blob: 27b50dd08b2ece487f03cfb368bc4b6db1415633 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_SRC_GREENLAND_DEX_LANG_H_
#define ART_SRC_GREENLAND_DEX_LANG_H_
#include "backend_types.h"
#include "dalvik_reg.h"
#include "ir_builder.h"
#include "dex_file.h"
#include "dex_instruction.h"
#include "invoke_type.h"
#include "macros.h"
#include <vector>
#include <llvm/LLVMContext.h>
#include <llvm/ADT/ArrayRef.h>
namespace llvm {
class BasicBlock;
class Function;
class LLVMContext;
class Module;
class Type;
}
namespace art {
class Compiler;
class OatCompilationUnit;
}
namespace art {
namespace greenland {
class DalvikReg;
class IntrinsicHelper;
class DexLang {
public:
class Context {
private:
llvm::LLVMContext context_;
llvm::Module* module_;
IntrinsicHelper* intrinsic_helper_;
volatile int32_t ref_count_;
volatile int32_t mem_usage_;
~Context();
DISALLOW_COPY_AND_ASSIGN(Context);
public:
Context();
inline llvm::LLVMContext& GetLLVMContext()
{ return context_; }
inline llvm::Module& GetOutputModule()
{ return *module_; }
inline IntrinsicHelper& GetIntrinsicHelper()
{ return *intrinsic_helper_; }
Context& IncRef();
void DecRef();
void AddMemUsageApproximation(size_t usage);
inline bool IsMemUsageThresholdReached() const {
return (mem_usage_ > (30 << 20)); // (threshold: 30MiB)
}
};
public:
DexLang(Context& context, Compiler& compiler, OatCompilationUnit& cunit);
~DexLang();
llvm::Function* Build();
inline IRBuilder& GetIRBuilder() {
return irb_;
}
llvm::Value* AllocateDalvikReg(JType jty, unsigned reg_idx);
private:
Context& dex_lang_ctx_;
Compiler& compiler_;
OatCompilationUnit& cunit_;
const DexFile* dex_file_;
const DexFile::CodeItem* code_item_;
DexCache* dex_cache_;
llvm::LLVMContext& context_;
llvm::Module& module_;
IntrinsicHelper& intrinsic_helper_;
IRBuilder irb_;
llvm::Function* func_;
private:
//----------------------------------------------------------------------------
// Basic Block Helper Functions
//----------------------------------------------------------------------------
llvm::BasicBlock* reg_alloc_bb_;
llvm::BasicBlock* arg_reg_init_bb_;
std::vector<llvm::BasicBlock*> basic_blocks_;
llvm::BasicBlock* GetBasicBlock(unsigned dex_pc);
llvm::BasicBlock* CreateBasicBlockWithDexPC(unsigned dex_pc,
char const* postfix = NULL);
llvm::BasicBlock* GetNextBasicBlock(unsigned dex_pc);
private:
//----------------------------------------------------------------------------
// Register Helper Functions
//----------------------------------------------------------------------------
std::vector<DalvikReg*> regs_;
inline llvm::Value* EmitLoadDalvikReg(unsigned reg_idx, JType jty,
JTypeSpace space) {
DCHECK(regs_.at(reg_idx) != NULL);
return regs_[reg_idx]->GetValue(jty, space);
}
inline llvm::Value* EmitLoadDalvikReg(unsigned reg_idx, char shorty,
JTypeSpace space) {
DCHECK(regs_.at(reg_idx) != NULL);
return EmitLoadDalvikReg(reg_idx, GetJTypeFromShorty(shorty), space);
}
inline void EmitStoreDalvikReg(unsigned reg_idx, JType jty, JTypeSpace space,
llvm::Value* new_value) {
regs_[reg_idx]->SetValue(jty, space, new_value);
return;
}
inline void EmitStoreDalvikReg(unsigned reg_idx, char shorty,
JTypeSpace space, llvm::Value* new_value) {
EmitStoreDalvikReg(reg_idx, GetJTypeFromShorty(shorty), space, new_value);
return;
}
private:
//----------------------------------------------------------------------------
// Return Value Related
//----------------------------------------------------------------------------
// Hold the return value returned from the lastest invoke-* instruction
llvm::Value* retval_;
// The type of ret_val_
JType retval_jty_;
private:
//----------------------------------------------------------------------------
// Exception Handling
//----------------------------------------------------------------------------
std::vector<llvm::BasicBlock*> landing_pads_bb_;
llvm::BasicBlock* exception_unwind_bb_;
// cur_try_item_offset caches the latest try item offset such that we don't
// have to call DexFile::FindCatchHandlerOffset(...) (using binary search) for
// every query of the try item for the given dex_pc.
