| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "profile_compilation_info.h" |
| |
| #include <fcntl.h> |
| #include <sys/file.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| #include <zlib.h> |
| |
| #include <algorithm> |
| #include <cerrno> |
| #include <climits> |
| #include <cstdio> |
| #include <cstdlib> |
| #include <iostream> |
| #include <numeric> |
| #include <random> |
| #include <string> |
| #include <vector> |
| |
| #include "android-base/file.h" |
| #include "android-base/properties.h" |
| #include "android-base/scopeguard.h" |
| #include "android-base/unique_fd.h" |
| #include "base/arena_allocator.h" |
| #include "base/bit_utils.h" |
| #include "base/dumpable.h" |
| #include "base/file_utils.h" |
| #include "base/globals.h" |
| #include "base/logging.h" // For VLOG. |
| #include "base/malloc_arena_pool.h" |
| #include "base/os.h" |
| #include "base/safe_map.h" |
| #include "base/scoped_flock.h" |
| #include "base/stl_util.h" |
| #include "base/systrace.h" |
| #include "base/time_utils.h" |
| #include "base/unix_file/fd_file.h" |
| #include "base/utils.h" |
| #include "base/zip_archive.h" |
| #include "dex/descriptors_names.h" |
| #include "dex/dex_file_loader.h" |
| |
| #ifdef ART_TARGET_ANDROID |
| #include "android-modules-utils/sdk_level.h" |
| #endif |
| |
| namespace art { |
| |
| const uint8_t ProfileCompilationInfo::kProfileMagic[] = { 'p', 'r', 'o', '\0' }; |
| // Last profile version: New extensible profile format. |
| const uint8_t ProfileCompilationInfo::kProfileVersion[] = { '0', '1', '5', '\0' }; |
| const uint8_t ProfileCompilationInfo::kProfileVersionForBootImage[] = { '0', '1', '6', '\0' }; |
| |
| static_assert(sizeof(ProfileCompilationInfo::kProfileVersion) == 4, |
| "Invalid profile version size"); |
| static_assert(sizeof(ProfileCompilationInfo::kProfileVersionForBootImage) == 4, |
| "Invalid profile version size"); |
| |
| // The name of the profile entry in the dex metadata file. |
| // DO NOT CHANGE THIS! (it's similar to classes.dex in the apk files). |
| const char ProfileCompilationInfo::kDexMetadataProfileEntry[] = "primary.prof"; |
| |
| // A synthetic annotations that can be used to denote that no annotation should |
| // be associated with the profile samples. We use the empty string for the package name |
| // because that's an invalid package name and should never occur in practice. |
| const ProfileCompilationInfo::ProfileSampleAnnotation |
| ProfileCompilationInfo::ProfileSampleAnnotation::kNone = |
| ProfileCompilationInfo::ProfileSampleAnnotation(""); |
| |
| static constexpr char kSampleMetadataSeparator = ':'; |
| |
| // Note: This used to be PATH_MAX (usually 4096) but that seems excessive |
| // and we do not want to rely on that external constant anyway. |
| static constexpr uint16_t kMaxDexFileKeyLength = 1024; |
| |
| // Extra descriptors are serialized with a `uint16_t` prefix. This defines the length limit. |
| static constexpr size_t kMaxExtraDescriptorLength = std::numeric_limits<uint16_t>::max(); |
| |
| // According to dex file specification, there can be more than 2^16 valid method indexes |
| // but bytecode uses only 16 bits, so higher method indexes are not very useful (though |
| // such methods could be reached through virtual or interface dispatch). Consequently, |
| // dex files with more than 2^16 method indexes are not really used and the profile file |
| // format does not support higher method indexes. |
| static constexpr uint32_t kMaxSupportedMethodIndex = 0xffffu; |
| |
| // Debug flag to ignore checksums when testing if a method or a class is present in the profile. |
| // Used to facilitate testing profile guided compilation across a large number of apps |
| // using the same test profile. |
| static constexpr bool kDebugIgnoreChecksum = false; |
| |
| static constexpr uint8_t kIsMissingTypesEncoding = 6; |
| static constexpr uint8_t kIsMegamorphicEncoding = 7; |
| |
| static_assert(sizeof(ProfileCompilationInfo::kIndividualInlineCacheSize) == sizeof(uint8_t), |
| "InlineCache::kIndividualInlineCacheSize does not have the expect type size"); |
| static_assert(ProfileCompilationInfo::kIndividualInlineCacheSize < kIsMegamorphicEncoding, |
| "InlineCache::kIndividualInlineCacheSize is larger than expected"); |
| static_assert(ProfileCompilationInfo::kIndividualInlineCacheSize < kIsMissingTypesEncoding, |
| "InlineCache::kIndividualInlineCacheSize is larger than expected"); |
| |
| static constexpr uint32_t kSizeWarningThresholdBytes = 500000U; |
| static constexpr uint32_t kSizeErrorThresholdBytes = 1500000U; |
| |
| static constexpr uint32_t kSizeWarningThresholdBootBytes = 25000000U; |
| static constexpr uint32_t kSizeErrorThresholdBootBytes = 100000000U; |
| |
| static bool ChecksumMatch(uint32_t dex_file_checksum, uint32_t checksum) { |
| return kDebugIgnoreChecksum || dex_file_checksum == checksum; |
| } |
| |
| namespace { |
| |
| // Deflate the input buffer `in_buffer`. It returns a buffer of |
| // compressed data for the input buffer of `*compressed_data_size` size. |
| std::unique_ptr<uint8_t[]> DeflateBuffer(ArrayRef<const uint8_t> in_buffer, |
| /*out*/ uint32_t* compressed_data_size) { |
| z_stream strm; |
| strm.zalloc = Z_NULL; |
| strm.zfree = Z_NULL; |
| strm.opaque = Z_NULL; |
| int init_ret = deflateInit(&strm, 1); |
| if (init_ret != Z_OK) { |
| return nullptr; |
| } |
| |
| uint32_t out_size = dchecked_integral_cast<uint32_t>(deflateBound(&strm, in_buffer.size())); |
| |
| std::unique_ptr<uint8_t[]> compressed_buffer(new uint8_t[out_size]); |
| strm.avail_in = in_buffer.size(); |
| strm.next_in = const_cast<uint8_t*>(in_buffer.data()); |
| strm.avail_out = out_size; |
| strm.next_out = &compressed_buffer[0]; |
| int ret = deflate(&strm, Z_FINISH); |
| if (ret == Z_STREAM_ERROR) { |
| return nullptr; |
| } |
| *compressed_data_size = out_size - strm.avail_out; |
| |
| int end_ret = deflateEnd(&strm); |
| if (end_ret != Z_OK) { |
| return nullptr; |
| } |
| |
| return compressed_buffer; |
| } |
| |
| // Inflate the data from `in_buffer` into `out_buffer`. The `out_buffer.size()` |
| // is the expected output size of the buffer. It returns Z_STREAM_END on success. |
| // On error, it returns Z_STREAM_ERROR if the compressed data is inconsistent |
| // and Z_DATA_ERROR if the stream ended prematurely or the stream has extra data. |
| int InflateBuffer(ArrayRef<const uint8_t> in_buffer, /*out*/ ArrayRef<uint8_t> out_buffer) { |
| /* allocate inflate state */ |
| z_stream strm; |
| strm.zalloc = Z_NULL; |
| strm.zfree = Z_NULL; |
| strm.opaque = Z_NULL; |
| strm.avail_in = in_buffer.size(); |
| strm.next_in = const_cast<uint8_t*>(in_buffer.data()); |
| strm.avail_out = out_buffer.size(); |
| strm.next_out = out_buffer.data(); |
| |
| int init_ret = inflateInit(&strm); |
| if (init_ret != Z_OK) { |
| return init_ret; |
| } |
| |
| int ret = inflate(&strm, Z_NO_FLUSH); |
| if (strm.avail_in != 0 || strm.avail_out != 0) { |
| return Z_DATA_ERROR; |
| } |
| |
| int end_ret = inflateEnd(&strm); |
| if (end_ret != Z_OK) { |
| return end_ret; |
| } |
| |
| return ret; |
| } |
| |
| } // anonymous namespace |
| |
| enum class ProfileCompilationInfo::ProfileLoadStatus : uint32_t { |
| kSuccess, |
| kIOError, |
| kBadMagic, |
| kVersionMismatch, |
| kBadData, |
| kMergeError, // Merging failed. There are too many extra descriptors |
| // or classes without TypeId referenced by a dex file. |
| }; |
| |
| enum class ProfileCompilationInfo::FileSectionType : uint32_t { |
| // The values of section enumerators and data format for individual sections |
| // must not be changed without changing the profile file version. New sections |
| // can be added at the end and they shall be ignored by old versions of ART. |
| |
| // The list of the dex files included in the profile. |
| // There must be exactly one dex file section and it must be first. |
| kDexFiles = 0, |
| |
| // Extra descriptors for referencing classes that do not have a `dex::TypeId` |
| // in the referencing dex file, such as classes from a different dex file |
| // (even outside of the dex files in the profile) or array classes that were |
| // used from other dex files or created through reflection. |
| kExtraDescriptors = 1, |
| |
| // Classes included in the profile. |
| kClasses = 2, |
| |
| // Methods included in the profile, their hotness flags and inline caches. |
| kMethods = 3, |
| |
| // The aggregation counts of the profile, classes and methods. This section is |
| // an optional reserved section not implemented on client yet. |
| kAggregationCounts = 4, |
| |
| // The number of known sections. |
| kNumberOfSections = 5 |
| }; |
| |
| class ProfileCompilationInfo::FileSectionInfo { |
| public: |
| // Constructor for reading from a `ProfileSource`. Data shall be filled from the source. |
| FileSectionInfo() {} |
| |
| // Constructor for writing to a file. |
| FileSectionInfo(FileSectionType type, |
| uint32_t file_offset, |
| uint32_t file_size, |
| uint32_t inflated_size) |
| : type_(type), |
| file_offset_(file_offset), |
| file_size_(file_size), |
| inflated_size_(inflated_size) {} |
| |
| void SetFileOffset(uint32_t file_offset) { |
| DCHECK_EQ(file_offset_, 0u); |
| DCHECK_NE(file_offset, 0u); |
| file_offset_ = file_offset; |
| } |
| |
| FileSectionType GetType() const { |
| return type_; |
| } |
| |
| uint32_t GetFileOffset() const { |
| return file_offset_; |
| } |
| |
| uint32_t GetFileSize() const { |
| return file_size_; |
| } |
| |
| uint32_t GetInflatedSize() const { |
| return inflated_size_; |
| } |
| |
| uint32_t GetMemSize() const { |
| return inflated_size_ != 0u ? inflated_size_ : file_size_; |
| } |
| |
| private: |
| FileSectionType type_; |
| uint32_t file_offset_; |
| uint32_t file_size_; |
| uint32_t inflated_size_; // If 0, do not inflate and use data from file directly. |
| }; |
| |
| // The file header. |
| class ProfileCompilationInfo::FileHeader { |
| public: |
| // Constructor for reading from a `ProfileSource`. Data shall be filled from the source. |
| FileHeader() { |
| DCHECK(!IsValid()); |
| } |
| |
| // Constructor for writing to a file. |
| FileHeader(const uint8_t* version, uint32_t file_section_count) |
| : file_section_count_(file_section_count) { |
| static_assert(sizeof(magic_) == sizeof(kProfileMagic)); |
| static_assert(sizeof(version_) == sizeof(kProfileVersion)); |
| static_assert(sizeof(version_) == sizeof(kProfileVersionForBootImage)); |
| memcpy(magic_, kProfileMagic, sizeof(kProfileMagic)); |
| memcpy(version_, version, sizeof(version_)); |
| DCHECK_LE(file_section_count, kMaxFileSectionCount); |
| DCHECK(IsValid()); |
| } |
| |
| bool IsValid() const { |
| return memcmp(magic_, kProfileMagic, sizeof(kProfileMagic)) == 0 && |
| (memcmp(version_, kProfileVersion, kProfileVersionSize) == 0 || |
| memcmp(version_, kProfileVersionForBootImage, kProfileVersionSize) == 0) && |
| file_section_count_ != 0u && // The dex files section is mandatory. |
| file_section_count_ <= kMaxFileSectionCount; |
| } |
| |
| const uint8_t* GetVersion() const { |
| DCHECK(IsValid()); |
| return version_; |
| } |
| |
| ProfileLoadStatus InvalidHeaderMessage(/*out*/ std::string* error_msg) const; |
| |
| uint32_t GetFileSectionCount() const { |
| DCHECK(IsValid()); |
| return file_section_count_; |
| } |
| |
| private: |
| // The upper bound for file section count is used to ensure that there |
| // shall be no arithmetic overflow when calculating size of the header |
| // with section information. |
| static const uint32_t kMaxFileSectionCount; |
| |
| uint8_t magic_[4] = {0, 0, 0, 0}; |
| uint8_t version_[4] = {0, 0, 0, 0}; |
| uint32_t file_section_count_ = 0u; |
| }; |
| |
| const uint32_t ProfileCompilationInfo::FileHeader::kMaxFileSectionCount = |
| (std::numeric_limits<uint32_t>::max() - sizeof(FileHeader)) / sizeof(FileSectionInfo); |
| |
| ProfileCompilationInfo::ProfileLoadStatus |
| ProfileCompilationInfo::FileHeader::InvalidHeaderMessage(/*out*/ std::string* error_msg) const { |
| if (memcmp(magic_, kProfileMagic, sizeof(kProfileMagic)) != 0) { |
| *error_msg = "Profile missing magic."; |
| return ProfileLoadStatus::kBadMagic; |
| } |
| if (memcmp(version_, kProfileVersion, sizeof(kProfileVersion)) != 0 && |
| memcmp(version_, kProfileVersion, sizeof(kProfileVersionForBootImage)) != 0) { |
| *error_msg = "Profile version mismatch."; |
| return ProfileLoadStatus::kVersionMismatch; |
| } |
| if (file_section_count_ == 0u) { |
| *error_msg = "Missing mandatory dex files section."; |
| return ProfileLoadStatus::kBadData; |
| } |
| DCHECK_GT(file_section_count_, kMaxFileSectionCount); |
| *error_msg ="Too many sections."; |
| return ProfileLoadStatus::kBadData; |
| } |
| |
| /** |
| * Encapsulate the source of profile data for loading. |
| * The source can be either a plain file or a zip file. |
| * For zip files, the profile entry will be extracted to |
| * the memory map. |
| */ |
| class ProfileCompilationInfo::ProfileSource { |
| public: |
| /** |
| * Create a profile source for the given fd. The ownership of the fd |
| * remains to the caller; as this class will not attempt to close it at any |
| * point. |
| */ |
| static ProfileSource* Create(int32_t fd) { |
| DCHECK_GT(fd, -1); |
| return new ProfileSource(fd, MemMap::Invalid()); |
| } |
| |
| /** |
| * Create a profile source backed by a memory map. The map can be null in |
| * which case it will the treated as an empty source. |
| */ |
| static ProfileSource* Create(MemMap&& mem_map) { |
| return new ProfileSource(/*fd*/ -1, std::move(mem_map)); |
| } |
| |
| // Seek to the given offset in the source. |
| bool Seek(off_t offset); |
| |
| /** |
| * Read bytes from this source. |
| * Reading will advance the current source position so subsequent |
| * invocations will read from the las position. |
| */ |
| ProfileLoadStatus Read(void* buffer, |
| size_t byte_count, |
| const std::string& debug_stage, |
| std::string* error); |
| |
| /** Return true if the source has 0 data. */ |
| bool HasEmptyContent() const; |
| |
| private: |
| ProfileSource(int32_t fd, MemMap&& mem_map) |
| : fd_(fd), mem_map_(std::move(mem_map)), mem_map_cur_(0) {} |
| |
| bool IsMemMap() const { |
| return fd_ == -1; |
| } |
| |
| int32_t fd_; // The fd is not owned by this class. |
| MemMap mem_map_; |
| size_t mem_map_cur_; // Current position in the map to read from. |
| }; |
| |
| // A helper structure to make sure we don't read past our buffers in the loops. |
| // Also used for writing but the buffer should be pre-sized correctly for that, so we |
| // DCHECK() we do not write beyond the end, rather than returning `false` on failure. |
| class ProfileCompilationInfo::SafeBuffer { |
| public: |
| SafeBuffer() |
| : storage_(nullptr), |
| ptr_current_(nullptr), |
| ptr_end_(nullptr) {} |
| |
| explicit SafeBuffer(size_t size) |
| : storage_(new uint8_t[size]), |
| ptr_current_(storage_.get()), |
| ptr_end_(ptr_current_ + size) {} |
| |
| // Reads an uint value and advances the current pointer. |
