| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "dead_code_elimination.h" |
| |
| #include "android-base/logging.h" |
| #include "base/array_ref.h" |
| #include "base/bit_vector-inl.h" |
| #include "base/logging.h" |
| #include "base/scoped_arena_allocator.h" |
| #include "base/scoped_arena_containers.h" |
| #include "base/stl_util.h" |
| #include "optimizing/nodes.h" |
| #include "ssa_phi_elimination.h" |
| |
| namespace art HIDDEN { |
| |
| static void MarkReachableBlocks(HGraph* graph, ArenaBitVector* visited) { |
| // Use local allocator for allocating memory. |
| ScopedArenaAllocator allocator(graph->GetArenaStack()); |
| |
| ScopedArenaVector<HBasicBlock*> worklist(allocator.Adapter(kArenaAllocDCE)); |
| constexpr size_t kDefaultWorlistSize = 8; |
| worklist.reserve(kDefaultWorlistSize); |
| visited->SetBit(graph->GetEntryBlock()->GetBlockId()); |
| worklist.push_back(graph->GetEntryBlock()); |
| |
| while (!worklist.empty()) { |
| HBasicBlock* block = worklist.back(); |
| worklist.pop_back(); |
| int block_id = block->GetBlockId(); |
| DCHECK(visited->IsBitSet(block_id)); |
| |
| ArrayRef<HBasicBlock* const> live_successors(block->GetSuccessors()); |
| HInstruction* last_instruction = block->GetLastInstruction(); |
| if (last_instruction->IsIf()) { |
| HIf* if_instruction = last_instruction->AsIf(); |
| HInstruction* condition = if_instruction->InputAt(0); |
| if (condition->IsIntConstant()) { |
| if (condition->AsIntConstant()->IsTrue()) { |
| live_successors = live_successors.SubArray(0u, 1u); |
| DCHECK_EQ(live_successors[0], if_instruction->IfTrueSuccessor()); |
| } else { |
| DCHECK(condition->AsIntConstant()->IsFalse()) << condition->AsIntConstant()->GetValue(); |
| live_successors = live_successors.SubArray(1u, 1u); |
| DCHECK_EQ(live_successors[0], if_instruction->IfFalseSuccessor()); |
| } |
| } |
| } else if (last_instruction->IsPackedSwitch()) { |
| HPackedSwitch* switch_instruction = last_instruction->AsPackedSwitch(); |
| HInstruction* switch_input = switch_instruction->InputAt(0); |
| if (switch_input->IsIntConstant()) { |
| int32_t switch_value = switch_input->AsIntConstant()->GetValue(); |
| int32_t start_value = switch_instruction->GetStartValue(); |
| // Note: Though the spec forbids packed-switch values to wrap around, we leave |
| // that task to the verifier and use unsigned arithmetic with it's "modulo 2^32" |
| // semantics to check if the value is in range, wrapped or not. |
| uint32_t switch_index = |
| static_cast<uint32_t>(switch_value) - static_cast<uint32_t>(start_value); |
| if (switch_index < switch_instruction->GetNumEntries()) { |
| live_successors = live_successors.SubArray(switch_index, 1u); |
| DCHECK_EQ(live_successors[0], block->GetSuccessors()[switch_index]); |
| } else { |
| live_successors = live_successors.SubArray(switch_instruction->GetNumEntries(), 1u); |
| DCHECK_EQ(live_successors[0], switch_instruction->GetDefaultBlock()); |
| } |
| } |
| } |
| |
| for (HBasicBlock* successor : live_successors) { |
| // Add only those successors that have not been visited yet. |
| if (!visited->IsBitSet(successor->GetBlockId())) { |
| visited->SetBit(successor->GetBlockId()); |
| worklist.push_back(successor); |
| } |
| } |
| } |
| } |
| |
| void HDeadCodeElimination::MaybeRecordDeadBlock(HBasicBlock* block) { |
| if (stats_ != nullptr) { |
| stats_->RecordStat(MethodCompilationStat::kRemovedDeadInstruction, |
| block->GetPhis().CountSize() + block->GetInstructions().CountSize()); |
| } |
| } |
| |
| void HDeadCodeElimination::MaybeRecordSimplifyIf() { |
| if (stats_ != nullptr) { |
| stats_->RecordStat(MethodCompilationStat::kSimplifyIf); |
| } |
| } |
| |
| static bool HasInput(HCondition* instruction, HInstruction* input) { |
| return (instruction->InputAt(0) == input) || |
| (instruction->InputAt(1) == input); |
| } |
| |
| static bool HasEquality(IfCondition condition) { |
| switch (condition) { |
| case kCondEQ: |
| case kCondLE: |
| case kCondGE: |
| case kCondBE: |
| case kCondAE: |
| return true; |
| case kCondNE: |
| case kCondLT: |
| case kCondGT: |
| case kCondB: |
| case kCondA: |
| return false; |
| } |
| } |
| |
| static HConstant* Evaluate(HCondition* condition, HInstruction* left, HInstruction* right) { |
