blob: 112746e2fe7e668c752dcbc81a064950bfef3fb4 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "debugger_interface.h"
#include <android-base/logging.h>
#include "base/array_ref.h"
#include "base/bit_utils.h"
#include "base/logging.h"
#include "base/mutex.h"
#include "base/time_utils.h"
#include "base/utils.h"
#include "dex/dex_file.h"
#include "elf/elf_debug_reader.h"
#include "jit/jit.h"
#include "jit/jit_code_cache.h"
#include "jit/jit_memory_region.h"
#include "runtime.h"
#include "thread-current-inl.h"
#include "thread.h"
#include <atomic>
#include <cstddef>
//
// Debug interface for native tools (gdb, lldb, libunwind, simpleperf).
//
// See http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
//
// There are two ways for native tools to access the debug data safely:
//
// 1) Synchronously, by setting a breakpoint in the __*_debug_register_code
// method, which is called after every modification of the linked list.
// GDB does this, but it is complex to set up and it stops the process.
//
// 2) Asynchronously, using the entry seqlocks.
// * The seqlock is a monotonically increasing counter, which
// is even if the entry is valid and odd if it is invalid.
// It is set to even value after all other fields are set,
// and it is set to odd value before the entry is deleted.
// * This makes it possible to safely read the symfile data:
// * The reader should read the value of the seqlock both
// before and after reading the symfile. If the seqlock
// values match and are even the copy is consistent.
// * Entries are recycled, but never freed, which guarantees
// that the seqlock is not overwritten by a random value.
// * The linked-list is one level higher. The next-pointer
// must always point to an entry with even seqlock, which
// ensures that entries of a crashed process can be read.
// This means the entry must be added after it is created
// and it must be removed before it is invalidated (odd).
// * When iterating over the linked list the reader can use
// the timestamps to ensure that current and next entry
// were not deleted using the following steps:
// 1) Read next pointer and the next entry's seqlock.
// 2) Read the symfile and re-read the next pointer.
// 3) Re-read both the current and next seqlock.
// 4) Go to step 1 with using new entry and seqlock.
//
// 3) Asynchronously, using the global seqlock.
// * The seqlock is a monotonically increasing counter which is incremented
// before and after every modification of the linked list. Odd value of
// the counter means the linked list is being modified (it is locked).
// * The tool should read the value of the seqlock both before and after
// copying the linked list. If the seqlock values match and are even,
// the copy is consistent. Otherwise, the reader should try again.
// * Note that using the data directly while is it being modified
// might crash the tool. Therefore, the only safe way is to make
// a copy and use the copy only after the seqlock has been checked.
// * Note that the process might even free and munmap the data while
// it is being copied, therefore the reader should either handle
// SEGV or use OS calls to read the memory (e.g. process_vm_readv).
// * The timestamps on the entry record the time when the entry was
// created which is relevant if the unwinding is not live and is
// postponed until much later. All timestamps must be unique.
// * For full conformance with the C++ memory model, all seqlock
// protected accesses should be atomic. We currently do this in the
// more critical cases. The rest will have to be fixed before
// attempting to run TSAN on this code.
//
namespace art {
static Mutex g_jit_debug_lock("JIT native debug entries", kNativeDebugInterfaceLock);
static Mutex g_dex_debug_lock("DEX native debug entries", kNativeDebugInterfaceLock);
// Most loads and stores need no synchronization since all memory is protected by the global locks.
// Some writes are synchronized so libunwindstack can read the memory safely from another process.
constexpr std::memory_order kNonRacingRelaxed = std::memory_order_relaxed;
// Size of JIT code range covered by each packed JITCodeEntry.
constexpr uint32_t kJitRepackGroupSize = 64 * KB;
// Automatically call the repack method every 'n' new entries.
constexpr uint32_t kJitRepackFrequency = 64;
// Public binary interface between ART and native tools (gdb, libunwind, etc).
// The fields below need to be exported and have special names as per the gdb api.
extern "C" {
enum JITAction {
JIT_NOACTION = 0,
JIT_REGISTER_FN,
JIT_UNREGISTER_FN
};
// Public/stable binary interface.
struct JITCodeEntryPublic {
std::atomic<const JITCodeEntry*> next_; // Atomic to guarantee consistency after crash.
const JITCodeEntry* prev_ = nullptr; // For linked list deletion. Unused in readers.
const uint8_t* symfile_addr_ = nullptr; // Address of the in-memory ELF file.
uint64_t symfile_size_ = 0; // NB: The offset is 12 on x86 but 16 on ARM32.
