blob: 4093833e0be114c94962ba8308f71d9c7b3969ee [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "compiler_driver.h"
#include <unistd.h>
#include <unordered_set>
#include <vector>
#ifndef __APPLE__
#include <malloc.h> // For mallinfo
#endif
#include "android-base/strings.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/arena_allocator.h"
#include "base/array_ref.h"
#include "base/bit_vector.h"
#include "base/enums.h"
#include "base/logging.h" // For VLOG
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/time_utils.h"
#include "base/timing_logger.h"
#include "class_linker-inl.h"
#include "compiled_method-inl.h"
#include "compiler.h"
#include "compiler_callbacks.h"
#include "compiler_driver-inl.h"
#include "dex/descriptors_names.h"
#include "dex/dex_file-inl.h"
#include "dex/dex_file_annotations.h"
#include "dex/dex_instruction-inl.h"
#include "dex/dex_to_dex_compiler.h"
#include "dex/verification_results.h"
#include "dex/verified_method.h"
#include "dex_compilation_unit.h"
#include "driver/compiler_options.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/accounting/heap_bitmap.h"
#include "gc/space/image_space.h"
#include "gc/space/space.h"
#include "handle_scope-inl.h"
#include "intrinsics_enum.h"
#include "jit/profile_compilation_info.h"
#include "jni_internal.h"
#include "linker/linker_patch.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object-refvisitor-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/throwable.h"
#include "nativehelper/ScopedLocalRef.h"
#include "object_lock.h"
#include "runtime.h"
#include "runtime_intrinsics.h"
#include "scoped_thread_state_change-inl.h"
#include "thread.h"
#include "thread_list.h"
#include "thread_pool.h"
#include "trampolines/trampoline_compiler.h"
#include "transaction.h"
#include "utils/atomic_dex_ref_map-inl.h"
#include "utils/dex_cache_arrays_layout-inl.h"
#include "utils/swap_space.h"
#include "vdex_file.h"
#include "verifier/method_verifier-inl.h"
#include "verifier/method_verifier.h"
#include "verifier/verifier_deps.h"
#include "verifier/verifier_enums.h"
namespace art {
static constexpr bool kTimeCompileMethod = !kIsDebugBuild;
// Print additional info during profile guided compilation.
static constexpr bool kDebugProfileGuidedCompilation = false;
// Max encoded fields allowed for initializing app image. Hardcode the number for now
// because 5000 should be large enough.
static constexpr uint32_t kMaxEncodedFields = 5000;
static double Percentage(size_t x, size_t y) {
return 100.0 * (static_cast<double>(x)) / (static_cast<double>(x + y));
}
static void DumpStat(size_t x, size_t y, const char* str) {
if (x == 0 && y == 0) {
return;
}
LOG(INFO) << Percentage(x, y) << "% of " << str << " for " << (x + y) << " cases";
}
class CompilerDriver::AOTCompilationStats {
public:
AOTCompilationStats()
: stats_lock_("AOT compilation statistics lock"),
resolved_types_(0), unresolved_types_(0),
resolved_instance_fields_(0), unresolved_instance_fields_(0),
resolved_local_static_fields_(0), resolved_static_fields_(0), unresolved_static_fields_(0),
type_based_devirtualization_(0),
safe_casts_(0), not_safe_casts_(0) {
for (size_t i = 0; i <= kMaxInvokeType; i++) {
resolved_methods_[i] = 0;
unresolved_methods_[i] = 0;
virtual_made_direct_[i] = 0;
direct_calls_to_boot_[i] = 0;
direct_methods_to_boot_[i] = 0;
}
}
void Dump() {
DumpStat(resolved_types_, unresolved_types_, "types resolved");
DumpStat(resolved_instance_fields_, unresolved_instance_fields_, "instance fields resolved");
DumpStat(resolved_local_static_fields_ + resolved_static_fields_, unresolved_static_fields_,
"static fields resolved");
DumpStat(resolved_local_static_fields_, resolved_static_fields_ + unresolved_static_fields_,
"static fields local to a class");
DumpStat(safe_casts_, not_safe_casts_, "check-casts removed based on type information");
// Note, the code below subtracts the stat value so that when added to the stat value we have
// 100% of samples. TODO: clean this up.
DumpStat(type_based_devirtualization_,
resolved_methods_[kVirtual] + unresolved_methods_[kVirtual] +
resolved_methods_[kInterface] + unresolved_methods_[kInterface] -
type_based_devirtualization_,
"virtual/interface calls made direct based on type information");
for (size_t i = 0; i <= kMaxInvokeType; i++) {
std::ostringstream oss;
oss << static_cast<InvokeType>(i) << " methods were AOT resolved";
DumpStat(resolved_methods_[i], unresolved_methods_[i], oss.str().c_str());
if (virtual_made_direct_[i] > 0) {
std::ostringstream oss2;
oss2 << static_cast<InvokeType>(i) << " methods made direct";
DumpStat(virtual_made_direct_[i],
resolved_methods_[i] + unresolved_methods_[i] - virtual_made_direct_[i],
oss2.str().c_str());
}
if (direct_calls_to_boot_[i] > 0) {
std::ostringstream oss2;
oss2 << static_cast<InvokeType>(i) << " method calls are direct into boot";
DumpStat(direct_calls_to_boot_[i],
resolved_methods_[i] + unresolved_methods_[i] - direct_calls_to_boot_[i],
oss2.str().c_str());
}
if (direct_methods_to_boot_[i] > 0) {
std::ostringstream oss2;
oss2 << static_cast<InvokeType>(i) << " method calls have methods in boot";
DumpStat(direct_methods_to_boot_[i],
resolved_methods_[i] + unresolved_methods_[i] - direct_methods_to_boot_[i],
oss2.str().c_str());
}
}
}
// Allow lossy statistics in non-debug builds.
