blob: e2154b8e4da86def8894c1d7683c333e1d15d80c [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "image_space.h"
#include <lz4.h>
#include <sys/statvfs.h>
#include <sys/types.h>
#include <unistd.h>
#include <random>
#include "android-base/stringprintf.h"
#include "android-base/strings.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/callee_save_type.h"
#include "base/enums.h"
#include "base/file_utils.h"
#include "base/macros.h"
#include "base/os.h"
#include "base/scoped_flock.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/time_utils.h"
#include "base/utils.h"
#include "dex/art_dex_file_loader.h"
#include "dex/dex_file_loader.h"
#include "exec_utils.h"
#include "gc/accounting/space_bitmap-inl.h"
#include "image-inl.h"
#include "image_space_fs.h"
#include "mirror/class-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object-refvisitor-inl.h"
#include "oat_file.h"
#include "runtime.h"
#include "space-inl.h"
namespace art {
namespace gc {
namespace space {
using android::base::StringAppendF;
using android::base::StringPrintf;
Atomic<uint32_t> ImageSpace::bitmap_index_(0);
ImageSpace::ImageSpace(const std::string& image_filename,
const char* image_location,
MemMap* mem_map,
accounting::ContinuousSpaceBitmap* live_bitmap,
uint8_t* end)
: MemMapSpace(image_filename,
mem_map,
mem_map->Begin(),
end,
end,
kGcRetentionPolicyNeverCollect),
oat_file_non_owned_(nullptr),
image_location_(image_location) {
DCHECK(live_bitmap != nullptr);
live_bitmap_.reset(live_bitmap);
}
static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
CHECK_ALIGNED(min_delta, kPageSize);
CHECK_ALIGNED(max_delta, kPageSize);
CHECK_LT(min_delta, max_delta);
int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
if (r % 2 == 0) {
r = RoundUp(r, kPageSize);
} else {
r = RoundDown(r, kPageSize);
}
CHECK_LE(min_delta, r);
CHECK_GE(max_delta, r);
CHECK_ALIGNED(r, kPageSize);
return r;
}
static int32_t ChooseRelocationOffsetDelta() {
return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA);
}
static bool GenerateImage(const std::string& image_filename,
InstructionSet image_isa,
std::string* error_msg) {
const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString());
std::vector<std::string> boot_class_path;
Split(boot_class_path_string, ':', &boot_class_path);
if (boot_class_path.empty()) {
*error_msg = "Failed to generate image because no boot class path specified";
return false;
}
// We should clean up so we are more likely to have room for the image.
if (Runtime::Current()->IsZygote()) {
LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile";
PruneDalvikCache(image_isa);
}
std::vector<std::string> arg_vector;
std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
arg_vector.push_back(dex2oat);
std::string image_option_string("--image=");
image_option_string += image_filename;
arg_vector.push_back(image_option_string);
for (size_t i = 0; i < boot_class_path.size(); i++) {
arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]);
}
std::string oat_file_option_string("--oat-file=");
oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename);
arg_vector.push_back(oat_file_option_string);
// Note: we do not generate a fully debuggable boot image so we do not pass the
// compiler flag --debuggable here.
Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector);
CHECK_EQ(image_isa, kRuntimeISA)
<< "We should always be generating an image for the current isa.";
int32_t base_offset = ChooseRelocationOffsetDelta();
LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default "
<< "art base address of 0x" << std::hex << ART_BASE_ADDRESS;
arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset));
if (!kIsTargetBuild) {
arg_vector.push_back("--host");
}
const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions();
for (size_t i = 0; i < compiler_options.size(); ++i) {
arg_vector.push_back(compiler_options[i].c_str());
}
std::string command_line(android::base::Join(arg_vector, ' '));
LOG(INFO) << "GenerateImage: " << command_line;
return Exec(arg_vector, error_msg);
}
static bool FindImageFilenameImpl(const char* image_location,
const InstructionSet image_isa,
bool* has_system,
std::string* system_filename,
bool* dalvik_cache_exists,
std::string* dalvik_cache,
bool* is_global_cache,
bool* has_cache,
std::string* cache_filename) {
DCHECK(dalvik_cache != nullptr);
*has_system = false;
*has_cache = false;
// image_location = /system/framework/boot.art
// system_image_location = /system/framework/<image_isa>/boot.art
std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
if (OS::FileExists(system_image_filename.c_str())) {
*system_filename = system_image_filename;
*has_system = true;
}
bool have_android_data = false;
*dalvik_cache_exists = false;
GetDalvikCache(GetInstructionSetString(image_isa),
true,
dalvik_cache,
&have_android_data,
dalvik_cache_exists,
is_global_cache);
if (have_android_data && *dalvik_cache_exists) {
// Always set output location even if it does not exist,
// so that the caller knows where to create the image.
//
// image_location = /system/framework/boot.art
// *image_filename = /data/dalvik-cache/<image_isa>/boot.art
std::string error_msg;
if (!GetDalvikCacheFilename(image_location,
dalvik_cache->c_str(),
cache_filename,
&error_msg)) {
LOG(WARNING) << error_msg;
return *has_system;
}
*has_cache = OS::FileExists(cache_filename->c_str());
}
return *has_system || *has_cache;
}
bool ImageSpace::FindImageFilename(const char* image_location,
const InstructionSet image_isa,
std::string* system_filename,
bool* has_system,
std::string* cache_filename,
bool* dalvik_cache_exists,
bool* has_cache,
bool* is_global_cache) {
std::string dalvik_cache_unused;
return FindImageFilenameImpl(image_location,
image_isa,
has_system,
system_filename,
dalvik_cache_exists,
&dalvik_cache_unused,
is_global_cache,
has_cache,
cache_filename);
}
static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) {
std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
if (image_file.get() == nullptr) {
return false;
}
const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader));
if (!success || !image_header->IsValid()) {
return false;
}
return true;
}
// Relocate the image at image_location to dest_filename and relocate it by a random amount.
static bool RelocateImage(const char* image_location,
const char* dest_directory,
InstructionSet isa,
std::string* error_msg) {
// We should clean up so we are more likely to have room for the image.