| template <typename T> |
| bool ReadUintAndAdvance(/*out*/ T* value) { |
| static_assert(std::is_unsigned<T>::value, "Type is not unsigned"); |
| if (sizeof(T) > GetAvailableBytes()) { |
| return false; |
| } |
| *value = 0; |
| for (size_t i = 0; i < sizeof(T); i++) { |
| *value += ptr_current_[i] << (i * kBitsPerByte); |
| } |
| ptr_current_ += sizeof(T); |
| return true; |
| } |
| |
| // Reads a length-prefixed string as `std::string_view` and advances the current pointer. |
| // The length is `uint16_t`. |
| bool ReadStringAndAdvance(/*out*/ std::string_view* value) { |
| uint16_t length; |
| if (!ReadUintAndAdvance(&length)) { |
| return false; |
| } |
| if (length > GetAvailableBytes()) { |
| return false; |
| } |
| const void* null_char = memchr(GetCurrentPtr(), 0, length); |
| if (null_char != nullptr) { |
| // Embedded nulls are invalid. |
| return false; |
| } |
| *value = std::string_view(reinterpret_cast<const char*>(GetCurrentPtr()), length); |
| Advance(length); |
| return true; |
| } |
| |
| // Compares the given data with the content at the current pointer. |
| // If the contents are equal it advances the current pointer by data_size. |
| bool CompareAndAdvance(const uint8_t* data, size_t data_size) { |
| if (data_size > GetAvailableBytes()) { |
| return false; |
| } |
| if (memcmp(ptr_current_, data, data_size) == 0) { |
| ptr_current_ += data_size; |
| return true; |
| } |
| return false; |
| } |
| |
| void WriteAndAdvance(const void* data, size_t data_size) { |
| DCHECK_LE(data_size, GetAvailableBytes()); |
| memcpy(ptr_current_, data, data_size); |
| ptr_current_ += data_size; |
| } |
| |
| template <typename T> |
| void WriteUintAndAdvance(T value) { |
| static_assert(std::is_integral_v<T>); |
| WriteAndAdvance(&value, sizeof(value)); |
| } |
| |
| // Deflate a filled buffer. Replaces the internal buffer with a new one, also filled. |
| bool Deflate() { |
| DCHECK_EQ(GetAvailableBytes(), 0u); |
| DCHECK_NE(Size(), 0u); |
| ArrayRef<const uint8_t> in_buffer(Get(), Size()); |
| uint32_t output_size = 0; |
| std::unique_ptr<uint8_t[]> compressed_buffer = DeflateBuffer(in_buffer, &output_size); |
| if (compressed_buffer == nullptr) { |
| return false; |
| } |
| storage_ = std::move(compressed_buffer); |
| ptr_current_ = storage_.get() + output_size; |
| ptr_end_ = ptr_current_; |
| return true; |
| } |
| |
| // Inflate an unread buffer. Replaces the internal buffer with a new one, also unread. |
| bool Inflate(size_t uncompressed_data_size) { |
| DCHECK(ptr_current_ == storage_.get()); |
| DCHECK_NE(Size(), 0u); |
| ArrayRef<const uint8_t> in_buffer(Get(), Size()); |
| SafeBuffer uncompressed_buffer(uncompressed_data_size); |
| ArrayRef<uint8_t> out_buffer(uncompressed_buffer.Get(), uncompressed_data_size); |
| int ret = InflateBuffer(in_buffer, out_buffer); |
| if (ret != Z_STREAM_END) { |
| return false; |
| } |
| Swap(uncompressed_buffer); |
| DCHECK(ptr_current_ == storage_.get()); |
| return true; |
| } |
| |
| // Advances current pointer by data_size. |
| void Advance(size_t data_size) { |
| DCHECK_LE(data_size, GetAvailableBytes()); |
| ptr_current_ += data_size; |
| } |
| |
| // Returns the count of unread bytes. |
| size_t GetAvailableBytes() const { |
| DCHECK_LE(static_cast<void*>(ptr_current_), static_cast<void*>(ptr_end_)); |
| return (ptr_end_ - ptr_current_) * sizeof(*ptr_current_); |
| } |
| |
| // Returns the current pointer. |
| uint8_t* GetCurrentPtr() { |
| return ptr_current_; |
| } |
| |
| // Get the underlying raw buffer. |
| uint8_t* Get() { |
| return storage_.get(); |
| } |
| |
| // Get the size of the raw buffer. |
| size_t Size() const { |
| return ptr_end_ - storage_.get(); |
| } |
| |
| void Swap(SafeBuffer& other) { |
| std::swap(storage_, other.storage_); |
| std::swap(ptr_current_, other.ptr_current_); |
| std::swap(ptr_end_, other.ptr_end_); |
| } |
| |
| private: |
| std::unique_ptr<uint8_t[]> storage_; |
| uint8_t* ptr_current_; |
| uint8_t* ptr_end_; |
| }; |
| |
| ProfileCompilationInfo::ProfileCompilationInfo(ArenaPool* custom_arena_pool, bool for_boot_image) |
| : default_arena_pool_(), |
| allocator_(custom_arena_pool), |
| info_(allocator_.Adapter(kArenaAllocProfile)), |
| profile_key_map_(std::less<const std::string_view>(), allocator_.Adapter(kArenaAllocProfile)), |
| extra_descriptors_(), |
| extra_descriptors_indexes_(ExtraDescriptorHash(&extra_descriptors_), |
| ExtraDescriptorEquals(&extra_descriptors_)) { |
| memcpy(version_, |
| for_boot_image ? kProfileVersionForBootImage : kProfileVersion, |
| kProfileVersionSize); |
| } |
| |
| ProfileCompilationInfo::ProfileCompilationInfo(ArenaPool* custom_arena_pool) |
| : ProfileCompilationInfo(custom_arena_pool, /*for_boot_image=*/ false) { } |
| |
| ProfileCompilationInfo::ProfileCompilationInfo() |
| : ProfileCompilationInfo(/*for_boot_image=*/ false) { } |
| |
| ProfileCompilationInfo::ProfileCompilationInfo(bool for_boot_image) |
| : ProfileCompilationInfo(&default_arena_pool_, for_boot_image) { } |
| |
| ProfileCompilationInfo::~ProfileCompilationInfo() { |
| VLOG(profiler) << Dumpable<MemStats>(allocator_.GetMemStats()); |
| } |
| |
| void ProfileCompilationInfo::DexPcData::AddClass(const dex::TypeIndex& type_idx) { |
| if (is_megamorphic || is_missing_types) { |
| return; |
| } |
| |
| // Perform an explicit lookup for the type instead of directly emplacing the |
| // element. We do this because emplace() allocates the node before doing the |
| // lookup and if it then finds an identical element, it shall deallocate the |
| // node. For Arena allocations, that's essentially a leak. |
| auto lb = classes.lower_bound(type_idx); |
| if (lb != classes.end() && *lb == type_idx) { |
| // The type index exists. |
| return; |
| } |
| |
| // Check if the adding the type will cause the cache to become megamorphic. |
| if (classes.size() + 1 >= ProfileCompilationInfo::kIndividualInlineCacheSize) { |
| is_megamorphic = true; |
| classes.clear(); |
| return; |
| } |
| |
| // The type does not exist and the inline cache will not be megamorphic. |
| classes.emplace_hint(lb, type_idx); |
| } |
| |
| // Transform the actual dex location into a key used to index the dex file in the profile. |
| // See ProfileCompilationInfo#GetProfileDexFileBaseKey as well. |
| std::string ProfileCompilationInfo::GetProfileDexFileAugmentedKey( |
| const std::string& dex_location, |
| const ProfileSampleAnnotation& annotation) { |
| std::string base_key = GetProfileDexFileBaseKey(dex_location); |
| return annotation == ProfileSampleAnnotation::kNone |
| ? base_key |
| : base_key + kSampleMetadataSeparator + annotation.GetOriginPackageName();; |
| } |
| |
| // Transform the actual dex location into a base profile key (represented as relative paths). |
| // Note: this is OK because we don't store profiles of different apps into the same file. |
| // Apps with split apks don't cause trouble because each split has a different name and will not |
| // collide with other entries. |
| std::string_view ProfileCompilationInfo::GetProfileDexFileBaseKeyView( |
| std::string_view dex_location) { |
| DCHECK(!dex_location.empty()); |
| size_t last_sep_index = dex_location.find_last_of('/'); |
| if (last_sep_index == std::string::npos) { |
| return dex_location; |
| } else { |
| DCHECK(last_sep_index < dex_location.size()); |
| return dex_location.substr(last_sep_index + 1); |
| } |
| } |
| |
| std::string ProfileCompilationInfo::GetProfileDexFileBaseKey(const std::string& dex_location) { |
| // Note: Conversions between std::string and std::string_view. |
| return std::string(GetProfileDexFileBaseKeyView(dex_location)); |
| } |
| |
| std::string_view ProfileCompilationInfo::GetBaseKeyViewFromAugmentedKey( |
| std::string_view profile_key) { |
| size_t pos = profile_key.rfind(kSampleMetadataSeparator); |
| return (pos == std::string::npos) ? profile_key : profile_key.substr(0, pos); |
| } |
| |
| std::string ProfileCompilationInfo::GetBaseKeyFromAugmentedKey( |
| const std::string& profile_key) { |
| // Note: Conversions between std::string and std::string_view. |
| return std::string(GetBaseKeyViewFromAugmentedKey(profile_key)); |
| } |
| |
| std::string ProfileCompilationInfo::MigrateAnnotationInfo( |
| const std::string& base_key, |
| const std::string& augmented_key) { |
| size_t pos = augmented_key.rfind(kSampleMetadataSeparator); |
| return (pos == std::string::npos) |
| ? base_key |
| : base_key + augmented_key.substr(pos); |
| } |
| |
| ProfileCompilationInfo::ProfileSampleAnnotation ProfileCompilationInfo::GetAnnotationFromKey( |
| const std::string& augmented_key) { |
| size_t pos = augmented_key.rfind(kSampleMetadataSeparator); |
| return (pos == std::string::npos) |
| ? ProfileSampleAnnotation::kNone |
| : ProfileSampleAnnotation(augmented_key.substr(pos + 1)); |
| } |
| |
| bool ProfileCompilationInfo::AddMethods(const std::vector<ProfileMethodInfo>& methods, |
| MethodHotness::Flag flags, |
| const ProfileSampleAnnotation& annotation) { |
| for (const ProfileMethodInfo& method : methods) { |
| if (!AddMethod(method, flags, annotation)) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| dex::TypeIndex ProfileCompilationInfo::FindOrCreateTypeIndex(const DexFile& dex_file, |
| TypeReference class_ref) { |
| DCHECK(class_ref.dex_file != nullptr); |
| DCHECK_LT(class_ref.TypeIndex().index_, class_ref.dex_file->NumTypeIds()); |
| if (class_ref.dex_file == &dex_file) { |
| // We can use the type index from the `class_ref` as it's a valid index in the `dex_file`. |
| return class_ref.TypeIndex(); |
| } |
| // Try to find a `TypeId` in the method's dex file. |
| const char* descriptor = class_ref.dex_file->StringByTypeIdx(class_ref.TypeIndex()); |
| return FindOrCreateTypeIndex(dex_file, descriptor); |
| } |
| |
| dex::TypeIndex ProfileCompilationInfo::FindOrCreateTypeIndex(const DexFile& dex_file, |
| const char* descriptor) { |
| const dex::TypeId* type_id = dex_file.FindTypeId(descriptor); |
| if (type_id != nullptr) { |
| return dex_file.GetIndexForTypeId(*type_id); |
| } |
| // Try to find an existing extra descriptor. |
| uint32_t num_type_ids = dex_file.NumTypeIds(); |
| uint32_t max_artificial_ids = DexFile::kDexNoIndex16 - num_type_ids; |
| std::string_view descriptor_view(descriptor); |
| // Check descriptor length for "extra descriptor". We are using `uint16_t` as prefix. |
| if (UNLIKELY(descriptor_view.size() > kMaxExtraDescriptorLength)) { |
| return dex::TypeIndex(); // Invalid. |
| } |
| auto it = extra_descriptors_indexes_.find(descriptor_view); |
| if (it != extra_descriptors_indexes_.end()) { |
| return (*it < max_artificial_ids) ? dex::TypeIndex(num_type_ids + *it) : dex::TypeIndex(); |
| } |
| // Check if inserting the extra descriptor yields a valid artificial type index. |
| if (UNLIKELY(extra_descriptors_.size() >= max_artificial_ids)) { |
| return dex::TypeIndex(); // Invalid. |
| } |
| // Add the descriptor to extra descriptors and return the artificial type index. |
| ExtraDescriptorIndex new_extra_descriptor_index = AddExtraDescriptor(descriptor_view); |
| DCHECK_LT(new_extra_descriptor_index, max_artificial_ids); |
| return dex::TypeIndex(num_type_ids + new_extra_descriptor_index); |
| } |
| |
| bool ProfileCompilationInfo::AddClass(const DexFile& dex_file, |
| const char* descriptor, |
| const ProfileSampleAnnotation& annotation) { |
| DexFileData* const data = GetOrAddDexFileData(&dex_file, annotation); |
| if (data == nullptr) { // checksum mismatch |
| return false; |
| } |
| dex::TypeIndex type_index = FindOrCreateTypeIndex(dex_file, descriptor); |
| if (!type_index.IsValid()) { |
| return false; |
| } |
| data->class_set.insert(type_index); |
| return true; |
| } |
| |
| bool ProfileCompilationInfo::MergeWith(const std::string& filename) { |
| std::string error; |
| #ifdef _WIN32 |
| int flags = O_RDONLY; |
| #else |
| int flags = O_RDONLY | O_NOFOLLOW | O_CLOEXEC; |
| #endif |
| ScopedFlock profile_file = |
| LockedFile::Open(filename.c_str(), flags, /*block=*/false, &error); |
| |
| if (profile_file.get() == nullptr) { |
| LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error; |
| return false; |
| } |
| |
| int fd = profile_file->Fd(); |
| |
| ProfileLoadStatus status = LoadInternal(fd, &error); |
| if (status == ProfileLoadStatus::kSuccess) { |
| return true; |
| } |
| |
| LOG(WARNING) << "Could not load profile data from file " << filename << ": " << error; |
| return false; |
| } |
| |
| bool ProfileCompilationInfo::Load(const std::string& filename, bool clear_if_invalid) { |
| ScopedTrace trace(__PRETTY_FUNCTION__); |
| std::string error; |
| |
| if (!IsEmpty()) { |
| return false; |
| } |
| |
| #ifdef _WIN32 |
| int flags = O_RDWR; |
| #else |
| int flags = O_RDWR | O_NOFOLLOW | O_CLOEXEC; |
| #endif |
| // There's no need to fsync profile data right away. We get many chances |
| // to write it again in case something goes wrong. We can rely on a simple |
| // close(), no sync, and let to the kernel decide when to write to disk. |
| ScopedFlock profile_file = |
| LockedFile::Open(filename.c_str(), flags, /*block=*/false, &error); |
| |
| if (profile_file.get() == nullptr) { |
| if (clear_if_invalid && errno == ENOENT) { |
| return true; |
| } |
| LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error; |
| return false; |
| } |
| |
| int fd = profile_file->Fd(); |
| |
| ProfileLoadStatus status = LoadInternal(fd, &error); |
| if (status == ProfileLoadStatus::kSuccess) { |
| return true; |
| } |
| |
| if (clear_if_invalid && |
| ((status == ProfileLoadStatus::kBadMagic) || |
| (status == ProfileLoadStatus::kVersionMismatch) || |
| (status == ProfileLoadStatus::kBadData))) { |
| LOG(WARNING) << "Clearing bad or obsolete profile data from file " |
| << filename << ": " << error; |
| // When ART Service is enabled, this is the only place where we mutate a profile in place. |
| // TODO(jiakaiz): Get rid of this. |
| if (profile_file->ClearContent()) { |
| return true; |
| } else { |
| PLOG(WARNING) << "Could not clear profile file: " << filename; |
| return false; |
| } |
| } |
| |
| LOG(WARNING) << "Could not load profile data from file " << filename << ": " << error; |
| return false; |
| } |
| |
| bool ProfileCompilationInfo::Save(const std::string& filename, uint64_t* bytes_written) { |
| ScopedTrace trace(__PRETTY_FUNCTION__); |
| |
| #ifndef ART_TARGET_ANDROID |
| return SaveFallback(filename, bytes_written); |
| #else |
| // Prior to U, SELinux policy doesn't allow apps to create profile files. |
| // Additionally, when installd is being used for dexopt, it acquires a flock when working on a |
| // profile. It's unclear to us whether the flock means that the file at the fd shouldn't change or |
| // that the file at the path shouldn't change, especially when the installd code is modified by |
| // partners. Therefore, we fall back to using a flock as well just to be safe. |
| if (!android::modules::sdklevel::IsAtLeastU() || |