| if (left == right && !DataType::IsFloatingPointType(left->GetType())) { |
| return condition->GetBlock()->GetGraph()->GetIntConstant( |
| HasEquality(condition->GetCondition()) ? 1 : 0); |
| } |
| |
| if (!left->IsConstant() || !right->IsConstant()) { |
| return nullptr; |
| } |
| |
| if (left->IsIntConstant()) { |
| return condition->Evaluate(left->AsIntConstant(), right->AsIntConstant()); |
| } else if (left->IsNullConstant()) { |
| return condition->Evaluate(left->AsNullConstant(), right->AsNullConstant()); |
| } else if (left->IsLongConstant()) { |
| return condition->Evaluate(left->AsLongConstant(), right->AsLongConstant()); |
| } else if (left->IsFloatConstant()) { |
| return condition->Evaluate(left->AsFloatConstant(), right->AsFloatConstant()); |
| } else { |
| DCHECK(left->IsDoubleConstant()); |
| return condition->Evaluate(left->AsDoubleConstant(), right->AsDoubleConstant()); |
| } |
| } |
| |
| static bool RemoveNonNullControlDependences(HBasicBlock* block, HBasicBlock* throws) { |
| // Test for an if as last statement. |
| if (!block->EndsWithIf()) { |
| return false; |
| } |
| HIf* ifs = block->GetLastInstruction()->AsIf(); |
| // Find either: |
| // if obj == null |
| // throws |
| // else |
| // not_throws |
| // or: |
| // if obj != null |
| // not_throws |
| // else |
| // throws |
| HInstruction* cond = ifs->InputAt(0); |
| HBasicBlock* not_throws = nullptr; |
| if (throws == ifs->IfTrueSuccessor() && cond->IsEqual()) { |
| not_throws = ifs->IfFalseSuccessor(); |
| } else if (throws == ifs->IfFalseSuccessor() && cond->IsNotEqual()) { |
| not_throws = ifs->IfTrueSuccessor(); |
| } else { |
| return false; |
| } |
| DCHECK(cond->IsEqual() || cond->IsNotEqual()); |
| HInstruction* obj = cond->InputAt(1); |
| if (obj->IsNullConstant()) { |
| obj = cond->InputAt(0); |
| } else if (!cond->InputAt(0)->IsNullConstant()) { |
| return false; |
| } |
| |
| // We can't create a BoundType for an object with an invalid RTI. |
| const ReferenceTypeInfo ti = obj->GetReferenceTypeInfo(); |
| if (!ti.IsValid()) { |
| return false; |
| } |
| |
| // Scan all uses of obj and find null check under control dependence. |
| HBoundType* bound = nullptr; |
| const HUseList<HInstruction*>& uses = obj->GetUses(); |
| for (auto it = uses.begin(), end = uses.end(); it != end;) { |
| HInstruction* user = it->GetUser(); |
| ++it; // increment before possibly replacing |
| if (user->IsNullCheck()) { |
| HBasicBlock* user_block = user->GetBlock(); |
| if (user_block != block && |
| user_block != throws && |
| block->Dominates(user_block)) { |
| if (bound == nullptr) { |
| bound = new (obj->GetBlock()->GetGraph()->GetAllocator()) HBoundType(obj); |
| bound->SetUpperBound(ti, /*can_be_null*/ false); |
| bound->SetReferenceTypeInfo(ti); |
| bound->SetCanBeNull(false); |
| not_throws->InsertInstructionBefore(bound, not_throws->GetFirstInstruction()); |
| } |
| user->ReplaceWith(bound); |
| user_block->RemoveInstruction(user); |
| } |
| } |
| } |
| return bound != nullptr; |
| } |
| |
| // Simplify the pattern: |
| // |
| // B1 |
| // / \ |
| // | instr_1 |
| // | ... |
| // | instr_n |
| // | foo() // always throws |
| // | instr_n+2 |
| // | ... |
| // | instr_n+m |
| // \ goto B2 |
| // \ / |
| // B2 |
| // |
| // Into: |
| // |
| // B1 |
| // / \ |
| // | instr_1 |
| // | ... |
| // | instr_n |
| // | foo() |
| // | goto Exit |
| // | | |
| // B2 Exit |
| // |
| // Rationale: |
| // Removal of the never taken edge to B2 may expose other optimization opportunities, such as code |
| // sinking. |
| // |
| // Note: The example above is a simple one that uses a `goto` but we could end the block with an If, |
| // for example. |
| bool HDeadCodeElimination::SimplifyAlwaysThrows() { |
| HBasicBlock* exit = graph_->GetExitBlock(); |
| if (!graph_->HasAlwaysThrowingInvokes() || exit == nullptr) { |
| return false; |
| } |
| |
| bool rerun_dominance_and_loop_analysis = false; |
| |
| // Order does not matter, just pick one. |
| for (HBasicBlock* block : graph_->GetReversePostOrder()) { |
| if (block->IsTryBlock()) { |
| // We don't want to perform the simplify always throws optimizations for throws inside of |
| // tries since those throws might not go to the exit block. |
| continue; |
