inline small methods. |
| inlining_budget_ = kMaximumNumberOfInstructionsForSmallMethod; |
| } else { |
| inlining_budget_ = std::max( |
| kMaximumNumberOfInstructionsForSmallMethod, |
| kMaximumNumberOfTotalInstructions - total_number_of_instructions_); |
| } |
| } |
| |
| bool HInliner::Run() { |
| if (codegen_->GetCompilerOptions().GetInlineMaxCodeUnits() == 0) { |
| // Inlining effectively disabled. |
| return false; |
| } else if (graph_->IsDebuggable()) { |
| // For simplicity, we currently never inline when the graph is debuggable. This avoids |
| // doing some logic in the runtime to discover if a method could have been inlined. |
| return false; |
| } |
| |
| bool did_inline = false; |
| // The inliner is the only phase that sets invokes as `always throwing`, and since we only run the |
| // inliner once per graph this value should always be false at the beginning of the inlining |
| // phase. This is important since we use `HasAlwaysThrowingInvokes` to know whether the inliner |
| // phase performed a relevant change in the graph. |
| DCHECK(!graph_->HasAlwaysThrowingInvokes()); |
| |
| // Initialize the number of instructions for the method being compiled. Recursive calls |
| // to HInliner::Run have already updated the instruction count. |
| if (outermost_graph_ == graph_) { |
| total_number_of_instructions_ = CountNumberOfInstructions(graph_); |
| } |
| |
| UpdateInliningBudget(); |
| DCHECK_NE(total_number_of_instructions_, 0u); |
| DCHECK_NE(inlining_budget_, 0u); |
| |
| // If we're compiling tests, honor inlining directives in method names: |
| // - if a method's name contains the substring "$noinline$", do not |
| // inline that method; |
| // - if a method's name contains the substring "$inline$", ensure |
| // that this method is actually inlined. |
| // We limit the latter to AOT compilation, as the JIT may or may not inline |
| // depending on the state of classes at runtime. |
| const bool honor_noinline_directives = codegen_->GetCompilerOptions().CompileArtTest(); |
| const bool honor_inline_directives = |
| honor_noinline_directives && Runtime::Current()->IsAotCompiler(); |
| |
| // Keep a copy of all blocks when starting the visit. |
| ArenaVector<HBasicBlock*> blocks = graph_->GetReversePostOrder(); |
| DCHECK(!blocks.empty()); |
| // Because we are changing the graph when inlining, |
| // we just iterate over the blocks of the outer method. |
| // This avoids doing the inlining work again on the inlined blocks. |
| for (HBasicBlock* block : blocks) { |
| for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) { |
| HInstruction* next = instruction->GetNext(); |
| HInvoke* call = instruction->AsInvoke(); |
| // As long as the call is not intrinsified, it is worth trying to inline. |
| if (call != nullptr && !codegen_->IsImplementedIntrinsic(call)) { |
| if (honor_noinline_directives) { |
| // Debugging case: directives in method names control or assert on inlining. |
| std::string callee_name = |
| call->GetMethodReference().PrettyMethod(/* with_signature= */ false); |
| // Tests prevent inlining by having $noinline$ in their method names. |
| if (callee_name.find("$noinline$") == std::string::npos) { |
| if (TryInline(call)) { |
| did_inline = true; |
| } else if (honor_inline_directives) { |
| bool should_have_inlined = (callee_name.find("$inline$") != std::string::npos); |
| CHECK(!should_have_inlined) << "Could not inline " << callee_name; |
| } |
| } |
| } else { |
| DCHECK(!honor_inline_directives); |
| // Normal case: try to inline. |
| if (TryInline(call)) { |
| did_inline = true; |
| } |
| } |
| } |
| instruction = next; |
| } |
| } |
| |
| // We return true if we either inlined at least one method, or we marked one of our methods as |
| // always throwing. |
| return did_inline || graph_->HasAlwaysThrowingInvokes(); |
| } |
| |
| static bool IsMethodOrDeclaringClassFinal(ArtMethod* method) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| return method->IsFinal() || method->GetDeclaringClass()->IsFinal(); |
| } |
| |
| /** |
| * Given the `resolved_method` looked up in the dex cache, try to find |
| * the actual runtime target of an interface or virtual call. |
| * Return nullptr if the runtime target cannot be proven. |
| */ |
| static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ArtMethod* resolved_method = invoke->GetResolvedMethod(); |
| if (IsMethodOrDeclaringClassFinal(resolved_method)) { |
| // No need to lookup further, the resolved method will be the target. |
| return resolved_method; |
| } |
| |
| HInstruction* receiver = invoke->InputAt(0); |
| if (receiver->IsNullCheck()) { |
| // Due to multiple levels of inlining within the same pass, it might be that |
| // null check does not have the reference type of the actual receiver. |
| receiver = receiver->InputAt(0); |
| } |
| ReferenceTypeInfo info = receiver->GetReferenceTypeInfo(); |
| DCHECK(info.IsValid()) << "Invalid RTI for " << receiver->DebugName(); |
| if (!info.IsExact()) { |
| // We currently only support inlining with known receivers. |
| // TODO: Remove this check, we should be able to inline final methods |
| // on unknown receivers. |
| return nullptr; |
| } else if (info.GetTypeHandle()->IsInterface()) { |
| // Statically knowing that the receiver has an interface type cannot |
| // help us find what is the target method. |
| return nullptr; |
| } else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) { |
| // The method that we're trying to call is not in the receiver's class or super classes. |
| return nullptr; |
| } else if (info.GetTypeHandle()->IsErroneous()) { |
| // If the type is erroneous, do not go further, as we are going to query the vtable or |
| // imt table, that we can only safely do on non-erroneous classes. |
| return nullptr; |
| } |
| |
| ClassLinker* cl = Runtime::Current()->GetClassLinker(); |
| PointerSize pointer_size = cl->GetImagePointerSize(); |
| if (invoke->IsInvokeInterface()) { |
| resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface( |
| resolved_method, pointer_size); |
| } else { |
| DCHECK(invoke->IsInvokeVirtual()); |
| resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual( |
| resolved_method, pointer_size); |
| } |
| |
| if (resolved_method == nullptr) { |
| // The information we had on the receiver was not enough to find |
| // the target method. Since we check above the exact type of the receiver, |
| // the only reason this can happen is an IncompatibleClassChangeError. |
| return nullptr; |
| } else if (!resolved_method->IsInvokable()) { |
| // The information we had on the receiver was not enough to find |
| // the target method. Since we check above the exact type of the receiver, |
| // the only reason this can happen is an IncompatibleClassChangeError. |
| return nullptr; |
| } else if (IsMethodOrDeclaringClassFinal(resolved_method)) { |
| // A final method has to be the target method. |
| return resolved_method; |
| } else if (info.IsExact()) { |
| // If we found a method and the receiver's concrete type is statically |
| // known, we know for sure the target. |
| return resolved_method; |
| } else { |
| // Even if we did find a method, the receiver type was not enough to |
| // statically find the runtime target. |
| return nullptr; |
| } |
| } |
| |
| static uint32_t FindMethodIndexIn(ArtMethod* method, |
| const DexFile& dex_file, |
| uint32_t name_and_signature_index) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (IsSameDexFile(*method->GetDexFile(), dex_file)) { |
| return method->GetDexMethodIndex(); |
| } else { |
| return method->FindDexMethodIndexInOtherDexFile(dex_file, name_and_signature_index); |
| } |
| } |
| |
| static dex::TypeIndex FindClassIndexIn(ObjPtr<mirror::Class> cls, |
| const DexCompilationUnit& compilation_unit) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| const DexFile& dex_file = *compilation_unit.GetDexFile(); |
| dex::TypeIndex index; |
| if (cls->GetDexCache() == nullptr) { |
| DCHECK(cls->IsArrayClass()) << cls->PrettyClass(); |
| index = cls->FindTypeIndexInOtherDexFile(dex_file); |
| } else if (!cls->GetDexTypeIndex().IsValid()) { |
| DCHECK(cls->IsProxyClass()) << cls->PrettyClass(); |
| // TODO: deal with proxy classes. |
| } else if (IsSameDexFile(cls->GetDexFile(), dex_file)) { |
| DCHECK_EQ(cls->GetDexCache(), compilation_unit.GetDexCache().Get()); |
| index = cls->GetDexTypeIndex(); |
| } else { |
| index = cls->FindTypeIndexInOtherDexFile(dex_file); |
| // We cannot guarantee the entry will resolve to the same class, |
| // as there may be different class loaders. So only return the index if it's |
| // the right class already resolved with the class loader. |
| if (index.IsValid()) { |
| ObjPtr<mirror::Class> resolved = compilation_unit.GetClassLinker()->LookupResolvedType( |
| index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get()); |
| if (resolved != cls) { |
| index = dex::TypeIndex::Invalid(); |
| } |
| } |
| } |
| |
| return index; |
| } |
| |
| HInliner::InlineCacheType HInliner::GetInlineCacheType( |
| const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) { |
| DCHECK_EQ(classes.NumberOfReferences(), InlineCache::kIndividualCacheSize); |
| uint8_t number_of_types = InlineCache::kIndividualCacheSize - classes.RemainingSlots(); |
| if (number_of_types == 0) { |
| return kInlineCacheUninitialized; |
| } else if (number_of_types == 1) { |
| return kInlineCacheMonomorphic; |
| } else if (number_of_types == InlineCache::kIndividualCacheSize) { |
| return kInlineCacheMegamorphic; |
| } else { |
| return kInlineCachePolymorphic; |
| } |
| } |
| |
| static inline ObjPtr<mirror::Class> GetMonomorphicType( |
| const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(classes.GetReference(0) != nullptr); |
| return classes.GetReference(0)->AsClass(); |
| } |
| |
| ArtMethod* HInliner::FindMethodFromCHA(ArtMethod* resolved_method) { |
| if (!resolved_method->HasSingleImplementation()) { |
| return nullptr; |
| } |
| if (Runtime::Current()->IsAotCompiler()) { |
| // No CHA-based devirtulization for AOT compiler (yet). |
| return nullptr; |
| } |
| if (Runtime::Current()->IsZygote()) { |
| // No CHA-based devirtulization for Zygote, as it compiles with |
| // offline information. |
| return nullptr; |
| } |
| if (outermost_graph_->IsCompilingOsr()) { |
| // We do not support HDeoptimize in OSR methods. |
| return nullptr; |
| } |
| PointerSize pointer_size = caller_compilation_unit_.GetClassLinker()->GetImagePointerSize(); |
| ArtMethod* single_impl = resolved_method->GetSingleImplementation(pointer_size); |
| if (single_impl == nullptr) { |
| return nullptr; |
| } |
| if (single_impl->IsProxyMethod()) { |
| // Proxy method is a generic invoker that's not worth |
| // devirtualizing/inlining. It also causes issues when the proxy |
| // method is in another dex file if we try to rewrite invoke-interface to |
| // invoke-virtual because a proxy method doesn't have a real dex file. |
| return nullptr; |
| } |
| if (!single_impl->GetDeclaringClass()->IsResolved()) { |
| // There's a race with the class loading, which updates the CHA info |
| // before setting the class to resolved. So we just bail for this |
| // rare occurence. |
| return nullptr; |
| } |
| return single_impl; |
| } |
| |
| static bool IsMethodVerified(ArtMethod* method) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (method->GetDeclaringClass()->IsVerified()) { |
| return true; |
| } |