#ifndef NDEBUG
#define STATS_LOCK() MutexLock mu(Thread::Current(), stats_lock_)
#else
#define STATS_LOCK()
#endif
void TypeDoesntNeedAccessCheck() REQUIRES(!stats_lock_) {
STATS_LOCK();
resolved_types_++;
}
void TypeNeedsAccessCheck() REQUIRES(!stats_lock_) {
STATS_LOCK();
unresolved_types_++;
}
void ResolvedInstanceField() REQUIRES(!stats_lock_) {
STATS_LOCK();
resolved_instance_fields_++;
}
void UnresolvedInstanceField() REQUIRES(!stats_lock_) {
STATS_LOCK();
unresolved_instance_fields_++;
}
void ResolvedLocalStaticField() REQUIRES(!stats_lock_) {
STATS_LOCK();
resolved_local_static_fields_++;
}
void ResolvedStaticField() REQUIRES(!stats_lock_) {
STATS_LOCK();
resolved_static_fields_++;
}
void UnresolvedStaticField() REQUIRES(!stats_lock_) {
STATS_LOCK();
unresolved_static_fields_++;
}
// Indicate that type information from the verifier led to devirtualization.
void PreciseTypeDevirtualization() REQUIRES(!stats_lock_) {
STATS_LOCK();
type_based_devirtualization_++;
}
// A check-cast could be eliminated due to verifier type analysis.
void SafeCast() REQUIRES(!stats_lock_) {
STATS_LOCK();
safe_casts_++;
}
// A check-cast couldn't be eliminated due to verifier type analysis.
void NotASafeCast() REQUIRES(!stats_lock_) {
STATS_LOCK();
not_safe_casts_++;
}
private:
Mutex stats_lock_;
size_t resolved_types_;
size_t unresolved_types_;
size_t resolved_instance_fields_;
size_t unresolved_instance_fields_;
size_t resolved_local_static_fields_;
size_t resolved_static_fields_;
size_t unresolved_static_fields_;
// Type based devirtualization for invoke interface and virtual.
size_t type_based_devirtualization_;
size_t resolved_methods_[kMaxInvokeType + 1];
size_t unresolved_methods_[kMaxInvokeType + 1];
size_t virtual_made_direct_[kMaxInvokeType + 1];
size_t direct_calls_to_boot_[kMaxInvokeType + 1];
size_t direct_methods_to_boot_[kMaxInvokeType + 1];
size_t safe_casts_;
size_t not_safe_casts_;
DISALLOW_COPY_AND_ASSIGN(AOTCompilationStats);
};
CompilerDriver::CompilerDriver(
const CompilerOptions* compiler_options,
VerificationResults* verification_results,
Compiler::Kind compiler_kind,
InstructionSet instruction_set,
const InstructionSetFeatures* instruction_set_features,
std::unordered_set<std::string>* image_classes,
std::unordered_set<std::string>* compiled_classes,
std::unordered_set<std::string>* compiled_methods,
size_t thread_count,
int swap_fd,
const ProfileCompilationInfo* profile_compilation_info)
: compiler_options_(compiler_options),
verification_results_(verification_results),
compiler_(Compiler::Create(this, compiler_kind)),
compiler_kind_(compiler_kind),
instruction_set_(
instruction_set == InstructionSet::kArm ? InstructionSet::kThumb2 : instruction_set),
instruction_set_features_(instruction_set_features),
requires_constructor_barrier_lock_("constructor barrier lock"),
non_relative_linker_patch_count_(0u),
image_classes_(image_classes),
classes_to_compile_(compiled_classes),
methods_to_compile_(compiled_methods),
number_of_soft_verifier_failures_(0),
had_hard_verifier_failure_(false),
parallel_thread_count_(thread_count),
stats_(new AOTCompilationStats),
compiler_context_(nullptr),
support_boot_image_fixup_(true),
compiled_method_storage_(swap_fd),
profile_compilation_info_(profile_compilation_info),
max_arena_alloc_(0),
dex_to_dex_compiler_(this) {
DCHECK(compiler_options_ != nullptr);
compiler_->Init();
if (GetCompilerOptions().IsBootImage()) {
CHECK(image_classes_.get() != nullptr) << "Expected image classes for boot image";
}
compiled_method_storage_.SetDedupeEnabled(compiler_options_->DeduplicateCode());
}
CompilerDriver::~CompilerDriver() {
compiled_methods_.Visit([this](const DexFileReference& ref ATTRIBUTE_UNUSED,
CompiledMethod* method) {
if (method != nullptr) {
CompiledMethod::ReleaseSwapAllocatedCompiledMethod(this, method);
}
});
compiler_->UnInit();
}
#define CREATE_TRAMPOLINE(type, abi, offset) \
if (Is64BitInstructionSet(instruction_set_)) { \
return CreateTrampoline64(instruction_set_, abi, \
type ## _ENTRYPOINT_OFFSET(PointerSize::k64, offset)); \
} else { \
return CreateTrampoline32(instruction_set_, abi, \
type ## _ENTRYPOINT_OFFSET(PointerSize::k32, offset)); \
}
std::unique_ptr<const std::vector<uint8_t>> CompilerDriver::CreateJniDlsymLookup() const {
CREATE_TRAMPOLINE(JNI, kJniAbi, pDlsymLookup)
}
std::unique_ptr<const std::vector<uint8_t>> CompilerDriver::CreateQuickGenericJniTrampoline()
const {
CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickGenericJniTrampoline)
}
std::unique_ptr<const std::vector<uint8_t>> CompilerDriver::CreateQuickImtConflictTrampoline()
const {
CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickImtConflictTrampoline)
}
std::unique_ptr<const std::vector<uint8_t>> CompilerDriver::CreateQuickResolutionTrampoline()
const {
CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickResolutionTrampoline)
}
std::unique_ptr<const std::vector<uint8_t>> CompilerDriver::CreateQuickToInterpreterBridge()
const {
CREATE_TRAMPOLINE(QUICK, kQuickAbi, pQuickToInterpreterBridge)
}
#undef CREATE_TRAMPOLINE
void CompilerDriver::CompileAll(jobject class_loader,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
DCHECK(!Runtime::Current()->IsStarted());
InitializeThreadPools();
VLOG(compiler) << "Before precompile " << GetMemoryUsageString(false);
// Precompile:
// 1) Load image classes
// 2) Resolve all classes
// 3) Attempt to verify all classes
// 4) Attempt to initialize image classes, and trivially initialized classes
PreCompile(class_loader, dex_files, timings);
if (GetCompilerOptions().IsBootImage()) {
// We don't need to setup the intrinsics for non boot image compilation, as
// those compilations will pick up a boot image that have the ArtMethod already
// set with the intrinsics flag.
InitializeIntrinsics();
}
// Compile:
// 1) Compile all classes and methods enabled for compilation. May fall back to dex-to-dex
// compilation.
if (GetCompilerOptions().IsAnyCompilationEnabled()) {
Compile(class_loader, dex_files, timings);
}
if (GetCompilerOptions().GetDumpStats()) {
stats_->Dump();
}
FreeThreadPools();
}
static optimizer::DexToDexCompiler::CompilationLevel GetDexToDexCompilationLevel(
Thread* self, const CompilerDriver& driver, Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file, const DexFile::ClassDef& class_def)
REQUIRES_SHARED(Locks::mutator_lock_) {
// When the dex file is uncompressed in the APK, we do not generate a copy in the .vdex
// file. As a result, dex2oat will map the dex file read-only, and we only need to check
// that to know if we can do quickening.
if (dex_file.GetContainer() != nullptr && dex_file.GetContainer()->IsReadOnly()) {
return optimizer::DexToDexCompiler::CompilationLevel::kDontDexToDexCompile;
}
auto* const runtime = Runtime::Current();
DCHECK(driver.GetCompilerOptions().IsQuickeningCompilationEnabled());
const char* descriptor = dex_file.GetClassDescriptor(class_def);
ClassLinker* class_linker = runtime->GetClassLinker();
mirror::Class* klass = class_linker->FindClass(self, descriptor, class_loader);
if (klass == nullptr) {
CHECK(self->IsExceptionPending());
self->ClearException();
return optimizer::DexToDexCompiler::CompilationLevel::kDontDexToDexCompile;
}
// DexToDex at the kOptimize level may introduce quickened opcodes, which replace symbolic
// references with actual offsets. We cannot re-verify such instructions.
//
// We store the verification information in the class status in the oat file, which the linker
// can validate (checksums) and use to skip load-time verification. It is thus safe to
// optimize when a class has been fully verified before.
optimizer::DexToDexCompiler::CompilationLevel max_level =
optimizer::DexToDexCompiler::CompilationLevel::kOptimize;
if (driver.GetCompilerOptions().GetDebuggable()) {
// We are debuggable so definitions of classes might be changed. We don't want to do any
// optimizations that could break that.
max_level = optimizer::DexToDexCompiler::CompilationLevel::kDontDexToDexCompile;
}
if (klass->IsVerified()) {
// Class is verified so we can enable DEX-to-DEX compilation for performance.
return max_level;
} else {
// Class verification has failed: do not run DEX-to-DEX optimizations.
return optimizer::DexToDexCompiler::CompilationLevel::kDontDexToDexCompile;
}
}
static optimizer::DexToDexCompiler::CompilationLevel GetDexToDexCompilationLevel(
Thread* self,
const CompilerDriver& driver,
jobject jclass_loader,
const DexFile& dex_file,
const DexFile::ClassDef& class_def) {
ScopedObjectAccess soa(self);
StackHandleScope<1> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader)));
return GetDexToDexCompilationLevel(self, driver, class_loader, dex_file, class_def);
}
// Does the runtime for the InstructionSet provide an implementation returned by
// GetQuickGenericJniStub allowing down calls that aren't compiled using a JNI compiler?