// Android-specific fields:
uint64_t timestamp_; // CLOCK_MONOTONIC time of entry registration.
std::atomic_uint32_t seqlock_{1}; // Synchronization. Even value if entry is valid.
};
// Implementation-specific fields (which can be used only in this file).
struct JITCodeEntry : public JITCodeEntryPublic {
// Unpacked entries: Code address of the symbol in the ELF file.
// Packed entries: The start address of the covered memory range.
const void* addr_ = nullptr;
// Allow merging of ELF files to save space.
// Packing drops advanced DWARF data, so it is not always desirable.
bool allow_packing_ = false;
// Whether this entry has been LZMA compressed.
// Compression is expensive, so we don't always do it.
bool is_compressed_ = false;
};
// Public/stable binary interface.
struct JITDescriptorPublic {
uint32_t version_ = 1; // NB: GDB supports only version 1.
uint32_t action_flag_ = JIT_NOACTION; // One of the JITAction enum values.
const JITCodeEntry* relevant_entry_ = nullptr; // The entry affected by the action.
std::atomic<const JITCodeEntry*> head_{nullptr}; // Head of link list of all entries.
// Android-specific fields:
uint8_t magic_[8] = {'A', 'n', 'd', 'r', 'o', 'i', 'd', '2'};
uint32_t flags_ = 0; // Reserved for future use. Must be 0.
uint32_t sizeof_descriptor = sizeof(JITDescriptorPublic);
uint32_t sizeof_entry = sizeof(JITCodeEntryPublic);
std::atomic_uint32_t seqlock_{0}; // Incremented before and after any modification.
uint64_t timestamp_ = 1; // CLOCK_MONOTONIC time of last action.
};
// Implementation-specific fields (which can be used only in this file).
struct JITDescriptor : public JITDescriptorPublic {
const JITCodeEntry* tail_ = nullptr; // Tail of link list of all live entries.
const JITCodeEntry* free_entries_ = nullptr; // List of deleted entries ready for reuse.
// Used for memory sharing with zygote. See NativeDebugInfoPreFork().
const JITCodeEntry* zygote_head_entry_ = nullptr;
JITCodeEntry application_tail_entry_{};
};
// Public interface: Can be used by reader to check the structs have the expected size.
uint32_t g_art_sizeof_jit_code_entry = sizeof(JITCodeEntryPublic);
uint32_t g_art_sizeof_jit_descriptor = sizeof(JITDescriptorPublic);
// Check that std::atomic has the expected layout.
static_assert(alignof(std::atomic_uint32_t) == alignof(uint32_t), "Weird alignment");
static_assert(sizeof(std::atomic_uint32_t) == sizeof(uint32_t), "Weird size");
static_assert(std::atomic_uint32_t::is_always_lock_free, "Expected to be lock free");
static_assert(alignof(std::atomic<void*>) == alignof(void*), "Weird alignment");
static_assert(sizeof(std::atomic<void*>) == sizeof(void*), "Weird size");
static_assert(std::atomic<void*>::is_always_lock_free, "Expected to be lock free");
// GDB may set breakpoint here. We must ensure it is not removed or deduplicated.
void __attribute__((noinline)) __jit_debug_register_code() {
__asm__("");
}
// Alternatively, native tools may overwrite this field to execute custom handler.
void (*__jit_debug_register_code_ptr)() = __jit_debug_register_code;
// The root data structure describing of all JITed methods.
JITDescriptor __jit_debug_descriptor GUARDED_BY(g_jit_debug_lock) {};
// The following globals mirror the ones above, but are used to register dex files.
void __attribute__((noinline)) __dex_debug_register_code() {
__asm__("");
}
void (*__dex_debug_register_code_ptr)() = __dex_debug_register_code;
JITDescriptor __dex_debug_descriptor GUARDED_BY(g_dex_debug_lock) {};
}
// The fields below are internal, but we keep them here anyway for consistency.
// Their state is related to the static state above and it must be kept in sync.