int32_t cur_try_item_offset;
int32_t GetTryItemOffset(unsigned dex_pc);
llvm::BasicBlock* GetLandingPadBasicBlock(unsigned dex_pc);
llvm::BasicBlock* GetUnwindBasicBlock();
void EmitBranchExceptionLandingPad(unsigned dex_pc);
void EmitGuard_DivZeroException(unsigned dex_pc,
llvm::Value* denominator,
JType op_jty);
void EmitGuard_NullPointerException(unsigned dex_pc, llvm::Value* object);
void EmitGuard_ArrayIndexOutOfBoundsException(unsigned dex_pc,
llvm::Value* array,
llvm::Value* index);
void EmitGuard_ArrayException(unsigned dex_pc,
llvm::Value* array,
llvm::Value* index);
void EmitGuard_ExceptionLandingPad(unsigned dex_pc);
private:
//----------------------------------------------------------------------------
// Garbage Collection Safe Point
//----------------------------------------------------------------------------
void EmitGuard_GarbageCollectionSuspend();
private:
//----------------------------------------------------------------------------
// Shadow Frame
//----------------------------------------------------------------------------
bool require_shadow_frame;
unsigned num_shadow_frame_entries_;
void EmitUpdateDexPC(unsigned dex_pc);
void EmitPopShadowFrame();
public:
unsigned AllocShadowFrameEntry(unsigned reg_idx);
private:
//----------------------------------------------------------------------------
// Code Generation
//----------------------------------------------------------------------------
bool CreateFunction();
llvm::FunctionType* GetFunctionType();
bool PrepareDalvikRegs();
bool EmitPrologue();
bool EmitPrologueAssignArgRegister();
bool EmitPrologueAllcaShadowFrame();
bool EmitPrologueLinkBasicBlocks();
bool PrettyLayoutExceptionBasicBlocks();
bool VerifyFunction();
bool OptimizeFunction();
// Our optimization passes
bool RemoveRedundantPendingExceptionChecks();
//----------------------------------------------------------------------------
// Emit* Helper Functions
//----------------------------------------------------------------------------
enum CondBranchKind {
kCondBranch_EQ,
kCondBranch_NE,
kCondBranch_LT,
kCondBranch_GE,
kCondBranch_GT,
kCondBranch_LE,
};
enum IntArithmKind {
kIntArithm_Add,
kIntArithm_Sub,
kIntArithm_Mul,
kIntArithm_Div,
kIntArithm_Rem,
kIntArithm_And,
kIntArithm_Or,
kIntArithm_Xor,
};
enum FPArithmKind {
kFPArithm_Add,
kFPArithm_Sub,
kFPArithm_Mul,
kFPArithm_Div,
kFPArithm_Rem,
};
enum InvokeArgFmt {
kArgReg,
kArgRange,
};
llvm::Value* EmitLoadMethodObjectAddr();
llvm::Value* EmitGetCurrentThread();
llvm::Value* EmitInvokeIntrinsicNoThrow(IntrinsicHelper::IntrinsicId intr_id);
llvm::Value* EmitInvokeIntrinsicNoThrow(IntrinsicHelper::IntrinsicId intr_id,
llvm::ArrayRef<llvm::Value*> args);
llvm::Value* EmitInvokeIntrinsic(unsigned dex_pc,
IntrinsicHelper::IntrinsicId intr_id);
llvm::Value* EmitInvokeIntrinsic(unsigned dex_pc,
IntrinsicHelper::IntrinsicId intr_id,
llvm::ArrayRef<llvm::Value*> args);
llvm::Value* EmitInvokeIntrinsic2(unsigned dex_pc,
IntrinsicHelper::IntrinsicId intr_id,