if (Runtime::Current()->IsZygote()) {
LOG(INFO) << "Pruning dalvik-cache since we are relocating an image and will need to recompile";
PruneDalvikCache(isa);
}
std::string patchoat(Runtime::Current()->GetPatchoatExecutable());
std::string input_image_location_arg("--input-image-location=");
input_image_location_arg += image_location;
std::string output_image_directory_arg("--output-image-directory=");
output_image_directory_arg += dest_directory;
std::string instruction_set_arg("--instruction-set=");
instruction_set_arg += GetInstructionSetString(isa);
std::string base_offset_arg("--base-offset-delta=");
StringAppendF(&base_offset_arg, "%d", ChooseRelocationOffsetDelta());
std::vector<std::string> argv;
argv.push_back(patchoat);
argv.push_back(input_image_location_arg);
argv.push_back(output_image_directory_arg);
argv.push_back(instruction_set_arg);
argv.push_back(base_offset_arg);
std::string command_line(android::base::Join(argv, ' '));
LOG(INFO) << "RelocateImage: " << command_line;
return Exec(argv, error_msg);
}
static bool VerifyImage(const char* image_location,
const char* dest_directory,
InstructionSet isa,
std::string* error_msg) {
std::string patchoat(Runtime::Current()->GetPatchoatExecutable());
std::string input_image_location_arg("--input-image-location=");
input_image_location_arg += image_location;
std::string output_image_directory_arg("--output-image-directory=");
output_image_directory_arg += dest_directory;
std::string instruction_set_arg("--instruction-set=");
instruction_set_arg += GetInstructionSetString(isa);
std::vector<std::string> argv;
argv.push_back(patchoat);
argv.push_back(input_image_location_arg);
argv.push_back(output_image_directory_arg);
argv.push_back(instruction_set_arg);
argv.push_back("--verify");
std::string command_line(android::base::Join(argv, ' '));
LOG(INFO) << "VerifyImage: " << command_line;
return Exec(argv, error_msg);
}
static ImageHeader* ReadSpecificImageHeader(const char* filename, std::string* error_msg) {
std::unique_ptr<ImageHeader> hdr(new ImageHeader);
if (!ReadSpecificImageHeader(filename, hdr.get())) {
*error_msg = StringPrintf("Unable to read image header for %s", filename);
return nullptr;
}
return hdr.release();
}
ImageHeader* ImageSpace::ReadImageHeader(const char* image_location,
const InstructionSet image_isa,
std::string* error_msg) {
std::string system_filename;
bool has_system = false;
std::string cache_filename;
bool has_cache = false;
bool dalvik_cache_exists = false;
bool is_global_cache = false;
if (FindImageFilename(image_location, image_isa, &system_filename, &has_system,
&cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache)) {
if (Runtime::Current()->ShouldRelocate()) {
if (has_system && has_cache) {
std::unique_ptr<ImageHeader> sys_hdr(new ImageHeader);
std::unique_ptr<ImageHeader> cache_hdr(new ImageHeader);
if (!ReadSpecificImageHeader(system_filename.c_str(), sys_hdr.get())) {
*error_msg = StringPrintf("Unable to read image header for %s at %s",
image_location, system_filename.c_str());
return nullptr;
}
if (!ReadSpecificImageHeader(cache_filename.c_str(), cache_hdr.get())) {
*error_msg = StringPrintf("Unable to read image header for %s at %s",
image_location, cache_filename.c_str());
return nullptr;
}
if (sys_hdr->GetOatChecksum() != cache_hdr->GetOatChecksum()) {
*error_msg = StringPrintf("Unable to find a relocated version of image file %s",
image_location);
return nullptr;
}
return cache_hdr.release();
} else if (!has_cache) {
*error_msg = StringPrintf("Unable to find a relocated version of image file %s",
image_location);
return nullptr;
} else if (!has_system && has_cache) {
// This can probably just use the cache one.
return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
}
} else {
// We don't want to relocate, Just pick the appropriate one if we have it and return.
if (has_system && has_cache) {
// We want the cache if the checksum matches, otherwise the system.
std::unique_ptr<ImageHeader> system(ReadSpecificImageHeader(system_filename.c_str(),
error_msg));
std::unique_ptr<ImageHeader> cache(ReadSpecificImageHeader(cache_filename.c_str(),
error_msg));
if (system.get() == nullptr ||
(cache.get() != nullptr && cache->GetOatChecksum() == system->GetOatChecksum())) {
return cache.release();
} else {
return system.release();
}
} else if (has_system) {
return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
} else if (has_cache) {
return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
}
}
}
*error_msg = StringPrintf("Unable to find image file for %s", image_location);
return nullptr;
}
static bool ChecksumsMatch(const char* image_a, const char* image_b, std::string* error_msg) {
DCHECK(error_msg != nullptr);
ImageHeader hdr_a;
ImageHeader hdr_b;
if (!ReadSpecificImageHeader(image_a, &hdr_a)) {
*error_msg = StringPrintf("Cannot read header of %s", image_a);
return false;
}
if (!ReadSpecificImageHeader(image_b, &hdr_b)) {
*error_msg = StringPrintf("Cannot read header of %s", image_b);
return false;
}
if (hdr_a.GetOatChecksum() != hdr_b.GetOatChecksum()) {
*error_msg = StringPrintf("Checksum mismatch: %u(%s) vs %u(%s)",
hdr_a.GetOatChecksum(),
image_a,
hdr_b.GetOatChecksum(),
image_b);
return false;
}
return true;
}
static bool CanWriteToDalvikCache(const InstructionSet isa) {
const std::string dalvik_cache = GetDalvikCache(GetInstructionSetString(isa));
if (access(dalvik_cache.c_str(), O_RDWR) == 0) {
return true;
} else if (errno != EACCES) {
PLOG(WARNING) << "CanWriteToDalvikCache returned error other than EACCES";
}
return false;
}
static bool ImageCreationAllowed(bool is_global_cache,
const InstructionSet isa,
std::string* error_msg) {
// Anyone can write into a "local" cache.
if (!is_global_cache) {
return true;
}
// Only the zygote running as root is allowed to create the global boot image.
// If the zygote is running as non-root (and cannot write to the dalvik-cache),
// then image creation is not allowed..
if (Runtime::Current()->IsZygote()) {
return CanWriteToDalvikCache(isa);
}
*error_msg = "Only the zygote can create the global boot image.";
return false;
}
void ImageSpace::VerifyImageAllocations() {
uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
while (current < End()) {
CHECK_ALIGNED(current, kObjectAlignment);
auto* obj = reinterpret_cast<mirror::Object*>(current);
CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
CHECK(live_bitmap_->Test(obj)) << obj->PrettyTypeOf();
if (kUseBakerReadBarrier) {
obj->AssertReadBarrierState();
}
current += RoundUp(obj->SizeOf(), kObjectAlignment);
}
}
// Helper class for relocating from one range of memory to another.
class RelocationRange {
public:
RelocationRange() = default;
RelocationRange(const RelocationRange&) = default;
RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
: source_(source),
dest_(dest),
length_(length) {}
bool InSource(uintptr_t address) const {
return address - source_ < length_;
}
bool InDest(uintptr_t address) const {
return address - dest_ < length_;
}
// Translate a source address to the destination space.
uintptr_t ToDest(uintptr_t address) const {
DCHECK(InSource(address));
return address + Delta();
}
// Returns the delta between the dest from the source.
uintptr_t Delta() const {
return dest_ - source_;
}
uintptr_t Source() const {
return source_;
}
uintptr_t Dest() const {
return dest_;
}
uintptr_t Length() const {
return length_;
}
private:
const uintptr_t source_;
const uintptr_t dest_;
const uintptr_t length_;
};
std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
<< reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
<< reinterpret_cast<const void*>(reloc.Dest()) << "-"
<< reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
}
// Helper class encapsulating loading, so we can access private ImageSpace members (this is a
// friend class), but not declare functions in the header.
class ImageSpaceLoader {
public:
static std::unique_ptr<ImageSpace> Load(const char* image_location,
const std::string& image_filename,
bool is_zygote,
bool is_global_cache,
bool validate_oat_file,
std::string* error_msg)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Should this be a RDWR lock? This is only a defensive measure, as at
// this point the image should exist.
// However, only the zygote can write into the global dalvik-cache, so
// restrict to zygote processes, or any process that isn't using
// /data/dalvik-cache (which we assume to be allowed to write there).
const bool rw_lock = is_zygote || !is_global_cache;
// Note that we must not use the file descriptor associated with
// ScopedFlock::GetFile to Init the image file. We want the file
// descriptor (and the associated exclusive lock) to be released when
// we leave Create.
ScopedFlock image = LockedFile::Open(image_filename.c_str(),
rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY /* flags */,
true /* block */,
error_msg);
VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
<< image_location;
// If we are in /system we can assume the image is good. We can also
// assume this if we are using a relocated image (i.e. image checksum
// matches) since this is only different by the offset. We need this to
// make sure that host tests continue to work.