| // For AOT, we check if the class has a verification status that allows us to |
| // inline / analyze. |
| // At runtime, we know this is cold code if the class is not verified, so don't |
| // bother analyzing. |
| if (Runtime::Current()->IsAotCompiler()) { |
| if (method->GetDeclaringClass()->IsVerifiedNeedsAccessChecks() || |
| method->GetDeclaringClass()->ShouldVerifyAtRuntime()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool AlwaysThrows(ArtMethod* method) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(method != nullptr); |
| // Skip non-compilable and unverified methods. |
| if (!method->IsCompilable() || !IsMethodVerified(method)) { |
| return false; |
| } |
| // Skip native methods, methods with try blocks, and methods that are too large. |
| CodeItemDataAccessor accessor(method->DexInstructionData()); |
| if (!accessor.HasCodeItem() || |
| accessor.TriesSize() != 0 || |
| accessor.InsnsSizeInCodeUnits() > kMaximumNumberOfTotalInstructions) { |
| return false; |
| } |
| // Scan for exits. |
| bool throw_seen = false; |
| for (const DexInstructionPcPair& pair : accessor) { |
| switch (pair.Inst().Opcode()) { |
| case Instruction::RETURN: |
| case Instruction::RETURN_VOID: |
| case Instruction::RETURN_WIDE: |
| case Instruction::RETURN_OBJECT: |
| return false; // found regular control flow back |
| case Instruction::THROW: |
| throw_seen = true; |
| break; |
| default: |
| break; |
| } |
| } |
| return throw_seen; |
| } |
| |
| bool HInliner::TryInline(HInvoke* invoke_instruction) { |
| MaybeRecordStat(stats_, MethodCompilationStat::kTryInline); |
| |
| // Don't bother to move further if we know the method is unresolved or the invocation is |
| // polymorphic (invoke-{polymorphic,custom}). |
| if (invoke_instruction->IsInvokeUnresolved()) { |
| MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedUnresolved); |
| return false; |
| } else if (invoke_instruction->IsInvokePolymorphic()) { |
| MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedPolymorphic); |
| return false; |
| } else if (invoke_instruction->IsInvokeCustom()) { |
| MaybeRecordStat(stats_, MethodCompilationStat::kNotInlinedCustom); |
| return false; |
| } |
| |
| ScopedObjectAccess soa(Thread::Current()); |
| LOG_TRY() << invoke_instruction->GetMethodReference().PrettyMethod(); |
| |
| ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod(); |
| if (resolved_method == nullptr) { |
| DCHECK(invoke_instruction->IsInvokeStaticOrDirect()); |
| DCHECK(invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit()); |
| LOG_FAIL_NO_STAT() << "Not inlining a String.<init> method"; |
| return false; |
| } |
| |
| ArtMethod* actual_method = invoke_instruction->IsInvokeStaticOrDirect() |
| ? invoke_instruction->GetResolvedMethod() |
| : FindVirtualOrInterfaceTarget(invoke_instruction); |
| |
| if (actual_method != nullptr) { |
| // Single target. |
| bool result = TryInlineAndReplace(invoke_instruction, |
| actual_method, |
| ReferenceTypeInfo::CreateInvalid(), |
| /* do_rtp= */ true, |
| /* is_speculative= */ false); |
| if (result) { |
| MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvokeVirtualOrInterface); |
| if (outermost_graph_ == graph_) { |
| MaybeRecordStat(stats_, MethodCompilationStat::kInlinedLastInvokeVirtualOrInterface); |
| } |
| } else { |
| HInvoke* invoke_to_analyze = nullptr; |
| if (TryDevirtualize(invoke_instruction, actual_method, &invoke_to_analyze)) { |
| // Consider devirtualization as inlining. |
| result = true; |
| MaybeRecordStat(stats_, MethodCompilationStat::kDevirtualized); |
| } else { |
| invoke_to_analyze = invoke_instruction; |
| } |
| // Set always throws property for non-inlined method call with single target. |
| if (invoke_instruction->AlwaysThrows() || AlwaysThrows(actual_method)) { |
| invoke_to_analyze->SetAlwaysThrows(/* always_throws= */ true); |
| graph_->SetHasAlwaysThrowingInvokes(/* value= */ true); |
| } |
| } |
| return result; |
| } |
| |
| DCHECK(!invoke_instruction->IsInvokeStaticOrDirect()); |
| |
| // No try catch inlining allowed here, or recursively. For try catch inlining we are banking on |
| // the fact that we have a unique dex pc list. We cannot guarantee that for some TryInline methods |
| // e.g. `TryInlinePolymorphicCall`. |
| // TODO(solanes): Setting `try_catch_inlining_allowed_` to false here covers all cases from |
| // `TryInlineFromCHA` and from `TryInlineFromInlineCache` as well (e.g. |
| // `TryInlinePolymorphicCall`). Reassess to see if we can inline inline catch blocks in |
| // `TryInlineFromCHA`, `TryInlineMonomorphicCall` and `TryInlinePolymorphicCallToSameTarget`. |
| |
| // We store the value to restore it since we will use the same HInliner instance for other inlinee |
| // candidates. |
| const bool previous_value = try_catch_inlining_allowed_; |
| try_catch_inlining_allowed_ = false; |
| |
| if (TryInlineFromCHA(invoke_instruction)) { |
| try_catch_inlining_allowed_ = previous_value; |
| return true; |
| } |
| |
| const bool result = TryInlineFromInlineCache(invoke_instruction); |
| try_catch_inlining_allowed_ = previous_value; |
| return result; |
| } |
| |
| bool HInliner::TryInlineFromCHA(HInvoke* invoke_instruction) { |
| ArtMethod* method = FindMethodFromCHA(invoke_instruction->GetResolvedMethod()); |
| if (method == nullptr) { |
| return false; |
| } |
| LOG_NOTE() << "Try CHA-based inlining of " << method->PrettyMethod(); |
| |
| uint32_t dex_pc = invoke_instruction->GetDexPc(); |
| HInstruction* cursor = invoke_instruction->GetPrevious(); |
| HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); |
| if (!TryInlineAndReplace(invoke_instruction, |
| method, |
| ReferenceTypeInfo::CreateInvalid(), |
| /* do_rtp= */ true, |
| /* is_speculative= */ true)) { |
| return false; |
| } |
| AddCHAGuard(invoke_instruction, dex_pc, cursor, bb_cursor); |
| // Add dependency due to devirtualization: we are assuming the resolved method |
| // has a single implementation. |
| outermost_graph_->AddCHASingleImplementationDependency(invoke_instruction->GetResolvedMethod()); |
| MaybeRecordStat(stats_, MethodCompilationStat::kCHAInline); |
| return true; |
| } |
| |
| bool HInliner::UseOnlyPolymorphicInliningWithNoDeopt() { |
| // If we are compiling AOT or OSR, pretend the call using inline caches is polymorphic and |
| // do not generate a deopt. |
| // |
| // For AOT: |
| // Generating a deopt does not ensure that we will actually capture the new types; |
| // and the danger is that we could be stuck in a loop with "forever" deoptimizations. |
| // Take for example the following scenario: |
| // - we capture the inline cache in one run |
| // - the next run, we deoptimize because we miss a type check, but the method |
| // never becomes hot again |
| // In this case, the inline cache will not be updated in the profile and the AOT code |
| // will keep deoptimizing. |
| // Another scenario is if we use profile compilation for a process which is not allowed |
| // to JIT (e.g. system server). If we deoptimize we will run interpreted code for the |
| // rest of the lifetime. |
| // TODO(calin): |
| // This is a compromise because we will most likely never update the inline cache |
| // in the profile (unless there's another reason to deopt). So we might be stuck with |
| // a sub-optimal inline cache. |
| // We could be smarter when capturing inline caches to mitigate this. |
| // (e.g. by having different thresholds for new and old methods). |
| // |
| // For OSR: |
| // We may come from the interpreter and it may have seen different receiver types. |
| return Runtime::Current()->IsAotCompiler() || outermost_graph_->IsCompilingOsr(); |
| } |
| bool HInliner::TryInlineFromInlineCache(HInvoke* invoke_instruction) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (Runtime::Current()->IsAotCompiler() && !kUseAOTInlineCaches) { |
| return false; |
| } |
| |
| StackHandleScope<InlineCache::kIndividualCacheSize> classes(Thread::Current()); |
| // The Zygote JIT compiles based on a profile, so we shouldn't use runtime inline caches |
| // for it. |
| InlineCacheType inline_cache_type = |
| (Runtime::Current()->IsAotCompiler() || Runtime::Current()->IsZygote()) |
| ? GetInlineCacheAOT(invoke_instruction, &classes) |
| : GetInlineCacheJIT(invoke_instruction, &classes); |
| |
| switch (inline_cache_type) { |
| case kInlineCacheNoData: { |
| LOG_FAIL_NO_STAT() |
| << "No inline cache information for call to " |
| << invoke_instruction->GetMethodReference().PrettyMethod(); |
| return false; |
| } |
| |
| case kInlineCacheUninitialized: { |
| LOG_FAIL_NO_STAT() |
| << "Interface or virtual call to " |
| << invoke_instruction->GetMethodReference().PrettyMethod() |
| << " is not hit and not inlined"; |
| return false; |
| } |
| |
| case kInlineCacheMonomorphic: { |
| MaybeRecordStat(stats_, MethodCompilationStat::kMonomorphicCall); |
| if (UseOnlyPolymorphicInliningWithNoDeopt()) { |
| return TryInlinePolymorphicCall(invoke_instruction, classes); |
| } else { |
| return TryInlineMonomorphicCall(invoke_instruction, classes); |
| } |
| } |
| |
| case kInlineCachePolymorphic: { |
| MaybeRecordStat(stats_, MethodCompilationStat::kPolymorphicCall); |
| return TryInlinePolymorphicCall(invoke_instruction, classes); |
| } |
| |
| case kInlineCacheMegamorphic: { |
| LOG_FAIL_NO_STAT() |
| << "Interface or virtual call to " |
| << invoke_instruction->GetMethodReference().PrettyMethod() |
| << " is megamorphic and not inlined"; |
| MaybeRecordStat(stats_, MethodCompilationStat::kMegamorphicCall); |
| return false; |
| } |
| |
| case kInlineCacheMissingTypes: { |
| LOG_FAIL_NO_STAT() |
| << "Interface or virtual call to " |
| << invoke_instruction->GetMethodReference().PrettyMethod() |
| << " is missing types and not inlined"; |
| return false; |
| } |
| } |
| UNREACHABLE(); |
| } |
| |
| HInliner::InlineCacheType HInliner::GetInlineCacheJIT( |
| HInvoke* invoke_instruction, |
| /*out*/StackHandleScope<InlineCache::kIndividualCacheSize>* classes) { |
| DCHECK(codegen_->GetCompilerOptions().IsJitCompiler()); |
| |
| ArtMethod* caller = graph_->GetArtMethod(); |
| // Under JIT, we should always know the caller. |
| DCHECK(caller != nullptr); |
| ProfilingInfo* profiling_info = graph_->GetProfilingInfo(); |
| if (profiling_info == nullptr) { |
| return kInlineCacheNoData; |
| } |
| |
| Runtime::Current()->GetJit()->GetCodeCache()->CopyInlineCacheInto( |
| *profiling_info->GetInlineCache(invoke_instruction->GetDexPc()), |
| classes); |
| return GetInlineCacheType(*classes); |
| } |
| |
| HInliner::InlineCacheType HInliner::GetInlineCacheAOT( |
| HInvoke* invoke_instruction, |
| /*out*/StackHandleScope<InlineCache::kIndividualCacheSize>* classes) { |
| DCHECK_EQ(classes->NumberOfReferences(), InlineCache::kIndividualCacheSize); |
| DCHECK_EQ(classes->RemainingSlots(), InlineCache::kIndividualCacheSize); |
| |
| const ProfileCompilationInfo* pci = codegen_->GetCompilerOptions().GetProfileCompilationInfo(); |
| if (pci == nullptr) { |
| return kInlineCacheNoData; |
| } |
| |
| ProfileCompilationInfo::MethodHotness hotness = pci->GetMethodHotness(MethodReference( |
| caller_compilation_unit_.GetDexFile(), caller_compilation_unit_.GetDexMethodIndex())); |
| if (!hotness.IsHot()) { |
| return kInlineCacheNoData; // no profile information for this invocation. |
| } |
| |
| const ProfileCompilationInfo::InlineCacheMap* inline_caches = hotness.GetInlineCacheMap(); |
| DCHECK(inline_caches != nullptr); |