| } |
| |
| // We iterate to find the first instruction that always throws. If two instructions always |
| // throw, the first one will throw and the second one will never be reached. |
| HInstruction* throwing_invoke = nullptr; |
| for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| if (it.Current()->IsInvoke() && it.Current()->AsInvoke()->AlwaysThrows()) { |
| throwing_invoke = it.Current(); |
| break; |
| } |
| } |
| |
| if (throwing_invoke == nullptr) { |
| // No always-throwing instruction found. Continue with the rest of the blocks. |
| continue; |
| } |
| |
| // If we are already pointing at the exit block we could still remove the instructions |
| // between the always throwing instruction, and the exit block. If we have no other |
| // instructions, just continue since there's nothing to do. |
| if (block->GetSuccessors().size() == 1 && |
| block->GetSingleSuccessor() == exit && |
| block->GetLastInstruction()->GetPrevious() == throwing_invoke) { |
| continue; |
| } |
| |
| // We split the block at the throwing instruction, and the instructions after the throwing |
| // instructions will be disconnected from the graph after `block` points to the exit. |
| // `RemoveDeadBlocks` will take care of removing this new block and its instructions. |
| // Even though `SplitBefore` doesn't guarantee the graph to remain in SSA form, it is fine |
| // since we do not break it. |
| HBasicBlock* new_block = block->SplitBefore(throwing_invoke->GetNext(), |
| /* require_graph_not_in_ssa_form= */ false); |
| DCHECK_EQ(block->GetSingleSuccessor(), new_block); |
| block->ReplaceSuccessor(new_block, exit); |
| |
| rerun_dominance_and_loop_analysis = true; |
| MaybeRecordStat(stats_, MethodCompilationStat::kSimplifyThrowingInvoke); |
| // Perform a quick follow up optimization on object != null control dependences |
| // that is much cheaper to perform now than in a later phase. |
| // If there are multiple predecessors, none may end with a HIf as required in |
| // RemoveNonNullControlDependences because we split critical edges. |
| if (block->GetPredecessors().size() == 1u && |
| RemoveNonNullControlDependences(block->GetSinglePredecessor(), block)) { |
| MaybeRecordStat(stats_, MethodCompilationStat::kRemovedNullCheck); |
| } |
| } |
| |
| // We need to re-analyze the graph in order to run DCE afterwards. |
| if (rerun_dominance_and_loop_analysis) { |
| graph_->ClearLoopInformation(); |
| graph_->ClearDominanceInformation(); |
| graph_->BuildDominatorTree(); |
| return true; |
| } |
| return false; |
| } |
| |
| bool HDeadCodeElimination::SimplifyIfs() { |
| bool simplified_one_or_more_ifs = false; |
| bool rerun_dominance_and_loop_analysis = false; |
| |
| // Iterating in PostOrder it's better for MaybeAddPhi as it can add a Phi for multiple If |
| // instructions in a chain without updating the dominator chain. The branch redirection itself can |
| // work in PostOrder or ReversePostOrder without issues. |
| for (HBasicBlock* block : graph_->GetPostOrder()) { |
| if (block->IsCatchBlock()) { |
| // This simplification cannot be applied to catch blocks, because exception handler edges do |
| // not represent normal control flow. Though in theory this could still apply to normal |
| // control flow going directly to a catch block, we cannot support it at the moment because |
| // the catch Phi's inputs do not correspond to the catch block's predecessors, so we cannot |
| // identify which predecessor corresponds to a given statically evaluated input. |
| continue; |
| } |
| |
| HInstruction* last = block->GetLastInstruction(); |
| if (!last->IsIf()) { |
| continue; |
| } |
| |
| if (block->IsLoopHeader()) { |
| // We do not apply this optimization to loop headers as this could create irreducible loops. |
| continue; |
| } |
| |
| // We will add a Phi which allows the simplification to take place in cases where it wouldn't. |
| MaybeAddPhi(block); |
| |
| // TODO(solanes): Investigate support for multiple phis in `block`. We can potentially "push |
| // downwards" existing Phis into the true/false branches. For example, let's say we have another |
| // Phi: Phi(x1,x2,x3,x4,x5,x6). This could turn into Phi(x1,x2) in the true branch, Phi(x3,x4) |