// Since we are the boot image, pass null since we load the oat file from the boot image oat
// file name.
return Init(image_filename.c_str(),
image_location,
validate_oat_file,
/* oat_file */nullptr,
error_msg);
}
static std::unique_ptr<ImageSpace> Init(const char* image_filename,
const char* image_location,
bool validate_oat_file,
const OatFile* oat_file,
std::string* error_msg)
REQUIRES_SHARED(Locks::mutator_lock_) {
CHECK(image_filename != nullptr);
CHECK(image_location != nullptr);
TimingLogger logger(__PRETTY_FUNCTION__, true, VLOG_IS_ON(image));
VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
std::unique_ptr<File> file;
{
TimingLogger::ScopedTiming timing("OpenImageFile", &logger);
file.reset(OS::OpenFileForReading(image_filename));
if (file == nullptr) {
*error_msg = StringPrintf("Failed to open '%s'", image_filename);
return nullptr;
}
}
ImageHeader temp_image_header;
ImageHeader* image_header = &temp_image_header;
{
TimingLogger::ScopedTiming timing("ReadImageHeader", &logger);
bool success = file->ReadFully(image_header, sizeof(*image_header));
if (!success || !image_header->IsValid()) {
*error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
return nullptr;
}
}
// Check that the file is larger or equal to the header size + data size.
const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) {
*error_msg = StringPrintf("Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
image_file_size,
sizeof(ImageHeader) + image_header->GetDataSize());
return nullptr;
}
if (oat_file != nullptr) {
// If we have an oat file, check the oat file checksum. The oat file is only non-null for the
// app image case. Otherwise, we open the oat file after the image and check the checksum there.
const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
const uint32_t image_oat_checksum = image_header->GetOatChecksum();
if (oat_checksum != image_oat_checksum) {
*error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
oat_checksum,
image_oat_checksum,
image_filename);
return nullptr;
}
}
if (VLOG_IS_ON(startup)) {
LOG(INFO) << "Dumping image sections";
for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
auto& section = image_header->GetImageSection(section_idx);
LOG(INFO) << section_idx << " start="
<< reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " "
<< section;
}
}
const auto& bitmap_section = image_header->GetImageBitmapSection();
// The location we want to map from is the first aligned page after the end of the stored
// (possibly compressed) data.
const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(),
kPageSize);
const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
if (end_of_bitmap != image_file_size) {
*error_msg = StringPrintf(
"Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", image_file_size,
end_of_bitmap);
return nullptr;
}
std::unique_ptr<MemMap> map;
// GetImageBegin is the preferred address to map the image. If we manage to map the
// image at the image begin, the amount of fixup work required is minimized.
// If it is pic we will retry with error_msg for the failure case. Pass a null error_msg to
// avoid reading proc maps for a mapping failure and slowing everything down.
map.reset(LoadImageFile(image_filename,
image_location,
*image_header,
image_header->GetImageBegin(),
file->Fd(),
logger,
image_header->IsPic() ? nullptr : error_msg));
// If the header specifies PIC mode, we can also map at a random low_4gb address since we can
// relocate in-place.
if (map == nullptr && image_header->IsPic()) {
map.reset(LoadImageFile(image_filename,
image_location,
*image_header,
/* address */ nullptr,
file->Fd(),
logger,
error_msg));
}
// Were we able to load something and continue?
if (map == nullptr) {
DCHECK(!error_msg->empty());
return nullptr;
}
DCHECK_EQ(0, memcmp(image_header, map->Begin(), sizeof(ImageHeader)));
std::unique_ptr<MemMap> image_bitmap_map(MemMap::MapFileAtAddress(nullptr,
bitmap_section.Size(),
PROT_READ, MAP_PRIVATE,
file->Fd(),
image_bitmap_offset,
/*low_4gb*/false,
/*reuse*/false,
image_filename,
error_msg));
if (image_bitmap_map == nullptr) {
*error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
return nullptr;
}
// Loaded the map, use the image header from the file now in case we patch it with
// RelocateInPlace.
image_header = reinterpret_cast<ImageHeader*>(map->Begin());
const uint32_t bitmap_index = ImageSpace::bitmap_index_.fetch_add(1, std::memory_order_seq_cst);
std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
image_filename,
bitmap_index));
// Bitmap only needs to cover until the end of the mirror objects section.
const ImageSection& image_objects = image_header->GetObjectsSection();
// We only want the mirror object, not the ArtFields and ArtMethods.
uint8_t* const image_end = map->Begin() + image_objects.End();
std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap;
{
TimingLogger::ScopedTiming timing("CreateImageBitmap", &logger);
bitmap.reset(
accounting::ContinuousSpaceBitmap::CreateFromMemMap(
bitmap_name,
image_bitmap_map.release(),
reinterpret_cast<uint8_t*>(map->Begin()),
// Make sure the bitmap is aligned to card size instead of just bitmap word size.
RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize)));
if (bitmap == nullptr) {
*error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
return nullptr;
}
}
{
TimingLogger::ScopedTiming timing("RelocateImage", &logger);
if (!RelocateInPlace(*image_header,
map->Begin(),
bitmap.get(),
oat_file,
error_msg)) {
return nullptr;
}
}
// We only want the mirror object, not the ArtFields and ArtMethods.
std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
image_location,
map.release(),
bitmap.release(),
image_end));
// VerifyImageAllocations() will be called later in Runtime::Init()
// as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
// and ArtField::java_lang_reflect_ArtField_, which are used from
// Object::SizeOf() which VerifyImageAllocations() calls, are not
// set yet at this point.
if (oat_file == nullptr) {
TimingLogger::ScopedTiming timing("OpenOatFile", &logger);
space->oat_file_ = OpenOatFile(*space, image_filename, error_msg);
if (space->oat_file_ == nullptr) {
DCHECK(!error_msg->empty());
return nullptr;
}
space->oat_file_non_owned_ = space->oat_file_.get();
} else {
space->oat_file_non_owned_ = oat_file;
}
if (validate_oat_file) {
TimingLogger::ScopedTiming timing("ValidateOatFile", &logger);
CHECK(space->oat_file_ != nullptr);
if (!ImageSpace::ValidateOatFile(*space->oat_file_, error_msg)) {
DCHECK(!error_msg->empty());
return nullptr;
}
}
Runtime* runtime = Runtime::Current();
// If oat_file is null, then it is the boot image space. Use oat_file_non_owned_ from the space
// to set the runtime methods.
CHECK_EQ(oat_file != nullptr, image_header->IsAppImage());
if (image_header->IsAppImage()) {
CHECK_EQ(runtime->GetResolutionMethod(),
image_header->GetImageMethod(ImageHeader::kResolutionMethod));
CHECK_EQ(runtime->GetImtConflictMethod(),
image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
CHECK_EQ(runtime->GetImtUnimplementedMethod(),
image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves),
image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod));
CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly),
image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod));
CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs),
image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod));
CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything),
image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod));
CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForClinit),
image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForClinit));
CHECK_EQ(runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverythingForSuspendCheck),
image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForSuspendCheck));
} else if (!runtime->HasResolutionMethod()) {
runtime->SetInstructionSet(space->oat_file_non_owned_->GetOatHeader().GetInstructionSet());
runtime->SetResolutionMethod(image_header->GetImageMethod(ImageHeader::kResolutionMethod));
runtime->SetImtConflictMethod(image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
runtime->SetImtUnimplementedMethod(
image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
runtime->SetCalleeSaveMethod(
image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod),
CalleeSaveType::kSaveAllCalleeSaves);
runtime->SetCalleeSaveMethod(
image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod),
CalleeSaveType::kSaveRefsOnly);
runtime->SetCalleeSaveMethod(
image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod),
CalleeSaveType::kSaveRefsAndArgs);
runtime->SetCalleeSaveMethod(
image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod),
CalleeSaveType::kSaveEverything);
runtime->SetCalleeSaveMethod(
image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForClinit),
CalleeSaveType::kSaveEverythingForClinit);
runtime->SetCalleeSaveMethod(
image_header->GetImageMethod(ImageHeader::kSaveEverythingMethodForSuspendCheck),
CalleeSaveType::kSaveEverythingForSuspendCheck);
}
VLOG(image) << "ImageSpace::Init exiting " << *space.get();
if (VLOG_IS_ON(image)) {
logger.Dump(LOG_STREAM(INFO));
}
return space;
}
private:
static MemMap* LoadImageFile(const char* image_filename,
const char* image_location,
const ImageHeader& image_header,
uint8_t* address,
int fd,
TimingLogger& logger,
std::string* error_msg) {
TimingLogger::ScopedTiming timing("MapImageFile", &logger);
const ImageHeader::StorageMode storage_mode = image_header.GetStorageMode();
if (storage_mode == ImageHeader::kStorageModeUncompressed) {
return MemMap::MapFileAtAddress(address,
image_header.GetImageSize(),
PROT_READ | PROT_WRITE,
MAP_PRIVATE,
fd,
0,
/*low_4gb*/true,
/*reuse*/false,
image_filename,
error_msg);
}
if (storage_mode != ImageHeader::kStorageModeLZ4 &&
storage_mode != ImageHeader::kStorageModeLZ4HC) {
if (error_msg != nullptr) {
*error_msg = StringPrintf("Invalid storage mode in image header %d",
static_cast<int>(storage_mode));
}
return nullptr;
}
// Reserve output and decompress into it.