llvm::Value* arg1,
llvm::Value* arg2) {
llvm::Value* args[] = { arg1, arg2 };
return EmitInvokeIntrinsic(dex_pc, intr_id, args);
}
llvm::Value* EmitInvokeIntrinsic3(unsigned dex_pc,
IntrinsicHelper::IntrinsicId intr_id,
llvm::Value* arg1,
llvm::Value* arg2,
llvm::Value* arg3) {
llvm::Value* args[] = { arg1, arg2, arg3 };
return EmitInvokeIntrinsic(dex_pc, intr_id, args);
}
llvm::Value* EmitInvokeIntrinsic4(unsigned dex_pc,
IntrinsicHelper::IntrinsicId intr_id,
llvm::Value* arg1,
llvm::Value* arg2,
llvm::Value* arg3,
llvm::Value* arg4) {
llvm::Value* args[] = { arg1, arg2, arg3, arg4 };
return EmitInvokeIntrinsic(dex_pc, intr_id, args);
}
llvm::Value* EmitInvokeIntrinsic5(unsigned dex_pc,
IntrinsicHelper::IntrinsicId intr_id,
llvm::Value* arg1,
llvm::Value* arg2,
llvm::Value* arg3,
llvm::Value* arg4,
llvm::Value* arg5) {
llvm::Value* args[] = { arg1, arg2, arg3, arg4, arg5 };
return EmitInvokeIntrinsic(dex_pc, intr_id, args);
}
RegCategory GetInferredRegCategory(unsigned dex_pc, unsigned reg_idx);
llvm::Value* EmitLoadArrayLength(llvm::Value* array);
llvm::Value* EmitLoadStaticStorage(unsigned dex_pc, unsigned type_idx);
llvm::Value* EmitConditionResult(llvm::Value* lhs, llvm::Value* rhs,
CondBranchKind cond);
llvm::Value* EmitIntArithmResultComputation(unsigned dex_pc,
llvm::Value* lhs,
llvm::Value* rhs,
IntArithmKind arithm,
JType op_jty);
llvm::Value* EmitIntDivRemResultComputation(unsigned dex_pc,
llvm::Value* dividend,
llvm::Value* divisor,
IntArithmKind arithm,
JType op_jty);
#define GEN_INSN_ARGS unsigned dex_pc, const Instruction* insn
// NOP, PAYLOAD (unreachable) instructions
void EmitInsn_Nop(GEN_INSN_ARGS);
// MOVE, MOVE_RESULT instructions
void EmitInsn_Move(GEN_INSN_ARGS, JType jty);
void EmitInsn_MoveResult(GEN_INSN_ARGS, JType jty);
// MOVE_EXCEPTION, THROW instructions
void EmitInsn_MoveException(GEN_INSN_ARGS);
#if 0
void EmitInsn_ThrowException(GEN_INSN_ARGS);
void EmitInsn_ThrowVerificationError(GEN_INSN_ARGS);
// RETURN instructions
#endif
void EmitInsn_ReturnVoid(GEN_INSN_ARGS);
void EmitInsn_Return(GEN_INSN_ARGS);
// CONST, CONST_CLASS, CONST_STRING instructions
void EmitInsn_LoadConstant(GEN_INSN_ARGS, JType imm_jty);
void EmitInsn_LoadConstantString(GEN_INSN_ARGS);
#if 0
void EmitInsn_LoadConstantClass(GEN_INSN_ARGS);
// MONITOR_ENTER, MONITOR_EXIT instructions
void EmitInsn_MonitorEnter(GEN_INSN_ARGS);
void EmitInsn_MonitorExit(GEN_INSN_ARGS);
// CHECK_CAST, INSTANCE_OF instructions
void EmitInsn_CheckCast(GEN_INSN_ARGS);
void EmitInsn_InstanceOf(GEN_INSN_ARGS);
// NEW_INSTANCE instructions
void EmitInsn_NewInstance(GEN_INSN_ARGS);
#endif
// ARRAY_LEN, NEW_ARRAY, FILLED_NEW_ARRAY, FILL_ARRAY_DATA instructions
void EmitInsn_ArrayLength(GEN_INSN_ARGS);
void EmitInsn_NewArray(GEN_INSN_ARGS);
#if 0
void EmitInsn_FilledNewArray(GEN_INSN_ARGS, bool is_range);
void EmitInsn_FillArrayData(GEN_INSN_ARGS);
#endif
// GOTO, IF_TEST, IF_TESTZ instructions
void EmitInsn_UnconditionalBranch(GEN_INSN_ARGS);