static bool InstructionSetHasGenericJniStub(InstructionSet isa) {
switch (isa) {
case InstructionSet::kArm:
case InstructionSet::kArm64:
case InstructionSet::kThumb2:
case InstructionSet::kMips:
case InstructionSet::kMips64:
case InstructionSet::kX86:
case InstructionSet::kX86_64: return true;
default: return false;
}
}
template <typename CompileFn>
static void CompileMethodHarness(
Thread* self,
CompilerDriver* driver,
const DexFile::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
optimizer::DexToDexCompiler::CompilationLevel dex_to_dex_compilation_level,
bool compilation_enabled,
Handle<mirror::DexCache> dex_cache,
CompileFn compile_fn) {
DCHECK(driver != nullptr);
CompiledMethod* compiled_method;
uint64_t start_ns = kTimeCompileMethod ? NanoTime() : 0;
MethodReference method_ref(&dex_file, method_idx);
compiled_method = compile_fn(self,
driver,
code_item,
access_flags,
invoke_type,
class_def_idx,
method_idx,
class_loader,
dex_file,
dex_to_dex_compilation_level,
compilation_enabled,
dex_cache);
if (kTimeCompileMethod) {
uint64_t duration_ns = NanoTime() - start_ns;
if (duration_ns > MsToNs(driver->GetCompiler()->GetMaximumCompilationTimeBeforeWarning())) {
LOG(WARNING) << "Compilation of " << dex_file.PrettyMethod(method_idx)
<< " took " << PrettyDuration(duration_ns);
}
}
if (compiled_method != nullptr) {
// Count non-relative linker patches.
size_t non_relative_linker_patch_count = 0u;
for (const linker::LinkerPatch& patch : compiled_method->GetPatches()) {
if (!patch.IsPcRelative()) {
++non_relative_linker_patch_count;
}
}
bool compile_pic = driver->GetCompilerOptions().GetCompilePic(); // Off by default
// When compiling with PIC, there should be zero non-relative linker patches
CHECK(!compile_pic || non_relative_linker_patch_count == 0u);
driver->AddCompiledMethod(method_ref, compiled_method, non_relative_linker_patch_count);
}
if (self->IsExceptionPending()) {
ScopedObjectAccess soa(self);
LOG(FATAL) << "Unexpected exception compiling: " << dex_file.PrettyMethod(method_idx) << "\n"
<< self->GetException()->Dump();
}
}
static void CompileMethodDex2Dex(
Thread* self,
CompilerDriver* driver,
const DexFile::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
optimizer::DexToDexCompiler::CompilationLevel dex_to_dex_compilation_level,
bool compilation_enabled,
Handle<mirror::DexCache> dex_cache) {
auto dex_2_dex_fn = [](Thread* self ATTRIBUTE_UNUSED,
CompilerDriver* driver,
const DexFile::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
optimizer::DexToDexCompiler::CompilationLevel dex_to_dex_compilation_level,
bool compilation_enabled ATTRIBUTE_UNUSED,
Handle<mirror::DexCache> dex_cache ATTRIBUTE_UNUSED) -> CompiledMethod* {
DCHECK(driver != nullptr);
MethodReference method_ref(&dex_file, method_idx);
optimizer::DexToDexCompiler* const compiler = &driver->GetDexToDexCompiler();
if (compiler->ShouldCompileMethod(method_ref)) {
VerificationResults* results = driver->GetVerificationResults();
DCHECK(results != nullptr);
const VerifiedMethod* verified_method = results->GetVerifiedMethod(method_ref);
// Do not optimize if a VerifiedMethod is missing. SafeCast elision,
// for example, relies on it.
return compiler->CompileMethod(
code_item,
access_flags,
invoke_type,
class_def_idx,
method_idx,
class_loader,
dex_file,
(verified_method != nullptr)
? dex_to_dex_compilation_level
: optimizer::DexToDexCompiler::CompilationLevel::kDontDexToDexCompile);
}
return nullptr;
};
CompileMethodHarness(self,
driver,
code_item,
access_flags,
invoke_type,
class_def_idx,
method_idx,
class_loader,
dex_file,
dex_to_dex_compilation_level,
compilation_enabled,
dex_cache,
dex_2_dex_fn);
}
static void CompileMethodQuick(
Thread* self,
CompilerDriver* driver,
const DexFile::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
optimizer::DexToDexCompiler::CompilationLevel dex_to_dex_compilation_level,
bool compilation_enabled,
Handle<mirror::DexCache> dex_cache) {
auto quick_fn = [](
Thread* self,
CompilerDriver* driver,
const DexFile::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
optimizer::DexToDexCompiler::CompilationLevel dex_to_dex_compilation_level,
bool compilation_enabled,
Handle<mirror::DexCache> dex_cache) {
DCHECK(driver != nullptr);
CompiledMethod* compiled_method = nullptr;
MethodReference method_ref(&dex_file, method_idx);
if ((access_flags & kAccNative) != 0) {
// Are we extracting only and have support for generic JNI down calls?
if (!driver->GetCompilerOptions().IsJniCompilationEnabled() &&
InstructionSetHasGenericJniStub(driver->GetInstructionSet())) {
// Leaving this empty will trigger the generic JNI version
} else {
// Query any JNI optimization annotations such as @FastNative or @CriticalNative.
access_flags |= annotations::GetNativeMethodAnnotationAccessFlags(
dex_file, dex_file.GetClassDef(class_def_idx), method_idx);
compiled_method = driver->GetCompiler()->JniCompile(
access_flags, method_idx, dex_file, dex_cache);
CHECK(compiled_method != nullptr);
}
} else if ((access_flags & kAccAbstract) != 0) {
// Abstract methods don't have code.