| // in the false branch, and remain as Phi(x5,x6) in `block` (for edges that we couldn't |
| // redirect). We might even be able to remove some phis altogether as they will have only one |
| // value. |
| if (block->HasSinglePhi() && |
| block->GetFirstPhi()->HasOnlyOneNonEnvironmentUse()) { |
| HInstruction* first = block->GetFirstInstruction(); |
| bool has_only_phi_and_if = (last == first) && (last->InputAt(0) == block->GetFirstPhi()); |
| bool has_only_phi_condition_and_if = |
| !has_only_phi_and_if && |
| first->IsCondition() && |
| HasInput(first->AsCondition(), block->GetFirstPhi()) && |
| (first->GetNext() == last) && |
| (last->InputAt(0) == first) && |
| first->HasOnlyOneNonEnvironmentUse(); |
| |
| if (has_only_phi_and_if || has_only_phi_condition_and_if) { |
| HPhi* phi = block->GetFirstPhi()->AsPhi(); |
| bool phi_input_is_left = (first->InputAt(0) == phi); |
| |
| // Walk over all inputs of the phis and update the control flow of |
| // predecessors feeding constants to the phi. |
| // Note that phi->InputCount() may change inside the loop. |
| for (size_t i = 0; i < phi->InputCount();) { |
| HInstruction* input = phi->InputAt(i); |
| HInstruction* value_to_check = nullptr; |
| if (has_only_phi_and_if) { |
| if (input->IsIntConstant()) { |
| value_to_check = input; |
| } |
| } else { |
| DCHECK(has_only_phi_condition_and_if); |
| if (phi_input_is_left) { |
| value_to_check = Evaluate(first->AsCondition(), input, first->InputAt(1)); |
| } else { |
| value_to_check = Evaluate(first->AsCondition(), first->InputAt(0), input); |
| } |
| } |
| if (value_to_check == nullptr) { |
| // Could not evaluate to a constant, continue iterating over the inputs. |
| ++i; |
| } else { |
| HBasicBlock* predecessor_to_update = block->GetPredecessors()[i]; |
| HBasicBlock* successor_to_update = nullptr; |
| if (value_to_check->AsIntConstant()->IsTrue()) { |
| successor_to_update = last->AsIf()->IfTrueSuccessor(); |
| } else { |
| DCHECK(value_to_check->AsIntConstant()->IsFalse()) |
| << value_to_check->AsIntConstant()->GetValue(); |
| successor_to_update = last->AsIf()->IfFalseSuccessor(); |
| } |
| predecessor_to_update->ReplaceSuccessor(block, successor_to_update); |
| phi->RemoveInputAt(i); |
| simplified_one_or_more_ifs = true; |
| if (block->IsInLoop()) { |
| rerun_dominance_and_loop_analysis = true; |
| } |
| // For simplicity, don't create a dead block, let the dead code elimination |
| // pass deal with it. |
| if (phi->InputCount() == 1) { |
| break; |
| } |
| } |
| } |
| if (block->GetPredecessors().size() == 1) { |
| phi->ReplaceWith(phi->InputAt(0)); |
| block->RemovePhi(phi); |
| if (has_only_phi_condition_and_if) { |
| // Evaluate here (and not wait for a constant folding pass) to open |
| // more opportunities for DCE. |
| HInstruction* result = first->AsCondition()->TryStaticEvaluation(); |
| if (result != nullptr) { |
| first->ReplaceWith(result); |
| block->RemoveInstruction(first); |
| } |
| } |
| } |
| if (simplified_one_or_more_ifs) { |
| MaybeRecordSimplifyIf(); |
| } |
| } |
| } |
| } |
| // We need to re-analyze the graph in order to run DCE afterwards. |
| if (simplified_one_or_more_ifs) { |
| if (rerun_dominance_and_loop_analysis) { |
| graph_->ClearLoopInformation(); |
| graph_->ClearDominanceInformation(); |
| graph_->BuildDominatorTree(); |
| } else { |
| graph_->ClearDominanceInformation(); |
| // We have introduced critical edges, remove them. |
| graph_->SimplifyCFG(); |
| graph_->ComputeDominanceInformation(); |
| graph_->ComputeTryBlockInformation(); |
| } |
| } |
| |
| return simplified_one_or_more_ifs; |
| } |
| |
| void HDeadCodeElimination::MaybeAddPhi(HBasicBlock* block) { |
| DCHECK(block->GetLastInstruction()->IsIf()); |
| HIf* if_instruction = block->GetLastInstruction()->AsIf(); |
| if (if_instruction->InputAt(0)->IsConstant()) { |
| // Constant values are handled in RemoveDeadBlocks. |
| return; |
| } |
| |
| if (block->GetNumberOfPredecessors() < 2u) { |
| // Nothing to redirect. |
| return; |
| } |
| |
| if (!block->GetPhis().IsEmpty()) { |
| // SimplifyIf doesn't currently work with multiple phis. Adding a phi here won't help that |
| // optimization. |
| return; |
| } |
| |
| HBasicBlock* dominator = block->GetDominator(); |