| !android::base::GetBoolProperty("dalvik.vm.useartservice", /*default_value=*/false)) { |
| return SaveFallback(filename, bytes_written); |
| } |
| |
| std::string tmp_filename = filename + ".XXXXXX.tmp"; |
| // mkstemps creates the file with permissions 0600, which is the desired permissions, so there's |
| // no need to chmod. |
| android::base::unique_fd fd(mkostemps(tmp_filename.data(), /*suffixlen=*/4, O_CLOEXEC)); |
| if (fd.get() < 0) { |
| PLOG(WARNING) << "Failed to create temp profile file for " << filename; |
| return false; |
| } |
| |
| // In case anything goes wrong. |
| auto remove_tmp_file = android::base::make_scope_guard([&]() { |
| if (unlink(tmp_filename.c_str()) != 0) { |
| PLOG(WARNING) << "Failed to remove temp profile file " << tmp_filename; |
| } |
| }); |
| |
| bool result = Save(fd.get()); |
| if (!result) { |
| VLOG(profiler) << "Failed to save profile info to temp profile file " << tmp_filename; |
| return false; |
| } |
| |
| fd.reset(); |
| |
| // Move the temp profile file to the final location. |
| if (rename(tmp_filename.c_str(), filename.c_str()) != 0) { |
| PLOG(WARNING) << "Failed to commit profile file " << filename; |
| return false; |
| } |
| |
| remove_tmp_file.Disable(); |
| |
| int64_t size = OS::GetFileSizeBytes(filename.c_str()); |
| if (size != -1) { |
| VLOG(profiler) << "Successfully saved profile info to " << filename << " Size: " << size; |
| if (bytes_written != nullptr) { |
| *bytes_written = static_cast<uint64_t>(size); |
| } |
| } else { |
| VLOG(profiler) << "Saved profile info to " << filename |
| << " but failed to get size: " << strerror(errno); |
| } |
| |
| return true; |
| #endif |
| } |
| |
| bool ProfileCompilationInfo::SaveFallback(const std::string& filename, uint64_t* bytes_written) { |
| std::string error; |
| #ifdef _WIN32 |
| int flags = O_WRONLY | O_CREAT; |
| #else |
| int flags = O_WRONLY | O_NOFOLLOW | O_CLOEXEC | O_CREAT; |
| #endif |
| // There's no need to fsync profile data right away. We get many chances |
| // to write it again in case something goes wrong. We can rely on a simple |
| // close(), no sync, and let to the kernel decide when to write to disk. |
| ScopedFlock profile_file = |
| LockedFile::Open(filename.c_str(), flags, /*block=*/false, &error); |
| if (profile_file.get() == nullptr) { |
| LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error; |
| return false; |
| } |
| |
| int fd = profile_file->Fd(); |
| |
| // We need to clear the data because we don't support appending to the profiles yet. |
| if (!profile_file->ClearContent()) { |
| PLOG(WARNING) << "Could not clear profile file: " << filename; |
| return false; |
| } |
| |
| // This doesn't need locking because we are trying to lock the file for exclusive |
| // access and fail immediately if we can't. |
| bool result = Save(fd); |
| if (result) { |
| int64_t size = OS::GetFileSizeBytes(filename.c_str()); |
| if (size != -1) { |
| VLOG(profiler) |
| << "Successfully saved profile info to " << filename << " Size: " |
| << size; |
| if (bytes_written != nullptr) { |
| *bytes_written = static_cast<uint64_t>(size); |
| } |
| } else { |
| VLOG(profiler) << "Saved profile info to " << filename |
| << " but failed to get size: " << strerror(errno); |
| } |
| } else { |
| VLOG(profiler) << "Failed to save profile info to " << filename; |
| } |
| return result; |
| } |
| |
| // Returns true if all the bytes were successfully written to the file descriptor. |
| static bool WriteBuffer(int fd, const void* buffer, size_t byte_count) { |
| while (byte_count > 0) { |
| int bytes_written = TEMP_FAILURE_RETRY(write(fd, buffer, byte_count)); |
| if (bytes_written == -1) { |
| return false; |
| } |
| byte_count -= bytes_written; // Reduce the number of remaining bytes. |
| reinterpret_cast<const uint8_t*&>(buffer) += bytes_written; // Move the buffer forward. |
| } |
| return true; |
| } |
| |
| /** |
| * Serialization format: |
| * |
| * The file starts with a header and section information: |
| * FileHeader |
| * FileSectionInfo[] |
| * The first FileSectionInfo must be for the DexFiles section. |
| * |
| * The rest of the file is allowed to contain different sections in any order, |
| * at arbitrary offsets, with any gaps betweeen them and each section can be |
| * either plaintext or separately zipped. However, we're writing sections |
| * without any gaps with the following order and compression: |
| * DexFiles - mandatory, plaintext |
| * ExtraDescriptors - optional, zipped |
| * Classes - optional, zipped |
| * Methods - optional, zipped |
| * AggregationCounts - optional, zipped, server-side |
| * |
| * DexFiles: |
| * number_of_dex_files |
| * (checksum,num_type_ids,num_method_ids,profile_key)[number_of_dex_files] |
| * where `profile_key` is a length-prefixed string, the length is `uint16_t`. |
| * |
| * ExtraDescriptors: |
| * number_of_extra_descriptors |
| * (extra_descriptor)[number_of_extra_descriptors] |
| * where `extra_descriptor` is a length-prefixed string, the length is `uint16_t`. |
| * |
| * Classes contains records for any number of dex files, each consisting of: |
| * profile_index // Index of the dex file in DexFiles section. |
| * number_of_classes |
| * type_index_diff[number_of_classes] |
| * where instead of storing plain sorted type indexes, we store their differences |
| * as smaller numbers are likely to compress better. |
| * |
| * Methods contains records for any number of dex files, each consisting of: |
| * profile_index // Index of the dex file in DexFiles section. |
| * following_data_size // For easy skipping of remaining data when dex file is filtered out. |
| * method_flags |
| * bitmap_data |
| * method_encoding[] // Until the size indicated by `following_data_size`. |
| * where `method_flags` is a union of flags recorded for methods in the referenced dex file, |
| * `bitmap_data` contains `num_method_ids` bits for each bit set in `method_flags` other |
| * than "hot" (the size of `bitmap_data` is rounded up to whole bytes) and `method_encoding[]` |
| * contains data for hot methods. The `method_encoding` is: |
| * method_index_diff |
| * number_of_inline_caches |
| * inline_cache_encoding[number_of_inline_caches] |
| * where differences in method indexes are used for better compression, |
| * and the `inline_cache_encoding` is |
| * dex_pc |
| * (M|dex_map_size) |
| * type_index_diff[dex_map_size] |
| * where `M` stands for special encodings indicating missing types (kIsMissingTypesEncoding) |
| * or memamorphic call (kIsMegamorphicEncoding) which both imply `dex_map_size == 0`. |
| **/ |
| bool ProfileCompilationInfo::Save(int fd) { |
| uint64_t start = NanoTime(); |
| ScopedTrace trace(__PRETTY_FUNCTION__); |
| DCHECK_GE(fd, 0); |
| |
| // Collect uncompressed section sizes. |
| // Use `uint64_t` and assume this cannot overflow as we would have run out of memory. |
| uint64_t extra_descriptors_section_size = 0u; |
| if (!extra_descriptors_.empty()) { |
| extra_descriptors_section_size += sizeof(uint16_t); // Number of descriptors. |
| for (const std::string& descriptor : extra_descriptors_) { |
| // Length-prefixed string, the length is `uint16_t`. |
| extra_descriptors_section_size += sizeof(uint16_t) + descriptor.size(); |
| } |
| } |
| uint64_t dex_files_section_size = sizeof(ProfileIndexType); // Number of dex files. |
| uint64_t classes_section_size = 0u; |
| uint64_t methods_section_size = 0u; |
| DCHECK_LE(info_.size(), MaxProfileIndex()); |
| for (const std::unique_ptr<DexFileData>& dex_data : info_) { |
| if (dex_data->profile_key.size() > kMaxDexFileKeyLength) { |
| LOG(WARNING) << "DexFileKey exceeds allocated limit"; |
| return false; |
| } |
| dex_files_section_size += |
| 3 * sizeof(uint32_t) + // Checksum, num_type_ids, num_method_ids. |
| // Length-prefixed string, the length is `uint16_t`. |
| sizeof(uint16_t) + dex_data->profile_key.size(); |
| classes_section_size += dex_data->ClassesDataSize(); |
| methods_section_size += dex_data->MethodsDataSize(); |
| } |
| |
| const uint32_t file_section_count = |
| /* dex files */ 1u + |
| /* extra descriptors */ (extra_descriptors_section_size != 0u ? 1u : 0u) + |
| /* classes */ (classes_section_size != 0u ? 1u : 0u) + |
| /* methods */ (methods_section_size != 0u ? 1u : 0u); |
| uint64_t header_and_infos_size = |
| sizeof(FileHeader) + file_section_count * sizeof(FileSectionInfo); |
| |
| // Check size limit. Allow large profiles for non target builds for the case |
| // where we are merging many profiles to generate a boot image profile. |
| uint64_t total_uncompressed_size = |
| header_and_infos_size + |
| dex_files_section_size + |
| extra_descriptors_section_size + |
| classes_section_size + |
| methods_section_size; |
| VLOG(profiler) << "Required capacity: " << total_uncompressed_size << " bytes."; |
| if (total_uncompressed_size > GetSizeErrorThresholdBytes()) { |
| LOG(WARNING) << "Profile data size exceeds " |
| << GetSizeErrorThresholdBytes() |
| << " bytes. Profile will not be written to disk." |
| << " It requires " << total_uncompressed_size << " bytes."; |
| return false; |
| } |
| |
| // Start with an invalid file header and section infos. |
| DCHECK_EQ(lseek(fd, 0, SEEK_CUR), 0); |
| constexpr uint32_t kMaxNumberOfSections = enum_cast<uint32_t>(FileSectionType::kNumberOfSections); |
| constexpr uint64_t kMaxHeaderAndInfosSize = |
| sizeof(FileHeader) + kMaxNumberOfSections * sizeof(FileSectionInfo); |
| DCHECK_LE(header_and_infos_size, kMaxHeaderAndInfosSize); |
| std::array<uint8_t, kMaxHeaderAndInfosSize> placeholder; |
| memset(placeholder.data(), 0, header_and_infos_size); |
| if (!WriteBuffer(fd, placeholder.data(), header_and_infos_size)) { |
| return false; |
| } |
| |
| std::array<FileSectionInfo, kMaxNumberOfSections> section_infos; |
| size_t section_index = 0u; |
| uint32_t file_offset = header_and_infos_size; |
| auto add_section_info = [&](FileSectionType type, uint32_t file_size, uint32_t inflated_size) { |
| DCHECK_LT(section_index, section_infos.size()); |
| section_infos[section_index] = FileSectionInfo(type, file_offset, file_size, inflated_size); |
| file_offset += file_size; |
| section_index += 1u; |
| }; |
| |
| // Write the dex files section. |
| { |
| SafeBuffer buffer(dex_files_section_size); |
| buffer.WriteUintAndAdvance(dchecked_integral_cast<ProfileIndexType>(info_.size())); |
| for (const std::unique_ptr<DexFileData>& dex_data : info_) { |
| buffer.WriteUintAndAdvance(dex_data->checksum); |
| buffer.WriteUintAndAdvance(dex_data->num_type_ids); |
| buffer.WriteUintAndAdvance(dex_data->num_method_ids); |
| buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(dex_data->profile_key.size())); |
| buffer.WriteAndAdvance(dex_data->profile_key.c_str(), dex_data->profile_key.size()); |
| } |
| DCHECK_EQ(buffer.GetAvailableBytes(), 0u); |
| // Write the dex files section uncompressed. |
| if (!WriteBuffer(fd, buffer.Get(), dex_files_section_size)) { |
| return false; |
| } |
| add_section_info(FileSectionType::kDexFiles, dex_files_section_size, /*inflated_size=*/ 0u); |
| } |
| |
| // Write the extra descriptors section. |
| if (extra_descriptors_section_size != 0u) { |
| SafeBuffer buffer(extra_descriptors_section_size); |
| buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(extra_descriptors_.size())); |
| for (const std::string& descriptor : extra_descriptors_) { |
| buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(descriptor.size())); |
| buffer.WriteAndAdvance(descriptor.c_str(), descriptor.size()); |
| } |
| if (!buffer.Deflate()) { |
| return false; |
| } |
| if (!WriteBuffer(fd, buffer.Get(), buffer.Size())) { |
| return false; |
| } |
| add_section_info( |
| FileSectionType::kExtraDescriptors, buffer.Size(), extra_descriptors_section_size); |
| } |
| |
| // Write the classes section. |
| if (classes_section_size != 0u) { |
| SafeBuffer buffer(classes_section_size); |
| for (const std::unique_ptr<DexFileData>& dex_data : info_) { |
| dex_data->WriteClasses(buffer); |
| } |
| if (!buffer.Deflate()) { |
| return false; |
| } |
| if (!WriteBuffer(fd, buffer.Get(), buffer.Size())) { |
| return false; |
| } |
| add_section_info(FileSectionType::kClasses, buffer.Size(), classes_section_size); |
| } |
| |
| // Write the methods section. |
| if (methods_section_size != 0u) { |
| SafeBuffer buffer(methods_section_size); |
| for (const std::unique_ptr<DexFileData>& dex_data : info_) { |
| dex_data->WriteMethods(buffer); |
| } |
| if (!buffer.Deflate()) { |
| return false; |
| } |
| if (!WriteBuffer(fd, buffer.Get(), buffer.Size())) { |
| return false; |
| } |
| add_section_info(FileSectionType::kMethods, buffer.Size(), methods_section_size); |
| } |
| |
| if (file_offset > GetSizeWarningThresholdBytes()) { |
| LOG(WARNING) << "Profile data size exceeds " |
| << GetSizeWarningThresholdBytes() |
| << " It has " << file_offset << " bytes"; |
| } |
| |
| // Write section infos. |
| if (lseek64(fd, sizeof(FileHeader), SEEK_SET) != sizeof(FileHeader)) { |
| return false; |
| } |
| SafeBuffer section_infos_buffer(section_index * 4u * sizeof(uint32_t)); |
| for (size_t i = 0; i != section_index; ++i) { |
| const FileSectionInfo& info = section_infos[i]; |
| section_infos_buffer.WriteUintAndAdvance(enum_cast<uint32_t>(info.GetType())); |
| section_infos_buffer.WriteUintAndAdvance(info.GetFileOffset()); |
| section_infos_buffer.WriteUintAndAdvance(info.GetFileSize()); |
| section_infos_buffer.WriteUintAndAdvance(info.GetInflatedSize()); |
| } |
| DCHECK_EQ(section_infos_buffer.GetAvailableBytes(), 0u); |
| if (!WriteBuffer(fd, section_infos_buffer.Get(), section_infos_buffer.Size())) { |
| return false; |
| } |
| |
| // Write header. |
| FileHeader header(version_, section_index); |
| if (lseek(fd, 0, SEEK_SET) != 0) { |
| return false; |
| } |
| if (!WriteBuffer(fd, &header, sizeof(FileHeader))) { |
| return false; |
| } |
| |
| uint64_t total_time = NanoTime() - start; |
| VLOG(profiler) << "Compressed from " |
| << std::to_string(total_uncompressed_size) |
| << " to " |
| << std::to_string(file_offset); |
| VLOG(profiler) << "Time to save profile: " << std::to_string(total_time); |
| return true; |
| } |
| |
| ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::GetOrAddDexFileData( |
| const std::string& profile_key, |
| uint32_t checksum, |
| uint32_t num_type_ids, |
| uint32_t num_method_ids) { |
| DCHECK_EQ(profile_key_map_.size(), info_.size()); |
| auto profile_index_it = profile_key_map_.lower_bound(profile_key); |
| if (profile_index_it == profile_key_map_.end() || profile_index_it->first != profile_key) { |
| // We did not find the key. Create a new DexFileData if we did not reach the limit. |
| DCHECK_LE(profile_key_map_.size(), MaxProfileIndex()); |
| if (profile_key_map_.size() == MaxProfileIndex()) { |
| // Allow only a limited number dex files to be profiled. This allows us to save bytes |
| // when encoding. For regular profiles this 2^8, and for boot profiles is 2^16 |
| // (well above what we expect for normal applications). |