} else {
VerificationResults* results = driver->GetVerificationResults();
DCHECK(results != nullptr);
const VerifiedMethod* verified_method = results->GetVerifiedMethod(method_ref);
bool compile = compilation_enabled &&
// Basic checks, e.g., not <clinit>.
results->IsCandidateForCompilation(method_ref, access_flags) &&
// Did not fail to create VerifiedMethod metadata.
verified_method != nullptr &&
// Do not have failures that should punt to the interpreter.
!verified_method->HasRuntimeThrow() &&
(verified_method->GetEncounteredVerificationFailures() &
(verifier::VERIFY_ERROR_FORCE_INTERPRETER | verifier::VERIFY_ERROR_LOCKING)) == 0 &&
// Is eligable for compilation by methods-to-compile filter.
driver->IsMethodToCompile(method_ref) &&
driver->ShouldCompileBasedOnProfile(method_ref);
if (compile) {
// NOTE: if compiler declines to compile this method, it will return null.
compiled_method = driver->GetCompiler()->Compile(code_item,
access_flags,
invoke_type,
class_def_idx,
method_idx,
class_loader,
dex_file,
dex_cache);
}
if (compiled_method == nullptr &&
dex_to_dex_compilation_level !=
optimizer::DexToDexCompiler::CompilationLevel::kDontDexToDexCompile) {
DCHECK(!Runtime::Current()->UseJitCompilation());
// TODO: add a command-line option to disable DEX-to-DEX compilation ?
driver->GetDexToDexCompiler().MarkForCompilation(self, method_ref);
}
}
return compiled_method;
};
CompileMethodHarness(self,
driver,
code_item,
access_flags,
invoke_type,
class_def_idx,
method_idx,
class_loader,
dex_file,
dex_to_dex_compilation_level,
compilation_enabled,
dex_cache,
quick_fn);
}
void CompilerDriver::CompileOne(Thread* self, ArtMethod* method, TimingLogger* timings) {
DCHECK(!Runtime::Current()->IsStarted());
jobject jclass_loader;
const DexFile* dex_file;
uint16_t class_def_idx;
uint32_t method_idx = method->GetDexMethodIndex();
uint32_t access_flags = method->GetAccessFlags();
InvokeType invoke_type = method->GetInvokeType();
StackHandleScope<2> hs(self);
Handle<mirror::DexCache> dex_cache(hs.NewHandle(method->GetDexCache()));
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(method->GetDeclaringClass()->GetClassLoader()));
{
ScopedObjectAccessUnchecked soa(self);
ScopedLocalRef<jobject> local_class_loader(
soa.Env(), soa.AddLocalReference<jobject>(class_loader.Get()));
jclass_loader = soa.Env()->NewGlobalRef(local_class_loader.get());
// Find the dex_file
dex_file = method->GetDexFile();
class_def_idx = method->GetClassDefIndex();
}
const DexFile::CodeItem* code_item = dex_file->GetCodeItem(method->GetCodeItemOffset());
// Go to native so that we don't block GC during compilation.
ScopedThreadSuspension sts(self, kNative);
std::vector<const DexFile*> dex_files;
dex_files.push_back(dex_file);
InitializeThreadPools();
PreCompile(jclass_loader, dex_files, timings);
// Can we run DEX-to-DEX compiler on this class ?
optimizer::DexToDexCompiler::CompilationLevel dex_to_dex_compilation_level =
GetDexToDexCompilationLevel(self,
*this,
jclass_loader,
*dex_file,
dex_file->GetClassDef(class_def_idx));
CompileMethodQuick(self,
this,
code_item,
access_flags,
invoke_type,
class_def_idx,
method_idx,
class_loader,
*dex_file,
dex_to_dex_compilation_level,
true,
dex_cache);
const size_t num_methods = dex_to_dex_compiler_.NumCodeItemsToQuicken(self);
if (num_methods != 0) {
DCHECK_EQ(num_methods, 1u);
CompileMethodDex2Dex(self,
this,
code_item,
access_flags,
invoke_type,
class_def_idx,
method_idx,
class_loader,
*dex_file,
dex_to_dex_compilation_level,
true,
dex_cache);
dex_to_dex_compiler_.ClearState();
}
FreeThreadPools();
self->GetJniEnv()->DeleteGlobalRef(jclass_loader);
}
void CompilerDriver::Resolve(jobject class_loader,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
// Resolution allocates classes and needs to run single-threaded to be deterministic.
bool force_determinism = GetCompilerOptions().IsForceDeterminism();
ThreadPool* resolve_thread_pool = force_determinism
? single_thread_pool_.get()
: parallel_thread_pool_.get();
size_t resolve_thread_count = force_determinism ? 1U : parallel_thread_count_;
for (size_t i = 0; i != dex_files.size(); ++i) {
const DexFile* dex_file = dex_files[i];
CHECK(dex_file != nullptr);
ResolveDexFile(class_loader,
*dex_file,
dex_files,
resolve_thread_pool,
resolve_thread_count,
timings);
}
}
// Resolve const-strings in the code. Done to have deterministic allocation behavior. Right now
// this is single-threaded for simplicity.