| if (!dominator->EndsWithIf()) { |
| return; |
| } |
| |
| HInstruction* input = if_instruction->InputAt(0); |
| HInstruction* dominator_input = dominator->GetLastInstruction()->AsIf()->InputAt(0); |
| const bool same_input = dominator_input == input; |
| if (!same_input) { |
| // Try to see if the dominator has the opposite input (e.g. if(cond) and if(!cond)). If that's |
| // the case, we can perform the optimization with the false and true branches reversed. |
| if (!dominator_input->IsCondition() || !input->IsCondition()) { |
| return; |
| } |
| |
| HCondition* block_cond = input->AsCondition(); |
| HCondition* dominator_cond = dominator_input->AsCondition(); |
| |
| if (block_cond->GetLeft() != dominator_cond->GetLeft() || |
| block_cond->GetRight() != dominator_cond->GetRight() || |
| block_cond->GetOppositeCondition() != dominator_cond->GetCondition()) { |
| return; |
| } |
| } |
| |
| if (kIsDebugBuild) { |
| // `block`'s successors should have only one predecessor. Otherwise, we have a critical edge in |
| // the graph. |
| for (HBasicBlock* succ : block->GetSuccessors()) { |
| DCHECK_EQ(succ->GetNumberOfPredecessors(), 1u); |
| } |
| } |
| |
| const size_t pred_size = block->GetNumberOfPredecessors(); |
| HPhi* new_phi = new (graph_->GetAllocator()) |
| HPhi(graph_->GetAllocator(), kNoRegNumber, pred_size, DataType::Type::kInt32); |
| |
| for (size_t index = 0; index < pred_size; index++) { |
| HBasicBlock* pred = block->GetPredecessors()[index]; |
| const bool dominated_by_true = |
| dominator->GetLastInstruction()->AsIf()->IfTrueSuccessor()->Dominates(pred); |
| const bool dominated_by_false = |
| dominator->GetLastInstruction()->AsIf()->IfFalseSuccessor()->Dominates(pred); |
| if (dominated_by_true == dominated_by_false) { |
| // In this case, we can't know if we are coming from the true branch, or the false branch. It |
| // happens in cases like: |
| // 1 (outer if) |
| // / \ |
| // 2 3 (inner if) |
| // | / \ |
| // | 4 5 |
| // \/ | |
| // 6 | |
| // \ | |
| // 7 (has the same if(cond) as 1) |
| // | |
| // 8 |
| // `7` (which would be `block` in this example), and `6` will come from both the true path and |
| // the false path of `1`. We bumped into something similar in SelectGenerator. See |
| // HSelectGenerator::TryFixupDoubleDiamondPattern. |
| // TODO(solanes): Figure out if we can fix up the graph into a double diamond in a generic way |
| // so that DeadCodeElimination and SelectGenerator can take advantage of it. |
| |
| if (!same_input) { |
| // `1` and `7` having the opposite condition is a case we are missing. We could potentially |
| // add a BooleanNot instruction to be able to add the Phi, but it seems like overkill since |
| // this case is not that common. |
| return; |
| } |
| |
| // The Phi will have `0`, `1`, and `cond` as inputs. If SimplifyIf redirects 0s and 1s, we |
| // will end up with Phi(cond,...,cond) which will be replaced by `cond`. Effectively, we will |
| // redirect edges that we are able to redirect and the rest will remain as before (i.e. we |
| // won't have an extra Phi). |
| new_phi->SetRawInputAt(index, input); |
| } else { |
| // Redirect to either the true branch (1), or the false branch (0). |
| // Given that `dominated_by_true` is the exact opposite of `dominated_by_false`, |
| // `(same_input && dominated_by_true) || (!same_input && dominated_by_false)` is equivalent to |
| // `same_input == dominated_by_true`. |
| new_phi->SetRawInputAt( |
| index, |
| same_input == dominated_by_true ? graph_->GetIntConstant(1) : graph_->GetIntConstant(0)); |
| } |
| } |
| |
| block->AddPhi(new_phi); |
| if_instruction->ReplaceInput(new_phi, 0); |
| |
| // Remove the old input now, if possible. This allows the branch redirection in SimplifyIf to |
| // work without waiting for another pass of DCE. |
| if (input->IsDeadAndRemovable()) { |
| DCHECK(!same_input) |
| << " if both blocks have the same condition, it shouldn't be dead and removable since the " |
| << "dominator block's If instruction would be using that condition."; |
| input->GetBlock()->RemoveInstruction(input); |
| } |
| MaybeRecordStat(stats_, MethodCompilationStat::kSimplifyIfAddedPhi); |
| } |
| |
| void HDeadCodeElimination::ConnectSuccessiveBlocks() { |