void EmitInsn_BinaryConditionalBranch(GEN_INSN_ARGS, CondBranchKind cond);
void EmitInsn_UnaryConditionalBranch(GEN_INSN_ARGS, CondBranchKind cond);
#if 0
// PACKED_SWITCH, SPARSE_SWITCH instrutions
void EmitInsn_PackedSwitch(GEN_INSN_ARGS);
void EmitInsn_SparseSwitch(GEN_INSN_ARGS);
// CMPX_FLOAT, CMPX_DOUBLE, CMP_LONG instructions
void EmitInsn_FPCompare(GEN_INSN_ARGS, JType fp_jty, bool gt_bias);
void EmitInsn_LongCompare(GEN_INSN_ARGS);
#endif
// AGET, APUT instrutions
void EmitInsn_AGet(GEN_INSN_ARGS, JType elem_jty);
void EmitInsn_APut(GEN_INSN_ARGS, JType elem_jty);
#if 0
// IGET, IPUT instructions
void EmitInsn_IGet(GEN_INSN_ARGS, JType field_jty);
void EmitInsn_IPut(GEN_INSN_ARGS, JType field_jty);
#endif
// SGET, SPUT instructions
void EmitInsn_SGet(GEN_INSN_ARGS, JType field_jty);
void EmitInsn_SPut(GEN_INSN_ARGS, JType field_jty);
#if 0
// INVOKE instructions
llvm::Value* EmitFixStub(llvm::Value* callee_method_object_addr,
uint32_t method_idx,
bool is_static);
llvm::Value* EmitEnsureResolved(llvm::Value* callee,
llvm::Value* caller,
uint32_t dex_method_idx,
bool is_virtual);
#endif
void EmitInsn_Invoke(GEN_INSN_ARGS,
InvokeType invoke_type,
InvokeArgFmt arg_fmt);
#if 0
llvm::Value* EmitLoadSDCalleeMethodObjectAddr(uint32_t callee_method_idx);
llvm::Value* EmitLoadVirtualCalleeMethodObjectAddr(int vtable_idx,
llvm::Value* this_addr);
llvm::Value* EmitCallRuntimeForCalleeMethodObjectAddr(uint32_t callee_method_idx,
InvokeType invoke_type,
llvm::Value* this_addr,
unsigned dex_pc,
bool is_fast_path);
// Unary instructions
void EmitInsn_Neg(GEN_INSN_ARGS, JType op_jty);
void EmitInsn_Not(GEN_INSN_ARGS, JType op_jty);
void EmitInsn_SExt(GEN_INSN_ARGS);
void EmitInsn_Trunc(GEN_INSN_ARGS);
void EmitInsn_TruncAndSExt(GEN_INSN_ARGS, unsigned N);
void EmitInsn_TruncAndZExt(GEN_INSN_ARGS, unsigned N);
void EmitInsn_FNeg(GEN_INSN_ARGS, JType op_jty);
void EmitInsn_IntToFP(GEN_INSN_ARGS, JType src_jty, JType dest_jty);
void EmitInsn_FPToInt(GEN_INSN_ARGS, JType src_jty, JType dest_jty,
runtime_support::RuntimeId runtime_func_id);
void EmitInsn_FExt(GEN_INSN_ARGS);
void EmitInsn_FTrunc(GEN_INSN_ARGS);
#endif
// Integer binary arithmetic instructions
void EmitInsn_IntArithm(GEN_INSN_ARGS, IntArithmKind arithm,
JType op_jty, bool is_2addr);
void EmitInsn_IntArithmImmediate(GEN_INSN_ARGS, IntArithmKind arithm);
#if 0
void EmitInsn_IntShiftArithm(GEN_INSN_ARGS, IntShiftArithmKind arithm,
JType op_jty, bool is_2addr);
void EmitInsn_IntShiftArithmImmediate(GEN_INSN_ARGS,
IntShiftArithmKind arithm);
void EmitInsn_RSubImmediate(GEN_INSN_ARGS);
#endif
// Floating-point binary arithmetic instructions
void EmitInsn_FPArithm(GEN_INSN_ARGS, FPArithmKind arithm,
JType op_jty, bool is_2addr);
#undef GEN_INSN_ARGS
bool EmitInstructions();
bool EmitInstruction(unsigned dex_pc, const Instruction* insn);
DISALLOW_COPY_AND_ASSIGN(DexLang);
};
} // namespace greenland
} // namespace art
#endif // ART_SRC_GREENLAND_DEX_LANG_H_