std::unique_ptr<MemMap> map(MemMap::MapAnonymous(image_location,
address,
image_header.GetImageSize(),
PROT_READ | PROT_WRITE,
/*low_4gb*/true,
/*reuse*/false,
error_msg));
if (map != nullptr) {
const size_t stored_size = image_header.GetDataSize();
const size_t decompress_offset = sizeof(ImageHeader); // Skip the header.
std::unique_ptr<MemMap> temp_map(MemMap::MapFile(sizeof(ImageHeader) + stored_size,
PROT_READ,
MAP_PRIVATE,
fd,
/*offset*/0,
/*low_4gb*/false,
image_filename,
error_msg));
if (temp_map == nullptr) {
DCHECK(error_msg == nullptr || !error_msg->empty());
return nullptr;
}
memcpy(map->Begin(), &image_header, sizeof(ImageHeader));
const uint64_t start = NanoTime();
// LZ4HC and LZ4 have same internal format, both use LZ4_decompress.
TimingLogger::ScopedTiming timing2("LZ4 decompress image", &logger);
const size_t decompressed_size = LZ4_decompress_safe(
reinterpret_cast<char*>(temp_map->Begin()) + sizeof(ImageHeader),
reinterpret_cast<char*>(map->Begin()) + decompress_offset,
stored_size,
map->Size() - decompress_offset);
const uint64_t time = NanoTime() - start;
// Add one 1 ns to prevent possible divide by 0.
VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " ("
<< PrettySize(static_cast<uint64_t>(map->Size()) * MsToNs(1000) / (time + 1))
<< "/s)";
if (decompressed_size + sizeof(ImageHeader) != image_header.GetImageSize()) {
if (error_msg != nullptr) {
*error_msg = StringPrintf(
"Decompressed size does not match expected image size %zu vs %zu",
decompressed_size + sizeof(ImageHeader),
image_header.GetImageSize());
}
return nullptr;
}
}
return map.release();
}
class FixupVisitor : public ValueObject {
public:
FixupVisitor(const RelocationRange& boot_image,
const RelocationRange& boot_oat,
const RelocationRange& app_image,
const RelocationRange& app_oat)
: boot_image_(boot_image),
boot_oat_(boot_oat),
app_image_(app_image),
app_oat_(app_oat) {}
// Return the relocated address of a heap object.
template <typename T>
ALWAYS_INLINE T* ForwardObject(T* src) const {
const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
if (boot_image_.InSource(uint_src)) {
return reinterpret_cast<T*>(boot_image_.ToDest(uint_src));
}
if (app_image_.InSource(uint_src)) {
return reinterpret_cast<T*>(app_image_.ToDest(uint_src));
}
// Since we are fixing up the app image, there should only be pointers to the app image and
// boot image.
DCHECK(src == nullptr) << reinterpret_cast<const void*>(src);
return src;
}
// Return the relocated address of a code pointer (contained by an oat file).
ALWAYS_INLINE const void* ForwardCode(const void* src) const {
const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
if (boot_oat_.InSource(uint_src)) {
return reinterpret_cast<const void*>(boot_oat_.ToDest(uint_src));
}
if (app_oat_.InSource(uint_src)) {
return reinterpret_cast<const void*>(app_oat_.ToDest(uint_src));
}
DCHECK(src == nullptr) << src;
return src;
}
// Must be called on pointers that already have been relocated to the destination relocation.
ALWAYS_INLINE bool IsInAppImage(mirror::Object* object) const {
return app_image_.InDest(reinterpret_cast<uintptr_t>(object));
}
protected:
// Source section.
const RelocationRange boot_image_;
const RelocationRange boot_oat_;
const RelocationRange app_image_;
const RelocationRange app_oat_;
};
// Adapt for mirror::Class::FixupNativePointers.
class FixupObjectAdapter : public FixupVisitor {
public:
template<typename... Args>
explicit FixupObjectAdapter(Args... args) : FixupVisitor(args...) {}
template <typename T>
T* operator()(T* obj, void** dest_addr ATTRIBUTE_UNUSED = nullptr) const {
return ForwardObject(obj);
}
};
class FixupRootVisitor : public FixupVisitor {
public:
template<typename... Args>
explicit FixupRootVisitor(Args... args) : FixupVisitor(args...) {}
ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
REQUIRES_SHARED(Locks::mutator_lock_) {
if (!root->IsNull()) {
VisitRoot(root);
}
}
ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
REQUIRES_SHARED(Locks::mutator_lock_) {
mirror::Object* ref = root->AsMirrorPtr();
mirror::Object* new_ref = ForwardObject(ref);
if (ref != new_ref) {
root->Assign(new_ref);
}
}
};
class FixupObjectVisitor : public FixupVisitor {
public:
template<typename... Args>
explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
const PointerSize pointer_size,
Args... args)
: FixupVisitor(args...),
pointer_size_(pointer_size),
visited_(visited) {}
// Fix up separately since we also need to fix up method entrypoints.
ALWAYS_INLINE void VisitRootIfNonNull(
mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
const {}
ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
MemberOffset offset,
bool is_static ATTRIBUTE_UNUSED) const
NO_THREAD_SAFETY_ANALYSIS {
// There could be overlap between ranges, we must avoid visiting the same reference twice.
// Avoid the class field since we already fixed it up in FixupClassVisitor.
if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
// Space is not yet added to the heap, don't do a read barrier.
mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
offset);
// Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
// image.
obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, ForwardObject(ref));
}
}
// Visit a pointer array and forward corresponding native data. Ignores pointer arrays in the
// boot image. Uses the bitmap to ensure the same array is not visited multiple times.
template <typename Visitor>
void UpdatePointerArrayContents(mirror::PointerArray* array, const Visitor& visitor) const
NO_THREAD_SAFETY_ANALYSIS {
DCHECK(array != nullptr);
DCHECK(visitor.IsInAppImage(array));
// The bit for the array contents is different than the bit for the array. Since we may have
// already visited the array as a long / int array from walking the bitmap without knowing it
// was a pointer array.
static_assert(kObjectAlignment == 8u, "array bit may be in another object");
mirror::Object* const contents_bit = reinterpret_cast<mirror::Object*>(
reinterpret_cast<uintptr_t>(array) + kObjectAlignment);
// If the bit is not set then the contents have not yet been updated.
if (!visited_->Test(contents_bit)) {
array->Fixup<kVerifyNone, kWithoutReadBarrier>(array, pointer_size_, visitor);
visited_->Set(contents_bit);
}
}
// java.lang.ref.Reference visitor.
void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
ObjPtr<mirror::Reference> ref) const
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>();
ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
mirror::Reference::ReferentOffset(),
ForwardObject(obj));
}
void operator()(mirror::Object* obj) const
NO_THREAD_SAFETY_ANALYSIS {
if (visited_->Test(obj)) {
// Already visited.
return;
}
visited_->Set(obj);
// Handle class specially first since we need it to be updated to properly visit the rest of
// the instance fields.