// TODO: Collect the relevant string indices in parallel, then allocate them sequentially in a
// stable order.
static void ResolveConstStrings(ClassLinker* class_linker,
Handle<mirror::DexCache> dex_cache,
const DexFile& dex_file,
const DexFile::CodeItem* code_item)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (code_item == nullptr) {
// Abstract or native method.
return;
}
for (const DexInstructionPcPair& inst : CodeItemInstructionAccessor(dex_file, code_item)) {
switch (inst->Opcode()) {
case Instruction::CONST_STRING:
case Instruction::CONST_STRING_JUMBO: {
dex::StringIndex string_index((inst->Opcode() == Instruction::CONST_STRING)
? inst->VRegB_21c()
: inst->VRegB_31c());
ObjPtr<mirror::String> string = class_linker->ResolveString(string_index, dex_cache);
CHECK(string != nullptr) << "Could not allocate a string when forcing determinism";
break;
}
default:
break;
}
}
}
static void ResolveConstStrings(CompilerDriver* driver,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<1> hs(soa.Self());
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
MutableHandle<mirror::DexCache> dex_cache(hs.NewHandle<mirror::DexCache>(nullptr));
for (const DexFile* dex_file : dex_files) {
dex_cache.Assign(class_linker->FindDexCache(soa.Self(), *dex_file));
TimingLogger::ScopedTiming t("Resolve const-string Strings", timings);
size_t class_def_count = dex_file->NumClassDefs();
for (size_t class_def_index = 0; class_def_index < class_def_count; ++class_def_index) {
const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_index);
const uint8_t* class_data = dex_file->GetClassData(class_def);
if (class_data == nullptr) {
// empty class, probably a marker interface
continue;
}
ClassDataItemIterator it(*dex_file, class_data);
it.SkipAllFields();
bool compilation_enabled = driver->IsClassToCompile(
dex_file->StringByTypeIdx(class_def.class_idx_));
if (!compilation_enabled) {
// Compilation is skipped, do not resolve const-string in code of this class.
// FIXME: Make sure that inlining honors this. b/26687569
continue;
}
// Direct and virtual methods.
while (it.HasNextMethod()) {
ResolveConstStrings(class_linker, dex_cache, *dex_file, it.GetMethodCodeItem());
it.Next();
}
DCHECK(!it.HasNext());
}
}
}
// Initialize type check bit strings for check-cast and instance-of in the code. Done to have
// deterministic allocation behavior. Right now this is single-threaded for simplicity.
// TODO: Collect the relevant type indices in parallel, then process them sequentially in a
// stable order.
static void InitializeTypeCheckBitstrings(CompilerDriver* driver,
ClassLinker* class_linker,
Handle<mirror::DexCache> dex_cache,
const DexFile& dex_file,
const DexFile::CodeItem* code_item)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (code_item == nullptr) {
// Abstract or native method.
return;
}
for (const DexInstructionPcPair& inst : CodeItemInstructionAccessor(dex_file, code_item)) {
switch (inst->Opcode()) {
case Instruction::CHECK_CAST:
case Instruction::INSTANCE_OF: {
dex::TypeIndex type_index(
(inst->Opcode() == Instruction::CHECK_CAST) ? inst->VRegB_21c() : inst->VRegC_22c());
const char* descriptor = dex_file.StringByTypeIdx(type_index);
// We currently do not use the bitstring type check for array or final (including
// primitive) classes. We may reconsider this in future if it's deemed to be beneficial.
// And we cannot use it for classes outside the boot image as we do not know the runtime
// value of their bitstring when compiling (it may not even get assigned at runtime).
if (descriptor[0] == 'L' && driver->IsImageClass(descriptor)) {
ObjPtr<mirror::Class> klass =
class_linker->LookupResolvedType(type_index,
dex_cache.Get(),
/* class_loader */ nullptr);
CHECK(klass != nullptr) << descriptor << " should have been previously resolved.";
// Now assign the bitstring if the class is not final. Keep this in sync with sharpening.
if (!klass->IsFinal()) {
MutexLock subtype_check_lock(Thread::Current(), *Locks::subtype_check_lock_);
SubtypeCheck<ObjPtr<mirror::Class>>::EnsureAssigned(klass);
}
}
break;
}
default:
break;
}
}
}
static void InitializeTypeCheckBitstrings(CompilerDriver* driver,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<1> hs(soa.Self());
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
MutableHandle<mirror::DexCache> dex_cache(hs.NewHandle<mirror::DexCache>(nullptr));
for (const DexFile* dex_file : dex_files) {
dex_cache.Assign(class_linker->FindDexCache(soa.Self(), *dex_file));
TimingLogger::ScopedTiming t("Initialize type check bitstrings", timings);
size_t class_def_count = dex_file->NumClassDefs();
for (size_t class_def_index = 0; class_def_index < class_def_count; ++class_def_index) {
const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_index);
const uint8_t* class_data = dex_file->GetClassData(class_def);
if (class_data == nullptr) {
// empty class, probably a marker interface
continue;
}
ClassDataItemIterator it(*dex_file, class_data);
it.SkipAllFields();
bool compilation_enabled = driver->IsClassToCompile(
dex_file->StringByTypeIdx(class_def.class_idx_));
if (!compilation_enabled) {
// Compilation is skipped, do not look for type checks in code of this class.