| const auto it = inline_caches->find(invoke_instruction->GetDexPc()); |
| if (it == inline_caches->end()) { |
| return kInlineCacheUninitialized; |
| } |
| |
| const ProfileCompilationInfo::DexPcData& dex_pc_data = it->second; |
| if (dex_pc_data.is_missing_types) { |
| return kInlineCacheMissingTypes; |
| } |
| if (dex_pc_data.is_megamorphic) { |
| return kInlineCacheMegamorphic; |
| } |
| DCHECK_LE(dex_pc_data.classes.size(), InlineCache::kIndividualCacheSize); |
| |
| // Walk over the class descriptors and look up the actual classes. |
| // If we cannot find a type we return kInlineCacheMissingTypes. |
| ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); |
| Thread* self = Thread::Current(); |
| for (const dex::TypeIndex& type_index : dex_pc_data.classes) { |
| const DexFile* dex_file = caller_compilation_unit_.GetDexFile(); |
| const char* descriptor = pci->GetTypeDescriptor(dex_file, type_index); |
| ObjPtr<mirror::Class> clazz = |
| class_linker->FindClass(self, descriptor, caller_compilation_unit_.GetClassLoader()); |
| if (clazz == nullptr) { |
| self->ClearException(); // Clean up the exception left by type resolution. |
| VLOG(compiler) << "Could not find class from inline cache in AOT mode " |
| << invoke_instruction->GetMethodReference().PrettyMethod() |
| << " : " |
| << descriptor; |
| return kInlineCacheMissingTypes; |
| } |
| DCHECK_NE(classes->RemainingSlots(), 0u); |
| classes->NewHandle(clazz); |
| } |
| |
| return GetInlineCacheType(*classes); |
| } |
| |
| HInstanceFieldGet* HInliner::BuildGetReceiverClass(ClassLinker* class_linker, |
| HInstruction* receiver, |
| uint32_t dex_pc) const { |
| ArtField* field = GetClassRoot<mirror::Object>(class_linker)->GetInstanceField(0); |
| DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_"); |
| HInstanceFieldGet* result = new (graph_->GetAllocator()) HInstanceFieldGet( |
| receiver, |
| field, |
| DataType::Type::kReference, |
| field->GetOffset(), |
| field->IsVolatile(), |
| field->GetDexFieldIndex(), |
| field->GetDeclaringClass()->GetDexClassDefIndex(), |
| *field->GetDexFile(), |
| dex_pc); |
| // The class of a field is effectively final, and does not have any memory dependencies. |
| result->SetSideEffects(SideEffects::None()); |
| return result; |
| } |
| |
| static ArtMethod* ResolveMethodFromInlineCache(Handle<mirror::Class> klass, |
| HInvoke* invoke_instruction, |
| PointerSize pointer_size) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod(); |
| if (Runtime::Current()->IsAotCompiler()) { |
| // We can get unrelated types when working with profiles (corruption, |
| // systme updates, or anyone can write to it). So first check if the class |
| // actually implements the declaring class of the method that is being |
| // called in bytecode. |
| // Note: the lookup methods used below require to have assignable types. |
| if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(klass.Get())) { |
| return nullptr; |
| } |
| |
| // Also check whether the type in the inline cache is an interface or an |
| // abstract class. We only expect concrete classes in inline caches, so this |
| // means the class was changed. |
| if (klass->IsAbstract() || klass->IsInterface()) { |
| return nullptr; |
| } |
| } |
| |
| if (invoke_instruction->IsInvokeInterface()) { |
| resolved_method = klass->FindVirtualMethodForInterface(resolved_method, pointer_size); |
| } else { |
| DCHECK(invoke_instruction->IsInvokeVirtual()); |
| resolved_method = klass->FindVirtualMethodForVirtual(resolved_method, pointer_size); |
| } |
| // Even if the class exists we can still not have the function the |
| // inline-cache targets if the profile is from far enough in the past/future. |
| // We need to allow this since we don't update boot-profiles very often. This |
| // can occur in boot-profiles with inline-caches. |
| DCHECK(Runtime::Current()->IsAotCompiler() || resolved_method != nullptr); |
| return resolved_method; |
| } |
| |
| bool HInliner::TryInlineMonomorphicCall( |
| HInvoke* invoke_instruction, |
| const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) { |
| DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface()) |
| << invoke_instruction->DebugName(); |
| |
| dex::TypeIndex class_index = FindClassIndexIn( |
| GetMonomorphicType(classes), caller_compilation_unit_); |
| if (!class_index.IsValid()) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCacheInaccessibleToCaller) |
| << "Call to " << ArtMethod::PrettyMethod(invoke_instruction->GetResolvedMethod()) |
| << " from inline cache is not inlined because its class is not" |
| << " accessible to the caller"; |
| return false; |
| } |
| |
| ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); |
| PointerSize pointer_size = class_linker->GetImagePointerSize(); |
| Handle<mirror::Class> monomorphic_type = |
| graph_->GetHandleCache()->NewHandle(GetMonomorphicType(classes)); |
| ArtMethod* resolved_method = ResolveMethodFromInlineCache( |
| monomorphic_type, invoke_instruction, pointer_size); |
| if (resolved_method == nullptr) { |
| // Bogus AOT profile, bail. |
| DCHECK(Runtime::Current()->IsAotCompiler()); |
| return false; |
| } |
| |
| LOG_NOTE() << "Try inline monomorphic call to " << resolved_method->PrettyMethod(); |
| HInstruction* receiver = invoke_instruction->InputAt(0); |
| HInstruction* cursor = invoke_instruction->GetPrevious(); |
| HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); |
| if (!TryInlineAndReplace(invoke_instruction, |
| resolved_method, |
| ReferenceTypeInfo::Create(monomorphic_type, /* is_exact= */ true), |
| /* do_rtp= */ false, |
| /* is_speculative= */ true)) { |
| return false; |
| } |
| |
| // We successfully inlined, now add a guard. |
| AddTypeGuard(receiver, |
| cursor, |
| bb_cursor, |
| class_index, |
| monomorphic_type, |
| invoke_instruction, |
| /* with_deoptimization= */ true); |
| |
| // Run type propagation to get the guard typed, and eventually propagate the |
| // type of the receiver. |
| ReferenceTypePropagation rtp_fixup(graph_, |
| outer_compilation_unit_.GetDexCache(), |
| /* is_first_run= */ false); |
| rtp_fixup.Run(); |
| |
| MaybeRecordStat(stats_, MethodCompilationStat::kInlinedMonomorphicCall); |
| return true; |
| } |
| |
| void HInliner::AddCHAGuard(HInstruction* invoke_instruction, |
| uint32_t dex_pc, |
| HInstruction* cursor, |
| HBasicBlock* bb_cursor) { |
| HShouldDeoptimizeFlag* deopt_flag = new (graph_->GetAllocator()) |
| HShouldDeoptimizeFlag(graph_->GetAllocator(), dex_pc); |
| // ShouldDeoptimizeFlag is used to perform a deoptimization because of a CHA |
| // invalidation or for debugging reasons. It is OK to just check for non-zero |
| // value here instead of the specific CHA value. When a debugging deopt is |
| // requested we deoptimize before we execute any code and hence we shouldn't |
| // see that case here. |
| HInstruction* compare = new (graph_->GetAllocator()) HNotEqual( |
| deopt_flag, graph_->GetIntConstant(0, dex_pc)); |
| HInstruction* deopt = new (graph_->GetAllocator()) HDeoptimize( |
| graph_->GetAllocator(), compare, DeoptimizationKind::kCHA, dex_pc); |
| |
| if (cursor != nullptr) { |
| bb_cursor->InsertInstructionAfter(deopt_flag, cursor); |
| } else { |
| bb_cursor->InsertInstructionBefore(deopt_flag, bb_cursor->GetFirstInstruction()); |
| } |
| bb_cursor->InsertInstructionAfter(compare, deopt_flag); |
| bb_cursor->InsertInstructionAfter(deopt, compare); |
| |
| // Add receiver as input to aid CHA guard optimization later. |
| deopt_flag->AddInput(invoke_instruction->InputAt(0)); |
| DCHECK_EQ(deopt_flag->InputCount(), 1u); |
| deopt->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); |
| outermost_graph_->IncrementNumberOfCHAGuards(); |
| } |
| |
| HInstruction* HInliner::AddTypeGuard(HInstruction* receiver, |
| HInstruction* cursor, |
| HBasicBlock* bb_cursor, |
| dex::TypeIndex class_index, |
| Handle<mirror::Class> klass, |
| HInstruction* invoke_instruction, |
| bool with_deoptimization) { |
| ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); |
| HInstanceFieldGet* receiver_class = BuildGetReceiverClass( |
| class_linker, receiver, invoke_instruction->GetDexPc()); |
| if (cursor != nullptr) { |
| bb_cursor->InsertInstructionAfter(receiver_class, cursor); |
| } else { |
| bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction()); |
| } |
| |
| const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); |
| bool is_referrer; |
| ArtMethod* outermost_art_method = outermost_graph_->GetArtMethod(); |
| if (outermost_art_method == nullptr) { |
| DCHECK(Runtime::Current()->IsAotCompiler()); |
| // We are in AOT mode and we don't have an ART method to determine |
| // if the inlined method belongs to the referrer. Assume it doesn't. |
| is_referrer = false; |
| } else { |
| is_referrer = klass.Get() == outermost_art_method->GetDeclaringClass(); |
| } |
| |
| // Note that we will just compare the classes, so we don't need Java semantics access checks. |
| // Note that the type index and the dex file are relative to the method this type guard is |
| // inlined into. |
| HLoadClass* load_class = new (graph_->GetAllocator()) HLoadClass(graph_->GetCurrentMethod(), |
| class_index, |
| caller_dex_file, |
| klass, |
| is_referrer, |
| invoke_instruction->GetDexPc(), |
| /* needs_access_check= */ false); |
| HLoadClass::LoadKind kind = HSharpening::ComputeLoadClassKind( |
| load_class, codegen_, caller_compilation_unit_); |
| DCHECK(kind != HLoadClass::LoadKind::kInvalid) |
| << "We should always be able to reference a class for inline caches"; |
| // Load kind must be set before inserting the instruction into the graph. |
| load_class->SetLoadKind(kind); |
| bb_cursor->InsertInstructionAfter(load_class, receiver_class); |
| // In AOT mode, we will most likely load the class from BSS, which will involve a call |
| // to the runtime. In this case, the load instruction will need an environment so copy |
| // it from the invoke instruction. |
| if (load_class->NeedsEnvironment()) { |
| DCHECK(Runtime::Current()->IsAotCompiler()); |
| load_class->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); |
| } |
| |
| HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(load_class, receiver_class); |
| bb_cursor->InsertInstructionAfter(compare, load_class); |
| if (with_deoptimization) { |
| HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize( |
| graph_->GetAllocator(), |
| compare, |
| receiver, |
| Runtime::Current()->IsAotCompiler() |
| ? DeoptimizationKind::kAotInlineCache |
| : DeoptimizationKind::kJitInlineCache, |
| invoke_instruction->GetDexPc()); |
| bb_cursor->InsertInstructionAfter(deoptimize, compare); |
| deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); |
| DCHECK_EQ(invoke_instruction->InputAt(0), receiver); |
| receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize); |
| deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo()); |
| } |
| return compare; |
| } |
| |
| static void MaybeReplaceAndRemove(HInstruction* new_instruction, HInstruction* old_instruction) { |
| DCHECK(new_instruction != old_instruction); |
| if (new_instruction != nullptr) { |
| old_instruction->ReplaceWith(new_instruction); |
| } |
| old_instruction->GetBlock()->RemoveInstruction(old_instruction); |
| } |
| |
| bool HInliner::TryInlinePolymorphicCall( |
| HInvoke* invoke_instruction, |
| const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) { |
| DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface()) |
| << invoke_instruction->DebugName(); |
| |
| if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, classes)) { |
| return true; |
| } |
| |
| ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); |
| PointerSize pointer_size = class_linker->GetImagePointerSize(); |
| |
| bool all_targets_inlined = true; |
| bool one_target_inlined = false; |
| DCHECK_EQ(classes.NumberOfReferences(), InlineCache::kIndividualCacheSize); |
| uint8_t number_of_types = InlineCache::kIndividualCacheSize - classes.RemainingSlots(); |
| for (size_t i = 0; i != number_of_types; ++i) { |
| DCHECK(classes.GetReference(i) != nullptr); |
| Handle<mirror::Class> handle = |
| graph_->GetHandleCache()->NewHandle(classes.GetReference(i)->AsClass()); |
| ArtMethod* method = ResolveMethodFromInlineCache(handle, invoke_instruction, pointer_size); |
| if (method == nullptr) { |
| DCHECK(Runtime::Current()->IsAotCompiler()); |
| // AOT profile is bogus. This loop expects to iterate over all entries, |
| // so just just continue. |
| all_targets_inlined = false; |
| continue; |
| } |
| |
| HInstruction* receiver = invoke_instruction->InputAt(0); |
| HInstruction* cursor = invoke_instruction->GetPrevious(); |
| HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); |
| |
| dex::TypeIndex class_index = FindClassIndexIn(handle.Get(), caller_compilation_unit_); |
| HInstruction* return_replacement = nullptr; |
| |
| // In monomorphic cases when UseOnlyPolymorphicInliningWithNoDeopt() is true, we call |
| // `TryInlinePolymorphicCall` even though we are monomorphic. |
| const bool actually_monomorphic = number_of_types == 1; |
| DCHECK_IMPLIES(actually_monomorphic, UseOnlyPolymorphicInliningWithNoDeopt()); |
| |
| // We only want to limit recursive polymorphic cases, not monomorphic ones. |
| const bool too_many_polymorphic_recursive_calls = |
| !actually_monomorphic && |
| CountRecursiveCallsOf(method) > kMaximumNumberOfPolymorphicRecursiveCalls; |
| if (too_many_polymorphic_recursive_calls) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedPolymorphicRecursiveBudget) |
| << "Method " << method->PrettyMethod() |
| << " is not inlined because it has reached its polymorphic recursive call budget."; |
| } else if (class_index.IsValid()) { |
| LOG_NOTE() << "Try inline polymorphic call to " << method->PrettyMethod(); |
| } |
| |
| if (too_many_polymorphic_recursive_calls || |
| !class_index.IsValid() || |
| !TryBuildAndInline(invoke_instruction, |
| method, |
| ReferenceTypeInfo::Create(handle, /* is_exact= */ true), |
| &return_replacement, |
| /* is_speculative= */ true)) { |
| all_targets_inlined = false; |
| } else { |
| one_target_inlined = true; |
| |
| LOG_SUCCESS() << "Polymorphic call to " |
| << invoke_instruction->GetMethodReference().PrettyMethod() |
| << " has inlined " << ArtMethod::PrettyMethod(method); |
| |
| // If we have inlined all targets before, and this receiver is the last seen, |
| // we deoptimize instead of keeping the original invoke instruction. |
| bool deoptimize = !UseOnlyPolymorphicInliningWithNoDeopt() && |
| all_targets_inlined && |
| (i + 1 == number_of_types); |
| |
| HInstruction* compare = AddTypeGuard(receiver, |
| cursor, |
| bb_cursor, |
| class_index, |
| handle, |
| invoke_instruction, |
| deoptimize); |
| if (deoptimize) { |
| MaybeReplaceAndRemove(return_replacement, invoke_instruction); |
| } else { |
| CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction); |
| } |
| } |
| } |
| |
| if (!one_target_inlined) { |
| LOG_FAIL_NO_STAT() |
| << "Call to " << invoke_instruction->GetMethodReference().PrettyMethod() |
| << " from inline cache is not inlined because none" |
| << " of its targets could be inlined"; |
| return false; |
| } |
| |
| MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall); |
| |
| // Run type propagation to get the guards typed. |
| ReferenceTypePropagation rtp_fixup(graph_, |
| outer_compilation_unit_.GetDexCache(), |
| /* is_first_run= */ false); |
| rtp_fixup.Run(); |
| return true; |
| } |
| |
| void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare, |
| HInstruction* return_replacement, |
| HInstruction* invoke_instruction) { |
| uint32_t dex_pc = invoke_instruction->GetDexPc(); |
| HBasicBlock* cursor_block = compare->GetBlock(); |
| HBasicBlock* original_invoke_block = invoke_instruction->GetBlock(); |
| ArenaAllocator* allocator = graph_->GetAllocator(); |
| |
| // Spit the block after the compare: `cursor_block` will now be the start of the diamond, |
| // and the returned block is the start of the then branch (that could contain multiple blocks). |
| HBasicBlock* then = cursor_block->SplitAfterForInlining(compare); |
| |
| // Split the block containing the invoke before and after the invoke. The returned block |
| // of the split before will contain the invoke and will be the otherwise branch of |
| // the diamond. The returned block of the split after will be the merge block |
| // of the diamond. |
| HBasicBlock* end_then = invoke_instruction->GetBlock(); |
| HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction); |
| HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction); |
| |
| // If the methods we are inlining return a value, we create a phi in the merge block |
| // that will have the `invoke_instruction and the `return_replacement` as inputs. |
| if (return_replacement != nullptr) { |
| HPhi* phi = new (allocator) HPhi( |
| allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc); |
| merge->AddPhi(phi); |
| invoke_instruction->ReplaceWith(phi); |
| phi->AddInput(return_replacement); |
| phi->AddInput(invoke_instruction); |
| } |
| |
| // Add the control flow instructions. |
| otherwise->AddInstruction(new (allocator) HGoto(dex_pc)); |
| end_then->AddInstruction(new (allocator) HGoto(dex_pc)); |
| cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc)); |
| |
| // Add the newly created blocks to the graph. |
| graph_->AddBlock(then); |
| graph_->AddBlock(otherwise); |
| graph_->AddBlock(merge); |
| |
| // Set up successor (and implictly predecessor) relations. |
| cursor_block->AddSuccessor(otherwise); |
| cursor_block->AddSuccessor(then); |
| end_then->AddSuccessor(merge); |
| otherwise->AddSuccessor(merge); |
| |
| // Set up dominance information. |
| then->SetDominator(cursor_block); |
| cursor_block->AddDominatedBlock(then); |
| otherwise->SetDominator(cursor_block); |
| cursor_block->AddDominatedBlock(otherwise); |
| merge->SetDominator(cursor_block); |
| cursor_block->AddDominatedBlock(merge); |
| |
| // Update the revert post order. |
| size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block); |
| MakeRoomFor(&graph_->reverse_post_order_, 1, index); |
| graph_->reverse_post_order_[++index] = then; |
| index = IndexOfElement(graph_->reverse_post_order_, end_then); |
| MakeRoomFor(&graph_->reverse_post_order_, 2, index); |
| graph_->reverse_post_order_[++index] = otherwise; |
| graph_->reverse_post_order_[++index] = merge; |
| |
| |
| graph_->UpdateLoopAndTryInformationOfNewBlock( |
| then, original_invoke_block, /* replace_if_back_edge= */ false); |
| graph_->UpdateLoopAndTryInformationOfNewBlock( |
| otherwise, original_invoke_block, /* replace_if_back_edge= */ false); |
| |
| // In case the original invoke location was a back edge, we need to update |
| // the loop to now have the merge block as a back edge. |
| graph_->UpdateLoopAndTryInformationOfNewBlock( |
| merge, original_invoke_block, /* replace_if_back_edge= */ true); |
| } |
| |
| bool HInliner::TryInlinePolymorphicCallToSameTarget( |
| HInvoke* invoke_instruction, |
| const StackHandleScope<InlineCache::kIndividualCacheSize>& classes) { |
| // This optimization only works under JIT for now. |
| if (!codegen_->GetCompilerOptions().IsJitCompiler()) { |
| return false; |
| } |
| |
| ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); |
| PointerSize pointer_size = class_linker->GetImagePointerSize(); |
| |
| ArtMethod* actual_method = nullptr; |
| size_t method_index = invoke_instruction->IsInvokeVirtual() |
| ? invoke_instruction->AsInvokeVirtual()->GetVTableIndex() |
| : invoke_instruction->AsInvokeInterface()->GetImtIndex(); |
| |
| // Check whether we are actually calling the same method among |
| // the different types seen. |
| DCHECK_EQ(classes.NumberOfReferences(), InlineCache::kIndividualCacheSize); |
| uint8_t number_of_types = InlineCache::kIndividualCacheSize - classes.RemainingSlots(); |
| for (size_t i = 0; i != number_of_types; ++i) { |
| DCHECK(classes.GetReference(i) != nullptr); |
| ArtMethod* new_method = nullptr; |
| if (invoke_instruction->IsInvokeInterface()) { |
| new_method = classes.GetReference(i)->AsClass()->GetImt(pointer_size)->Get( |
| method_index, pointer_size); |
| if (new_method->IsRuntimeMethod()) { |
| // Bail out as soon as we see a conflict trampoline in one of the target's |
| // interface table. |
| return false; |
| } |
| } else { |
| DCHECK(invoke_instruction->IsInvokeVirtual()); |
| new_method = |
| classes.GetReference(i)->AsClass()->GetEmbeddedVTableEntry(method_index, pointer_size); |
| } |
| DCHECK(new_method != nullptr); |
| if (actual_method == nullptr) { |
| actual_method = new_method; |
| } else if (actual_method != new_method) { |
| // Different methods, bailout. |
| return false; |
| } |
| } |
| |
| HInstruction* receiver = invoke_instruction->InputAt(0); |
| HInstruction* cursor = invoke_instruction->GetPrevious(); |
| HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); |
| |
| HInstruction* return_replacement = nullptr; |
| if (!TryBuildAndInline(invoke_instruction, |
| actual_method, |
| ReferenceTypeInfo::CreateInvalid(), |
| &return_replacement, |
| /* is_speculative= */ true)) { |
| return false; |
| } |
| |
| // We successfully inlined, now add a guard. |
| HInstanceFieldGet* receiver_class = BuildGetReceiverClass( |
| class_linker, receiver, invoke_instruction->GetDexPc()); |
| |
| DataType::Type type = Is64BitInstructionSet(graph_->GetInstructionSet()) |
| ? DataType::Type::kInt64 |
| : DataType::Type::kInt32; |
| HClassTableGet* class_table_get = new (graph_->GetAllocator()) HClassTableGet( |
| receiver_class, |
| type, |
| invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable |
| : HClassTableGet::TableKind::kIMTable, |
| method_index, |
| invoke_instruction->GetDexPc()); |
| |
| HConstant* constant; |
| if (type == DataType::Type::kInt64) { |
| constant = graph_->GetLongConstant( |
| reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc()); |
| } else { |
| constant = graph_->GetIntConstant( |
| reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc()); |
| } |
| |
| HNotEqual* compare = new (graph_->GetAllocator()) HNotEqual(class_table_get, constant); |
| if (cursor != nullptr) { |
| bb_cursor->InsertInstructionAfter(receiver_class, cursor); |
| } else { |
| bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction()); |
| } |
| bb_cursor->InsertInstructionAfter(class_table_get, receiver_class); |
| bb_cursor->InsertInstructionAfter(compare, class_table_get); |
| |
| if (outermost_graph_->IsCompilingOsr()) { |
| CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction); |
| } else { |
| HDeoptimize* deoptimize = new (graph_->GetAllocator()) HDeoptimize( |
| graph_->GetAllocator(), |
| compare, |
| receiver, |
| DeoptimizationKind::kJitSameTarget, |
| invoke_instruction->GetDexPc()); |
| bb_cursor->InsertInstructionAfter(deoptimize, compare); |
| deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); |
| MaybeReplaceAndRemove(return_replacement, invoke_instruction); |
| receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize); |
| deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo()); |
| } |
| |
| // Run type propagation to get the guard typed. |
| ReferenceTypePropagation rtp_fixup(graph_, |
| outer_compilation_unit_.GetDexCache(), |
| /* is_first_run= */ false); |
| rtp_fixup.Run(); |
| |
| MaybeRecordStat(stats_, MethodCompilationStat::kInlinedPolymorphicCall); |
| |
| LOG_SUCCESS() << "Inlined same polymorphic target " << actual_method->PrettyMethod(); |
| return true; |
| } |
| |
| void HInliner::MaybeRunReferenceTypePropagation(HInstruction* replacement, |
| HInvoke* invoke_instruction) { |
| if (ReturnTypeMoreSpecific(replacement, invoke_instruction)) { |
| // Actual return value has a more specific type than the method's declared |
| // return type. Run RTP again on the outer graph to propagate it. |
| ReferenceTypePropagation(graph_, |
| outer_compilation_unit_.GetDexCache(), |
| /* is_first_run= */ false).Run(); |
| } |
| } |
| |
| bool HInliner::TryDevirtualize(HInvoke* invoke_instruction, |
| ArtMethod* method, |
| HInvoke** replacement) { |
| DCHECK(invoke_instruction != *replacement); |
| if (!invoke_instruction->IsInvokeInterface() && !invoke_instruction->IsInvokeVirtual()) { |
| return false; |
| } |
| |
| // Don't try to devirtualize intrinsics as it breaks pattern matching from later phases. |
| // TODO(solanes): This `if` could be removed if we update optimizations like |
| // TryReplaceStringBuilderAppend. |
| if (invoke_instruction->IsIntrinsic()) { |
| return false; |
| } |
| |
| // Don't bother trying to call directly a default conflict method. It |
| // doesn't have a proper MethodReference, but also `GetCanonicalMethod` |
| // will return an actual default implementation. |
| if (method->IsDefaultConflicting()) { |
| return false; |
| } |
| DCHECK(!method->IsProxyMethod()); |
| ClassLinker* cl = Runtime::Current()->GetClassLinker(); |
| PointerSize pointer_size = cl->GetImagePointerSize(); |
| // The sharpening logic assumes the caller isn't passing a copied method. |
| method = method->GetCanonicalMethod(pointer_size); |
| uint32_t dex_method_index = FindMethodIndexIn( |
| method, |
| *invoke_instruction->GetMethodReference().dex_file, |
| invoke_instruction->GetMethodReference().index); |
| if (dex_method_index == dex::kDexNoIndex) { |
| return false; |
| } |
| HInvokeStaticOrDirect::DispatchInfo dispatch_info = |
| HSharpening::SharpenLoadMethod(method, |
| /* has_method_id= */ true, |
| /* for_interface_call= */ false, |
| codegen_); |
| DCHECK_NE(dispatch_info.code_ptr_location, CodePtrLocation::kCallCriticalNative); |
| if (dispatch_info.method_load_kind == MethodLoadKind::kRuntimeCall) { |
| // If sharpening returns that we need to load the method at runtime, keep |
| // the virtual/interface call which will be faster. |
| // Also, the entrypoints for runtime calls do not handle devirtualized |
| // calls. |
| return false; |
| } |
| |
| HInvokeStaticOrDirect* new_invoke = new (graph_->GetAllocator()) HInvokeStaticOrDirect( |
| graph_->GetAllocator(), |
| invoke_instruction->GetNumberOfArguments(), |
| invoke_instruction->GetType(), |
| invoke_instruction->GetDexPc(), |
| MethodReference(invoke_instruction->GetMethodReference().dex_file, dex_method_index), |
| method, |
| dispatch_info, |
| kDirect, |
| MethodReference(method->GetDexFile(), method->GetDexMethodIndex()), |
| HInvokeStaticOrDirect::ClinitCheckRequirement::kNone, |
| !graph_->IsDebuggable()); |
| HInputsRef inputs = invoke_instruction->GetInputs(); |
| DCHECK_EQ(inputs.size(), invoke_instruction->GetNumberOfArguments()); |
| for (size_t index = 0; index != inputs.size(); ++index) { |
| new_invoke->SetArgumentAt(index, inputs[index]); |
| } |
| if (HInvokeStaticOrDirect::NeedsCurrentMethodInput(dispatch_info)) { |
| new_invoke->SetRawInputAt(new_invoke->GetCurrentMethodIndexUnchecked(), |
| graph_->GetCurrentMethod()); |
| } |
| invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction); |
| new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); |
| if (invoke_instruction->GetType() == DataType::Type::kReference) { |
| new_invoke->SetReferenceTypeInfoIfValid(invoke_instruction->GetReferenceTypeInfo()); |
| } |
| *replacement = new_invoke; |
| |
| MaybeReplaceAndRemove(*replacement, invoke_instruction); |
| // No need to call MaybeRunReferenceTypePropagation, as we know the return type |
| // cannot be more specific. |
| DCHECK(!ReturnTypeMoreSpecific(*replacement, invoke_instruction)); |
| return true; |
| } |
| |
| |
| bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction, |
| ArtMethod* method, |
| ReferenceTypeInfo receiver_type, |
| bool do_rtp, |
| bool is_speculative) { |
| DCHECK(!codegen_->IsImplementedIntrinsic(invoke_instruction)); |
| HInstruction* return_replacement = nullptr; |
| |
| if (!TryBuildAndInline( |
| invoke_instruction, method, receiver_type, &return_replacement, is_speculative)) { |
| return false; |
| } |
| |
| MaybeReplaceAndRemove(return_replacement, invoke_instruction); |
| FixUpReturnReferenceType(method, return_replacement); |
| if (do_rtp) { |
| MaybeRunReferenceTypePropagation(return_replacement, invoke_instruction); |
| } |
| return true; |
| } |
| |
| size_t HInliner::CountRecursiveCallsOf(ArtMethod* method) const { |
| const HInliner* current = this; |
| size_t count = 0; |
| do { |
| if (current->graph_->GetArtMethod() == method) { |
| ++count; |
| } |
| current = current->parent_; |
| } while (current != nullptr); |
| return count; |
| } |
| |
| static inline bool MayInline(const CompilerOptions& compiler_options, |
| const DexFile& inlined_from, |
| const DexFile& inlined_into) { |
| // We're not allowed to inline across dex files if we're the no-inline-from dex file. |
| if (!IsSameDexFile(inlined_from, inlined_into) && |
| ContainsElement(compiler_options.GetNoInlineFromDexFile(), &inlined_from)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Returns whether inlining is allowed based on ART semantics. |
| bool HInliner::IsInliningAllowed(ArtMethod* method, const CodeItemDataAccessor& accessor) const { |
| if (!accessor.HasCodeItem()) { |
| LOG_FAIL_NO_STAT() |
| << "Method " << method->PrettyMethod() << " is not inlined because it is native"; |
| return false; |
| } |
| |
| if (!method->IsCompilable()) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotCompilable) |
| << "Method " << method->PrettyMethod() |
| << " has soft failures un-handled by the compiler, so it cannot be inlined"; |
| return false; |
| } |
| |
| if (!IsMethodVerified(method)) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNotVerified) |
| << "Method " << method->PrettyMethod() |
| << " couldn't be verified, so it cannot be inlined"; |
| return false; |
| } |
| |
| if (annotations::MethodIsNeverInline(*method->GetDexFile(), |
| method->GetClassDef(), |
| method->GetDexMethodIndex())) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedNeverInlineAnnotation) |
| << "Method " << method->PrettyMethod() |
| << " has the @NeverInline annotation so it won't be inlined"; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| // Returns whether ART supports inlining this method. |
| // |
| // Some methods are not supported because they have features for which inlining |
| // is not implemented. For example, we do not currently support inlining throw |
| // instructions into a try block. |
| bool HInliner::IsInliningSupported(const HInvoke* invoke_instruction, |
| ArtMethod* method, |
| const CodeItemDataAccessor& accessor) const { |
| if (method->IsProxyMethod()) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedProxy) |
| << "Method " << method->PrettyMethod() |
| << " is not inlined because of unimplemented inline support for proxy methods."; |
| return false; |
| } |
| |
| if (accessor.TriesSize() != 0) { |
| if (!kInlineTryCatches) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatchDisabled) |
| << "Method " << method->PrettyMethod() |
| << " is not inlined because inlining try catches is disabled globally"; |
| return false; |
| } |
| const bool disallowed_try_catch_inlining = |
| // Direct parent is a try block. |
| invoke_instruction->GetBlock()->IsTryBlock() || |
| // Indirect parent disallows try catch inlining. |
| !try_catch_inlining_allowed_; |
| if (disallowed_try_catch_inlining) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedTryCatchCallee) |
| << "Method " << method->PrettyMethod() |
| << " is not inlined because it has a try catch and we are not supporting it for this" |
| << " particular call. This is could be because e.g. it would be inlined inside another" |
| << " try block, we arrived here from TryInlinePolymorphicCall, etc."; |
| return false; |
| } |
| } |
| |
| if (invoke_instruction->IsInvokeStaticOrDirect() && |
| invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) { |
| // Case of a static method that cannot be inlined because it implicitly |
| // requires an initialization check of its declaring class. |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedDexCacheClinitCheck) |
| << "Method " << method->PrettyMethod() |
| << " is not inlined because it is static and requires a clinit" |
| << " check that cannot be emitted due to Dex cache limitations"; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool HInliner::IsInliningEncouraged(const HInvoke* invoke_instruction, |
| ArtMethod* method, |
| const CodeItemDataAccessor& accessor) const { |
| if (CountRecursiveCallsOf(method) > kMaximumNumberOfRecursiveCalls) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedRecursiveBudget) |
| << "Method " |
| << method->PrettyMethod() |
| << " is not inlined because it has reached its recursive call budget."; |
| return false; |
| } |
| |
| size_t inline_max_code_units = codegen_->GetCompilerOptions().GetInlineMaxCodeUnits(); |
| if (accessor.InsnsSizeInCodeUnits() > inline_max_code_units) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCodeItem) |
| << "Method " << method->PrettyMethod() |
| << " is not inlined because its code item is too big: " |
| << accessor.InsnsSizeInCodeUnits() |
| << " > " |
| << inline_max_code_units; |
| return false; |
| } |
| |
| if (invoke_instruction->GetBlock()->GetLastInstruction()->IsThrow()) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedEndsWithThrow) |
| << "Method " << method->PrettyMethod() |
| << " is not inlined because its block ends with a throw"; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction, |
| ArtMethod* method, |
| ReferenceTypeInfo receiver_type, |
| HInstruction** return_replacement, |
| bool is_speculative) { |
| // If invoke_instruction is devirtualized to a different method, give intrinsics |
| // another chance before we try to inline it. |
| if (invoke_instruction->GetResolvedMethod() != method && method->IsIntrinsic()) { |
| MaybeRecordStat(stats_, MethodCompilationStat::kIntrinsicRecognized); |
| // For simplicity, always create a new instruction to replace the existing |
| // invoke. |
| HInvokeVirtual* new_invoke = new (graph_->GetAllocator()) HInvokeVirtual( |
| graph_->GetAllocator(), |
| invoke_instruction->GetNumberOfArguments(), |
| invoke_instruction->GetType(), |
| invoke_instruction->GetDexPc(), |
| invoke_instruction->GetMethodReference(), // Use existing invoke's method's reference. |
