blob: e50f2a1fc2c3cabad307bb930d439d1b73132a9a [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_info_table_deduper.h"
#include "stack_map.h"
namespace art {
namespace linker {
void CodeInfoTableDeduper::ReserveDedupeBuffer(size_t num_code_infos) {
DCHECK(dedupe_set_.empty());
const size_t max_size = num_code_infos * CodeInfo::kNumBitTables;
// Reserve space for 1/2 of the maximum dedupe set size to avoid rehashing.
// Usually only 30%-40% of bit tables are unique.
dedupe_set_.reserve(max_size / 2u);
}
size_t CodeInfoTableDeduper::Dedupe(const uint8_t* code_info_data) {
static constexpr size_t kNumHeaders = CodeInfo::kNumHeaders;
static constexpr size_t kNumBitTables = CodeInfo::kNumBitTables;
// The back-reference offset takes space so dedupe is not worth it for tiny tables.
constexpr size_t kMinDedupSize = 33; // Assume 32-bit offset on average.
size_t start_bit_offset = writer_.NumberOfWrittenBits();
DCHECK_ALIGNED(start_bit_offset, kBitsPerByte);
// Reserve enough space in the `dedupe_set_` to avoid reashing later in this
// function and allow using direct pointers to the `HashSet<>` entries.
size_t elements_until_expand = dedupe_set_.ElementsUntilExpand();
if (UNLIKELY(elements_until_expand - dedupe_set_.size() < kNumBitTables)) {
// When resizing, try to make the load factor close to the minimum load factor.
size_t required_capacity = dedupe_set_.size() + kNumBitTables;
double factor = dedupe_set_.GetMaxLoadFactor() / dedupe_set_.GetMinLoadFactor();
size_t reservation = required_capacity * factor;
DCHECK_GE(reservation, required_capacity);
dedupe_set_.reserve(reservation);
elements_until_expand = dedupe_set_.ElementsUntilExpand();
DCHECK_GE(elements_until_expand - dedupe_set_.size(), kNumBitTables);
}
// Read the existing code info and record bit table starts and end.
BitMemoryReader reader(code_info_data);
std::array<uint32_t, kNumHeaders> header = reader.ReadInterleavedVarints<kNumHeaders>();
CodeInfo code_info;
CodeInfo::ForEachHeaderField([&code_info, &header](size_t i, auto member_pointer) {
code_info.*member_pointer = header[i];
});
DCHECK(!code_info.HasDedupedBitTables()); // Input `CodeInfo` has no deduped tables.
std::array<uint32_t, kNumBitTables + 1u> bit_table_bit_starts;
CodeInfo::ForEachBitTableField([&](size_t i, auto member_pointer) {
bit_table_bit_starts[i] = dchecked_integral_cast<uint32_t>(reader.NumberOfReadBits());
DCHECK(!code_info.IsBitTableDeduped(i));
if (LIKELY(code_info.HasBitTable(i))) {
auto& table = code_info.*member_pointer;
table.Decode(reader);
}
});
bit_table_bit_starts[kNumBitTables] = dchecked_integral_cast<uint32_t>(reader.NumberOfReadBits());
// Copy the source data.
BitMemoryRegion read_region = reader.GetReadRegion();
writer_.WriteBytesAligned(code_info_data, BitsToBytesRoundUp(read_region.size_in_bits()));
// Insert entries for large tables to the `dedupe_set_` and check for duplicates.
std::array<DedupeSetEntry*, kNumBitTables> dedupe_entries;
std::fill(dedupe_entries.begin(), dedupe_entries.end(), nullptr);
CodeInfo::ForEachBitTableField([&](size_t i, [[maybe_unused]] auto member_pointer) {
if (LIKELY(code_info.HasBitTable(i))) {
uint32_t table_bit_size = bit_table_bit_starts[i + 1u] - bit_table_bit_starts[i];
if (table_bit_size >= kMinDedupSize) {
uint32_t table_bit_start = start_bit_offset + bit_table_bit_starts[i];
BitMemoryRegion region(
const_cast<uint8_t*>(writer_.data()), table_bit_start, table_bit_size);
DedupeSetEntry entry{table_bit_start, table_bit_size};
auto [it, inserted] = dedupe_set_.insert(entry);
dedupe_entries[i] = &*it;
if (!inserted) {
code_info.SetBitTableDeduped(i); // Mark as deduped before we write header.
}
}
}
});
DCHECK_EQ(elements_until_expand, dedupe_set_.ElementsUntilExpand()) << "Unexpected resizing!";
if (code_info.HasDedupedBitTables()) {
// Reset the writer to the original position. This makes new entries in the
// `dedupe_set_` effectively point to non-existent data. We shall write the
// new data again at the correct position and update these entries.
writer_.Truncate(start_bit_offset);
// Update bit table flags in the `header` and write the `header`.
header[kNumHeaders - 1u] = code_info.bit_table_flags_;
CodeInfo::ForEachHeaderField([&code_info, &header](size_t i, auto member_pointer) {
DCHECK_EQ(code_info.*member_pointer, header[i]);
});
writer_.WriteInterleavedVarints(header);
// Write bit tables and update offsets in `dedupe_set_` after encoding the `header`.
CodeInfo::ForEachBitTableField([&](size_t i, [[maybe_unused]] auto member_pointer) {
if (code_info.HasBitTable(i)) {
size_t current_bit_offset = writer_.NumberOfWrittenBits();
if (code_info.IsBitTableDeduped(i)) {
DCHECK_GE(bit_table_bit_starts[i + 1u] - bit_table_bit_starts[i], kMinDedupSize);
DCHECK(dedupe_entries[i] != nullptr);
size_t deduped_offset = dedupe_entries[i]->bit_start;
writer_.WriteVarint(current_bit_offset - deduped_offset);
} else {
uint32_t table_bit_size = bit_table_bit_starts[i + 1u] - bit_table_bit_starts[i];
writer_.WriteRegion(read_region.Subregion(bit_table_bit_starts[i], table_bit_size));
if (table_bit_size >= kMinDedupSize) {
// Update offset in the `dedupe_set_` entry.
DCHECK(dedupe_entries[i] != nullptr);
dedupe_entries[i]->bit_start = current_bit_offset;
}
}
}
});
writer_.ByteAlign();
} // else nothing to do - we already copied the data.
if (kIsDebugBuild) {
CodeInfo old_code_info(code_info_data);
CodeInfo new_code_info(writer_.data() + start_bit_offset / kBitsPerByte);
CodeInfo::ForEachHeaderField([&old_code_info, &new_code_info](size_t, auto member_pointer) {
if (member_pointer != &CodeInfo::bit_table_flags_) { // Expected to differ.
DCHECK_EQ(old_code_info.*member_pointer, new_code_info.*member_pointer);
}
});
CodeInfo::ForEachBitTableField([&old_code_info, &new_code_info](size_t i, auto member_pointer) {
DCHECK_EQ(old_code_info.HasBitTable(i), new_code_info.HasBitTable(i));
DCHECK((old_code_info.*member_pointer).Equals(new_code_info.*member_pointer));
});
}
return start_bit_offset / kBitsPerByte;
}
} // namespace linker
} // namespace art