| LOG(ERROR) << "Exceeded the maximum number of dex file. Something went wrong"; |
| return nullptr; |
| } |
| ProfileIndexType new_profile_index = dchecked_integral_cast<ProfileIndexType>(info_.size()); |
| std::unique_ptr<DexFileData> dex_file_data(new (&allocator_) DexFileData( |
| &allocator_, |
| profile_key, |
| checksum, |
| new_profile_index, |
| num_type_ids, |
| num_method_ids, |
| IsForBootImage())); |
| // Record the new data in `profile_key_map_` and `info_`. |
| std::string_view new_key(dex_file_data->profile_key); |
| profile_index_it = profile_key_map_.PutBefore(profile_index_it, new_key, new_profile_index); |
| info_.push_back(std::move(dex_file_data)); |
| DCHECK_EQ(profile_key_map_.size(), info_.size()); |
| } |
| |
| ProfileIndexType profile_index = profile_index_it->second; |
| DexFileData* result = info_[profile_index].get(); |
| |
| // Check that the checksum matches. |
| // This may different if for example the dex file was updated and we had a record of the old one. |
| if (result->checksum != checksum) { |
| LOG(WARNING) << "Checksum mismatch for dex " << profile_key; |
| return nullptr; |
| } |
| |
| // DCHECK that profile info map key is consistent with the one stored in the dex file data. |
| // This should always be the case since since the cache map is managed by ProfileCompilationInfo. |
| DCHECK_EQ(profile_key, result->profile_key); |
| DCHECK_EQ(profile_index, result->profile_index); |
| |
| if (num_type_ids != result->num_type_ids || num_method_ids != result->num_method_ids) { |
| // This should not happen... added to help investigating b/65812889. |
| LOG(ERROR) << "num_type_ids or num_method_ids mismatch for dex " << profile_key |
| << ", types: expected=" << num_type_ids << " v. actual=" << result->num_type_ids |
| << ", methods: expected=" << num_method_ids << " actual=" << result->num_method_ids; |
| return nullptr; |
| } |
| |
| return result; |
| } |
| |
| const ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::FindDexData( |
| const std::string& profile_key, |
| uint32_t checksum, |
| bool verify_checksum) const { |
| const auto profile_index_it = profile_key_map_.find(profile_key); |
| if (profile_index_it == profile_key_map_.end()) { |
| return nullptr; |
| } |
| |
| ProfileIndexType profile_index = profile_index_it->second; |
| const DexFileData* result = info_[profile_index].get(); |
| if (verify_checksum && !ChecksumMatch(result->checksum, checksum)) { |
| return nullptr; |
| } |
| DCHECK_EQ(profile_key, result->profile_key); |
| DCHECK_EQ(profile_index, result->profile_index); |
| return result; |
| } |
| |
| const ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::FindDexDataUsingAnnotations( |
| const DexFile* dex_file, |
| const ProfileSampleAnnotation& annotation) const { |
| if (annotation == ProfileSampleAnnotation::kNone) { |
| std::string_view profile_key = GetProfileDexFileBaseKeyView(dex_file->GetLocation()); |
| for (const std::unique_ptr<DexFileData>& dex_data : info_) { |
| if (profile_key == GetBaseKeyViewFromAugmentedKey(dex_data->profile_key)) { |
| if (!ChecksumMatch(dex_data->checksum, dex_file->GetLocationChecksum())) { |
| return nullptr; |
| } |
| return dex_data.get(); |
| } |
| } |
| } else { |
| std::string profile_key = GetProfileDexFileAugmentedKey(dex_file->GetLocation(), annotation); |
| return FindDexData(profile_key, dex_file->GetLocationChecksum()); |
| } |
| |
| return nullptr; |
| } |
| |
| void ProfileCompilationInfo::FindAllDexData( |
| const DexFile* dex_file, |
| /*out*/ std::vector<const ProfileCompilationInfo::DexFileData*>* result) const { |
| std::string_view profile_key = GetProfileDexFileBaseKeyView(dex_file->GetLocation()); |
| for (const std::unique_ptr<DexFileData>& dex_data : info_) { |
| if (profile_key == GetBaseKeyViewFromAugmentedKey(dex_data->profile_key)) { |
| if (ChecksumMatch(dex_data->checksum, dex_file->GetLocationChecksum())) { |
| result->push_back(dex_data.get()); |
| } |
| } |
| } |
| } |
| |
| ProfileCompilationInfo::ExtraDescriptorIndex ProfileCompilationInfo::AddExtraDescriptor( |
| std::string_view extra_descriptor) { |
| DCHECK_LE(extra_descriptor.size(), kMaxExtraDescriptorLength); |
| DCHECK(extra_descriptors_indexes_.find(extra_descriptor) == extra_descriptors_indexes_.end()); |
| ExtraDescriptorIndex new_extra_descriptor_index = extra_descriptors_.size(); |
| DCHECK_LE(new_extra_descriptor_index, kMaxExtraDescriptors); |
| if (UNLIKELY(new_extra_descriptor_index == kMaxExtraDescriptors)) { |
| return kMaxExtraDescriptors; // Cannot add another extra descriptor. |
| } |
| // Add the extra descriptor and record the new index. |
| extra_descriptors_.emplace_back(extra_descriptor); |
| extra_descriptors_indexes_.insert(new_extra_descriptor_index); |
| return new_extra_descriptor_index; |
| } |
| |
| bool ProfileCompilationInfo::AddMethod(const ProfileMethodInfo& pmi, |
| MethodHotness::Flag flags, |
| const ProfileSampleAnnotation& annotation) { |
| DexFileData* const data = GetOrAddDexFileData(pmi.ref.dex_file, annotation); |
| if (data == nullptr) { // checksum mismatch |
| return false; |
| } |
| if (!data->AddMethod(flags, pmi.ref.index)) { |
| return false; |
| } |
| if ((flags & MethodHotness::kFlagHot) == 0) { |
| // The method is not hot, do not add inline caches. |
| return true; |
| } |
| |
| // Add inline caches. |
| InlineCacheMap* inline_cache = data->FindOrAddHotMethod(pmi.ref.index); |
| DCHECK(inline_cache != nullptr); |
| |
| for (const ProfileMethodInfo::ProfileInlineCache& cache : pmi.inline_caches) { |
| if (cache.is_missing_types) { |
| FindOrAddDexPc(inline_cache, cache.dex_pc)->SetIsMissingTypes(); |
| continue; |
| } |
| if (cache.is_megamorphic) { |
| FindOrAddDexPc(inline_cache, cache.dex_pc)->SetIsMegamorphic(); |
| continue; |
| } |
| for (const TypeReference& class_ref : cache.classes) { |
| DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, cache.dex_pc); |
| if (dex_pc_data->is_missing_types || dex_pc_data->is_megamorphic) { |
| // Don't bother adding classes if we are missing types or already megamorphic. |
| break; |
| } |
| dex::TypeIndex type_index = FindOrCreateTypeIndex(*pmi.ref.dex_file, class_ref); |
| if (type_index.IsValid()) { |
| dex_pc_data->AddClass(type_index); |
| } else { |
| // Could not create artificial type index. |
| dex_pc_data->SetIsMissingTypes(); |
| } |
| } |
| } |
| return true; |
| } |
| |
| // TODO(calin): Fix this API. ProfileCompilationInfo::Load should be static and |
| // return a unique pointer to a ProfileCompilationInfo upon success. |
| bool ProfileCompilationInfo::Load( |
| int fd, bool merge_classes, const ProfileLoadFilterFn& filter_fn) { |
| std::string error; |
| |
| ProfileLoadStatus status = LoadInternal(fd, &error, merge_classes, filter_fn); |
| |
| if (status == ProfileLoadStatus::kSuccess) { |
| return true; |
| } else { |
| LOG(WARNING) << "Error when reading profile: " << error; |
| return false; |
| } |
| } |
| |
| bool ProfileCompilationInfo::VerifyProfileData(const std::vector<const DexFile*>& dex_files) { |
| std::unordered_map<std::string_view, const DexFile*> key_to_dex_file; |
| for (const DexFile* dex_file : dex_files) { |
| key_to_dex_file.emplace(GetProfileDexFileBaseKeyView(dex_file->GetLocation()), dex_file); |
| } |
| for (const std::unique_ptr<DexFileData>& dex_data : info_) { |
| // We need to remove any annotation from the key during verification. |
| const auto it = key_to_dex_file.find(GetBaseKeyViewFromAugmentedKey(dex_data->profile_key)); |
| if (it == key_to_dex_file.end()) { |
| // It is okay if profile contains data for additional dex files. |
| continue; |
| } |
| const DexFile* dex_file = it->second; |
| const std::string& dex_location = dex_file->GetLocation(); |
| if (!ChecksumMatch(dex_data->checksum, dex_file->GetLocationChecksum())) { |
| LOG(ERROR) << "Dex checksum mismatch while verifying profile " |
| << "dex location " << dex_location << " (checksum=" |
| << dex_file->GetLocationChecksum() << ", profile checksum=" |
| << dex_data->checksum; |
| return false; |
| } |
| |
| if (dex_data->num_method_ids != dex_file->NumMethodIds() || |
| dex_data->num_type_ids != dex_file->NumTypeIds()) { |
| LOG(ERROR) << "Number of type or method ids in dex file and profile don't match." |
| << "dex location " << dex_location |
| << " dex_file.NumTypeIds=" << dex_file->NumTypeIds() |
| << " .v dex_data.num_type_ids=" << dex_data->num_type_ids |
| << ", dex_file.NumMethodIds=" << dex_file->NumMethodIds() |
| << " v. dex_data.num_method_ids=" << dex_data->num_method_ids; |
| return false; |
| } |
| |
| // Class and method data should be valid. Verify only in debug builds. |
| if (kIsDebugBuild) { |
| // Verify method_encoding. |
| for (const auto& method_it : dex_data->method_map) { |
| CHECK_LT(method_it.first, dex_data->num_method_ids); |
| |
| // Verify class indices of inline caches. |
| const InlineCacheMap &inline_cache_map = method_it.second; |
| for (const auto& inline_cache_it : inline_cache_map) { |
| const DexPcData& dex_pc_data = inline_cache_it.second; |
| if (dex_pc_data.is_missing_types || dex_pc_data.is_megamorphic) { |
| // No class indices to verify. |
| CHECK(dex_pc_data.classes.empty()); |
| continue; |
| } |
| |
| for (const dex::TypeIndex& type_index : dex_pc_data.classes) { |
| if (type_index.index_ >= dex_data->num_type_ids) { |
| CHECK_LT(type_index.index_ - dex_data->num_type_ids, extra_descriptors_.size()); |
| } |
| } |
| } |
| } |
| // Verify class_ids. |
| for (const dex::TypeIndex& type_index : dex_data->class_set) { |
| if (type_index.index_ >= dex_data->num_type_ids) { |
| CHECK_LT(type_index.index_ - dex_data->num_type_ids, extra_descriptors_.size()); |
| } |
| } |
| } |
| } |
| return true; |
| } |
| |
| ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::OpenSource( |
| int32_t fd, |
| /*out*/ std::unique_ptr<ProfileSource>* source, |
| /*out*/ std::string* error) { |
| if (IsProfileFile(fd)) { |
| source->reset(ProfileSource::Create(fd)); |
| return ProfileLoadStatus::kSuccess; |
| } else { |
| std::unique_ptr<ZipArchive> zip_archive( |
| ZipArchive::OpenFromFd(DupCloexec(fd), "profile", error)); |
| if (zip_archive.get() == nullptr) { |
| *error = "Could not open the profile zip archive"; |
| return ProfileLoadStatus::kBadData; |
| } |
| std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(kDexMetadataProfileEntry, error)); |
| if (zip_entry == nullptr) { |
| // Allow archives without the profile entry. In this case, create an empty profile. |
| // This gives more flexible when ure-using archives that may miss the entry. |
| // (e.g. dex metadata files) |
| LOG(WARNING) << "Could not find entry " << kDexMetadataProfileEntry |
| << " in the zip archive. Creating an empty profile."; |
| source->reset(ProfileSource::Create(MemMap::Invalid())); |
| return ProfileLoadStatus::kSuccess; |
| } |
| if (zip_entry->GetUncompressedLength() == 0) { |
| *error = "Empty profile entry in the zip archive."; |
| return ProfileLoadStatus::kBadData; |
| } |
| |
| // TODO(calin) pass along file names to assist with debugging. |
| MemMap map = zip_entry->MapDirectlyOrExtract( |
| kDexMetadataProfileEntry, "profile file", error, alignof(ProfileSource)); |
| |
| if (map.IsValid()) { |
| source->reset(ProfileSource::Create(std::move(map))); |
| return ProfileLoadStatus::kSuccess; |
| } else { |
| return ProfileLoadStatus::kBadData; |
| } |
| } |
| } |
| |
| bool ProfileCompilationInfo::ProfileSource::Seek(off_t offset) { |
| DCHECK_GE(offset, 0); |
| if (IsMemMap()) { |
| if (offset > static_cast<int64_t>(mem_map_.Size())) { |
| return false; |
| } |
| mem_map_cur_ = offset; |
| return true; |
| } else { |
| if (lseek64(fd_, offset, SEEK_SET) != offset) { |
| return false; |
| } |
| return true; |
| } |
| } |
| |
| ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ProfileSource::Read( |
| void* buffer, |
| size_t byte_count, |
| const std::string& debug_stage, |
| std::string* error) { |
| if (IsMemMap()) { |
| DCHECK_LE(mem_map_cur_, mem_map_.Size()); |
| if (byte_count > mem_map_.Size() - mem_map_cur_) { |
| return ProfileLoadStatus::kBadData; |
| } |
| memcpy(buffer, mem_map_.Begin() + mem_map_cur_, byte_count); |
| mem_map_cur_ += byte_count; |
| } else { |
| while (byte_count > 0) { |
| int bytes_read = TEMP_FAILURE_RETRY(read(fd_, buffer, byte_count));; |
| if (bytes_read == 0) { |
| *error += "Profile EOF reached prematurely for " + debug_stage; |
| return ProfileLoadStatus::kBadData; |
| } else if (bytes_read < 0) { |
| *error += "Profile IO error for " + debug_stage + strerror(errno); |
| return ProfileLoadStatus::kIOError; |
| } |
| byte_count -= bytes_read; |
| reinterpret_cast<uint8_t*&>(buffer) += bytes_read; |
| } |
| } |
| return ProfileLoadStatus::kSuccess; |
| } |
| |
| |
| bool ProfileCompilationInfo::ProfileSource::HasEmptyContent() const { |
| if (IsMemMap()) { |
| return !mem_map_.IsValid() || mem_map_.Size() == 0; |
| } else { |
| struct stat stat_buffer; |
| if (fstat(fd_, &stat_buffer) != 0) { |
| return false; |
| } |
| return stat_buffer.st_size == 0; |
| } |
| } |
| |
| ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadSectionData( |
| ProfileSource& source, |
| const FileSectionInfo& section_info, |
| /*out*/ SafeBuffer* buffer, |
| /*out*/ std::string* error) { |
| DCHECK_EQ(buffer->Size(), 0u); |
| if (!source.Seek(section_info.GetFileOffset())) { |
| *error = "Failed to seek to section data."; |
| return ProfileLoadStatus::kIOError; |
| } |
| SafeBuffer temp_buffer(section_info.GetFileSize()); |
| ProfileLoadStatus status = source.Read( |
| temp_buffer.GetCurrentPtr(), temp_buffer.GetAvailableBytes(), "ReadSectionData", error); |
| if (status != ProfileLoadStatus::kSuccess) { |
| return status; |
| } |
| if (section_info.GetInflatedSize() != 0u && |
| !temp_buffer.Inflate(section_info.GetInflatedSize())) { |
| *error += "Error uncompressing section data."; |
| return ProfileLoadStatus::kBadData; |
| } |
| buffer->Swap(temp_buffer); |
| return ProfileLoadStatus::kSuccess; |
| } |
| |
| ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadDexFilesSection( |
| ProfileSource& source, |
| const FileSectionInfo& section_info, |
| const ProfileLoadFilterFn& filter_fn, |
| /*out*/ dchecked_vector<ProfileIndexType>* dex_profile_index_remap, |
| /*out*/ std::string* error) { |
| DCHECK(section_info.GetType() == FileSectionType::kDexFiles); |
| SafeBuffer buffer; |
| ProfileLoadStatus status = ReadSectionData(source, section_info, &buffer, error); |
| if (status != ProfileLoadStatus::kSuccess) { |
| return status; |
| } |
| |
| ProfileIndexType num_dex_files; |
| if (!buffer.ReadUintAndAdvance(&num_dex_files)) { |
| *error = "Error reading number of dex files."; |
| return ProfileLoadStatus::kBadData; |
| } |
| if (num_dex_files >= MaxProfileIndex()) { |
| *error = "Too many dex files."; |
| return ProfileLoadStatus::kBadData; |
| } |
| |
| DCHECK(dex_profile_index_remap->empty()); |
| for (ProfileIndexType i = 0u; i != num_dex_files; ++i) { |