| method, |
| MethodReference(method->GetDexFile(), method->GetDexMethodIndex()), |
| method->GetMethodIndex(), |
| !graph_->IsDebuggable()); |
| DCHECK_NE(new_invoke->GetIntrinsic(), Intrinsics::kNone); |
| HInputsRef inputs = invoke_instruction->GetInputs(); |
| for (size_t index = 0; index != inputs.size(); ++index) { |
| new_invoke->SetArgumentAt(index, inputs[index]); |
| } |
| invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction); |
| new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); |
| if (invoke_instruction->GetType() == DataType::Type::kReference) { |
| new_invoke->SetReferenceTypeInfoIfValid(invoke_instruction->GetReferenceTypeInfo()); |
| } |
| *return_replacement = new_invoke; |
| return true; |
| } |
| |
| // Check whether we're allowed to inline. The outermost compilation unit is the relevant |
| // dex file here (though the transitivity of an inline chain would allow checking the caller). |
| if (!MayInline(codegen_->GetCompilerOptions(), |
| *method->GetDexFile(), |
| *outer_compilation_unit_.GetDexFile())) { |
| if (TryPatternSubstitution(invoke_instruction, method, return_replacement)) { |
| LOG_SUCCESS() << "Successfully replaced pattern of invoke " |
| << method->PrettyMethod(); |
| MaybeRecordStat(stats_, MethodCompilationStat::kReplacedInvokeWithSimplePattern); |
| return true; |
| } |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedWont) |
| << "Won't inline " << method->PrettyMethod() << " in " |
| << outer_compilation_unit_.GetDexFile()->GetLocation() << " (" |
| << caller_compilation_unit_.GetDexFile()->GetLocation() << ") from " |
| << method->GetDexFile()->GetLocation(); |
| return false; |
| } |
| |
| CodeItemDataAccessor accessor(method->DexInstructionData()); |
| |
| if (!IsInliningAllowed(method, accessor)) { |
| return false; |
| } |
| |
| if (!IsInliningSupported(invoke_instruction, method, accessor)) { |
| return false; |
| } |
| |
| if (!IsInliningEncouraged(invoke_instruction, method, accessor)) { |
| return false; |
| } |
| |
| if (!TryBuildAndInlineHelper( |
| invoke_instruction, method, receiver_type, return_replacement, is_speculative)) { |
| return false; |
| } |
| |
| LOG_SUCCESS() << method->PrettyMethod(); |
| MaybeRecordStat(stats_, MethodCompilationStat::kInlinedInvoke); |
| if (outermost_graph_ == graph_) { |
| MaybeRecordStat(stats_, MethodCompilationStat::kInlinedLastInvoke); |
| } |
| return true; |
| } |
| |
| static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction, |
| size_t arg_vreg_index) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| size_t input_index = 0; |
| for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) { |
| DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments()); |
| if (DataType::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) { |
| ++i; |
| DCHECK_NE(i, arg_vreg_index); |
| } |
| } |
| DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments()); |
| return invoke_instruction->InputAt(input_index); |
| } |
| |
| // Try to recognize known simple patterns and replace invoke call with appropriate instructions. |
| bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction, |
| ArtMethod* method, |
| HInstruction** return_replacement) { |
| InlineMethod inline_method; |
| if (!InlineMethodAnalyser::AnalyseMethodCode(method, &inline_method)) { |
| return false; |
| } |
| |
| switch (inline_method.opcode) { |
| case kInlineOpNop: |
| DCHECK_EQ(invoke_instruction->GetType(), DataType::Type::kVoid); |
| *return_replacement = nullptr; |
| break; |
| case kInlineOpReturnArg: |
| *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, |
| inline_method.d.return_data.arg); |
| break; |
| case kInlineOpNonWideConst: { |
| char shorty0 = method->GetShorty()[0]; |
| if (shorty0 == 'L') { |
| DCHECK_EQ(inline_method.d.data, 0u); |
| *return_replacement = graph_->GetNullConstant(); |
| } else if (shorty0 == 'F') { |
| *return_replacement = graph_->GetFloatConstant( |
| bit_cast<float, int32_t>(static_cast<int32_t>(inline_method.d.data))); |
| } else { |
| *return_replacement = graph_->GetIntConstant(static_cast<int32_t>(inline_method.d.data)); |
| } |
| break; |
| } |
| case kInlineOpIGet: { |
| const InlineIGetIPutData& data = inline_method.d.ifield_data; |
| if (data.method_is_static || data.object_arg != 0u) { |
| // TODO: Needs null check. |
| return false; |
| } |
| HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg); |
| HInstanceFieldGet* iget = CreateInstanceFieldGet(data.field_idx, method, obj); |
| DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset); |
| DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile); |
| invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction); |
| *return_replacement = iget; |
| break; |
| } |
| case kInlineOpIPut: { |
| const InlineIGetIPutData& data = inline_method.d.ifield_data; |
| if (data.method_is_static || data.object_arg != 0u) { |
| // TODO: Needs null check. |
| return false; |
| } |
| HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg); |
| HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg); |
| HInstanceFieldSet* iput = CreateInstanceFieldSet(data.field_idx, method, obj, value); |
| DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset); |
| DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile); |
| invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction); |
| if (data.return_arg_plus1 != 0u) { |
| size_t return_arg = data.return_arg_plus1 - 1u; |
| *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg); |
| } |
| break; |
| } |
| case kInlineOpConstructor: { |
| const InlineConstructorData& data = inline_method.d.constructor_data; |
| // Get the indexes to arrays for easier processing. |
| uint16_t iput_field_indexes[] = { |
| data.iput0_field_index, data.iput1_field_index, data.iput2_field_index |
| }; |
| uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg }; |
| static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch"); |
| // Count valid field indexes. |
| size_t number_of_iputs = 0u; |
| while (number_of_iputs != arraysize(iput_field_indexes) && |
| iput_field_indexes[number_of_iputs] != DexFile::kDexNoIndex16) { |
| // Check that there are no duplicate valid field indexes. |
| DCHECK_EQ(0, std::count(iput_field_indexes + number_of_iputs + 1, |
| iput_field_indexes + arraysize(iput_field_indexes), |
| iput_field_indexes[number_of_iputs])); |
| ++number_of_iputs; |
| } |
| // Check that there are no valid field indexes in the rest of the array. |
| DCHECK_EQ(0, std::count_if(iput_field_indexes + number_of_iputs, |
| iput_field_indexes + arraysize(iput_field_indexes), |
| [](uint16_t index) { return index != DexFile::kDexNoIndex16; })); |
| |
| // Create HInstanceFieldSet for each IPUT that stores non-zero data. |
| HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, |
| /* arg_vreg_index= */ 0u); |
| bool needs_constructor_barrier = false; |
| for (size_t i = 0; i != number_of_iputs; ++i) { |
| HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]); |
| if (!IsZeroBitPattern(value)) { |
| uint16_t field_index = iput_field_indexes[i]; |
| bool is_final; |
| HInstanceFieldSet* iput = |
| CreateInstanceFieldSet(field_index, method, obj, value, &is_final); |
| invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction); |
| |
| // Check whether the field is final. If it is, we need to add a barrier. |
| if (is_final) { |
| needs_constructor_barrier = true; |
| } |
| } |
| } |
| if (needs_constructor_barrier) { |
| // See DexCompilationUnit::RequiresConstructorBarrier for more details. |
| DCHECK(obj != nullptr) << "only non-static methods can have a constructor fence"; |
| |
| HConstructorFence* constructor_fence = |
| new (graph_->GetAllocator()) HConstructorFence(obj, kNoDexPc, graph_->GetAllocator()); |
| invoke_instruction->GetBlock()->InsertInstructionBefore(constructor_fence, |
| invoke_instruction); |
| } |
| *return_replacement = nullptr; |
| break; |
| } |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| return true; |
| } |
| |
| HInstanceFieldGet* HInliner::CreateInstanceFieldGet(uint32_t field_index, |
| ArtMethod* referrer, |
| HInstruction* obj) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| ArtField* resolved_field = |
| class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false); |
| DCHECK(resolved_field != nullptr); |
| HInstanceFieldGet* iget = new (graph_->GetAllocator()) HInstanceFieldGet( |
| obj, |
| resolved_field, |
| DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]), |
| resolved_field->GetOffset(), |
| resolved_field->IsVolatile(), |
| field_index, |
| resolved_field->GetDeclaringClass()->GetDexClassDefIndex(), |
| *referrer->GetDexFile(), |
| // Read barrier generates a runtime call in slow path and we need a valid |
| // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537. |
| /* dex_pc= */ 0); |
| if (iget->GetType() == DataType::Type::kReference) { |
| // Use the same dex_cache that we used for field lookup as the hint_dex_cache. |
| Handle<mirror::DexCache> dex_cache = |
| graph_->GetHandleCache()->NewHandle(referrer->GetDexCache()); |
| ReferenceTypePropagation rtp(graph_, |
| dex_cache, |
| /* is_first_run= */ false); |
| rtp.Visit(iget); |
| } |
| return iget; |
| } |
| |
| HInstanceFieldSet* HInliner::CreateInstanceFieldSet(uint32_t field_index, |
| ArtMethod* referrer, |
| HInstruction* obj, |
| HInstruction* value, |
| bool* is_final) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| ArtField* resolved_field = |
| class_linker->LookupResolvedField(field_index, referrer, /* is_static= */ false); |
| DCHECK(resolved_field != nullptr); |
| if (is_final != nullptr) { |
| // This information is needed only for constructors. |
| DCHECK(referrer->IsConstructor()); |
| *is_final = resolved_field->IsFinal(); |
| } |
| HInstanceFieldSet* iput = new (graph_->GetAllocator()) HInstanceFieldSet( |
| obj, |
| value, |
| resolved_field, |
| DataType::FromShorty(resolved_field->GetTypeDescriptor()[0]), |
| resolved_field->GetOffset(), |
| resolved_field->IsVolatile(), |
| field_index, |
| resolved_field->GetDeclaringClass()->GetDexClassDefIndex(), |
| *referrer->GetDexFile(), |
| // Read barrier generates a runtime call in slow path and we need a valid |
| // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537. |
| /* dex_pc= */ 0); |
| return iput; |
| } |
| |
| template <typename T> |
| static inline Handle<T> NewHandleIfDifferent(ObjPtr<T> object, Handle<T> hint, HGraph* graph) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| return (object != hint.Get()) ? graph->GetHandleCache()->NewHandle(object) : hint; |
| } |
| |
| static bool CanEncodeInlinedMethodInStackMap(const DexFile& outer_dex_file, |
| ArtMethod* callee, |
| const CodeGenerator* codegen, |
| bool* out_needs_bss_check) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!Runtime::Current()->IsAotCompiler()) { |
| // JIT can always encode methods in stack maps. |
| return true; |
| } |
| |
| const DexFile* dex_file = callee->GetDexFile(); |
| if (IsSameDexFile(outer_dex_file, *dex_file)) { |
| return true; |
| } |
| |
| // Inline across dexfiles if the callee's DexFile is: |
| // 1) in the bootclasspath, or |
| if (callee->GetDeclaringClass()->IsBootStrapClassLoaded()) { |
| // In multi-image, each BCP DexFile has their own OatWriter. Since they don't cooperate with |
| // each other, we request the BSS check for them. |