// Used only in debug builds to check that we are not adding duplicate entries.
static std::unordered_set<const void*> g_dcheck_all_jit_functions GUARDED_BY(g_jit_debug_lock);
// Methods that have been marked for deletion on the next repack pass.
static std::vector<const void*> g_removed_jit_functions GUARDED_BY(g_jit_debug_lock);
// Number of small (single symbol) ELF files. Used to trigger repacking.
static uint32_t g_jit_num_unpacked_entries = 0;
struct DexNativeInfo {
static constexpr bool kCopySymfileData = false; // Just reference DEX files.
static JITDescriptor& Descriptor() { return __dex_debug_descriptor; }
static void NotifyNativeDebugger() { __dex_debug_register_code_ptr(); }
static const void* Alloc(size_t size) { return malloc(size); }
static void Free(const void* ptr) { free(const_cast<void*>(ptr)); }
template<class T> static T* Writable(const T* v) { return const_cast<T*>(v); }
};
struct JitNativeInfo {
static constexpr bool kCopySymfileData = true; // Copy debug info to JIT memory.
static JITDescriptor& Descriptor() { return __jit_debug_descriptor; }
static void NotifyNativeDebugger() { __jit_debug_register_code_ptr(); }
static const void* Alloc(size_t size) { return Memory()->AllocateData(size); }
static void Free(const void* ptr) { Memory()->FreeData(reinterpret_cast<const uint8_t*>(ptr)); }
static void Free(void* ptr) = delete;
template<class T> static T* Writable(const T* v) {
// Special case: This entry is in static memory and not allocated in JIT memory.
if (v == reinterpret_cast<const void*>(&Descriptor().application_tail_entry_)) {
return const_cast<T*>(v);
}
return const_cast<T*>(Memory()->GetWritableDataAddress(v));
}
static jit::JitMemoryRegion* Memory() ASSERT_CAPABILITY(Locks::jit_lock_) {
Locks::jit_lock_->AssertHeld(Thread::Current());
jit::JitCodeCache* jit_code_cache = Runtime::Current()->GetJitCodeCache();
CHECK(jit_code_cache != nullptr);
jit::JitMemoryRegion* memory = jit_code_cache->GetCurrentRegion();
CHECK(memory->IsValid());
return memory;
}
};
ArrayRef<const uint8_t> GetJITCodeEntrySymFile(const JITCodeEntry* entry) {
return ArrayRef<const uint8_t>(entry->symfile_addr_, entry->symfile_size_);
}
// Ensure the timestamp is monotonically increasing even in presence of low
// granularity system timer. This ensures each entry has unique timestamp.
static uint64_t GetNextTimestamp(JITDescriptor& descriptor) {
return std::max(descriptor.timestamp_ + 1, NanoTime());
}
// Mark the descriptor as "locked", so native tools know the data is being modified.
static void Seqlock(JITDescriptor& descriptor) {
DCHECK_EQ(descriptor.seqlock_.load(kNonRacingRelaxed) & 1, 0u) << "Already locked";
descriptor.seqlock_.fetch_add(1, std::memory_order_relaxed);
// Ensure that any writes within the locked section cannot be reordered before the increment.
std::atomic_thread_fence(std::memory_order_release);
}
// Mark the descriptor as "unlocked", so native tools know the data is safe to read.
static void Sequnlock(JITDescriptor& descriptor) {
DCHECK_EQ(descriptor.seqlock_.load(kNonRacingRelaxed) & 1, 1u) << "Already unlocked";
// Ensure that any writes within the locked section cannot be reordered after the increment.
std::atomic_thread_fence(std::memory_order_release);
descriptor.seqlock_.fetch_add(1, std::memory_order_relaxed);
}
// Insert 'entry' in the linked list before 'next' and mark it as valid (append if 'next' is null).
// This method must be called under global lock (g_jit_debug_lock or g_dex_debug_lock).
template<class NativeInfo>
static void InsertNewEntry(const JITCodeEntry* entry, const JITCodeEntry* next) {
CHECK_EQ(entry->seqlock_.load(kNonRacingRelaxed) & 1, 1u) << "Expected invalid entry";
JITDescriptor& descriptor = NativeInfo::Descriptor();
const JITCodeEntry* prev = (next != nullptr ? next->prev_ : descriptor.tail_);
JITCodeEntry* writable = NativeInfo::Writable(entry);
writable->next_ = next;
writable->prev_ = prev;
writable->seqlock_.fetch_add(1, std::memory_order_release); // Mark as valid.