| uint32_t checksum, num_type_ids, num_method_ids; |
| if (!buffer.ReadUintAndAdvance(&checksum) || |
| !buffer.ReadUintAndAdvance(&num_type_ids) || |
| !buffer.ReadUintAndAdvance(&num_method_ids)) { |
| *error = "Error reading dex file data."; |
| return ProfileLoadStatus::kBadData; |
| } |
| std::string_view profile_key_view; |
| if (!buffer.ReadStringAndAdvance(&profile_key_view)) { |
| *error += "Missing terminating null character for profile key."; |
| return ProfileLoadStatus::kBadData; |
| } |
| if (profile_key_view.size() == 0u || profile_key_view.size() > kMaxDexFileKeyLength) { |
| *error = "ProfileKey has an invalid size: " + std::to_string(profile_key_view.size()); |
| return ProfileLoadStatus::kBadData; |
| } |
| std::string profile_key(profile_key_view); |
| if (!filter_fn(profile_key, checksum)) { |
| // Do not load data for this key. Store invalid index to `dex_profile_index_remap`. |
| VLOG(compiler) << "Profile: Filtered out " << profile_key << " 0x" << std::hex << checksum; |
| dex_profile_index_remap->push_back(MaxProfileIndex()); |
| continue; |
| } |
| DexFileData* data = GetOrAddDexFileData(profile_key, checksum, num_type_ids, num_method_ids); |
| if (data == nullptr) { |
| if (UNLIKELY(profile_key_map_.size() == MaxProfileIndex()) && |
| profile_key_map_.find(profile_key) == profile_key_map_.end()) { |
| *error = "Too many dex files."; |
| } else { |
| *error = "Checksum, NumTypeIds, or NumMethodIds mismatch for " + profile_key; |
| } |
| return ProfileLoadStatus::kBadData; |
| } |
| dex_profile_index_remap->push_back(data->profile_index); |
| } |
| if (buffer.GetAvailableBytes() != 0u) { |
| *error = "Unexpected data at end of dex files section."; |
| return ProfileLoadStatus::kBadData; |
| } |
| return ProfileLoadStatus::kSuccess; |
| } |
| |
| ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadExtraDescriptorsSection( |
| ProfileSource& source, |
| const FileSectionInfo& section_info, |
| /*out*/ dchecked_vector<ExtraDescriptorIndex>* extra_descriptors_remap, |
| /*out*/ std::string* error) { |
| DCHECK(section_info.GetType() == FileSectionType::kExtraDescriptors); |
| SafeBuffer buffer; |
| ProfileLoadStatus status = ReadSectionData(source, section_info, &buffer, error); |
| if (status != ProfileLoadStatus::kSuccess) { |
| return status; |
| } |
| |
| uint16_t num_extra_descriptors; |
| if (!buffer.ReadUintAndAdvance(&num_extra_descriptors)) { |
| *error = "Error reading number of extra descriptors."; |
| return ProfileLoadStatus::kBadData; |
| } |
| |
| // Note: We allow multiple extra descriptors sections in a single profile file |
| // but that can lead to `kMergeError` if there are too many extra descriptors. |
| // Other sections can reference only extra descriptors from preceding sections. |
| extra_descriptors_remap->reserve( |
| std::min<size_t>(extra_descriptors_remap->size() + num_extra_descriptors, |
| std::numeric_limits<uint16_t>::max())); |
| for (uint16_t i = 0; i != num_extra_descriptors; ++i) { |
| std::string_view extra_descriptor; |
| if (!buffer.ReadStringAndAdvance(&extra_descriptor)) { |
| *error += "Missing terminating null character for extra descriptor."; |
| return ProfileLoadStatus::kBadData; |
| } |
| if (!IsValidDescriptor(std::string(extra_descriptor).c_str())) { |
| *error += "Invalid extra descriptor."; |
| return ProfileLoadStatus::kBadData; |
| } |
| // Try to match an existing extra descriptor. |
| auto it = extra_descriptors_indexes_.find(extra_descriptor); |
| if (it != extra_descriptors_indexes_.end()) { |
| extra_descriptors_remap->push_back(*it); |
| continue; |
| } |
| // Try to insert a new extra descriptor. |
| ExtraDescriptorIndex extra_descriptor_index = AddExtraDescriptor(extra_descriptor); |
| if (extra_descriptor_index == kMaxExtraDescriptors) { |
| *error = "Too many extra descriptors."; |
| return ProfileLoadStatus::kMergeError; |
| } |
| extra_descriptors_remap->push_back(extra_descriptor_index); |
| } |
| return ProfileLoadStatus::kSuccess; |
| } |
| |
| ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadClassesSection( |
| ProfileSource& source, |
| const FileSectionInfo& section_info, |
| const dchecked_vector<ProfileIndexType>& dex_profile_index_remap, |
| const dchecked_vector<ExtraDescriptorIndex>& extra_descriptors_remap, |
| /*out*/ std::string* error) { |
| DCHECK(section_info.GetType() == FileSectionType::kClasses); |
| SafeBuffer buffer; |
| ProfileLoadStatus status = ReadSectionData(source, section_info, &buffer, error); |
| if (status != ProfileLoadStatus::kSuccess) { |
| return status; |
| } |
| |
| while (buffer.GetAvailableBytes() != 0u) { |
| ProfileIndexType profile_index; |
| if (!buffer.ReadUintAndAdvance(&profile_index)) { |
| *error = "Error profile index in classes section."; |
| return ProfileLoadStatus::kBadData; |
| } |
| if (profile_index >= dex_profile_index_remap.size()) { |
| *error = "Invalid profile index in classes section."; |
| return ProfileLoadStatus::kBadData; |
| } |
| profile_index = dex_profile_index_remap[profile_index]; |
| if (profile_index == MaxProfileIndex()) { |
| status = DexFileData::SkipClasses(buffer, error); |
| } else { |
| status = info_[profile_index]->ReadClasses(buffer, extra_descriptors_remap, error); |
| } |
| if (status != ProfileLoadStatus::kSuccess) { |
| return status; |
| } |
| } |
| return ProfileLoadStatus::kSuccess; |
| } |
| |
| ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadMethodsSection( |
| ProfileSource& source, |
| const FileSectionInfo& section_info, |
| const dchecked_vector<ProfileIndexType>& dex_profile_index_remap, |
| const dchecked_vector<ExtraDescriptorIndex>& extra_descriptors_remap, |
| /*out*/ std::string* error) { |
| DCHECK(section_info.GetType() == FileSectionType::kMethods); |
| SafeBuffer buffer; |
| ProfileLoadStatus status = ReadSectionData(source, section_info, &buffer, error); |
| if (status != ProfileLoadStatus::kSuccess) { |
| return status; |
| } |
| |
| while (buffer.GetAvailableBytes() != 0u) { |
| ProfileIndexType profile_index; |
| if (!buffer.ReadUintAndAdvance(&profile_index)) { |
| *error = "Error profile index in methods section."; |
| return ProfileLoadStatus::kBadData; |
| } |
| if (profile_index >= dex_profile_index_remap.size()) { |
| *error = "Invalid profile index in methods section."; |
| return ProfileLoadStatus::kBadData; |
| } |
| profile_index = dex_profile_index_remap[profile_index]; |
| if (profile_index == MaxProfileIndex()) { |
| status = DexFileData::SkipMethods(buffer, error); |
| } else { |
| status = info_[profile_index]->ReadMethods(buffer, extra_descriptors_remap, error); |
| } |
| if (status != ProfileLoadStatus::kSuccess) { |
| return status; |
| } |
| } |
| return ProfileLoadStatus::kSuccess; |
| } |
| |
| // TODO(calin): fail fast if the dex checksums don't match. |
| ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::LoadInternal( |
| int32_t fd, |
| std::string* error, |
| bool merge_classes, |
| const ProfileLoadFilterFn& filter_fn) { |
| ScopedTrace trace(__PRETTY_FUNCTION__); |
| DCHECK_GE(fd, 0); |
| |
| std::unique_ptr<ProfileSource> source; |
| ProfileLoadStatus status = OpenSource(fd, &source, error); |
| if (status != ProfileLoadStatus::kSuccess) { |
| return status; |
| } |
| |
| // We allow empty profile files. |
| // Profiles may be created by ActivityManager or installd before we manage to |
| // process them in the runtime or profman. |
| if (source->HasEmptyContent()) { |
| return ProfileLoadStatus::kSuccess; |
| } |
| |
| // Read file header. |
| FileHeader header; |
| status = source->Read(&header, sizeof(FileHeader), "ReadProfileHeader", error); |
| if (status != ProfileLoadStatus::kSuccess) { |
| return status; |
| } |
| if (!header.IsValid()) { |
| return header.InvalidHeaderMessage(error); |
| } |
| if (memcmp(header.GetVersion(), version_, kProfileVersionSize) != 0) { |
| *error = IsForBootImage() ? "Expected boot profile, got app profile." |
| : "Expected app profile, got boot profile."; |
| return ProfileLoadStatus::kVersionMismatch; |
| } |
| |
| // Check if there are too many section infos. |
| uint32_t section_count = header.GetFileSectionCount(); |
| uint32_t uncompressed_data_size = sizeof(FileHeader) + section_count * sizeof(FileSectionInfo); |
| if (uncompressed_data_size > GetSizeErrorThresholdBytes()) { |
| LOG(WARNING) << "Profile data size exceeds " << GetSizeErrorThresholdBytes() |
| << " bytes. It has " << uncompressed_data_size << " bytes."; |
| return ProfileLoadStatus::kBadData; |
| } |
| |
| // Read section infos. |
| dchecked_vector<FileSectionInfo> section_infos(section_count); |
| status = source->Read( |
| section_infos.data(), section_count * sizeof(FileSectionInfo), "ReadSectionInfos", error); |
| if (status != ProfileLoadStatus::kSuccess) { |
| return status; |
| } |
| |
| // Finish uncompressed data size calculation. |
| for (const FileSectionInfo& section_info : section_infos) { |
| uint32_t mem_size = section_info.GetMemSize(); |
| if (UNLIKELY(mem_size > std::numeric_limits<uint32_t>::max() - uncompressed_data_size)) { |
| *error = "Total memory size overflow."; |
| return ProfileLoadStatus::kBadData; |
| } |
| uncompressed_data_size += mem_size; |
| } |
| |
| // Allow large profiles for non target builds for the case where we are merging many profiles |
| // to generate a boot image profile. |
| if (uncompressed_data_size > GetSizeErrorThresholdBytes()) { |
| LOG(WARNING) << "Profile data size exceeds " |
| << GetSizeErrorThresholdBytes() |
| << " bytes. It has " << uncompressed_data_size << " bytes."; |
| return ProfileLoadStatus::kBadData; |
| } |
| if (uncompressed_data_size > GetSizeWarningThresholdBytes()) { |
| LOG(WARNING) << "Profile data size exceeds " |
| << GetSizeWarningThresholdBytes() |
| << " bytes. It has " << uncompressed_data_size << " bytes."; |
| } |
| |
| // Process the mandatory dex files section. |
| DCHECK_NE(section_count, 0u); // Checked by `header.IsValid()` above. |
| const FileSectionInfo& dex_files_section_info = section_infos[0]; |
| if (dex_files_section_info.GetType() != FileSectionType::kDexFiles) { |
| *error = "First section is not dex files section."; |
| return ProfileLoadStatus::kBadData; |
| } |
| dchecked_vector<ProfileIndexType> dex_profile_index_remap; |
| status = ReadDexFilesSection( |
| *source, dex_files_section_info, filter_fn, &dex_profile_index_remap, error); |
| if (status != ProfileLoadStatus::kSuccess) { |
| DCHECK(!error->empty()); |
| return status; |
| } |
| |
| // Process all other sections. |
| dchecked_vector<ExtraDescriptorIndex> extra_descriptors_remap; |
| for (uint32_t i = 1u; i != section_count; ++i) { |
| const FileSectionInfo& section_info = section_infos[i]; |
| DCHECK(status == ProfileLoadStatus::kSuccess); |
| switch (section_info.GetType()) { |
| case FileSectionType::kDexFiles: |
| *error = "Unsupported additional dex files section."; |
| status = ProfileLoadStatus::kBadData; |
| break; |
| case FileSectionType::kExtraDescriptors: |
| status = ReadExtraDescriptorsSection( |
| *source, section_info, &extra_descriptors_remap, error); |
| break; |
| case FileSectionType::kClasses: |
| // Skip if all dex files were filtered out. |
| if (!info_.empty() && merge_classes) { |
| status = ReadClassesSection( |
| *source, section_info, dex_profile_index_remap, extra_descriptors_remap, error); |
| } |
| break; |
| case FileSectionType::kMethods: |
| // Skip if all dex files were filtered out. |
| if (!info_.empty()) { |
| status = ReadMethodsSection( |
| *source, section_info, dex_profile_index_remap, extra_descriptors_remap, error); |
| } |
| break; |
| case FileSectionType::kAggregationCounts: |
| // This section is only used on server side. |
| break; |
| default: |
| // Unknown section. Skip it. New versions of ART are allowed |
| // to add sections that shall be ignored by old versions. |
| break; |
| } |
| if (status != ProfileLoadStatus::kSuccess) { |
| DCHECK(!error->empty()); |
| return status; |
| } |
| } |
| |
| return ProfileLoadStatus::kSuccess; |
| } |
| |
| bool ProfileCompilationInfo::MergeWith(const ProfileCompilationInfo& other, |
| bool merge_classes) { |
| if (!SameVersion(other)) { |
| LOG(WARNING) << "Cannot merge different profile versions"; |
| return false; |
| } |
| |
| // First verify that all checksums match. This will avoid adding garbage to |
| // the current profile info. |
| // Note that the number of elements should be very small, so this should not |
| // be a performance issue. |
| for (const std::unique_ptr<DexFileData>& other_dex_data : other.info_) { |
| // verify_checksum is false because we want to differentiate between a missing dex data and |
| // a mismatched checksum. |
| const DexFileData* dex_data = FindDexData(other_dex_data->profile_key, |
| /* checksum= */ 0u, |
| /* verify_checksum= */ false); |
| if ((dex_data != nullptr) && (dex_data->checksum != other_dex_data->checksum)) { |
| LOG(WARNING) << "Checksum mismatch for dex " << other_dex_data->profile_key; |
| return false; |
| } |
| } |
| // All checksums match. Import the data. |
| |
| // The other profile might have a different indexing of dex files. |
| // That is because each dex files gets a 'dex_profile_index' on a first come first served basis. |
| // That means that the order in with the methods are added to the profile matters for the |
| // actual indices. |
| // The reason we cannot rely on the actual multidex index is that a single profile may store |
| // data from multiple splits. This means that a profile may contain a classes2.dex from split-A |
| // and one from split-B. |
| |
| // First, build a mapping from other_dex_profile_index to this_dex_profile_index. |
| dchecked_vector<ProfileIndexType> dex_profile_index_remap; |
| dex_profile_index_remap.reserve(other.info_.size()); |
| for (const std::unique_ptr<DexFileData>& other_dex_data : other.info_) { |
| const DexFileData* dex_data = GetOrAddDexFileData(other_dex_data->profile_key, |
| other_dex_data->checksum, |
| other_dex_data->num_type_ids, |
| other_dex_data->num_method_ids); |
| if (dex_data == nullptr) { |
| // Could happen if we exceed the number of allowed dex files or there is |
| // a mismatch in `num_type_ids` or `num_method_ids`. |
| return false; |
| } |
| DCHECK_EQ(other_dex_data->profile_index, dex_profile_index_remap.size()); |
| dex_profile_index_remap.push_back(dex_data->profile_index); |
| } |
| |
| // Then merge extra descriptors. |
| dchecked_vector<ExtraDescriptorIndex> extra_descriptors_remap; |
| extra_descriptors_remap.reserve(other.extra_descriptors_.size()); |
| for (const std::string& other_extra_descriptor : other.extra_descriptors_) { |
| auto it = extra_descriptors_indexes_.find(std::string_view(other_extra_descriptor)); |
| if (it != extra_descriptors_indexes_.end()) { |
| extra_descriptors_remap.push_back(*it); |
| } else { |
| ExtraDescriptorIndex extra_descriptor_index = AddExtraDescriptor(other_extra_descriptor); |