| // TODO(solanes, 154012332): Add .bss support for BCP multi-image. |
| *out_needs_bss_check = codegen->GetCompilerOptions().IsMultiImage(); |
| return true; |
| } |
| |
| // 2) is a non-BCP dexfile with the OatFile we are compiling. |
| if (codegen->GetCompilerOptions().WithinOatFile(dex_file)) { |
| return true; |
| } |
| |
| // TODO(solanes): Support more AOT cases for inlining: |
| // - methods in class loader context's DexFiles |
| return false; |
| } |
| |
| // Substitutes parameters in the callee graph with their values from the caller. |
| void HInliner::SubstituteArguments(HGraph* callee_graph, |
| HInvoke* invoke_instruction, |
| ReferenceTypeInfo receiver_type, |
| const DexCompilationUnit& dex_compilation_unit) { |
| ArtMethod* const resolved_method = callee_graph->GetArtMethod(); |
| size_t parameter_index = 0; |
| bool run_rtp = false; |
| for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions()); |
| !instructions.Done(); |
| instructions.Advance()) { |
| HInstruction* current = instructions.Current(); |
| if (current->IsParameterValue()) { |
| HInstruction* argument = invoke_instruction->InputAt(parameter_index); |
| if (argument->IsNullConstant()) { |
| current->ReplaceWith(callee_graph->GetNullConstant()); |
| } else if (argument->IsIntConstant()) { |
| current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue())); |
| } else if (argument->IsLongConstant()) { |
| current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue())); |
| } else if (argument->IsFloatConstant()) { |
| current->ReplaceWith( |
| callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue())); |
| } else if (argument->IsDoubleConstant()) { |
| current->ReplaceWith( |
| callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue())); |
| } else if (argument->GetType() == DataType::Type::kReference) { |
| if (!resolved_method->IsStatic() && parameter_index == 0 && receiver_type.IsValid()) { |
| run_rtp = true; |
| current->SetReferenceTypeInfo(receiver_type); |
| } else { |
| current->SetReferenceTypeInfoIfValid(argument->GetReferenceTypeInfo()); |
| } |
| current->AsParameterValue()->SetCanBeNull(argument->CanBeNull()); |
| } |
| ++parameter_index; |
| } |
| } |
| |
| // We have replaced formal arguments with actual arguments. If actual types |
| // are more specific than the declared ones, run RTP again on the inner graph. |
| if (run_rtp || ArgumentTypesMoreSpecific(invoke_instruction, resolved_method)) { |
| ReferenceTypePropagation(callee_graph, |
| dex_compilation_unit.GetDexCache(), |
| /* is_first_run= */ false).Run(); |
| } |
| } |
| |
| // Returns whether we can inline the callee_graph into the target_block. |
| // |
| // This performs a combination of semantics checks, compiler support checks, and |
| // resource limit checks. |
| // |
| // If this function returns true, it will also set out_number_of_instructions to |
| // the number of instructions in the inlined body. |
| bool HInliner::CanInlineBody(const HGraph* callee_graph, |
| HInvoke* invoke, |
| size_t* out_number_of_instructions, |
| bool is_speculative) const { |
| ArtMethod* const resolved_method = callee_graph->GetArtMethod(); |
| |
| HBasicBlock* exit_block = callee_graph->GetExitBlock(); |
| if (exit_block == nullptr) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop) |
| << "Method " << resolved_method->PrettyMethod() |
| << " could not be inlined because it has an infinite loop"; |
| return false; |
| } |
| |
| bool has_one_return = false; |
| for (HBasicBlock* predecessor : exit_block->GetPredecessors()) { |
| const HInstruction* last_instruction = predecessor->GetLastInstruction(); |
| // On inlinees, we can have Return/ReturnVoid/Throw -> TryBoundary -> Exit. To check for the |
| // actual last instruction, we have to skip the TryBoundary instruction. |
| if (last_instruction->IsTryBoundary()) { |
| predecessor = predecessor->GetSinglePredecessor(); |
| last_instruction = predecessor->GetLastInstruction(); |
| |
| // If the last instruction chain is Return/ReturnVoid -> TryBoundary -> Exit we will have to |
| // split a critical edge in InlineInto and might recompute loop information, which is |
| // unsupported for irreducible loops. |
| if (!last_instruction->IsThrow() && graph_->HasIrreducibleLoops()) { |
| DCHECK(last_instruction->IsReturn() || last_instruction->IsReturnVoid()); |
| // TODO(ngeoffray): Support re-computing loop information to graphs with |
| // irreducible loops? |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoopCaller) |
| << "Method " << resolved_method->PrettyMethod() |
| << " could not be inlined because we will have to recompute the loop information and" |
| << " the caller has irreducible loops"; |
| return false; |
| } |
| } |
| |
| if (last_instruction->IsThrow()) { |
| if (graph_->GetExitBlock() == nullptr) { |
| // TODO(ngeoffray): Support adding HExit in the caller graph. |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInfiniteLoop) |
| << "Method " << resolved_method->PrettyMethod() |
| << " could not be inlined because one branch always throws and" |
| << " caller does not have an exit block"; |
| return false; |
| } else if (graph_->HasIrreducibleLoops()) { |
| // TODO(ngeoffray): Support re-computing loop information to graphs with |
| // irreducible loops? |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoopCaller) |
| << "Method " << resolved_method->PrettyMethod() |
| << " could not be inlined because one branch always throws and" |
| << " the caller has irreducible loops"; |
| return false; |
| } |
| } else { |
| has_one_return = true; |
| } |
| } |
| |
| if (!has_one_return) { |
| if (!is_speculative) { |
| // If we know that the method always throws with the particular parameters, set it as such. |
| // This is better than using the dex instructions as we have more information about this |
| // particular call. We don't mark speculative inlines (e.g. the ones from the inline cache) as |
| // always throwing since they might not throw when executed. |
| invoke->SetAlwaysThrows(/* always_throws= */ true); |
| graph_->SetHasAlwaysThrowingInvokes(/* value= */ true); |
| } |
| |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedAlwaysThrows) |
| << "Method " << resolved_method->PrettyMethod() |
| << " could not be inlined because it always throws"; |
| return false; |
| } |
| |
| const bool too_many_registers = |
| total_number_of_dex_registers_ > kMaximumNumberOfCumulatedDexRegisters; |
| bool needs_bss_check = false; |
| const bool can_encode_in_stack_map = CanEncodeInlinedMethodInStackMap( |
| *outer_compilation_unit_.GetDexFile(), resolved_method, codegen_, &needs_bss_check); |
| size_t number_of_instructions = 0; |
| // Skip the entry block, it does not contain instructions that prevent inlining. |
| for (HBasicBlock* block : callee_graph->GetReversePostOrderSkipEntryBlock()) { |
| if (block->IsLoopHeader()) { |
| if (block->GetLoopInformation()->IsIrreducible()) { |
| // Don't inline methods with irreducible loops, they could prevent some |
| // optimizations to run. |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedIrreducibleLoopCallee) |
| << "Method " << resolved_method->PrettyMethod() |
| << " could not be inlined because it contains an irreducible loop"; |
| return false; |
| } |
| if (!block->GetLoopInformation()->HasExitEdge()) { |
| // Don't inline methods with loops without exit, since they cause the |
| // loop information to be computed incorrectly when updating after |
| // inlining. |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedLoopWithoutExit) |
| << "Method " << resolved_method->PrettyMethod() |
| << " could not be inlined because it contains a loop with no exit"; |
| return false; |
| } |
| } |
| |
| for (HInstructionIterator instr_it(block->GetInstructions()); |
| !instr_it.Done(); |
| instr_it.Advance()) { |
| if (++number_of_instructions > inlining_budget_) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedInstructionBudget) |
| << "Method " << resolved_method->PrettyMethod() |
| << " is not inlined because the outer method has reached" |
| << " its instruction budget limit."; |
| return false; |
| } |
| HInstruction* current = instr_it.Current(); |
| if (current->NeedsEnvironment()) { |
| if (too_many_registers) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedEnvironmentBudget) |
| << "Method " << resolved_method->PrettyMethod() |
| << " is not inlined because its caller has reached" |
| << " its environment budget limit."; |
| return false; |
| } |
| |
| if (!can_encode_in_stack_map) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedStackMaps) |
| << "Method " << resolved_method->PrettyMethod() << " could not be inlined because " |
| << current->DebugName() << " needs an environment, is in a different dex file" |
| << ", and cannot be encoded in the stack maps."; |
| return false; |
| } |
| } |
| |
| if (current->IsUnresolvedStaticFieldGet() || |
| current->IsUnresolvedInstanceFieldGet() || |
| current->IsUnresolvedStaticFieldSet() || |
| current->IsUnresolvedInstanceFieldSet() || |
| current->IsInvokeUnresolved()) { |
| // Unresolved invokes / field accesses are expensive at runtime when decoding inlining info, |
| // so don't inline methods that have them. |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedUnresolvedEntrypoint) |
| << "Method " << resolved_method->PrettyMethod() |
| << " could not be inlined because it is using an unresolved" |
| << " entrypoint"; |
| return false; |
| } |
| |
| // We currently don't have support for inlining across dex files if we are: |
| // 1) In AoT, |
| // 2) cross-dex inlining, |
| // 3) the callee is a BCP DexFile, |
| // 4) we are compiling multi image, and |
| // 5) have an instruction that needs a bss entry, which will always be |
| // 5)b) an instruction that needs an environment. |
| // 1) - 4) are encoded in `needs_bss_check` (see CanEncodeInlinedMethodInStackMap). |
| if (needs_bss_check && current->NeedsBss()) { |
| DCHECK(current->NeedsEnvironment()); |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedBss) |
| << "Method " << resolved_method->PrettyMethod() |
| << " could not be inlined because it needs a BSS check"; |
| return false; |
| } |
| } |
| } |
| |
| *out_number_of_instructions = number_of_instructions; |
| return true; |
| } |
| |
| bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction, |
| ArtMethod* resolved_method, |
| ReferenceTypeInfo receiver_type, |
| HInstruction** return_replacement, |
| bool is_speculative) { |
| DCHECK(!(resolved_method->IsStatic() && receiver_type.IsValid())); |
| const dex::CodeItem* code_item = resolved_method->GetCodeItem(); |
| const DexFile& callee_dex_file = *resolved_method->GetDexFile(); |
| uint32_t method_index = resolved_method->GetDexMethodIndex(); |
| CodeItemDebugInfoAccessor code_item_accessor(resolved_method->DexInstructionDebugInfo()); |
| ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); |
| Handle<mirror::DexCache> dex_cache = NewHandleIfDifferent(resolved_method->GetDexCache(), |
| caller_compilation_unit_.GetDexCache(), |
| graph_); |
| Handle<mirror::ClassLoader> class_loader = |
| NewHandleIfDifferent(resolved_method->GetDeclaringClass()->GetClassLoader(), |
| caller_compilation_unit_.GetClassLoader(), |
| graph_); |
| |
| Handle<mirror::Class> compiling_class = |
| graph_->GetHandleCache()->NewHandle(resolved_method->GetDeclaringClass()); |
| DexCompilationUnit dex_compilation_unit( |