// Backward pointers should not be used by readers, so they are non-atomic.
if (next != nullptr) {
NativeInfo::Writable(next)->prev_ = entry;
} else {
descriptor.tail_ = entry;
}
// Forward pointers must be atomic and they must point to a valid entry at all times.
if (prev != nullptr) {
NativeInfo::Writable(prev)->next_.store(entry, std::memory_order_release);
} else {
descriptor.head_.store(entry, std::memory_order_release);
}
}
// This must be called with the appropriate lock taken (g_{jit,dex}_debug_lock).
template<class NativeInfo>
static const JITCodeEntry* CreateJITCodeEntryInternal(
ArrayRef<const uint8_t> symfile = ArrayRef<const uint8_t>(),
const void* addr = nullptr,
bool allow_packing = false,
bool is_compressed = false) {
JITDescriptor& descriptor = NativeInfo::Descriptor();
// Allocate JITCodeEntry if needed.
if (descriptor.free_entries_ == nullptr) {
const void* memory = NativeInfo::Alloc(sizeof(JITCodeEntry));
if (memory == nullptr) {
LOG(ERROR) << "Failed to allocate memory for native debug info";
return nullptr;
}
new (NativeInfo::Writable(memory)) JITCodeEntry();
descriptor.free_entries_ = reinterpret_cast<const JITCodeEntry*>(memory);
}
// Make a copy of the buffer to shrink it and to pass ownership to JITCodeEntry.
if (NativeInfo::kCopySymfileData && !symfile.empty()) {
const uint8_t* copy = reinterpret_cast<const uint8_t*>(NativeInfo::Alloc(symfile.size()));
if (copy == nullptr) {
LOG(ERROR) << "Failed to allocate memory for native debug info";
return nullptr;
}
memcpy(NativeInfo::Writable(copy), symfile.data(), symfile.size());
symfile = ArrayRef<const uint8_t>(copy, symfile.size());
}
uint64_t timestamp = GetNextTimestamp(descriptor);
// We must insert entries at specific place. See NativeDebugInfoPreFork().
const JITCodeEntry* next = descriptor.head_.load(kNonRacingRelaxed); // Insert at the head.
if (descriptor.zygote_head_entry_ != nullptr && Runtime::Current()->IsZygote()) {
next = nullptr; // Insert zygote entries at the tail.
}
// Pop entry from the free list.
const JITCodeEntry* entry = descriptor.free_entries_;
descriptor.free_entries_ = descriptor.free_entries_->next_.load(kNonRacingRelaxed);
// Create the entry and set all its fields.
JITCodeEntry* writable_entry = NativeInfo::Writable(entry);
writable_entry->symfile_addr_ = symfile.data();
writable_entry->symfile_size_ = symfile.size();
writable_entry->addr_ = addr;
writable_entry->allow_packing_ = allow_packing;
writable_entry->is_compressed_ = is_compressed;
writable_entry->timestamp_ = timestamp;
// Add the entry to the main linked list.
Seqlock(descriptor);
InsertNewEntry<NativeInfo>(entry, next);
descriptor.relevant_entry_ = entry;
descriptor.action_flag_ = JIT_REGISTER_FN;
descriptor.timestamp_ = timestamp;
Sequnlock(descriptor);
NativeInfo::NotifyNativeDebugger();
return entry;
}
template<class NativeInfo>
static void DeleteJITCodeEntryInternal(const JITCodeEntry* entry) {
CHECK(entry != nullptr);
JITDescriptor& descriptor = NativeInfo::Descriptor();
// Remove the entry from the main linked-list.
Seqlock(descriptor);
const JITCodeEntry* next = entry->next_.load(kNonRacingRelaxed);
const JITCodeEntry* prev = entry->prev_;
if (next != nullptr) {
NativeInfo::Writable(next)->prev_ = prev;
} else {
descriptor.tail_ = prev;
}
if (prev != nullptr) {
NativeInfo::Writable(prev)->next_.store(next, std::memory_order_relaxed);
} else {
descriptor.head_.store(next, std::memory_order_relaxed);
}
descriptor.relevant_entry_ = entry;
descriptor.action_flag_ = JIT_UNREGISTER_FN;
descriptor.timestamp_ = GetNextTimestamp(descriptor);
Sequnlock(descriptor);
NativeInfo::NotifyNativeDebugger();
// Delete the entry.
JITCodeEntry* writable_entry = NativeInfo::Writable(entry);
CHECK_EQ(writable_entry->seqlock_.load(kNonRacingRelaxed) & 1, 0u) << "Expected valid entry";
// Release: Ensures that "next_" points to valid entry at any time in reader.
writable_entry->seqlock_.fetch_add(1, std::memory_order_release); // Mark as invalid.