// FIXME: Make sure that inlining honors this. b/26687569
continue;
}
// Direct and virtual methods.
while (it.HasNextMethod()) {
InitializeTypeCheckBitstrings(
driver, class_linker, dex_cache, *dex_file, it.GetMethodCodeItem());
it.Next();
}
DCHECK(!it.HasNext());
}
}
}
inline void CompilerDriver::CheckThreadPools() {
DCHECK(parallel_thread_pool_ != nullptr);
DCHECK(single_thread_pool_ != nullptr);
}
static void EnsureVerifiedOrVerifyAtRuntime(jobject jclass_loader,
const std::vector<const DexFile*>& dex_files) {
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<2> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader)));
MutableHandle<mirror::Class> cls(hs.NewHandle<mirror::Class>(nullptr));
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
for (const DexFile* dex_file : dex_files) {
for (uint32_t i = 0; i < dex_file->NumClassDefs(); ++i) {
const DexFile::ClassDef& class_def = dex_file->GetClassDef(i);
const char* descriptor = dex_file->GetClassDescriptor(class_def);
cls.Assign(class_linker->FindClass(soa.Self(), descriptor, class_loader));
if (cls == nullptr) {
soa.Self()->ClearException();
} else if (&cls->GetDexFile() == dex_file) {
DCHECK(cls->IsErroneous() || cls->IsVerified() || cls->ShouldVerifyAtRuntime())
<< cls->PrettyClass()
<< " " << cls->GetStatus();
}
}
}
}
void CompilerDriver::PreCompile(jobject class_loader,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
CheckThreadPools();
LoadImageClasses(timings);
VLOG(compiler) << "LoadImageClasses: " << GetMemoryUsageString(false);
if (compiler_options_->IsAnyCompilationEnabled()) {
// Avoid adding the dex files in the case where we aren't going to add compiled methods.
// This reduces RAM usage for this case.
for (const DexFile* dex_file : dex_files) {
// Can be already inserted if the caller is CompileOne. This happens for gtests.
if (!compiled_methods_.HaveDexFile(dex_file)) {
compiled_methods_.AddDexFile(dex_file);
}
}
// Resolve eagerly to prepare for compilation.
Resolve(class_loader, dex_files, timings);
VLOG(compiler) << "Resolve: " << GetMemoryUsageString(false);
}
if (compiler_options_->AssumeClassesAreVerified()) {
VLOG(compiler) << "Verify none mode specified, skipping verification.";
SetVerified(class_loader, dex_files, timings);
}
if (!compiler_options_->IsVerificationEnabled()) {
return;
}
if (GetCompilerOptions().IsForceDeterminism() && GetCompilerOptions().IsBootImage()) {
// Resolve strings from const-string. Do this now to have a deterministic image.
ResolveConstStrings(this, dex_files, timings);
VLOG(compiler) << "Resolve const-strings: " << GetMemoryUsageString(false);
}
Verify(class_loader, dex_files, timings);
VLOG(compiler) << "Verify: " << GetMemoryUsageString(false);
if (had_hard_verifier_failure_ && GetCompilerOptions().AbortOnHardVerifierFailure()) {
// Avoid dumping threads. Even if we shut down the thread pools, there will still be three
// instances of this thread's stack.
LOG(FATAL_WITHOUT_ABORT) << "Had a hard failure verifying all classes, and was asked to abort "
<< "in such situations. Please check the log.";
_exit(1);
} else if (number_of_soft_verifier_failures_ > 0 &&
GetCompilerOptions().AbortOnSoftVerifierFailure()) {
LOG(FATAL_WITHOUT_ABORT) << "Had " << number_of_soft_verifier_failures_ << " soft failure(s) "
<< "verifying all classes, and was asked to abort in such situations. "
<< "Please check the log.";
_exit(1);
}
if (compiler_options_->IsAnyCompilationEnabled()) {
if (kIsDebugBuild) {
EnsureVerifiedOrVerifyAtRuntime(class_loader, dex_files);
}
InitializeClasses(class_loader, dex_files, timings);
VLOG(compiler) << "InitializeClasses: " << GetMemoryUsageString(false);
}
UpdateImageClasses(timings);
VLOG(compiler) << "UpdateImageClasses: " << GetMemoryUsageString(false);
if (kBitstringSubtypeCheckEnabled &&
GetCompilerOptions().IsForceDeterminism() && GetCompilerOptions().IsBootImage()) {
// Initialize type check bit string used by check-cast and instanceof.
// Do this now to have a deterministic image.
// Note: This is done after UpdateImageClasses() at it relies on the image classes to be final.
InitializeTypeCheckBitstrings(this, dex_files, timings);
}
}
bool CompilerDriver::IsImageClass(const char* descriptor) const {
if (image_classes_ != nullptr) {
// If we have a set of image classes, use those.
return image_classes_->find(descriptor) != image_classes_->end();
}
// No set of image classes, assume we include all the classes.