| class_loader, |
| class_linker, |
| callee_dex_file, |
| code_item, |
| resolved_method->GetDeclaringClass()->GetDexClassDefIndex(), |
| method_index, |
| resolved_method->GetAccessFlags(), |
| /* verified_method= */ nullptr, |
| dex_cache, |
| compiling_class); |
| |
| InvokeType invoke_type = invoke_instruction->GetInvokeType(); |
| if (invoke_type == kInterface) { |
| // We have statically resolved the dispatch. To please the class linker |
| // at runtime, we change this call as if it was a virtual call. |
| invoke_type = kVirtual; |
| } |
| |
| bool caller_dead_reference_safe = graph_->IsDeadReferenceSafe(); |
| const dex::ClassDef& callee_class = resolved_method->GetClassDef(); |
| // MethodContainsRSensitiveAccess is currently slow, but HasDeadReferenceSafeAnnotation() |
| // is currently rarely true. |
| bool callee_dead_reference_safe = |
| annotations::HasDeadReferenceSafeAnnotation(callee_dex_file, callee_class) |
| && !annotations::MethodContainsRSensitiveAccess(callee_dex_file, callee_class, method_index); |
| |
| const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId(); |
| HGraph* callee_graph = new (graph_->GetAllocator()) HGraph( |
| graph_->GetAllocator(), |
| graph_->GetArenaStack(), |
| graph_->GetHandleCache()->GetHandles(), |
| callee_dex_file, |
| method_index, |
| codegen_->GetCompilerOptions().GetInstructionSet(), |
| invoke_type, |
| callee_dead_reference_safe, |
| graph_->IsDebuggable(), |
| graph_->GetCompilationKind(), |
| /* start_instruction_id= */ caller_instruction_counter); |
| callee_graph->SetArtMethod(resolved_method); |
| |
| ScopedProfilingInfoUse spiu(Runtime::Current()->GetJit(), resolved_method, Thread::Current()); |
| if (Runtime::Current()->GetJit() != nullptr) { |
| callee_graph->SetProfilingInfo(spiu.GetProfilingInfo()); |
| } |
| |
| // When they are needed, allocate `inline_stats_` on the Arena instead |
| // of on the stack, as Clang might produce a stack frame too large |
| // for this function, that would not fit the requirements of the |
| // `-Wframe-larger-than` option. |
| if (stats_ != nullptr) { |
| // Reuse one object for all inline attempts from this caller to keep Arena memory usage low. |
| if (inline_stats_ == nullptr) { |
| void* storage = graph_->GetAllocator()->Alloc<OptimizingCompilerStats>(kArenaAllocMisc); |
| inline_stats_ = new (storage) OptimizingCompilerStats; |
| } else { |
| inline_stats_->Reset(); |
| } |
| } |
| HGraphBuilder builder(callee_graph, |
| code_item_accessor, |
| &dex_compilation_unit, |
| &outer_compilation_unit_, |
| codegen_, |
| inline_stats_); |
| |
| if (builder.BuildGraph() != kAnalysisSuccess) { |
| LOG_FAIL(stats_, MethodCompilationStat::kNotInlinedCannotBuild) |
| << "Method " << callee_dex_file.PrettyMethod(method_index) |
| << " could not be built, so cannot be inlined"; |
| return false; |
| } |
| |
| SubstituteArguments(callee_graph, invoke_instruction, receiver_type, dex_compilation_unit); |
| |
| const bool try_catch_inlining_allowed_for_recursive_inline = |
| // It was allowed previously. |
| try_catch_inlining_allowed_ && |
| // The current invoke is not a try block. |
| !invoke_instruction->GetBlock()->IsTryBlock(); |
| RunOptimizations(callee_graph, |
| code_item, |
| dex_compilation_unit, |
| try_catch_inlining_allowed_for_recursive_inline); |
| |
| size_t number_of_instructions = 0; |
| if (!CanInlineBody(callee_graph, invoke_instruction, &number_of_instructions, is_speculative)) { |
| return false; |
| } |
| |
| DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId()) |
| << "No instructions can be added to the outer graph while inner graph is being built"; |
| |
| // Inline the callee graph inside the caller graph. |
| const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId(); |
| graph_->SetCurrentInstructionId(callee_instruction_counter); |
| *return_replacement = callee_graph->InlineInto(graph_, invoke_instruction); |
| // Update our budget for other inlining attempts in `caller_graph`. |
| total_number_of_instructions_ += number_of_instructions; |
| UpdateInliningBudget(); |
| |
| DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId()) |
| << "No instructions can be added to the inner graph during inlining into the outer graph"; |
| |
| if (stats_ != nullptr) { |
| DCHECK(inline_stats_ != nullptr); |
| inline_stats_->AddTo(stats_); |
| } |
| |
| if (caller_dead_reference_safe && !callee_dead_reference_safe) { |
| // Caller was dead reference safe, but is not anymore, since we inlined dead |
| // reference unsafe code. Prior transformations remain valid, since they did not |
| // affect the inlined code. |
| graph_->MarkDeadReferenceUnsafe(); |
| } |
| |
| return true; |
| } |
| |
| void HInliner::RunOptimizations(HGraph* callee_graph, |
| const dex::CodeItem* code_item, |
| const DexCompilationUnit& dex_compilation_unit, |
| bool try_catch_inlining_allowed_for_recursive_inline) { |
| // Note: if the outermost_graph_ is being compiled OSR, we should not run any |
| // optimization that could lead to a HDeoptimize. The following optimizations do not. |
| HDeadCodeElimination dce(callee_graph, inline_stats_, "dead_code_elimination$inliner"); |
| HConstantFolding fold(callee_graph, inline_stats_, "constant_folding$inliner"); |
| InstructionSimplifier simplify(callee_graph, codegen_, inline_stats_); |
| |
| HOptimization* optimizations[] = { |
| &fold, |
| &simplify, |
| &dce, |
| }; |
| |
| for (size_t i = 0; i < arraysize(optimizations); ++i) { |
| HOptimization* optimization = optimizations[i]; |
| optimization->Run(); |
| } |
| |
| // Bail early for pathological cases on the environment (for example recursive calls, |
| // or too large environment). |
| if (total_number_of_dex_registers_ > kMaximumNumberOfCumulatedDexRegisters) { |
| LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod() |
| << " will not be inlined because the outer method has reached" |
| << " its environment budget limit."; |
| return; |
| } |
| |
| // Bail early if we know we already are over the limit. |
| size_t number_of_instructions = CountNumberOfInstructions(callee_graph); |
| if (number_of_instructions > inlining_budget_) { |
| LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod() |
| << " will not be inlined because the outer method has reached" |
| << " its instruction budget limit. " << number_of_instructions; |
| return; |
| } |
| |
| CodeItemDataAccessor accessor(callee_graph->GetDexFile(), code_item); |
| HInliner inliner(callee_graph, |
| outermost_graph_, |
| codegen_, |
| outer_compilation_unit_, |
| dex_compilation_unit, |
| inline_stats_, |
| total_number_of_dex_registers_ + accessor.RegistersSize(), |
| total_number_of_instructions_ + number_of_instructions, |
| this, |
| depth_ + 1, |
| try_catch_inlining_allowed_for_recursive_inline); |
| inliner.Run(); |
| } |
| |
| static bool IsReferenceTypeRefinement(ObjPtr<mirror::Class> declared_class, |
| bool declared_is_exact, |
| bool declared_can_be_null, |
| HInstruction* actual_obj) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (declared_can_be_null && !actual_obj->CanBeNull()) { |
| return true; |
| } |
| |
| ReferenceTypeInfo actual_rti = actual_obj->GetReferenceTypeInfo(); |
| if (!actual_rti.IsValid()) { |
| return false; |
| } |
| |
| ObjPtr<mirror::Class> actual_class = actual_rti.GetTypeHandle().Get(); |
| return (actual_rti.IsExact() && !declared_is_exact) || |
| (declared_class != actual_class && declared_class->IsAssignableFrom(actual_class)); |
| } |
| |
| static bool IsReferenceTypeRefinement(ObjPtr<mirror::Class> declared_class, |
| bool declared_can_be_null, |
| HInstruction* actual_obj) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| bool admissible = ReferenceTypePropagation::IsAdmissible(declared_class); |
| return IsReferenceTypeRefinement( |
| admissible ? declared_class : GetClassRoot<mirror::Class>(), |
| /*declared_is_exact=*/ admissible && declared_class->CannotBeAssignedFromOtherTypes(), |
| declared_can_be_null, |
| actual_obj); |
| } |
| |
| bool HInliner::ArgumentTypesMoreSpecific(HInvoke* invoke_instruction, ArtMethod* resolved_method) { |
| // If this is an instance call, test whether the type of the `this` argument |
| // is more specific than the class which declares the method. |
| if (!resolved_method->IsStatic()) { |
| if (IsReferenceTypeRefinement(resolved_method->GetDeclaringClass(), |
| /*declared_can_be_null=*/ false, |
| invoke_instruction->InputAt(0u))) { |
| return true; |
| } |
| } |
| |
| // Iterate over the list of parameter types and test whether any of the |
| // actual inputs has a more specific reference type than the type declared in |
| // the signature. |
| const dex::TypeList* param_list = resolved_method->GetParameterTypeList(); |
| for (size_t param_idx = 0, |
| input_idx = resolved_method->IsStatic() ? 0 : 1, |
| e = (param_list == nullptr ? 0 : param_list->Size()); |
| param_idx < e; |
| ++param_idx, ++input_idx) { |
| HInstruction* input = invoke_instruction->InputAt(input_idx); |
| if (input->GetType() == DataType::Type::kReference) { |
| ObjPtr<mirror::Class> param_cls = resolved_method->LookupResolvedClassFromTypeIndex( |
| param_list->GetTypeItem(param_idx).type_idx_); |
| if (IsReferenceTypeRefinement(param_cls, /*declared_can_be_null=*/ true, input)) { |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| bool HInliner::ReturnTypeMoreSpecific(HInstruction* return_replacement, |
| HInvoke* invoke_instruction) { |
| // Check the integrity of reference types and run another type propagation if needed. |
| if (return_replacement != nullptr) { |
| if (return_replacement->GetType() == DataType::Type::kReference) { |
| // Test if the return type is a refinement of the declared return type. |
| ReferenceTypeInfo invoke_rti = invoke_instruction->GetReferenceTypeInfo(); |
| if (IsReferenceTypeRefinement(invoke_rti.GetTypeHandle().Get(), |
| invoke_rti.IsExact(), |
| /*declared_can_be_null=*/ true, |
| return_replacement)) { |
| return true; |
| } else if (return_replacement->IsInstanceFieldGet()) { |
| HInstanceFieldGet* field_get = return_replacement->AsInstanceFieldGet(); |
| if (field_get->GetFieldInfo().GetField() == |
| GetClassRoot<mirror::Object>()->GetInstanceField(0)) { |
| return true; |
| } |
| } |
| } else if (return_replacement->IsInstanceOf()) { |
| // Inlining InstanceOf into an If may put a tighter bound on reference types. |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| void HInliner::FixUpReturnReferenceType(ArtMethod* resolved_method, |
| HInstruction* return_replacement) { |
| if (return_replacement != nullptr) { |
| if (return_replacement->GetType() == DataType::Type::kReference) { |
| if (!return_replacement->GetReferenceTypeInfo().IsValid()) { |
| // Make sure that we have a valid type for the return. We may get an invalid one when |
| // we inline invokes with multiple branches and create a Phi for the result. |
| // TODO: we could be more precise by merging the phi inputs but that requires |
| // some functionality from the reference type propagation. |
| DCHECK(return_replacement->IsPhi()); |
| ObjPtr<mirror::Class> cls = resolved_method->LookupResolvedReturnType(); |
| ReferenceTypeInfo rti = ReferenceTypePropagation::IsAdmissible(cls) |
| ? ReferenceTypeInfo::Create(graph_->GetHandleCache()->NewHandle(cls)) |
| : graph_->GetInexactObjectRti(); |
| return_replacement->SetReferenceTypeInfo(rti); |
| } |
| } |
| } |
| } |
| |
| } // namespace art |