{
mirror::Class* klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
DCHECK(klass != nullptr) << "Null class in image";
// No AsClass since our fields aren't quite fixed up yet.
mirror::Class* new_klass = down_cast<mirror::Class*>(ForwardObject(klass));
if (klass != new_klass) {
obj->SetClass<kVerifyNone>(new_klass);
}
if (new_klass != klass && IsInAppImage(new_klass)) {
// Make sure the klass contents are fixed up since we depend on it to walk the fields.
operator()(new_klass);
}
}
if (obj->IsClass()) {
mirror::Class* klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>();
// Fixup super class before visiting instance fields which require
// information from their super class to calculate offsets.
mirror::Class* super_class = klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
if (super_class != nullptr) {
mirror::Class* new_super_class = down_cast<mirror::Class*>(ForwardObject(super_class));
if (new_super_class != super_class && IsInAppImage(new_super_class)) {
// Recursively fix all dependencies.
operator()(new_super_class);
}
}
}
obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
*this,
*this);
// Note that this code relies on no circular dependencies.
// We want to use our own class loader and not the one in the image.
if (obj->IsClass<kVerifyNone, kWithoutReadBarrier>()) {
mirror::Class* as_klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>();
FixupObjectAdapter visitor(boot_image_, boot_oat_, app_image_, app_oat_);
as_klass->FixupNativePointers<kVerifyNone, kWithoutReadBarrier>(as_klass,
pointer_size_,
visitor);
// Deal with the pointer arrays. Use the helper function since multiple classes can reference
// the same arrays.
mirror::PointerArray* const vtable = as_klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
if (vtable != nullptr && IsInAppImage(vtable)) {
operator()(vtable);
UpdatePointerArrayContents(vtable, visitor);
}
mirror::IfTable* iftable = as_klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
// Ensure iftable arrays are fixed up since we need GetMethodArray to return the valid
// contents.
if (IsInAppImage(iftable)) {
operator()(iftable);
for (int32_t i = 0, count = iftable->Count(); i < count; ++i) {
if (iftable->GetMethodArrayCount<kVerifyNone, kWithoutReadBarrier>(i) > 0) {
mirror::PointerArray* methods =
iftable->GetMethodArray<kVerifyNone, kWithoutReadBarrier>(i);
if (visitor.IsInAppImage(methods)) {
operator()(methods);
DCHECK(methods != nullptr);
UpdatePointerArrayContents(methods, visitor);
}
}
}
}
}
}
private:
const PointerSize pointer_size_;
gc::accounting::ContinuousSpaceBitmap* const visited_;
};
class ForwardObjectAdapter {
public:
ALWAYS_INLINE explicit ForwardObjectAdapter(const FixupVisitor* visitor) : visitor_(visitor) {}
template <typename T>
ALWAYS_INLINE T* operator()(T* src) const {
return visitor_->ForwardObject(src);
}
private:
const FixupVisitor* const visitor_;
};
class ForwardCodeAdapter {
public:
ALWAYS_INLINE explicit ForwardCodeAdapter(const FixupVisitor* visitor)
: visitor_(visitor) {}
template <typename T>
ALWAYS_INLINE T* operator()(T* src) const {
return visitor_->ForwardCode(src);
}
private:
const FixupVisitor* const visitor_;
};
class FixupArtMethodVisitor : public FixupVisitor, public ArtMethodVisitor {
public:
template<typename... Args>
explicit FixupArtMethodVisitor(bool fixup_heap_objects, PointerSize pointer_size, Args... args)
: FixupVisitor(args...),
fixup_heap_objects_(fixup_heap_objects),
pointer_size_(pointer_size) {}
virtual void Visit(ArtMethod* method) NO_THREAD_SAFETY_ANALYSIS {
// TODO: Separate visitor for runtime vs normal methods.
if (UNLIKELY(method->IsRuntimeMethod())) {
ImtConflictTable* table = method->GetImtConflictTable(pointer_size_);
if (table != nullptr) {
ImtConflictTable* new_table = ForwardObject(table);
if (table != new_table) {
method->SetImtConflictTable(new_table, pointer_size_);
}
}
const void* old_code = method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size_);
const void* new_code = ForwardCode(old_code);
if (old_code != new_code) {
method->SetEntryPointFromQuickCompiledCodePtrSize(new_code, pointer_size_);
}
} else {
if (fixup_heap_objects_) {
method->UpdateObjectsForImageRelocation(ForwardObjectAdapter(this));
}
method->UpdateEntrypoints<kWithoutReadBarrier>(ForwardCodeAdapter(this), pointer_size_);
}
}
private:
const bool fixup_heap_objects_;
const PointerSize pointer_size_;
};
class FixupArtFieldVisitor : public FixupVisitor, public ArtFieldVisitor {
public:
template<typename... Args>
explicit FixupArtFieldVisitor(Args... args) : FixupVisitor(args...) {}
virtual void Visit(ArtField* field) NO_THREAD_SAFETY_ANALYSIS {
field->UpdateObjects(ForwardObjectAdapter(this));
}
};
// Relocate an image space mapped at target_base which possibly used to be at a different base
// address. Only needs a single image space, not one for both source and destination.
// In place means modifying a single ImageSpace in place rather than relocating from one ImageSpace
// to another.
static bool RelocateInPlace(ImageHeader& image_header,
uint8_t* target_base,
accounting::ContinuousSpaceBitmap* bitmap,
const OatFile* app_oat_file,
std::string* error_msg) {
DCHECK(error_msg != nullptr);
if (!image_header.IsPic()) {
if (image_header.GetImageBegin() == target_base) {
return true;
}
*error_msg = StringPrintf("Cannot relocate non-pic image for oat file %s",
(app_oat_file != nullptr) ? app_oat_file->GetLocation().c_str() : "");
return false;
}
// Set up sections.
uint32_t boot_image_begin = 0;
uint32_t boot_image_end = 0;
uint32_t boot_oat_begin = 0;
uint32_t boot_oat_end = 0;
const PointerSize pointer_size = image_header.GetPointerSize();
gc::Heap* const heap = Runtime::Current()->GetHeap();
heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
if (boot_image_begin == boot_image_end) {
*error_msg = "Can not relocate app image without boot image space";
return false;
}
if (boot_oat_begin == boot_oat_end) {
*error_msg = "Can not relocate app image without boot oat file";
return false;
}
const uint32_t boot_image_size = boot_image_end - boot_image_begin;
const uint32_t boot_oat_size = boot_oat_end - boot_oat_begin;
const uint32_t image_header_boot_image_size = image_header.GetBootImageSize();
const uint32_t image_header_boot_oat_size = image_header.GetBootOatSize();
if (boot_image_size != image_header_boot_image_size) {
*error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %"
PRIu64,
static_cast<uint64_t>(boot_image_size),
static_cast<uint64_t>(image_header_boot_image_size));
return false;
}
if (boot_oat_size != image_header_boot_oat_size) {
*error_msg = StringPrintf("Boot oat size %" PRIu64 " does not match expected size %"
PRIu64,
static_cast<uint64_t>(boot_oat_size),
static_cast<uint64_t>(image_header_boot_oat_size));
return false;
}
TimingLogger logger(__FUNCTION__, true, false);
RelocationRange boot_image(image_header.GetBootImageBegin(),
boot_image_begin,
boot_image_size);
RelocationRange boot_oat(image_header.GetBootOatBegin(),
boot_oat_begin,
boot_oat_size);
RelocationRange app_image(reinterpret_cast<uintptr_t>(image_header.GetImageBegin()),
reinterpret_cast<uintptr_t>(target_base),
image_header.GetImageSize());
// Use the oat data section since this is where the OatFile::Begin is.
RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()),
// Not necessarily in low 4GB.
reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
image_header.GetOatDataEnd() - image_header.GetOatDataBegin());
VLOG(image) << "App image " << app_image;
VLOG(image) << "App oat " << app_oat;
VLOG(image) << "Boot image " << boot_image;
VLOG(image) << "Boot oat " << boot_oat;
// True if we need to fixup any heap pointers, otherwise only code pointers.
const bool fixup_image = boot_image.Delta() != 0 || app_image.Delta() != 0;
const bool fixup_code = boot_oat.Delta() != 0 || app_oat.Delta() != 0;
if (!fixup_image && !fixup_code) {
// Nothing to fix up.
return true;
}
ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
// Need to update the image to be at the target base.
const ImageSection& objects_section = image_header.GetObjectsSection();
uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
FixupObjectAdapter fixup_adapter(boot_image, boot_oat, app_image, app_oat);
if (fixup_image) {
// Two pass approach, fix up all classes first, then fix up non class-objects.