| if (extra_descriptor_index == kMaxExtraDescriptors) { |
| // Too many extra descriptors. |
| return false; |
| } |
| extra_descriptors_remap.push_back(extra_descriptor_index); |
| } |
| } |
| |
| // Merge the actual profile data. |
| for (const std::unique_ptr<DexFileData>& other_dex_data : other.info_) { |
| DexFileData* dex_data = info_[dex_profile_index_remap[other_dex_data->profile_index]].get(); |
| DCHECK_EQ(dex_data, FindDexData(other_dex_data->profile_key, other_dex_data->checksum)); |
| |
| // Merge the classes. |
| uint32_t num_type_ids = dex_data->num_type_ids; |
| DCHECK_EQ(num_type_ids, other_dex_data->num_type_ids); |
| if (merge_classes) { |
| // Classes are ordered by the `TypeIndex`, so we have the classes with a `TypeId` |
| // in the dex file first, followed by classes using extra descriptors. |
| auto it = other_dex_data->class_set.lower_bound(dex::TypeIndex(num_type_ids)); |
| dex_data->class_set.insert(other_dex_data->class_set.begin(), it); |
| for (auto end = other_dex_data->class_set.end(); it != end; ++it) { |
| ExtraDescriptorIndex new_extra_descriptor_index = |
| extra_descriptors_remap[it->index_ - num_type_ids]; |
| if (new_extra_descriptor_index >= DexFile::kDexNoIndex16 - num_type_ids) { |
| // Cannot represent the type with new extra descriptor index. |
| return false; |
| } |
| dex_data->class_set.insert(dex::TypeIndex(num_type_ids + new_extra_descriptor_index)); |
| } |
| } |
| |
| // Merge the methods and the inline caches. |
| for (const auto& other_method_it : other_dex_data->method_map) { |
| uint16_t other_method_index = other_method_it.first; |
| InlineCacheMap* inline_cache = dex_data->FindOrAddHotMethod(other_method_index); |
| if (inline_cache == nullptr) { |
| return false; |
| } |
| const auto& other_inline_cache = other_method_it.second; |
| for (const auto& other_ic_it : other_inline_cache) { |
| uint16_t other_dex_pc = other_ic_it.first; |
| const ArenaSet<dex::TypeIndex>& other_class_set = other_ic_it.second.classes; |
| DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, other_dex_pc); |
| if (other_ic_it.second.is_missing_types) { |
| dex_pc_data->SetIsMissingTypes(); |
| } else if (other_ic_it.second.is_megamorphic) { |
| dex_pc_data->SetIsMegamorphic(); |
| } else { |
| for (dex::TypeIndex type_index : other_class_set) { |
| if (type_index.index_ >= num_type_ids) { |
| ExtraDescriptorIndex new_extra_descriptor_index = |
| extra_descriptors_remap[type_index.index_ - num_type_ids]; |
| if (new_extra_descriptor_index >= DexFile::kDexNoIndex16 - num_type_ids) { |
| // Cannot represent the type with new extra descriptor index. |
| return false; |
| } |
| type_index = dex::TypeIndex(num_type_ids + new_extra_descriptor_index); |
| } |
| dex_pc_data->AddClass(type_index); |
| } |
| } |
| } |
| } |
| |
| // Merge the method bitmaps. |
| dex_data->MergeBitmap(*other_dex_data); |
| } |
| |
| return true; |
| } |
| |
| ProfileCompilationInfo::MethodHotness ProfileCompilationInfo::GetMethodHotness( |
| const MethodReference& method_ref, |
| const ProfileSampleAnnotation& annotation) const { |
| const DexFileData* dex_data = FindDexDataUsingAnnotations(method_ref.dex_file, annotation); |
| return dex_data != nullptr |
| ? dex_data->GetHotnessInfo(method_ref.index) |
| : MethodHotness(); |
| } |
| |
| bool ProfileCompilationInfo::ContainsClass(const DexFile& dex_file, |
| dex::TypeIndex type_idx, |
| const ProfileSampleAnnotation& annotation) const { |
| const DexFileData* dex_data = FindDexDataUsingAnnotations(&dex_file, annotation); |
| return (dex_data != nullptr) && dex_data->ContainsClass(type_idx); |
| } |
| |
| uint32_t ProfileCompilationInfo::GetNumberOfMethods() const { |
| uint32_t total = 0; |
| for (const std::unique_ptr<DexFileData>& dex_data : info_) { |
| total += dex_data->method_map.size(); |
| } |
| return total; |
| } |
| |
| uint32_t ProfileCompilationInfo::GetNumberOfResolvedClasses() const { |
| uint32_t total = 0; |
| for (const std::unique_ptr<DexFileData>& dex_data : info_) { |
| total += dex_data->class_set.size(); |
| } |
| return total; |
| } |
| |
| std::string ProfileCompilationInfo::DumpInfo(const std::vector<const DexFile*>& dex_files, |
| bool print_full_dex_location) const { |
| std::ostringstream os; |
| |
| os << "ProfileInfo ["; |
| |
| for (size_t k = 0; k < kProfileVersionSize - 1; k++) { |
| // Iterate to 'kProfileVersionSize - 1' because the version_ ends with '\0' |
| // which we don't want to print. |
| os << static_cast<char>(version_[k]); |
| } |
| os << "]\n"; |
| |
| if (info_.empty()) { |
| os << "-empty-"; |
| return os.str(); |
| } |
| |
| if (!extra_descriptors_.empty()) { |
| os << "\nextra descriptors:"; |
| for (const std::string& str : extra_descriptors_) { |
| os << "\n\t" << str; |
| } |
| os << "\n"; |
| } |
| |
| const std::string kFirstDexFileKeySubstitute = "!classes.dex"; |
| |
| for (const std::unique_ptr<DexFileData>& dex_data : info_) { |
| os << "\n"; |
| if (print_full_dex_location) { |
| os << dex_data->profile_key; |
| } else { |
| // Replace the (empty) multidex suffix of the first key with a substitute for easier reading. |
| std::string multidex_suffix = DexFileLoader::GetMultiDexSuffix( |
| GetBaseKeyFromAugmentedKey(dex_data->profile_key)); |
| os << (multidex_suffix.empty() ? kFirstDexFileKeySubstitute : multidex_suffix); |
| } |
| os << " [index=" << static_cast<uint32_t>(dex_data->profile_index) << "]"; |
| os << " [checksum=" << std::hex << dex_data->checksum << "]" << std::dec; |
| os << " [num_type_ids=" << dex_data->num_type_ids << "]"; |
| os << " [num_method_ids=" << dex_data->num_method_ids << "]"; |
| const DexFile* dex_file = nullptr; |
| for (const DexFile* current : dex_files) { |
| if (GetBaseKeyViewFromAugmentedKey(dex_data->profile_key) == |
| GetProfileDexFileBaseKeyView(current->GetLocation()) && |
| ChecksumMatch(dex_data->checksum, current->GetLocationChecksum())) { |
| dex_file = current; |
| break; |
| } |
| } |
| os << "\n\thot methods: "; |
| for (const auto& method_it : dex_data->method_map) { |
| if (dex_file != nullptr) { |
| os << "\n\t\t" << dex_file->PrettyMethod(method_it.first, true); |
| } else { |
| os << method_it.first; |
| } |
| |
| os << "["; |
| for (const auto& inline_cache_it : method_it.second) { |
| os << "{" << std::hex << inline_cache_it.first << std::dec << ":"; |
| if (inline_cache_it.second.is_missing_types) { |
| os << "MT"; |
| } else if (inline_cache_it.second.is_megamorphic) { |
| os << "MM"; |
| } else { |
| const char* separator = ""; |
| for (dex::TypeIndex type_index : inline_cache_it.second.classes) { |
| os << separator << type_index.index_; |
| separator = ","; |
| } |
| } |
| os << "}"; |
| } |
| os << "], "; |
| } |
| bool startup = true; |
| while (true) { |
| os << "\n\t" << (startup ? "startup methods: " : "post startup methods: "); |
| for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) { |
| MethodHotness hotness_info(dex_data->GetHotnessInfo(method_idx)); |
| if (startup ? hotness_info.IsStartup() : hotness_info.IsPostStartup()) { |
| if (dex_file != nullptr) { |
| os << "\n\t\t" << dex_file->PrettyMethod(method_idx, true); |
| } else { |
| os << method_idx << ", "; |
| } |
| } |
| } |
| if (startup == false) { |
| break; |
| } |
| startup = false; |
| } |
| os << "\n\tclasses: "; |
| for (dex::TypeIndex type_index : dex_data->class_set) { |
| if (dex_file != nullptr) { |
| os << "\n\t\t" << PrettyDescriptor(GetTypeDescriptor(dex_file, type_index)); |
| } else { |
| os << type_index.index_ << ","; |
| } |
| } |
| } |
| return os.str(); |
| } |
| |
| bool ProfileCompilationInfo::GetClassesAndMethods( |
| const DexFile& dex_file, |
| /*out*/std::set<dex::TypeIndex>* class_set, |
| /*out*/std::set<uint16_t>* hot_method_set, |
| /*out*/std::set<uint16_t>* startup_method_set, |
| /*out*/std::set<uint16_t>* post_startup_method_method_set, |
| const ProfileSampleAnnotation& annotation) const { |
| std::set<std::string> ret; |
| const DexFileData* dex_data = FindDexDataUsingAnnotations(&dex_file, annotation); |
| if (dex_data == nullptr) { |
| return false; |
| } |
| for (const auto& it : dex_data->method_map) { |
| hot_method_set->insert(it.first); |
| } |
| for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) { |
| MethodHotness hotness = dex_data->GetHotnessInfo(method_idx); |
| if (hotness.IsStartup()) { |
| startup_method_set->insert(method_idx); |
| } |
| if (hotness.IsPostStartup()) { |
| post_startup_method_method_set->insert(method_idx); |
| } |
| } |
| for (const dex::TypeIndex& type_index : dex_data->class_set) { |
| class_set->insert(type_index); |
| } |
| return true; |
| } |
| |
| const ArenaSet<dex::TypeIndex>* ProfileCompilationInfo::GetClasses( |
| const DexFile& dex_file, |
| const ProfileSampleAnnotation& annotation) const { |
| const DexFileData* dex_data = FindDexDataUsingAnnotations(&dex_file, annotation); |
| if (dex_data == nullptr) { |
| return nullptr; |
| } |
| return &dex_data->class_set; |
| } |
| |
| bool ProfileCompilationInfo::SameVersion(const ProfileCompilationInfo& other) const { |
| return memcmp(version_, other.version_, kProfileVersionSize) == 0; |
| } |
| |
| bool ProfileCompilationInfo::Equals(const ProfileCompilationInfo& other) { |
| // No need to compare profile_key_map_. That's only a cache for fast search. |
| // All the information is already in the info_ vector. |
| if (!SameVersion(other)) { |
| return false; |
| } |
| if (info_.size() != other.info_.size()) { |
| return false; |
| } |
| for (size_t i = 0; i < info_.size(); i++) { |
| const DexFileData& dex_data = *info_[i]; |
| const DexFileData& other_dex_data = *other.info_[i]; |
| if (!(dex_data == other_dex_data)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| // Naive implementation to generate a random profile file suitable for testing. |
| bool ProfileCompilationInfo::GenerateTestProfile(int fd, |
| uint16_t number_of_dex_files, |
| uint16_t method_percentage, |
| uint16_t class_percentage, |
| uint32_t random_seed) { |
| const std::string base_dex_location = "base.apk"; |
| ProfileCompilationInfo info; |
| // The limits are defined by the dex specification. |
| const uint16_t max_methods = std::numeric_limits<uint16_t>::max(); |
| const uint16_t max_classes = std::numeric_limits<uint16_t>::max(); |
| uint16_t number_of_methods = max_methods * method_percentage / 100; |
| uint16_t number_of_classes = max_classes * class_percentage / 100; |
| |
| std::srand(random_seed); |
| |
| // Make sure we generate more samples with a low index value. |
| // This makes it more likely to hit valid method/class indices in small apps. |
| const uint16_t kFavorFirstN = 10000; |
| const uint16_t kFavorSplit = 2; |
| |
| for (uint16_t i = 0; i < number_of_dex_files; i++) { |
| std::string dex_location = DexFileLoader::GetMultiDexLocation(i, base_dex_location.c_str()); |
| std::string profile_key = info.GetProfileDexFileBaseKey(dex_location); |
| |
| DexFileData* const data = |
| info.GetOrAddDexFileData(profile_key, /*checksum=*/ 0, max_classes, max_methods); |
| for (uint16_t m = 0; m < number_of_methods; m++) { |
| uint16_t method_idx = rand() % max_methods; |
| if (m < (number_of_methods / kFavorSplit)) { |
| method_idx %= kFavorFirstN; |
| } |
| // Alternate between startup and post startup. |
| uint32_t flags = MethodHotness::kFlagHot; |
| flags |= ((m & 1) != 0) ? MethodHotness::kFlagPostStartup : MethodHotness::kFlagStartup; |
| data->AddMethod(static_cast<MethodHotness::Flag>(flags), method_idx); |
| } |
| |
| for (uint16_t c = 0; c < number_of_classes; c++) { |
| uint16_t type_idx = rand() % max_classes; |
| if (c < (number_of_classes / kFavorSplit)) { |
| type_idx %= kFavorFirstN; |
| } |
| data->class_set.insert(dex::TypeIndex(type_idx)); |
| } |
| } |
| return info.Save(fd); |
| } |
| |
| // Naive implementation to generate a random profile file suitable for testing. |
| // Description of random selection: |
| // * Select a random starting point S. |
| // * For every index i, add (S+i) % (N - total number of methods/classes) to profile with the |
| // probably of 1/(N - i - number of methods/classes needed to add in profile). |
| bool ProfileCompilationInfo::GenerateTestProfile( |
| int fd, |
| std::vector<std::unique_ptr<const DexFile>>& dex_files, |
| uint16_t method_percentage, |
| uint16_t class_percentage, |
| uint32_t random_seed) { |
| ProfileCompilationInfo info; |
| std::default_random_engine rng(random_seed); |
| auto create_shuffled_range = [&rng](uint32_t take, uint32_t out_of) { |
| CHECK_LE(take, out_of); |
| std::vector<uint32_t> vec(out_of); |
| std::iota(vec.begin(), vec.end(), 0u); |
| std::shuffle(vec.begin(), vec.end(), rng); |
| vec.erase(vec.begin() + take, vec.end()); |
| std::sort(vec.begin(), vec.end()); |
| return vec; |
| }; |
| for (std::unique_ptr<const DexFile>& dex_file : dex_files) { |
| const std::string& dex_location = dex_file->GetLocation(); |
| std::string profile_key = info.GetProfileDexFileBaseKey(dex_location); |
| uint32_t checksum = dex_file->GetLocationChecksum(); |
| |
| uint32_t number_of_classes = dex_file->NumClassDefs(); |
| uint32_t classes_required_in_profile = (number_of_classes * class_percentage) / 100; |
| |
| DexFileData* const data = info.GetOrAddDexFileData( |
| profile_key, checksum, dex_file->NumTypeIds(), dex_file->NumMethodIds()); |
| for (uint32_t class_index : create_shuffled_range(classes_required_in_profile, |
| number_of_classes)) { |
| data->class_set.insert(dex_file->GetClassDef(class_index).class_idx_); |
| } |
| |
| uint32_t number_of_methods = dex_file->NumMethodIds(); |
| uint32_t methods_required_in_profile = (number_of_methods * method_percentage) / 100; |
| for (uint32_t method_index : create_shuffled_range(methods_required_in_profile, |
| number_of_methods)) { |
| // Alternate between startup and post startup. |
| uint32_t flags = MethodHotness::kFlagHot; |
| flags |= ((method_index & 1) != 0) |
| ? MethodHotness::kFlagPostStartup |
| : MethodHotness::kFlagStartup; |
| data->AddMethod(static_cast<MethodHotness::Flag>(flags), method_index); |
| } |
| } |
| return info.Save(fd); |
| } |
| |
| bool ProfileCompilationInfo::IsEmpty() const { |
| DCHECK_EQ(info_.size(), profile_key_map_.size()); |
| // Note that this doesn't look at the bitmap region, so we will return true |
| // when the profile contains only non-hot methods. This is generally ok |
| // as for speed-profile to be useful we do need hot methods and resolved classes. |
| return GetNumberOfMethods() == 0 && GetNumberOfResolvedClasses() == 0; |
| } |
| |
| ProfileCompilationInfo::InlineCacheMap* |
| ProfileCompilationInfo::DexFileData::FindOrAddHotMethod(uint16_t method_index) { |
| if (method_index >= num_method_ids) { |
| LOG(ERROR) << "Invalid method index " << method_index << ". num_method_ids=" << num_method_ids; |
| return nullptr; |
| } |
| return &(method_map.FindOrAdd( |
| method_index, |
| InlineCacheMap(std::less<uint16_t>(), allocator_->Adapter(kArenaAllocProfile)))->second); |
| } |
| |