| // Order does not matter. Skip the entry block by starting at index 1 in reverse post order. |
| for (size_t i = 1u, size = graph_->GetReversePostOrder().size(); i != size; ++i) { |
| HBasicBlock* block = graph_->GetReversePostOrder()[i]; |
| DCHECK(!block->IsEntryBlock()); |
| while (block->GetLastInstruction()->IsGoto()) { |
| HBasicBlock* successor = block->GetSingleSuccessor(); |
| if (successor->IsExitBlock() || successor->GetPredecessors().size() != 1u) { |
| break; |
| } |
| DCHECK_LT(i, IndexOfElement(graph_->GetReversePostOrder(), successor)); |
| block->MergeWith(successor); |
| --size; |
| DCHECK_EQ(size, graph_->GetReversePostOrder().size()); |
| DCHECK_EQ(block, graph_->GetReversePostOrder()[i]); |
| // Reiterate on this block in case it can be merged with its new successor. |
| } |
| } |
| } |
| |
| struct HDeadCodeElimination::TryBelongingInformation { |
| explicit TryBelongingInformation(ScopedArenaAllocator* allocator) |
| : blocks_in_try(allocator->Adapter(kArenaAllocDCE)), |
| coalesced_try_entries(allocator->Adapter(kArenaAllocDCE)) {} |
| |
| // Which blocks belong in the try. |
| ScopedArenaSet<HBasicBlock*> blocks_in_try; |
| // Which other try entries are referencing this same try. |
| ScopedArenaSet<HBasicBlock*> coalesced_try_entries; |
| }; |
| |
| bool HDeadCodeElimination::CanPerformTryRemoval(const TryBelongingInformation& try_belonging_info) { |
| for (HBasicBlock* block : try_belonging_info.blocks_in_try) { |
| for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| if (it.Current()->CanThrow()) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| void HDeadCodeElimination::DisconnectHandlersAndUpdateTryBoundary( |
| HBasicBlock* block, |
| /* out */ bool* any_block_in_loop) { |
| if (block->IsInLoop()) { |
| *any_block_in_loop = true; |
| } |
| |
| // Disconnect the handlers. |
| while (block->GetSuccessors().size() > 1) { |
| HBasicBlock* handler = block->GetSuccessors()[1]; |
| DCHECK(handler->IsCatchBlock()); |
| block->RemoveSuccessor(handler); |
| handler->RemovePredecessor(block); |
| if (handler->IsInLoop()) { |
| *any_block_in_loop = true; |
| } |
| } |
| |
| // Change TryBoundary to Goto. |
| DCHECK(block->EndsWithTryBoundary()); |
| HInstruction* last = block->GetLastInstruction(); |
| block->RemoveInstruction(last); |
| block->AddInstruction(new (graph_->GetAllocator()) HGoto(last->GetDexPc())); |
| DCHECK_EQ(block->GetSuccessors().size(), 1u); |
| } |
| |
| void HDeadCodeElimination::RemoveTry(HBasicBlock* try_entry, |
| const TryBelongingInformation& try_belonging_info, |
| /* out */ bool* any_block_in_loop) { |
| // Update all try entries. |
| DCHECK(try_entry->EndsWithTryBoundary()); |
| DCHECK(try_entry->GetLastInstruction()->AsTryBoundary()->IsEntry()); |
| DisconnectHandlersAndUpdateTryBoundary(try_entry, any_block_in_loop); |
| |
| for (HBasicBlock* other_try_entry : try_belonging_info.coalesced_try_entries) { |
| DCHECK(other_try_entry->EndsWithTryBoundary()); |
| DCHECK(other_try_entry->GetLastInstruction()->AsTryBoundary()->IsEntry()); |
| DisconnectHandlersAndUpdateTryBoundary(other_try_entry, any_block_in_loop); |
| } |
| |
| // Update the blocks in the try. |
| for (HBasicBlock* block : try_belonging_info.blocks_in_try) { |
| // Update the try catch information since now the try doesn't exist. |
| block->SetTryCatchInformation(nullptr); |
| if (block->IsInLoop()) { |
| *any_block_in_loop = true; |
| } |
| |
| if (block->EndsWithTryBoundary()) { |
| // Try exits. |
| DCHECK(!block->GetLastInstruction()->AsTryBoundary()->IsEntry()); |
| DisconnectHandlersAndUpdateTryBoundary(block, any_block_in_loop); |
| |
| if (block->GetSingleSuccessor()->IsExitBlock()) { |
| // `block` used to be a single exit TryBoundary that got turned into a Goto. It |
| // is now pointing to the exit which we don't allow. To fix it, we disconnect |
| // `block` from its predecessor and RemoveDeadBlocks will remove it from the |
| // graph. |
| DCHECK(block->IsSingleGoto()); |
| HBasicBlock* predecessor = block->GetSinglePredecessor(); |
| predecessor->ReplaceSuccessor(block, graph_->GetExitBlock()); |
| |
| if (!block->GetDominatedBlocks().empty()) { |
| // Update domination tree if `block` dominates a block to keep the graph consistent. |