// The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap(
gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
target_base,
image_header.GetImageSize()));
FixupObjectVisitor fixup_object_visitor(visited_bitmap.get(),
pointer_size,
boot_image,
boot_oat,
app_image,
app_oat);
TimingLogger::ScopedTiming timing("Fixup classes", &logger);
// Fixup objects may read fields in the boot image, use the mutator lock here for sanity. Though
// its probably not required.
ScopedObjectAccess soa(Thread::Current());
timing.NewTiming("Fixup objects");
bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
// Fixup image roots.
CHECK(app_image.InSource(reinterpret_cast<uintptr_t>(
image_header.GetImageRoots<kWithoutReadBarrier>())));
image_header.RelocateImageObjects(app_image.Delta());
CHECK_EQ(image_header.GetImageBegin(), target_base);
// Fix up dex cache DexFile pointers.
auto* dex_caches = image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)->
AsObjectArray<mirror::DexCache, kVerifyNone, kWithoutReadBarrier>();
for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
mirror::DexCache* dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i);
// Fix up dex cache pointers.
mirror::StringDexCacheType* strings = dex_cache->GetStrings();
if (strings != nullptr) {
mirror::StringDexCacheType* new_strings = fixup_adapter.ForwardObject(strings);
if (strings != new_strings) {
dex_cache->SetStrings(new_strings);
}
dex_cache->FixupStrings<kWithoutReadBarrier>(new_strings, fixup_adapter);
}
mirror::TypeDexCacheType* types = dex_cache->GetResolvedTypes();
if (types != nullptr) {
mirror::TypeDexCacheType* new_types = fixup_adapter.ForwardObject(types);
if (types != new_types) {
dex_cache->SetResolvedTypes(new_types);
}
dex_cache->FixupResolvedTypes<kWithoutReadBarrier>(new_types, fixup_adapter);
}
mirror::MethodDexCacheType* methods = dex_cache->GetResolvedMethods();
if (methods != nullptr) {
mirror::MethodDexCacheType* new_methods = fixup_adapter.ForwardObject(methods);
if (methods != new_methods) {
dex_cache->SetResolvedMethods(new_methods);
}
for (size_t j = 0, num = dex_cache->NumResolvedMethods(); j != num; ++j) {
auto pair = mirror::DexCache::GetNativePairPtrSize(new_methods, j, pointer_size);
ArtMethod* orig = pair.object;
ArtMethod* copy = fixup_adapter.ForwardObject(orig);
if (orig != copy) {
pair.object = copy;
mirror::DexCache::SetNativePairPtrSize(new_methods, j, pair, pointer_size);
}
}
}
mirror::FieldDexCacheType* fields = dex_cache->GetResolvedFields();
if (fields != nullptr) {
mirror::FieldDexCacheType* new_fields = fixup_adapter.ForwardObject(fields);
if (fields != new_fields) {
dex_cache->SetResolvedFields(new_fields);
}
for (size_t j = 0, num = dex_cache->NumResolvedFields(); j != num; ++j) {
mirror::FieldDexCachePair orig =
mirror::DexCache::GetNativePairPtrSize(new_fields, j, pointer_size);
mirror::FieldDexCachePair copy(fixup_adapter.ForwardObject(orig.object), orig.index);
if (orig.object != copy.object) {
mirror::DexCache::SetNativePairPtrSize(new_fields, j, copy, pointer_size);
}
}
}
mirror::MethodTypeDexCacheType* method_types = dex_cache->GetResolvedMethodTypes();
if (method_types != nullptr) {
mirror::MethodTypeDexCacheType* new_method_types =
fixup_adapter.ForwardObject(method_types);
if (method_types != new_method_types) {
dex_cache->SetResolvedMethodTypes(new_method_types);
}
dex_cache->FixupResolvedMethodTypes<kWithoutReadBarrier>(new_method_types, fixup_adapter);
}
GcRoot<mirror::CallSite>* call_sites = dex_cache->GetResolvedCallSites();
if (call_sites != nullptr) {
GcRoot<mirror::CallSite>* new_call_sites = fixup_adapter.ForwardObject(call_sites);
if (call_sites != new_call_sites) {
dex_cache->SetResolvedCallSites(new_call_sites);
}
dex_cache->FixupResolvedCallSites<kWithoutReadBarrier>(new_call_sites, fixup_adapter);
}
}
}
{
// Only touches objects in the app image, no need for mutator lock.
TimingLogger::ScopedTiming timing("Fixup methods", &logger);
FixupArtMethodVisitor method_visitor(fixup_image,
pointer_size,
boot_image,
boot_oat,
app_image,
app_oat);
image_header.VisitPackedArtMethods(&method_visitor, target_base, pointer_size);
}
if (fixup_image) {
{
// Only touches objects in the app image, no need for mutator lock.
TimingLogger::ScopedTiming timing("Fixup fields", &logger);
FixupArtFieldVisitor field_visitor(boot_image, boot_oat, app_image, app_oat);
image_header.VisitPackedArtFields(&field_visitor, target_base);
}
{
TimingLogger::ScopedTiming timing("Fixup imt", &logger);
image_header.VisitPackedImTables(fixup_adapter, target_base, pointer_size);
}
{
TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
image_header.VisitPackedImtConflictTables(fixup_adapter, target_base, pointer_size);
}
// In the app image case, the image methods are actually in the boot image.
image_header.RelocateImageMethods(boot_image.Delta());
const auto& class_table_section = image_header.GetClassTableSection();
if (class_table_section.Size() > 0u) {
// Note that we require that ReadFromMemory does not make an internal copy of the elements.
// This also relies on visit roots not doing any verification which could fail after we update
// the roots to be the image addresses.
ScopedObjectAccess soa(Thread::Current());
WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
ClassTable temp_table;
temp_table.ReadFromMemory(target_base + class_table_section.Offset());
FixupRootVisitor root_visitor(boot_image, boot_oat, app_image, app_oat);
temp_table.VisitRoots(root_visitor);
}
}
if (VLOG_IS_ON(image)) {
logger.Dump(LOG_STREAM(INFO));
}
return true;
}
static std::unique_ptr<OatFile> OpenOatFile(const ImageSpace& image,
const char* image_path,
std::string* error_msg) {
const ImageHeader& image_header = image.GetImageHeader();
std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(image_path);
CHECK(image_header.GetOatDataBegin() != nullptr);
std::unique_ptr<OatFile> oat_file(OatFile::Open(oat_filename,
oat_filename,
image_header.GetOatDataBegin(),
image_header.GetOatFileBegin(),
!Runtime::Current()->IsAotCompiler(),
/*low_4gb*/false,
nullptr,
error_msg));
if (oat_file == nullptr) {
*error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
oat_filename.c_str(),
image.GetName(),
error_msg->c_str());
return nullptr;
}
uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
uint32_t image_oat_checksum = image_header.GetOatChecksum();
if (oat_checksum != image_oat_checksum) {
*error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum 0x%x"
" in image %s",
oat_checksum,
image_oat_checksum,
image.GetName());
return nullptr;
}
int32_t image_patch_delta = image_header.GetPatchDelta();
int32_t oat_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta();
if (oat_patch_delta != image_patch_delta && !image_header.CompilePic()) {
// We should have already relocated by this point. Bail out.
*error_msg = StringPrintf("Failed to match oat file patch delta %d to expected patch delta %d "
"in image %s",
oat_patch_delta,
image_patch_delta,
image.GetName());
return nullptr;
}
return oat_file;
}
};
static constexpr uint64_t kLowSpaceValue = 50 * MB;
static constexpr uint64_t kTmpFsSentinelValue = 384 * MB;
// Read the free space of the cache partition and make a decision whether to keep the generated
// image. This is to try to mitigate situations where the system might run out of space later.
static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) {
// Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes.
struct statvfs buf;
int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf));
if (res != 0) {
// Could not stat. Conservatively tell the system to delete the image.