// Release: Ensures that the entry is seen as invalid before it's data is freed.
std::atomic_thread_fence(std::memory_order_release);
const uint8_t* symfile = entry->symfile_addr_;
writable_entry->symfile_addr_ = nullptr;
if (NativeInfo::kCopySymfileData && symfile != nullptr) {
NativeInfo::Free(symfile);
}
// Push the entry to the free list.
writable_entry->next_.store(descriptor.free_entries_, kNonRacingRelaxed);
writable_entry->prev_ = nullptr;
descriptor.free_entries_ = entry;
}
void AddNativeDebugInfoForDex(Thread* self, const DexFile* dexfile) {
MutexLock mu(self, g_dex_debug_lock);
DCHECK(dexfile != nullptr);
// Container dex files (v41) may store data past the size defined in the header.
uint32_t size = dexfile->SizeIncludingSharedData();
if (dexfile->IsCompactDexFile()) {
// Compact dex files may store data past the size defined in the header.
const DexFile::Header& header = dexfile->GetHeader();
size = std::max(size, header.data_off_ + header.data_size_);
}
const ArrayRef<const uint8_t> symfile(dexfile->Begin(), size);
CreateJITCodeEntryInternal<DexNativeInfo>(symfile);
}
void RemoveNativeDebugInfoForDex(Thread* self, const DexFile* dexfile) {
MutexLock mu(self, g_dex_debug_lock);
DCHECK(dexfile != nullptr);
// We register dex files in the class linker and free them in DexFile_closeDexFile, but
// there might be cases where we load the dex file without using it in the class linker.
// On the other hand, single dex file might also be used with different class-loaders.
for (const JITCodeEntry* entry = __dex_debug_descriptor.head_; entry != nullptr; ) {
const JITCodeEntry* next = entry->next_; // Save next pointer before we free the memory.
if (entry->symfile_addr_ == dexfile->Begin()) {
DeleteJITCodeEntryInternal<DexNativeInfo>(entry);
}
entry = next;
}
}
// Splits the linked linked in to two parts:
// The first part (including the static head pointer) is owned by the application.
// The second part is owned by zygote and might be concurrently modified by it.
//
// We add two empty entries at the boundary which are never removed (app_tail, zygote_head).
// These entries are needed to preserve the next/prev pointers in the linked list,
// since zygote can not modify the application's data and vice versa.
//
// <------- owned by the application memory --------> <--- owned by zygote memory --->
// |----------------------|------------------|-------------|-----------------|
// head -> | application_entries* | application_tail | zygote_head | zygote_entries* |
// |+---------------------|------------------|-------------|----------------+|
// | |
// \-(new application entries) (new zygote entries)-/
//
// Zygote entries are inserted at the end, which means that repacked zygote entries
// will still be seen by single forward iteration of the linked list (avoiding race).
//
// Application entries are inserted at the start which introduces repacking race,
// but that is ok, since it is easy to read new entries from head in further pass.
// The benefit is that this makes it fast to read only the new entries.
//
void NativeDebugInfoPreFork() {
CHECK(Runtime::Current()->IsZygote());
JITDescriptor& descriptor = JitNativeInfo::Descriptor();
if (descriptor.zygote_head_entry_ != nullptr) {
return; // Already done - we need to do this only on the first fork.
}
// Create the zygote-owned head entry (with no ELF file).
// The data will be allocated from the current JIT memory (owned by zygote).
MutexLock mu(Thread::Current(), *Locks::jit_lock_); // Needed to alloc entry.
const JITCodeEntry* zygote_head =
reinterpret_cast<const JITCodeEntry*>(JitNativeInfo::Alloc(sizeof(JITCodeEntry)));
CHECK(zygote_head != nullptr);
new (JitNativeInfo::Writable(zygote_head)) JITCodeEntry(); // Initialize.
InsertNewEntry<JitNativeInfo>(zygote_head, descriptor.head_);
descriptor.zygote_head_entry_ = zygote_head;
// Create the child-owned tail entry (with no ELF file).
// The data is statically allocated since it must be owned by the forked process.
InsertNewEntry<JitNativeInfo>(&descriptor.application_tail_entry_, descriptor.head_);
}
void NativeDebugInfoPostFork() {
CHECK(!Runtime::Current()->IsZygote());
JITDescriptor& descriptor = JitNativeInfo::Descriptor();
descriptor.free_entries_ = nullptr; // Don't reuse zygote's entries.