| DCHECK_EQ(block->GetDominatedBlocks().size(), 1u); |
| DCHECK_EQ(graph_->GetExitBlock()->GetDominator(), block); |
| predecessor->AddDominatedBlock(graph_->GetExitBlock()); |
| graph_->GetExitBlock()->SetDominator(predecessor); |
| block->RemoveDominatedBlock(graph_->GetExitBlock()); |
| } |
| } |
| } |
| } |
| } |
| |
| bool HDeadCodeElimination::RemoveUnneededTries() { |
| if (!graph_->HasTryCatch()) { |
| return false; |
| } |
| |
| // Use local allocator for allocating memory. |
| ScopedArenaAllocator allocator(graph_->GetArenaStack()); |
| |
| // Collect which blocks are part of which try. |
| std::unordered_map<HBasicBlock*, TryBelongingInformation> tries; |
| for (HBasicBlock* block : graph_->GetReversePostOrderSkipEntryBlock()) { |
| if (block->IsTryBlock()) { |
| HBasicBlock* key = block->GetTryCatchInformation()->GetTryEntry().GetBlock(); |
| auto it = tries.find(key); |
| if (it == tries.end()) { |
| it = tries.insert({key, TryBelongingInformation(&allocator)}).first; |
| } |
| it->second.blocks_in_try.insert(block); |
| } |
| } |
| |
| // Deduplicate the tries which have different try entries but they are really the same try. |
| for (auto it = tries.begin(); it != tries.end(); it++) { |
| DCHECK(it->first->EndsWithTryBoundary()); |
| HTryBoundary* try_boundary = it->first->GetLastInstruction()->AsTryBoundary(); |
| for (auto other_it = next(it); other_it != tries.end(); /*other_it++ in the loop*/) { |
| DCHECK(other_it->first->EndsWithTryBoundary()); |
| HTryBoundary* other_try_boundary = other_it->first->GetLastInstruction()->AsTryBoundary(); |
| if (try_boundary->HasSameExceptionHandlersAs(*other_try_boundary)) { |
| // Merge the entries as they are really the same one. |
| // Block merging. |
| it->second.blocks_in_try.insert(other_it->second.blocks_in_try.begin(), |
| other_it->second.blocks_in_try.end()); |
| |
| // Add the coalesced try entry to update it too. |
| it->second.coalesced_try_entries.insert(other_it->first); |
| |
| // Erase the other entry. |
| other_it = tries.erase(other_it); |
| } else { |
| other_it++; |
| } |
| } |
| } |
| |
| size_t removed_tries = 0; |
| bool any_block_in_loop = false; |
| |
| // Check which tries contain throwing instructions. |
| for (const auto& entry : tries) { |
| if (CanPerformTryRemoval(entry.second)) { |
| ++removed_tries; |
| RemoveTry(entry.first, entry.second, &any_block_in_loop); |
| } |
| } |
| |
| if (removed_tries != 0) { |
| // We want to: |
| // 1) Update the dominance information |
| // 2) Remove catch block subtrees, if they are now unreachable. |
| // If we run the dominance recomputation without removing the code, those catch blocks will |
| // not be part of the post order and won't be removed. If we don't run the dominance |
| // recomputation, we risk RemoveDeadBlocks not running it and leaving the graph in an |
| // inconsistent state. So, what we can do is run RemoveDeadBlocks and force a recomputation. |
| // Note that we are not guaranteed to remove a catch block if we have nested try blocks: |
| // |
| // try { |
| // ... nothing can throw. TryBoundary A ... |
| // try { |
| // ... can throw. TryBoundary B... |
| // } catch (Error e) {} |
| // } catch (Exception e) {} |
| // |
| // In the example above, we can remove the TryBoundary A but the Exception catch cannot be |
| // removed as the TryBoundary B might still throw into that catch. TryBoundary A and B don't get |
| // coalesced since they have different catch handlers. |
| |
| RemoveDeadBlocks(/* force_recomputation= */ true, any_block_in_loop); |
| MaybeRecordStat(stats_, MethodCompilationStat::kRemovedTry, removed_tries); |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| bool HDeadCodeElimination::RemoveDeadBlocks(bool force_recomputation, |
| bool force_loop_recomputation) { |
| DCHECK_IMPLIES(force_loop_recomputation, force_recomputation); |
| |
| // Use local allocator for allocating memory. |
| ScopedArenaAllocator allocator(graph_->GetArenaStack()); |
| |
| // Classify blocks as reachable/unreachable. |
| ArenaBitVector live_blocks(&allocator, graph_->GetBlocks().size(), false, kArenaAllocDCE); |
| live_blocks.ClearAllBits(); |
| |
| MarkReachableBlocks(graph_, &live_blocks); |