| // Mark a method as executed at least once. |
| bool ProfileCompilationInfo::DexFileData::AddMethod(MethodHotness::Flag flags, size_t index) { |
| if (index >= num_method_ids || index > kMaxSupportedMethodIndex) { |
| LOG(ERROR) << "Invalid method index " << index << ". num_method_ids=" << num_method_ids |
| << ", max: " << kMaxSupportedMethodIndex; |
| return false; |
| } |
| |
| SetMethodHotness(index, flags); |
| |
| if ((flags & MethodHotness::kFlagHot) != 0) { |
| ProfileCompilationInfo::InlineCacheMap* result = FindOrAddHotMethod(index); |
| DCHECK(result != nullptr); |
| } |
| return true; |
| } |
| |
| void ProfileCompilationInfo::DexFileData::SetMethodHotness(size_t index, |
| MethodHotness::Flag flags) { |
| DCHECK_LT(index, num_method_ids); |
| ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) { |
| if ((flags & flag) != 0) { |
| method_bitmap.StoreBit(MethodFlagBitmapIndex( |
| static_cast<MethodHotness::Flag>(flag), index), /*value=*/ true); |
| } |
| return true; |
| }); |
| } |
| |
| ProfileCompilationInfo::MethodHotness ProfileCompilationInfo::DexFileData::GetHotnessInfo( |
| uint32_t dex_method_index) const { |
| MethodHotness ret; |
| ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) { |
| if (method_bitmap.LoadBit(MethodFlagBitmapIndex( |
| static_cast<MethodHotness::Flag>(flag), dex_method_index))) { |
| ret.AddFlag(static_cast<MethodHotness::Flag>(flag)); |
| } |
| return true; |
| }); |
| auto it = method_map.find(dex_method_index); |
| if (it != method_map.end()) { |
| ret.SetInlineCacheMap(&it->second); |
| ret.AddFlag(MethodHotness::kFlagHot); |
| } |
| return ret; |
| } |
| |
| // To simplify the implementation we use the MethodHotness flag values as indexes into the internal |
| // bitmap representation. As such, they should never change unless the profile version is updated |
| // and the implementation changed accordingly. |
| static_assert(ProfileCompilationInfo::MethodHotness::kFlagFirst == 1 << 0); |
| static_assert(ProfileCompilationInfo::MethodHotness::kFlagHot == 1 << 0); |
| static_assert(ProfileCompilationInfo::MethodHotness::kFlagStartup == 1 << 1); |
| static_assert(ProfileCompilationInfo::MethodHotness::kFlagPostStartup == 1 << 2); |
| static_assert(ProfileCompilationInfo::MethodHotness::kFlagLastRegular == 1 << 2); |
| static_assert(ProfileCompilationInfo::MethodHotness::kFlag32bit == 1 << 3); |
| static_assert(ProfileCompilationInfo::MethodHotness::kFlag64bit == 1 << 4); |
| static_assert(ProfileCompilationInfo::MethodHotness::kFlagSensitiveThread == 1 << 5); |
| static_assert(ProfileCompilationInfo::MethodHotness::kFlagAmStartup == 1 << 6); |
| static_assert(ProfileCompilationInfo::MethodHotness::kFlagAmPostStartup == 1 << 7); |
| static_assert(ProfileCompilationInfo::MethodHotness::kFlagBoot == 1 << 8); |
| static_assert(ProfileCompilationInfo::MethodHotness::kFlagPostBoot == 1 << 9); |
| static_assert(ProfileCompilationInfo::MethodHotness::kFlagStartupBin == 1 << 10); |
| static_assert(ProfileCompilationInfo::MethodHotness::kFlagStartupMaxBin == 1 << 15); |
| static_assert(ProfileCompilationInfo::MethodHotness::kFlagLastBoot == 1 << 15); |
| |
| uint16_t ProfileCompilationInfo::DexFileData::GetUsedBitmapFlags() const { |
| uint32_t used_flags = 0u; |
| ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) { |
| size_t index = FlagBitmapIndex(static_cast<MethodHotness::Flag>(flag)); |
| if (method_bitmap.HasSomeBitSet(index * num_method_ids, num_method_ids)) { |
| used_flags |= flag; |
| } |
| return true; |
| }); |
| return dchecked_integral_cast<uint16_t>(used_flags); |
| } |
| |
| ProfileCompilationInfo::DexPcData* |
| ProfileCompilationInfo::FindOrAddDexPc(InlineCacheMap* inline_cache, uint32_t dex_pc) { |
| return &(inline_cache->FindOrAdd(dex_pc, DexPcData(inline_cache->get_allocator()))->second); |
| } |
| |
| HashSet<std::string> ProfileCompilationInfo::GetClassDescriptors( |
| const std::vector<const DexFile*>& dex_files, |
| const ProfileSampleAnnotation& annotation) { |
| HashSet<std::string> ret; |
| for (const DexFile* dex_file : dex_files) { |
| const DexFileData* data = FindDexDataUsingAnnotations(dex_file, annotation); |
| if (data != nullptr) { |
| for (dex::TypeIndex type_idx : data->class_set) { |
| ret.insert(GetTypeDescriptor(dex_file, type_idx)); |
| } |
| } else { |
| VLOG(compiler) << "Failed to find profile data for " << dex_file->GetLocation(); |
| } |
| } |
| return ret; |
| } |
| |
| bool ProfileCompilationInfo::IsProfileFile(int fd) { |
| // First check if it's an empty file as we allow empty profile files. |
| // Profiles may be created by ActivityManager or installd before we manage to |
| // process them in the runtime or profman. |
| struct stat stat_buffer; |
| if (fstat(fd, &stat_buffer) != 0) { |
| return false; |
| } |
| |
| if (stat_buffer.st_size == 0) { |
| return true; |
| } |
| |
| // The files is not empty. Check if it contains the profile magic. |
| size_t byte_count = sizeof(kProfileMagic); |
| uint8_t buffer[sizeof(kProfileMagic)]; |
| if (!android::base::ReadFullyAtOffset(fd, buffer, byte_count, /*offset=*/ 0)) { |
| return false; |
| } |
| |
| // Reset the offset to prepare the file for reading. |
| off_t rc = TEMP_FAILURE_RETRY(lseek(fd, 0, SEEK_SET)); |
| if (rc == static_cast<off_t>(-1)) { |
| PLOG(ERROR) << "Failed to reset the offset"; |
| return false; |
| } |
| |
| return memcmp(buffer, kProfileMagic, byte_count) == 0; |
| } |
| |
| bool ProfileCompilationInfo::UpdateProfileKeys( |
| const std::vector<std::unique_ptr<const DexFile>>& dex_files, /*out*/ bool* updated) { |
| *updated = false; |
| for (const std::unique_ptr<const DexFile>& dex_file : dex_files) { |
| for (const std::unique_ptr<DexFileData>& dex_data : info_) { |
| if (dex_data->checksum == dex_file->GetLocationChecksum() && |
| dex_data->num_type_ids == dex_file->NumTypeIds() && |
| dex_data->num_method_ids == dex_file->NumMethodIds()) { |
| std::string new_profile_key = GetProfileDexFileBaseKey(dex_file->GetLocation()); |
| std::string dex_data_base_key = GetBaseKeyFromAugmentedKey(dex_data->profile_key); |
| if (dex_data_base_key != new_profile_key) { |
| if (profile_key_map_.find(new_profile_key) != profile_key_map_.end()) { |
| // We can't update the key if the new key belongs to a different dex file. |
| LOG(ERROR) << "Cannot update profile key to " << new_profile_key |
| << " because the new key belongs to another dex file."; |
| return false; |
| } |
| profile_key_map_.erase(dex_data->profile_key); |
| // Retain the annotation (if any) during the renaming by re-attaching the info |
| // form the old key. |
| dex_data->profile_key = MigrateAnnotationInfo(new_profile_key, dex_data->profile_key); |
| profile_key_map_.Put(dex_data->profile_key, dex_data->profile_index); |
| *updated = true; |
| } |
| } |
| } |
| } |
| return true; |
| } |
| |
| bool ProfileCompilationInfo::ProfileFilterFnAcceptAll( |
| [[maybe_unused]] const std::string& dex_location, [[maybe_unused]] uint32_t checksum) { |
| return true; |
| } |
| |
| void ProfileCompilationInfo::ClearData() { |
| profile_key_map_.clear(); |
| info_.clear(); |
| extra_descriptors_indexes_.clear(); |
| extra_descriptors_.clear(); |
| } |
| |
| void ProfileCompilationInfo::ClearDataAndAdjustVersion(bool for_boot_image) { |
| ClearData(); |
| memcpy(version_, |
| for_boot_image ? kProfileVersionForBootImage : kProfileVersion, |
| kProfileVersionSize); |
| } |
| |
| bool ProfileCompilationInfo::IsForBootImage() const { |
| return memcmp(version_, kProfileVersionForBootImage, sizeof(kProfileVersionForBootImage)) == 0; |
| } |
| |
| const uint8_t* ProfileCompilationInfo::GetVersion() const { |
| return version_; |
| } |
| |
| bool ProfileCompilationInfo::DexFileData::ContainsClass(dex::TypeIndex type_index) const { |
| return class_set.find(type_index) != class_set.end(); |
| } |
| |
| uint32_t ProfileCompilationInfo::DexFileData::ClassesDataSize() const { |
| return class_set.empty() |
| ? 0u |
| : sizeof(ProfileIndexType) + // Which dex file. |
| sizeof(uint16_t) + // Number of classes. |
| sizeof(uint16_t) * class_set.size(); // Type index diffs. |
| } |
| |
| void ProfileCompilationInfo::DexFileData::WriteClasses(SafeBuffer& buffer) const { |
| if (class_set.empty()) { |
| return; |
| } |
| buffer.WriteUintAndAdvance(profile_index); |
| buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(class_set.size())); |
| WriteClassSet(buffer, class_set); |
| } |
| |
| ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::DexFileData::ReadClasses( |
| SafeBuffer& buffer, |
| const dchecked_vector<ExtraDescriptorIndex>& extra_descriptors_remap, |
| std::string* error) { |
| uint16_t classes_size; |
| if (!buffer.ReadUintAndAdvance(&classes_size)) { |
| *error = "Error reading classes size."; |
| return ProfileLoadStatus::kBadData; |
| } |
| uint16_t num_valid_type_indexes = dchecked_integral_cast<uint16_t>( |
| std::min<size_t>(num_type_ids + extra_descriptors_remap.size(), DexFile::kDexNoIndex16)); |
| uint16_t type_index = 0u; |
| for (size_t i = 0; i != classes_size; ++i) { |
| uint16_t type_index_diff; |
| if (!buffer.ReadUintAndAdvance(&type_index_diff)) { |
| *error = "Error reading class type index diff."; |
| return ProfileLoadStatus::kBadData; |
| } |
| if (type_index_diff == 0u && i != 0u) { |
| *error = "Duplicate type index."; |
| return ProfileLoadStatus::kBadData; |
| } |
| if (type_index_diff >= num_valid_type_indexes - type_index) { |
| *error = "Invalid type index."; |
| return ProfileLoadStatus::kBadData; |
| } |
| type_index += type_index_diff; |
| if (type_index >= num_type_ids) { |
| uint32_t new_extra_descriptor_index = extra_descriptors_remap[type_index - num_type_ids]; |
| if (new_extra_descriptor_index >= DexFile::kDexNoIndex16 - num_type_ids) { |
| *error = "Remapped type index out of range."; |
| return ProfileLoadStatus::kMergeError; |
| } |
| class_set.insert(dex::TypeIndex(num_type_ids + new_extra_descriptor_index)); |
| } else { |
| class_set.insert(dex::TypeIndex(type_index)); |
| } |
| } |
| return ProfileLoadStatus::kSuccess; |
| } |
| |
| ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::DexFileData::SkipClasses( |
| SafeBuffer& buffer, |
| std::string* error) { |
| uint16_t classes_size; |
| if (!buffer.ReadUintAndAdvance(&classes_size)) { |
| *error = "Error reading classes size to skip."; |
| return ProfileLoadStatus::kBadData; |
| } |
| size_t following_data_size = static_cast<size_t>(classes_size) * sizeof(uint16_t); |
| if (following_data_size > buffer.GetAvailableBytes()) { |
| *error = "Classes data size to skip exceeds remaining data."; |
| return ProfileLoadStatus::kBadData; |
| } |
| buffer.Advance(following_data_size); |
| return ProfileLoadStatus::kSuccess; |
| } |
| |
| uint32_t ProfileCompilationInfo::DexFileData::MethodsDataSize( |
| /*out*/ uint16_t* method_flags, |
| /*out*/ size_t* saved_bitmap_bit_size) const { |
| uint16_t local_method_flags = GetUsedBitmapFlags(); |
| size_t local_saved_bitmap_bit_size = POPCOUNT(local_method_flags) * num_method_ids; |
| if (!method_map.empty()) { |
| local_method_flags |= enum_cast<uint16_t>(MethodHotness::kFlagHot); |
| } |
| size_t size = 0u; |
| if (local_method_flags != 0u) { |
| size_t num_hot_methods = method_map.size(); |
| size_t num_dex_pc_entries = 0u; |
| size_t num_class_entries = 0u; |
| for (const auto& method_entry : method_map) { |
| const InlineCacheMap& inline_cache_map = method_entry.second; |
| num_dex_pc_entries += inline_cache_map.size(); |
| for (const auto& inline_cache_entry : inline_cache_map) { |
| const DexPcData& dex_pc_data = inline_cache_entry.second; |
| num_class_entries += dex_pc_data.classes.size(); |
| } |
| } |
| |
| constexpr size_t kPerHotMethodSize = |
| sizeof(uint16_t) + // Method index diff. |
| sizeof(uint16_t); // Inline cache size. |
| constexpr size_t kPerDexPcEntrySize = |
| sizeof(uint16_t) + // Dex PC. |
| sizeof(uint8_t); // Number of inline cache classes. |
| constexpr size_t kPerClassEntrySize = |
| sizeof(uint16_t); // Type index diff. |
| |
| size_t saved_bitmap_byte_size = BitsToBytesRoundUp(local_saved_bitmap_bit_size); |
| size = sizeof(ProfileIndexType) + // Which dex file. |
| sizeof(uint32_t) + // Total size of following data. |
| sizeof(uint16_t) + // Method flags. |
| saved_bitmap_byte_size + // Bitmap data. |
| num_hot_methods * kPerHotMethodSize + // Data for hot methods. |
| num_dex_pc_entries * kPerDexPcEntrySize + // Data for dex pc entries. |
| num_class_entries * kPerClassEntrySize; // Data for inline cache class entries. |
| } |
| if (method_flags != nullptr) { |
| *method_flags = local_method_flags; |
| } |
| if (saved_bitmap_bit_size != nullptr) { |
| *saved_bitmap_bit_size = local_saved_bitmap_bit_size; |
| } |
| return size; |
| } |
| |
| void ProfileCompilationInfo::DexFileData::WriteMethods(SafeBuffer& buffer) const { |
| uint16_t method_flags; |
| size_t saved_bitmap_bit_size; |
| uint32_t methods_data_size = MethodsDataSize(&method_flags, &saved_bitmap_bit_size); |
| if (methods_data_size == 0u) { |
| return; // No data to write. |
| } |
| DCHECK_GE(buffer.GetAvailableBytes(), methods_data_size); |
| uint32_t expected_available_bytes_at_end = buffer.GetAvailableBytes() - methods_data_size; |
| |
| // Write the profile index. |
| buffer.WriteUintAndAdvance(profile_index); |
| // Write the total size of the following methods data (without the profile index |
| // and the total size itself) for easy skipping when the dex file is filtered out. |
| uint32_t following_data_size = methods_data_size - sizeof(ProfileIndexType) - sizeof(uint32_t); |
| buffer.WriteUintAndAdvance(following_data_size); |
| // Write the used method flags. |
| buffer.WriteUintAndAdvance(method_flags); |
| |
| // Write the bitmap data. |
| size_t saved_bitmap_byte_size = BitsToBytesRoundUp(saved_bitmap_bit_size); |
| DCHECK_LE(saved_bitmap_byte_size, buffer.GetAvailableBytes()); |
| BitMemoryRegion saved_bitmap(buffer.GetCurrentPtr(), /*bit_start=*/ 0, saved_bitmap_bit_size); |
| size_t saved_bitmap_index = 0u; |
| ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) { |
| if ((method_flags & flag) != 0u) { |
| size_t index = FlagBitmapIndex(static_cast<MethodHotness::Flag>(flag)); |
| BitMemoryRegion src = method_bitmap.Subregion(index * num_method_ids, num_method_ids); |
| saved_bitmap.Subregion(saved_bitmap_index * num_method_ids, num_method_ids).CopyBits(src); |
| ++saved_bitmap_index; |
| } |
| return true; |
| }); |
| DCHECK_EQ(saved_bitmap_index * num_method_ids, saved_bitmap_bit_size); |
| // Clear the padding bits. |
| size_t padding_bit_size = saved_bitmap_byte_size * kBitsPerByte - saved_bitmap_bit_size; |
| BitMemoryRegion padding_region(buffer.GetCurrentPtr(), saved_bitmap_bit_size, padding_bit_size); |
| padding_region.StoreBits(/*bit_offset=*/ 0u, /*value=*/ 0u, /*bit_length=*/ padding_bit_size); |
| buffer.Advance(saved_bitmap_byte_size); |
| |
| uint16_t last_method_index = 0; |
| for (const auto& method_entry : method_map) { |