}
// Split the JIT code cache into groups of fixed size and create single JITCodeEntry for each group.
// The start address of method's code determines which group it belongs to. The end is irrelevant.
// New mini debug infos will be merged if possible, and entries for GCed functions will be removed.
static void RepackEntries(bool compress_entries, ArrayRef<const void*> removed)
REQUIRES(g_jit_debug_lock) {
DCHECK(std::is_sorted(removed.begin(), removed.end()));
jit::Jit* jit = Runtime::Current()->GetJit();
if (jit == nullptr) {
return;
}
JITDescriptor& descriptor = __jit_debug_descriptor;
bool is_zygote = Runtime::Current()->IsZygote();
// Collect entries that we want to pack.
std::vector<const JITCodeEntry*> entries;
entries.reserve(2 * kJitRepackFrequency);
for (const JITCodeEntry* it = descriptor.head_; it != nullptr; it = it->next_) {
if (it == descriptor.zygote_head_entry_ && !is_zygote) {
break; // Memory owned by the zygote process (read-only for an app).
}
if (it->allow_packing_) {
if (!compress_entries && it->is_compressed_ && removed.empty()) {
continue; // If we are not compressing, also avoid decompressing.
}
entries.push_back(it);
}
}
auto cmp = [](const JITCodeEntry* l, const JITCodeEntry* r) { return l->addr_ < r->addr_; };
std::sort(entries.begin(), entries.end(), cmp); // Sort by address.
// Process the entries in groups (each spanning memory range of size kJitRepackGroupSize).
for (auto group_it = entries.begin(); group_it != entries.end();) {
const void* group_ptr = AlignDown((*group_it)->addr_, kJitRepackGroupSize);
const void* group_end = reinterpret_cast<const uint8_t*>(group_ptr) + kJitRepackGroupSize;
// Find all entries in this group (each entry is an in-memory ELF file).
auto begin = group_it;
auto end = std::find_if(begin, entries.end(), [=](auto* e) { return e->addr_ >= group_end; });
CHECK(end > begin);
ArrayRef<const JITCodeEntry*> elfs(&*begin, end - begin);
// Find all symbols that have been removed in this memory range.
auto removed_begin = std::lower_bound(removed.begin(), removed.end(), group_ptr);
auto removed_end = std::lower_bound(removed.begin(), removed.end(), group_end);
CHECK(removed_end >= removed_begin);
ArrayRef<const void*> removed_subset(&*removed_begin, removed_end - removed_begin);
// Optimization: Don't compress the last group since it will likely change again soon.
bool compress = compress_entries && end != entries.end();
// Bail out early if there is nothing to do for this group.
if (elfs.size() == 1 && removed_subset.empty() && (*begin)->is_compressed_ == compress) {
group_it = end; // Go to next group.
continue;
}
// Create new single JITCodeEntry that covers this memory range.
uint64_t start_time = MicroTime();
size_t live_symbols;
std::vector<uint8_t> packed = jit->GetJitCompiler()->PackElfFileForJIT(
elfs, removed_subset, compress, &live_symbols);
VLOG(jit)
<< "JIT mini-debug-info repacked"
<< " for " << group_ptr
<< " in " << MicroTime() - start_time << "us"
<< " elfs=" << elfs.size()
<< " dead=" << removed_subset.size()
<< " live=" << live_symbols
<< " size=" << packed.size() << (compress ? "(lzma)" : "");
// Replace the old entries with the new one (with their lifetime temporally overlapping).
CreateJITCodeEntryInternal<JitNativeInfo>(ArrayRef<const uint8_t>(packed),
/*addr_=*/ group_ptr,
/*allow_packing_=*/ true,
/*is_compressed_=*/ compress);
for (auto it : elfs) {
DeleteJITCodeEntryInternal<JitNativeInfo>(/*entry=*/ it);
}
group_it = end; // Go to next group.
}
g_jit_num_unpacked_entries = 0;
}
void RepackNativeDebugInfoForJitLocked() REQUIRES(g_jit_debug_lock);
void AddNativeDebugInfoForJit(const void* code_ptr,
const std::vector<uint8_t>& symfile,
bool allow_packing) {
MutexLock mu(Thread::Current(), g_jit_debug_lock);
DCHECK_NE(symfile.size(), 0u);
if (kIsDebugBuild && code_ptr != nullptr) {
DCHECK(g_dcheck_all_jit_functions.insert(code_ptr).second) << code_ptr << " already added";
}
// Remove all methods which have been marked for removal. The JIT GC should
// force repack, so this should happen only rarely for various corner cases.