| bool removed_one_or_more_blocks = false; |
| bool rerun_dominance_and_loop_analysis = false; |
| |
| // Remove all dead blocks. Iterate in post order because removal needs the |
| // block's chain of dominators and nested loops need to be updated from the |
| // inside out. |
| for (HBasicBlock* block : graph_->GetPostOrder()) { |
| int id = block->GetBlockId(); |
| if (!live_blocks.IsBitSet(id)) { |
| MaybeRecordDeadBlock(block); |
| block->DisconnectAndDelete(); |
| removed_one_or_more_blocks = true; |
| if (block->IsInLoop()) { |
| rerun_dominance_and_loop_analysis = true; |
| } |
| } |
| } |
| |
| // If we removed at least one block, we need to recompute the full |
| // dominator tree and try block membership. |
| if (removed_one_or_more_blocks || force_recomputation) { |
| if (rerun_dominance_and_loop_analysis || force_loop_recomputation) { |
| graph_->ClearLoopInformation(); |
| graph_->ClearDominanceInformation(); |
| graph_->BuildDominatorTree(); |
| } else { |
| graph_->ClearDominanceInformation(); |
| graph_->ComputeDominanceInformation(); |
| graph_->ComputeTryBlockInformation(); |
| } |
| } |
| return removed_one_or_more_blocks; |
| } |
| |
| void HDeadCodeElimination::RemoveDeadInstructions() { |
| // Process basic blocks in post-order in the dominator tree, so that |
| // a dead instruction depending on another dead instruction is removed. |
| for (HBasicBlock* block : graph_->GetPostOrder()) { |
| // Traverse this block's instructions in backward order and remove |
| // the unused ones. |
| HBackwardInstructionIterator i(block->GetInstructions()); |
| // Skip the first iteration, as the last instruction of a block is |
| // a branching instruction. |
| DCHECK(i.Current()->IsControlFlow()); |
| for (i.Advance(); !i.Done(); i.Advance()) { |
| HInstruction* inst = i.Current(); |
| DCHECK(!inst->IsControlFlow()); |
| if (inst->IsDeadAndRemovable()) { |
| block->RemoveInstruction(inst); |
| MaybeRecordStat(stats_, MethodCompilationStat::kRemovedDeadInstruction); |
| } |
| } |
| } |
| } |
| |
| void HDeadCodeElimination::UpdateGraphFlags() { |
| bool has_monitor_operations = false; |
| bool has_simd = false; |
| bool has_bounds_checks = false; |
| bool has_always_throwing_invokes = false; |
| |
| for (HBasicBlock* block : graph_->GetReversePostOrder()) { |
| for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| HInstruction* instruction = it.Current(); |
| if (instruction->IsMonitorOperation()) { |
| has_monitor_operations = true; |
| } else if (instruction->IsVecOperation()) { |
| has_simd = true; |
| } else if (instruction->IsBoundsCheck()) { |
| has_bounds_checks = true; |
| } else if (instruction->IsInvoke() && instruction->AsInvoke()->AlwaysThrows()) { |
| has_always_throwing_invokes = true; |
| } |
| } |
| } |
| |
| graph_->SetHasMonitorOperations(has_monitor_operations); |
| graph_->SetHasSIMD(has_simd); |
| graph_->SetHasBoundsChecks(has_bounds_checks); |
| graph_->SetHasAlwaysThrowingInvokes(has_always_throwing_invokes); |
| } |
| |
| bool HDeadCodeElimination::Run() { |
| // Do not eliminate dead blocks if the graph has irreducible loops. We could |
| // support it, but that would require changes in our loop representation to handle |
| // multiple entry points. We decided it was not worth the complexity. |
| if (!graph_->HasIrreducibleLoops()) { |
| // Simplify graph to generate more dead block patterns. |
| ConnectSuccessiveBlocks(); |
| bool did_any_simplification = false; |
| did_any_simplification |= SimplifyAlwaysThrows(); |
| did_any_simplification |= SimplifyIfs(); |
| did_any_simplification |= RemoveDeadBlocks(); |
| // We call RemoveDeadBlocks before RemoveUnneededTries to remove the dead blocks from the |
| // previous optimizations. Otherwise, we might detect that a try has throwing instructions but |
| // they are actually dead code. RemoveUnneededTryBoundary will call RemoveDeadBlocks again if |
| // needed. |
| did_any_simplification |= RemoveUnneededTries(); |
| if (did_any_simplification) { |
| // Connect successive blocks created by dead branches. |
| ConnectSuccessiveBlocks(); |
| } |
| } |
| SsaRedundantPhiElimination(graph_).Run(); |
| RemoveDeadInstructions(); |
| UpdateGraphFlags(); |
| return true; |
| } |
| |
| } // namespace art |