| uint16_t method_index = method_entry.first; |
| const InlineCacheMap& inline_cache_map = method_entry.second; |
| |
| // Store the difference between the method indices for better compression. |
| // The SafeMap is ordered by method_id, so the difference will always be non negative. |
| DCHECK_GE(method_index, last_method_index); |
| uint16_t diff_with_last_method_index = method_index - last_method_index; |
| last_method_index = method_index; |
| buffer.WriteUintAndAdvance(diff_with_last_method_index); |
| |
| // Add inline cache map size. |
| buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(inline_cache_map.size())); |
| |
| // Add inline cache entries. |
| for (const auto& inline_cache_entry : inline_cache_map) { |
| uint16_t dex_pc = inline_cache_entry.first; |
| const DexPcData& dex_pc_data = inline_cache_entry.second; |
| const ArenaSet<dex::TypeIndex>& classes = dex_pc_data.classes; |
| |
| // Add the dex pc. |
| buffer.WriteUintAndAdvance(dex_pc); |
| |
| // Add the megamorphic/missing_types encoding if needed and continue. |
| // In either cases we don't add any classes to the profiles and so there's |
| // no point to continue. |
| // TODO: in case we miss types there is still value to add the rest of the |
| // classes. (This requires changing profile version or using a new section type.) |
| if (dex_pc_data.is_missing_types) { |
| // At this point the megamorphic flag should not be set. |
| DCHECK(!dex_pc_data.is_megamorphic); |
| DCHECK_EQ(classes.size(), 0u); |
| buffer.WriteUintAndAdvance(kIsMissingTypesEncoding); |
| continue; |
| } else if (dex_pc_data.is_megamorphic) { |
| DCHECK_EQ(classes.size(), 0u); |
| buffer.WriteUintAndAdvance(kIsMegamorphicEncoding); |
| continue; |
| } |
| |
| DCHECK_LT(classes.size(), ProfileCompilationInfo::kIndividualInlineCacheSize); |
| DCHECK_NE(classes.size(), 0u) << "InlineCache contains a dex_pc with 0 classes"; |
| |
| // Add the number of classes for the dex PC. |
| buffer.WriteUintAndAdvance(dchecked_integral_cast<uint8_t>(classes.size())); |
| // Store the class set. |
| WriteClassSet(buffer, classes); |
| } |
| } |
| |
| // Check if we've written the right number of bytes. |
| DCHECK_EQ(buffer.GetAvailableBytes(), expected_available_bytes_at_end); |
| } |
| |
| ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::DexFileData::ReadMethods( |
| SafeBuffer& buffer, |
| const dchecked_vector<ExtraDescriptorIndex>& extra_descriptors_remap, |
| std::string* error) { |
| uint32_t following_data_size; |
| if (!buffer.ReadUintAndAdvance(&following_data_size)) { |
| *error = "Error reading methods data size."; |
| return ProfileLoadStatus::kBadData; |
| } |
| if (following_data_size > buffer.GetAvailableBytes()) { |
| *error = "Methods data size exceeds available data size."; |
| return ProfileLoadStatus::kBadData; |
| } |
| uint32_t expected_available_bytes_at_end = buffer.GetAvailableBytes() - following_data_size; |
| |
| // Read method flags. |
| uint16_t method_flags; |
| if (!buffer.ReadUintAndAdvance(&method_flags)) { |
| *error = "Error reading method flags."; |
| return ProfileLoadStatus::kBadData; |
| } |
| if (!is_for_boot_image && method_flags >= (MethodHotness::kFlagLastRegular << 1)) { |
| // The profile we're loading contains data for boot image. |
| *error = "Method flags contain boot image profile flags for non-boot image profile."; |
| return ProfileLoadStatus::kBadData; |
| } |
| |
| // Read method bitmap. |
| size_t saved_bitmap_bit_size = POPCOUNT(method_flags & ~MethodHotness::kFlagHot) * num_method_ids; |
| size_t saved_bitmap_byte_size = BitsToBytesRoundUp(saved_bitmap_bit_size); |
| if (sizeof(uint16_t) + saved_bitmap_byte_size > following_data_size) { |
| *error = "Insufficient available data for method bitmap."; |
| return ProfileLoadStatus::kBadData; |
| } |
| BitMemoryRegion saved_bitmap(buffer.GetCurrentPtr(), /*bit_start=*/ 0, saved_bitmap_bit_size); |
| size_t saved_bitmap_index = 0u; |
| ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) { |
| if ((method_flags & flag) != 0u) { |
| size_t index = FlagBitmapIndex(static_cast<MethodHotness::Flag>(flag)); |
| BitMemoryRegion src = |
| saved_bitmap.Subregion(saved_bitmap_index * num_method_ids, num_method_ids); |
| method_bitmap.Subregion(index * num_method_ids, num_method_ids).OrBits(src); |
| ++saved_bitmap_index; |
| } |
| return true; |
| }); |
| buffer.Advance(saved_bitmap_byte_size); |
| |
| // Load hot methods. |
| if ((method_flags & MethodHotness::kFlagHot) != 0u) { |
| uint32_t num_valid_method_indexes = |
| std::min<uint32_t>(kMaxSupportedMethodIndex + 1u, num_method_ids); |
| uint16_t num_valid_type_indexes = dchecked_integral_cast<uint16_t>( |
| std::min<size_t>(num_type_ids + extra_descriptors_remap.size(), DexFile::kDexNoIndex16)); |
| uint16_t method_index = 0; |
| bool first_diff = true; |
| while (buffer.GetAvailableBytes() > expected_available_bytes_at_end) { |
| uint16_t diff_with_last_method_index; |
| if (!buffer.ReadUintAndAdvance(&diff_with_last_method_index)) { |
| *error = "Error reading method index diff."; |
| return ProfileLoadStatus::kBadData; |
| } |
| if (diff_with_last_method_index == 0u && !first_diff) { |
| *error = "Duplicate method index."; |
| return ProfileLoadStatus::kBadData; |
| } |
| first_diff = false; |
| if (diff_with_last_method_index >= num_valid_method_indexes - method_index) { |
| *error = "Invalid method index."; |
| return ProfileLoadStatus::kBadData; |
| } |
| method_index += diff_with_last_method_index; |
| InlineCacheMap* inline_cache = FindOrAddHotMethod(method_index); |
| DCHECK(inline_cache != nullptr); |
| |
| // Load inline cache map size. |
| uint16_t inline_cache_size; |
| if (!buffer.ReadUintAndAdvance(&inline_cache_size)) { |
| *error = "Error reading inline cache size."; |
| return ProfileLoadStatus::kBadData; |
| } |
| for (uint16_t ic_index = 0; ic_index != inline_cache_size; ++ic_index) { |
| // Load dex pc. |
| uint16_t dex_pc; |
| if (!buffer.ReadUintAndAdvance(&dex_pc)) { |
| *error = "Error reading inline cache dex pc."; |
| return ProfileLoadStatus::kBadData; |
| } |
| DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, dex_pc); |
| DCHECK(dex_pc_data != nullptr); |
| |
| // Load inline cache classes. |
| uint8_t inline_cache_classes_size; |
| if (!buffer.ReadUintAndAdvance(&inline_cache_classes_size)) { |
| *error = "Error reading inline cache classes size."; |
| return ProfileLoadStatus::kBadData; |
| } |
| if (inline_cache_classes_size == kIsMissingTypesEncoding) { |
| dex_pc_data->SetIsMissingTypes(); |
| } else if (inline_cache_classes_size == kIsMegamorphicEncoding) { |
| dex_pc_data->SetIsMegamorphic(); |
| } else if (inline_cache_classes_size >= kIndividualInlineCacheSize) { |
| *error = "Inline cache size too large."; |
| return ProfileLoadStatus::kBadData; |
| } else { |
| uint16_t type_index = 0u; |
| for (size_t i = 0; i != inline_cache_classes_size; ++i) { |
| uint16_t type_index_diff; |
| if (!buffer.ReadUintAndAdvance(&type_index_diff)) { |
| *error = "Error reading inline cache type index diff."; |
| return ProfileLoadStatus::kBadData; |
| } |
| if (type_index_diff == 0u && i != 0u) { |
| *error = "Duplicate inline cache type index."; |
| return ProfileLoadStatus::kBadData; |
| } |
| if (type_index_diff >= num_valid_type_indexes - type_index) { |
| *error = "Invalid inline cache type index."; |
| return ProfileLoadStatus::kBadData; |
| } |
| type_index += type_index_diff; |
| if (type_index >= num_type_ids) { |
| ExtraDescriptorIndex new_extra_descriptor_index = |
| extra_descriptors_remap[type_index - num_type_ids]; |
| if (new_extra_descriptor_index >= DexFile::kDexNoIndex16 - num_type_ids) { |
| *error = "Remapped inline cache type index out of range."; |
| return ProfileLoadStatus::kMergeError; |
| } |
| dex_pc_data->AddClass(dex::TypeIndex(num_type_ids + new_extra_descriptor_index)); |
| } else { |
| dex_pc_data->AddClass(dex::TypeIndex(type_index)); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| if (buffer.GetAvailableBytes() != expected_available_bytes_at_end) { |
| *error = "Methods data did not end at expected position."; |
| return ProfileLoadStatus::kBadData; |
| } |
| |
| return ProfileLoadStatus::kSuccess; |
| } |
| |
| ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::DexFileData::SkipMethods( |
| SafeBuffer& buffer, |
| std::string* error) { |
| uint32_t following_data_size; |
| if (!buffer.ReadUintAndAdvance(&following_data_size)) { |
| *error = "Error reading methods data size to skip."; |
| return ProfileLoadStatus::kBadData; |
| } |
| if (following_data_size > buffer.GetAvailableBytes()) { |
| *error = "Methods data size to skip exceeds remaining data."; |
| return ProfileLoadStatus::kBadData; |
| } |
| buffer.Advance(following_data_size); |
| return ProfileLoadStatus::kSuccess; |
| } |
| |
| void ProfileCompilationInfo::DexFileData::WriteClassSet( |
| SafeBuffer& buffer, |
| const ArenaSet<dex::TypeIndex>& class_set) { |
| // Store the difference between the type indexes for better compression. |
| uint16_t last_type_index = 0u; |
| for (const dex::TypeIndex& type_index : class_set) { |
| DCHECK_GE(type_index.index_, last_type_index); |
| uint16_t diff_with_last_type_index = type_index.index_ - last_type_index; |
| last_type_index = type_index.index_; |
| buffer.WriteUintAndAdvance(diff_with_last_type_index); |
| } |
| } |
| |
| size_t ProfileCompilationInfo::GetSizeWarningThresholdBytes() const { |
| return IsForBootImage() ? kSizeWarningThresholdBootBytes : kSizeWarningThresholdBytes; |
| } |
| |
| size_t ProfileCompilationInfo::GetSizeErrorThresholdBytes() const { |
| return IsForBootImage() ? kSizeErrorThresholdBootBytes : kSizeErrorThresholdBytes; |
| } |
| |
| std::ostream& operator<<(std::ostream& stream, |
| ProfileCompilationInfo::DexReferenceDumper dumper) { |
| stream << "[profile_key=" << dumper.GetProfileKey() |
| << ",dex_checksum=" << std::hex << dumper.GetDexChecksum() << std::dec |
| << ",num_type_ids=" << dumper.GetNumTypeIds() |
| << ",num_method_ids=" << dumper.GetNumMethodIds() |
| << "]"; |
| return stream; |
| } |
| |
| FlattenProfileData::FlattenProfileData() : |
| max_aggregation_for_methods_(0), |
| max_aggregation_for_classes_(0) { |
| } |
| |
| FlattenProfileData::ItemMetadata::ItemMetadata() : |
| flags_(0) { |
| } |
| |
| FlattenProfileData::ItemMetadata::ItemMetadata(const ItemMetadata& other) : |
| flags_(other.flags_), |
| annotations_(other.annotations_) { |
| } |
| |
| std::unique_ptr<FlattenProfileData> ProfileCompilationInfo::ExtractProfileData( |
| const std::vector<std::unique_ptr<const DexFile>>& dex_files) const { |
| |
| std::unique_ptr<FlattenProfileData> result(new FlattenProfileData()); |
| |
| auto create_metadata_fn = []() { return FlattenProfileData::ItemMetadata(); }; |
| |
| // Iterate through all the dex files, find the methods/classes associated with each of them, |
| // and add them to the flatten result. |
| for (const std::unique_ptr<const DexFile>& dex_file : dex_files) { |
| // Find all the dex data for the given dex file. |
| // We may have multiple dex data if the methods or classes were added using |
| // different annotations. |
| std::vector<const DexFileData*> all_dex_data; |
| FindAllDexData(dex_file.get(), &all_dex_data); |
| for (const DexFileData* dex_data : all_dex_data) { |
| // Extract the annotation from the key as we want to store it in the flatten result. |
| ProfileSampleAnnotation annotation = GetAnnotationFromKey(dex_data->profile_key); |
| |
| // Check which methods from the current dex files are in the profile. |
| for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) { |
| MethodHotness hotness = dex_data->GetHotnessInfo(method_idx); |
| if (!hotness.IsInProfile()) { |
| // Not in the profile, continue. |
| continue; |
| } |
| // The method is in the profile, create metadata item for it and added to the result. |
| MethodReference ref(dex_file.get(), method_idx); |
| FlattenProfileData::ItemMetadata& metadata = |
| result->method_metadata_.GetOrCreate(ref, create_metadata_fn); |
| metadata.flags_ |= hotness.flags_; |
| metadata.annotations_.push_back(annotation); |
| // Update the max aggregation counter for methods. |
| // This is essentially a cache, to avoid traversing all the methods just to find out |
| // this value. |
| result->max_aggregation_for_methods_ = std::max( |
| result->max_aggregation_for_methods_, |
| static_cast<uint32_t>(metadata.annotations_.size())); |
| } |
| |
| // Check which classes from the current dex files are in the profile. |
| for (const dex::TypeIndex& type_index : dex_data->class_set) { |
| if (type_index.index_ >= dex_file->NumTypeIds()) { |
| // Not a valid `dex::TypeIndex` for `TypeReference`. |
| // TODO: Rewrite the API to use descriptors or the `ProfileCompilationInfo` directly |
| // instead of the `FlattenProfileData` helper class. |
| continue; |
| } |
| TypeReference ref(dex_file.get(), type_index); |
| FlattenProfileData::ItemMetadata& metadata = |
| result->class_metadata_.GetOrCreate(ref, create_metadata_fn); |
| metadata.annotations_.push_back(annotation); |
| // Update the max aggregation counter for classes. |
| result->max_aggregation_for_classes_ = std::max( |
| result->max_aggregation_for_classes_, |
| static_cast<uint32_t>(metadata.annotations_.size())); |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| void FlattenProfileData::MergeData(const FlattenProfileData& other) { |
| auto create_metadata_fn = []() { return FlattenProfileData::ItemMetadata(); }; |
| for (const auto& it : other.method_metadata_) { |
| const MethodReference& otherRef = it.first; |
| const FlattenProfileData::ItemMetadata otherData = it.second; |
| const std::list<ProfileCompilationInfo::ProfileSampleAnnotation>& other_annotations = |
| otherData.GetAnnotations(); |
| |
| FlattenProfileData::ItemMetadata& metadata = |
| method_metadata_.GetOrCreate(otherRef, create_metadata_fn); |
| metadata.flags_ |= otherData.GetFlags(); |
| metadata.annotations_.insert( |
| metadata.annotations_.end(), other_annotations.begin(), other_annotations.end()); |
| |
| max_aggregation_for_methods_ = std::max( |
| max_aggregation_for_methods_, |
| static_cast<uint32_t>(metadata.annotations_.size())); |
| } |
| for (const auto& it : other.class_metadata_) { |
| const TypeReference& otherRef = it.first; |
| const FlattenProfileData::ItemMetadata otherData = it.second; |
| const std::list<ProfileCompilationInfo::ProfileSampleAnnotation>& other_annotations = |
| otherData.GetAnnotations(); |
| |
| FlattenProfileData::ItemMetadata& metadata = |
| class_metadata_.GetOrCreate(otherRef, create_metadata_fn); |
| metadata.flags_ |= otherData.GetFlags(); |
| metadata.annotations_.insert( |
| metadata.annotations_.end(), other_annotations.begin(), other_annotations.end()); |
| |
| max_aggregation_for_classes_ = std::max( |
| max_aggregation_for_classes_, |
| static_cast<uint32_t>(metadata.annotations_.size())); |
| } |
| } |
| |
| } // namespace art |