*error_msg = "Could not stat the filesystem, assuming low-memory situation.";
return false;
}
uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks);
// Zygote is privileged, but other things are not. Use bavail.
uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail);
// Take the overall size as an indicator for a tmpfs, which is being used for the decryption
// environment. We do not want to fail quickening the boot image there, as it is beneficial
// for time-to-UI.
if (fs_overall_size > kTmpFsSentinelValue) {
if (fs_free_size < kLowSpaceValue) {
*error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available, need at "
"least %" PRIu64 ".",
static_cast<double>(fs_free_size) / MB,
kLowSpaceValue / MB);
return false;
}
}
return true;
}
std::unique_ptr<ImageSpace> ImageSpace::CreateBootImage(const char* image_location,
const InstructionSet image_isa,
bool secondary_image,
std::string* error_msg) {
ScopedTrace trace(__FUNCTION__);
// Step 0: Extra zygote work.
// Step 0.a: If we're the zygote, mark boot.
const bool is_zygote = Runtime::Current()->IsZygote();
if (is_zygote && !secondary_image && CanWriteToDalvikCache(image_isa)) {
MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots());
}
// Step 0.b: If we're the zygote, check for free space, and prune the cache preemptively,
// if necessary. While the runtime may be fine (it is pretty tolerant to
// out-of-disk-space situations), other parts of the platform are not.
//
// The advantage of doing this proactively is that the later steps are simplified,
// i.e., we do not need to code retries.
std::string system_filename;
bool has_system = false;
std::string cache_filename;
bool has_cache = false;
bool dalvik_cache_exists = false;
bool is_global_cache = true;
std::string dalvik_cache;
bool found_image = FindImageFilenameImpl(image_location,
image_isa,
&has_system,
&system_filename,
&dalvik_cache_exists,
&dalvik_cache,
&is_global_cache,
&has_cache,
&cache_filename);
bool dex2oat_enabled = Runtime::Current()->IsImageDex2OatEnabled();
if (is_zygote && dalvik_cache_exists && !secondary_image) {
// Extra checks for the zygote. These only apply when loading the first image, explained below.
DCHECK(!dalvik_cache.empty());
std::string local_error_msg;
// All secondary images are verified when the primary image is verified.
bool verified = VerifyImage(image_location, dalvik_cache.c_str(), image_isa, &local_error_msg);
// If we prune for space at a secondary image, we may end up in a crash loop with the _exit
// path.
bool check_space = CheckSpace(dalvik_cache, &local_error_msg);
if (!verified || !check_space) {
// Note: it is important to only prune for space on the primary image, or we will hit the
// restart path.
LOG(WARNING) << local_error_msg << " Preemptively pruning the dalvik cache.";
PruneDalvikCache(image_isa);
// Re-evaluate the image.
found_image = FindImageFilenameImpl(image_location,
image_isa,
&has_system,
&system_filename,
&dalvik_cache_exists,
&dalvik_cache,
&is_global_cache,
&has_cache,
&cache_filename);
}
if (!check_space) {
// Disable compilation/patching - we do not want to fill up the space again.
dex2oat_enabled = false;
}
}
// Collect all the errors.
std::vector<std::string> error_msgs;
// Step 1: Check if we have an existing and relocated image.
// Step 1.a: Have files in system and cache. Then they need to match.
if (found_image && has_system && has_cache) {
std::string local_error_msg;
// Check that the files are matching.
if (ChecksumsMatch(system_filename.c_str(), cache_filename.c_str(), &local_error_msg)) {
std::unique_ptr<ImageSpace> relocated_space =
ImageSpaceLoader::Load(image_location,
cache_filename,
is_zygote,
is_global_cache,
/* validate_oat_file */ false,
&local_error_msg);
if (relocated_space != nullptr) {
return relocated_space;
}
}
error_msgs.push_back(local_error_msg);
}
// Step 1.b: Only have a cache file.
if (found_image && !has_system && has_cache) {
std::string local_error_msg;
std::unique_ptr<ImageSpace> cache_space =
ImageSpaceLoader::Load(image_location,
cache_filename,
is_zygote,
is_global_cache,
/* validate_oat_file */ true,
&local_error_msg);
if (cache_space != nullptr) {
return cache_space;
}
error_msgs.push_back(local_error_msg);
}
// Step 2: We have an existing image in /system.
// Step 2.a: We are not required to relocate it. Then we can use it directly.
bool relocate = Runtime::Current()->ShouldRelocate();
if (found_image && has_system && !relocate) {
std::string local_error_msg;
std::unique_ptr<ImageSpace> system_space =
ImageSpaceLoader::Load(image_location,
system_filename,
is_zygote,
is_global_cache,
/* validate_oat_file */ false,
&local_error_msg);
if (system_space != nullptr) {
return system_space;
}
error_msgs.push_back(local_error_msg);
}
// Step 2.b: We require a relocated image. Then we must patch it. This step fails if this is a
// secondary image.
if (found_image && has_system && relocate) {
std::string local_error_msg;
if (!dex2oat_enabled) {
local_error_msg = "Patching disabled.";
} else if (secondary_image) {
// We really want a working image. Prune and restart.
PruneDalvikCache(image_isa);
_exit(1);
} else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) {
bool patch_success =
RelocateImage(image_location, dalvik_cache.c_str(), image_isa, &local_error_msg);
if (patch_success) {
std::unique_ptr<ImageSpace> patched_space =
ImageSpaceLoader::Load(image_location,
cache_filename,
is_zygote,
is_global_cache,
/* validate_oat_file */ false,
&local_error_msg);
if (patched_space != nullptr) {
return patched_space;
}
}
}
error_msgs.push_back(StringPrintf("Cannot relocate image %s to %s: %s",
image_location,
cache_filename.c_str(),
local_error_msg.c_str()));
}
// Step 3: We do not have an existing image in /system, so generate an image into the dalvik
// cache. This step fails if this is a secondary image.
if (!has_system) {
std::string local_error_msg;
if (!dex2oat_enabled) {
local_error_msg = "Image compilation disabled.";
} else if (secondary_image) {
local_error_msg = "Cannot compile a secondary image.";
} else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) {
bool compilation_success = GenerateImage(cache_filename, image_isa, &local_error_msg);
if (compilation_success) {
std::unique_ptr<ImageSpace> compiled_space =
ImageSpaceLoader::Load(image_location,
cache_filename,
is_zygote,
is_global_cache,
/* validate_oat_file */ false,
&local_error_msg);
if (compiled_space != nullptr) {
return compiled_space;
}
}
}
error_msgs.push_back(StringPrintf("Cannot compile image to %s: %s",
cache_filename.c_str(),
local_error_msg.c_str()));
}
// We failed. Prune the cache the free up space, create a compound error message and return no
// image.