// Must be done before addition in case the added code_ptr is in the removed set.
if (!g_removed_jit_functions.empty()) {
RepackNativeDebugInfoForJitLocked();
}
CreateJITCodeEntryInternal<JitNativeInfo>(ArrayRef<const uint8_t>(symfile),
/*addr=*/ code_ptr,
/*allow_packing=*/ allow_packing,
/*is_compressed=*/ false);
if (code_ptr == nullptr) {
VLOG(jit) << "JIT mini-debug-info added for new type, size=" << PrettySize(symfile.size());
} else {
VLOG(jit)
<< "JIT mini-debug-info added for native code at " << code_ptr
<< ", size=" << PrettySize(symfile.size());
}
// Automatically repack entries on regular basis to save space.
// Pack (but don't compress) recent entries - this is cheap and reduces memory use by ~4x.
// We delay compression until after GC since it is more expensive (and saves further ~4x).
// Always compress zygote, since it does not GC and we want to keep the high-water mark low.
if (++g_jit_num_unpacked_entries >= kJitRepackFrequency) {
bool is_zygote = Runtime::Current()->IsZygote();
RepackEntries(/*compress_entries=*/ is_zygote, /*removed=*/ ArrayRef<const void*>());
}
}
void RemoveNativeDebugInfoForJit(const void* code_ptr) {
MutexLock mu(Thread::Current(), g_jit_debug_lock);
g_dcheck_all_jit_functions.erase(code_ptr);
// Method removal is very expensive since we need to decompress and read ELF files.
// Collet methods to be removed and do the removal in bulk later.
g_removed_jit_functions.push_back(code_ptr);
VLOG(jit) << "JIT mini-debug-info removed for " << code_ptr;
}
void RepackNativeDebugInfoForJitLocked() {
// Remove entries which are inside packed and compressed ELF files.
std::vector<const void*>& removed = g_removed_jit_functions;
std::sort(removed.begin(), removed.end());
RepackEntries(/*compress_entries=*/ true, ArrayRef<const void*>(removed));
// Remove entries which are not allowed to be packed (containing single method each).
for (const JITCodeEntry* it = __jit_debug_descriptor.head_; it != nullptr;) {
const JITCodeEntry* next = it->next_;
if (!it->allow_packing_ && std::binary_search(removed.begin(), removed.end(), it->addr_)) {
DeleteJITCodeEntryInternal<JitNativeInfo>(/*entry=*/ it);
}
it = next;
}
removed.clear();
removed.shrink_to_fit();
}
void RepackNativeDebugInfoForJit() {
MutexLock mu(Thread::Current(), g_jit_debug_lock);
RepackNativeDebugInfoForJitLocked();
}
size_t GetJitMiniDebugInfoMemUsage() {
MutexLock mu(Thread::Current(), g_jit_debug_lock);
size_t size = 0;
for (const JITCodeEntry* it = __jit_debug_descriptor.head_; it != nullptr; it = it->next_) {
size += sizeof(JITCodeEntry) + it->symfile_size_;
}
return size;
}
Mutex* GetNativeDebugInfoLock() {
return &g_jit_debug_lock;
}
void ForEachNativeDebugSymbol(std::function<void(const void*, size_t, const char*)> cb) {
MutexLock mu(Thread::Current(), g_jit_debug_lock);
using ElfRuntimeTypes = std::conditional<sizeof(void*) == 4, ElfTypes32, ElfTypes64>::type;
const JITCodeEntry* end = __jit_debug_descriptor.zygote_head_entry_;
for (const JITCodeEntry* it = __jit_debug_descriptor.head_; it != end; it = it->next_) {
ArrayRef<const uint8_t> buffer(it->symfile_addr_, it->symfile_size_);
if (!buffer.empty()) {
ElfDebugReader<ElfRuntimeTypes> reader(buffer);
reader.VisitFunctionSymbols([&](ElfRuntimeTypes::Sym sym, const char* name) {
cb(reinterpret_cast<const void*>(sym.st_value), sym.st_size, name);
});
}
}
}
} // namespace art