PruneDalvikCache(image_isa);
std::ostringstream oss;
bool first = true;
for (const auto& msg : error_msgs) {
if (!first) {
oss << "\n ";
}
oss << msg;
}
*error_msg = oss.str();
return nullptr;
}
bool ImageSpace::LoadBootImage(const std::string& image_file_name,
const InstructionSet image_instruction_set,
std::vector<space::ImageSpace*>* boot_image_spaces,
uint8_t** oat_file_end) {
DCHECK(boot_image_spaces != nullptr);
DCHECK(boot_image_spaces->empty());
DCHECK(oat_file_end != nullptr);
DCHECK_NE(image_instruction_set, InstructionSet::kNone);
if (image_file_name.empty()) {
return false;
}
// For code reuse, handle this like a work queue.
std::vector<std::string> image_file_names;
image_file_names.push_back(image_file_name);
bool error = false;
uint8_t* oat_file_end_tmp = *oat_file_end;
for (size_t index = 0; index < image_file_names.size(); ++index) {
std::string& image_name = image_file_names[index];
std::string error_msg;
std::unique_ptr<space::ImageSpace> boot_image_space_uptr = CreateBootImage(
image_name.c_str(),
image_instruction_set,
index > 0,
&error_msg);
if (boot_image_space_uptr != nullptr) {
space::ImageSpace* boot_image_space = boot_image_space_uptr.release();
boot_image_spaces->push_back(boot_image_space);
// Oat files referenced by image files immediately follow them in memory, ensure alloc space
// isn't going to get in the middle
uint8_t* oat_file_end_addr = boot_image_space->GetImageHeader().GetOatFileEnd();
CHECK_GT(oat_file_end_addr, boot_image_space->End());
oat_file_end_tmp = AlignUp(oat_file_end_addr, kPageSize);
if (index == 0) {
// If this was the first space, check whether there are more images to load.
const OatFile* boot_oat_file = boot_image_space->GetOatFile();
if (boot_oat_file == nullptr) {
continue;
}
const OatHeader& boot_oat_header = boot_oat_file->GetOatHeader();
const char* boot_classpath =
boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey);
if (boot_classpath == nullptr) {
continue;
}
ExtractMultiImageLocations(image_file_name, boot_classpath, &image_file_names);
}
} else {
error = true;
LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. "
<< "Attempting to fall back to imageless running. Error was: " << error_msg
<< "\nAttempted image: " << image_name;
break;
}
}
if (error) {
// Remove already loaded spaces.
for (space::Space* loaded_space : *boot_image_spaces) {
delete loaded_space;
}
boot_image_spaces->clear();
return false;
}
*oat_file_end = oat_file_end_tmp;
return true;
}
ImageSpace::~ImageSpace() {
Runtime* runtime = Runtime::Current();
if (runtime == nullptr) {
return;
}
if (GetImageHeader().IsAppImage()) {
// This image space did not modify resolution method then in Init.
return;
}
if (!runtime->HasResolutionMethod()) {
// Another image space has already unloaded the below methods.
return;
}
runtime->ClearInstructionSet();
runtime->ClearResolutionMethod();
runtime->ClearImtConflictMethod();
runtime->ClearImtUnimplementedMethod();
runtime->ClearCalleeSaveMethods();
}
std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image,
const OatFile* oat_file,
std::string* error_msg) {
return ImageSpaceLoader::Init(image,
image,
/*validate_oat_file*/false,
oat_file,
/*out*/error_msg);
}
const OatFile* ImageSpace::GetOatFile() const {
return oat_file_non_owned_;
}
std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
CHECK(oat_file_ != nullptr);
return std::move(oat_file_);
}
void ImageSpace::Dump(std::ostream& os) const {
os << GetType()
<< " begin=" << reinterpret_cast<void*>(Begin())
<< ",end=" << reinterpret_cast<void*>(End())
<< ",size=" << PrettySize(Size())
<< ",name=\"" << GetName() << "\"]";
}
std::string ImageSpace::GetMultiImageBootClassPath(
const std::vector<const char*>& dex_locations,
const std::vector<const char*>& oat_filenames,
const std::vector<const char*>& image_filenames) {
DCHECK_GT(oat_filenames.size(), 1u);
// If the image filename was adapted (e.g., for our tests), we need to change this here,
// too, but need to strip all path components (they will be re-established when loading).
std::ostringstream bootcp_oss;
bool first_bootcp = true;
for (size_t i = 0; i < dex_locations.size(); ++i) {
if (!first_bootcp) {
bootcp_oss << ":";
}
std::string dex_loc = dex_locations[i];
std::string image_filename = image_filenames[i];
// Use the dex_loc path, but the image_filename name (without path elements).
size_t dex_last_slash = dex_loc.rfind('/');
// npos is max(size_t). That makes this a bit ugly.
size_t image_last_slash = image_filename.rfind('/');
size_t image_last_at = image_filename.rfind('@');
size_t image_last_sep = (image_last_slash == std::string::npos)
? image_last_at
: (image_last_at == std::string::npos)
? std::string::npos
: std::max(image_last_slash, image_last_at);
// Note: whenever image_last_sep == npos, +1 overflow means using the full string.
if (dex_last_slash == std::string::npos) {
dex_loc = image_filename.substr(image_last_sep + 1);
} else {
dex_loc = dex_loc.substr(0, dex_last_slash + 1) +
image_filename.substr(image_last_sep + 1);
}
// Image filenames already end with .art, no need to replace.
bootcp_oss << dex_loc;
first_bootcp = false;
}
return bootcp_oss.str();
}
bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) {
const ArtDexFileLoader dex_file_loader;
for (const OatFile::OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) {
const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();
// Skip multidex locations - These will be checked when we visit their
// corresponding primary non-multidex location.
if (DexFileLoader::IsMultiDexLocation(dex_file_location.c_str())) {
continue;
}
std::vector<uint32_t> checksums;
if (!dex_file_loader.GetMultiDexChecksums(dex_file_location.c_str(), &checksums, error_msg)) {
*error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' "
"referenced by oat file %s: %s",
dex_file_location.c_str(),
oat_file.GetLocation().c_str(),
error_msg->c_str());
return false;
}
CHECK(!checksums.empty());
if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) {
*error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
"'%s' and dex file '%s' (0x%x != 0x%x)",
oat_file.GetLocation().c_str(),
dex_file_location.c_str(),
oat_dex_file->GetDexFileLocationChecksum(),
checksums[0]);
return false;
}
// Verify checksums for any related multidex entries.
for (size_t i = 1; i < checksums.size(); i++) {
std::string multi_dex_location = DexFileLoader::GetMultiDexLocation(
i,
dex_file_location.c_str());
const OatFile::OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(),
nullptr,
error_msg);
if (multi_dex == nullptr) {
*error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'",
oat_file.GetLocation().c_str(),
multi_dex_location.c_str());
return false;
}
if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) {
*error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
"'%s' and dex file '%s' (0x%x != 0x%x)",
oat_file.GetLocation().c_str(),
multi_dex_location.c_str(),
multi_dex->GetDexFileLocationChecksum(),
checksums[i]);
return false;
}
}
}
return true;
}
void ImageSpace::ExtractMultiImageLocations(const std::string& input_image_file_name,
const std::string& boot_classpath,
std::vector<std::string>* image_file_names) {
DCHECK(image_file_names != nullptr);
std::vector<std::string> images;
Split(boot_classpath, ':', &images);
// Add the rest into the list. We have to adjust locations, possibly:
//
// For example, image_file_name is /a/b/c/d/e.art
// images[0] is f/c/d/e.art
// ----------------------------------------------
// images[1] is g/h/i/j.art -> /a/b/h/i/j.art
const std::string& first_image = images[0];
// Length of common suffix.
size_t common = 0;
while (common < input_image_file_name.size() &&
common < first_image.size() &&
*(input_image_file_name.end() - common - 1) == *(first_image.end() - common - 1)) {
++common;
}
// We want to replace the prefix of the input image with the prefix of the boot class path.
// This handles the case where the image file contains @ separators.
// Example image_file_name is oats/system@framework@boot.art
// images[0] is .../arm/boot.art
// means that the image name prefix will be oats/system@framework@
// so that the other images are openable.
const size_t old_prefix_length = first_image.size() - common;
const std::string new_prefix = input_image_file_name.substr(
0,
input_image_file_name.size() - common);
// Apply pattern to images[1] .. images[n].
for (size_t i = 1; i < images.size(); ++i) {
const std::string& image = images[i];
CHECK_GT(image.length(), old_prefix_length);
std::string suffix = image.substr(old_prefix_length);
image_file_names->push_back(new_prefix + suffix);
}
}
void ImageSpace::DumpSections(std::ostream& os) const {
const uint8_t* base = Begin();
const ImageHeader& header = GetImageHeader();
for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
auto section_type = static_cast<ImageHeader::ImageSections>(i);
const ImageSection& section = header.GetImageSection(section_type);
os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
<< "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
}
}
} // namespace space
} // namespace gc
} // namespace art