// NOTE: Currently only reachable from InitImageMethodVisitor for the app image case.
return !GetCompilerOptions().IsBootImage();
}
bool CompilerDriver::IsClassToCompile(const char* descriptor) const {
if (classes_to_compile_ == nullptr) {
return true;
}
return classes_to_compile_->find(descriptor) != classes_to_compile_->end();
}
bool CompilerDriver::IsMethodToCompile(const MethodReference& method_ref) const {
if (methods_to_compile_ == nullptr) {
return true;
}
std::string tmp = method_ref.PrettyMethod();
return methods_to_compile_->find(tmp.c_str()) != methods_to_compile_->end();
}
bool CompilerDriver::ShouldCompileBasedOnProfile(const MethodReference& method_ref) const {
// Profile compilation info may be null if no profile is passed.
if (!CompilerFilter::DependsOnProfile(compiler_options_->GetCompilerFilter())) {
// Use the compiler filter instead of the presence of profile_compilation_info_ since
// we may want to have full speed compilation along with profile based layout optimizations.
return true;
}
// If we are using a profile filter but do not have a profile compilation info, compile nothing.
if (profile_compilation_info_ == nullptr) {
return false;
}
// Compile only hot methods, it is the profile saver's job to decide what startup methods to mark
// as hot.
bool result = profile_compilation_info_->GetMethodHotness(method_ref).IsHot();
if (kDebugProfileGuidedCompilation) {
LOG(INFO) << "[ProfileGuidedCompilation] "
<< (result ? "Compiled" : "Skipped") << " method:" << method_ref.PrettyMethod(true);
}
return result;
}
class ResolveCatchBlockExceptionsClassVisitor : public ClassVisitor {
public:
ResolveCatchBlockExceptionsClassVisitor() : classes_() {}
virtual bool operator()(ObjPtr<mirror::Class> c) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
classes_.push_back(c);
return true;
}
void FindExceptionTypesToResolve(
std::set<std::pair<dex::TypeIndex, const DexFile*>>* exceptions_to_resolve)
REQUIRES_SHARED(Locks::mutator_lock_) {
const auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
for (ObjPtr<mirror::Class> klass : classes_) {
for (ArtMethod& method : klass->GetMethods(pointer_size)) {
FindExceptionTypesToResolveForMethod(&method, exceptions_to_resolve);
}
}
}
private:
void FindExceptionTypesToResolveForMethod(
ArtMethod* method,
std::set<std::pair<dex::TypeIndex, const DexFile*>>* exceptions_to_resolve)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (method->GetCodeItem() == nullptr) {
return; // native or abstract method
}
CodeItemDataAccessor accessor(method->DexInstructionData());
if (accessor.TriesSize() == 0) {
return; // nothing to process
}
const uint8_t* encoded_catch_handler_list = accessor.GetCatchHandlerData();
size_t num_encoded_catch_handlers = DecodeUnsignedLeb128(&encoded_catch_handler_list);
for (size_t i = 0; i < num_encoded_catch_handlers; i++) {
int32_t encoded_catch_handler_size = DecodeSignedLeb128(&encoded_catch_handler_list);
bool has_catch_all = false;
if (encoded_catch_handler_size <= 0) {
encoded_catch_handler_size = -encoded_catch_handler_size;
has_catch_all = true;
}
for (int32_t j = 0; j < encoded_catch_handler_size; j++) {
dex::TypeIndex encoded_catch_handler_handlers_type_idx =
dex::TypeIndex(DecodeUnsignedLeb128(&encoded_catch_handler_list));
// Add to set of types to resolve if not already in the dex cache resolved types
if (!method->IsResolvedTypeIdx(encoded_catch_handler_handlers_type_idx)) {
exceptions_to_resolve->emplace(encoded_catch_handler_handlers_type_idx,
method->GetDexFile());
}
// ignore address associated with catch handler
DecodeUnsignedLeb128(&encoded_catch_handler_list);
}
if (has_catch_all) {
// ignore catch all address
DecodeUnsignedLeb128(&encoded_catch_handler_list);
}
}
}
std::vector<ObjPtr<mirror::Class>> classes_;
};
class RecordImageClassesVisitor : public ClassVisitor {
public:
explicit RecordImageClassesVisitor(std::unordered_set<std::string>* image_classes)
: image_classes_(image_classes) {}
bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
std::string temp;
image_classes_->insert(klass->GetDescriptor(&temp));
return true;
}
private:
std::unordered_set<std::string>* const image_classes_;
};
// Make a list of descriptors for classes to include in the image
void CompilerDriver::LoadImageClasses(TimingLogger* timings) {
CHECK(timings != nullptr);
if (!GetCompilerOptions().IsBootImage()) {
return;
}
TimingLogger::ScopedTiming t("LoadImageClasses", timings);
// Make a first class to load all classes explicitly listed in the file
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
CHECK(image_classes_.get() != nullptr);
for (auto it = image_classes_->begin(), end = image_classes_->end(); it != end;) {
const std::string& descriptor(*it);
StackHandleScope<1> hs(self);
Handle<mirror::Class> klass(
hs.NewHandle(class_linker->FindSystemClass(self, descriptor.c_str())));
if (klass == nullptr) {
VLOG(compiler) << "Failed to find class " << descriptor;
image_classes_->erase(it++);
self->ClearException();
} else {
++it;
}
}
// Resolve exception classes referenced by the loaded classes. The catch logic assumes
// exceptions are resolved by the verifier when there is a catch block in an interested method.
// Do this here so that exception classes appear to have been specified image classes.
std::set<std::pair<dex::TypeIndex, const DexFile*>> unresolved_exception_types;
StackHandleScope<1> hs(self);
Handle<mirror::Class> java_lang_Throwable(
hs.NewHandle(class_linker->FindSystemClass(self, "Ljava/lang/Throwable;")));
do {
unresolved_exception_types.clear();
{
// Thread suspension is not allowed while ResolveCatchBlockExceptionsClassVisitor
// is using a std::vector<ObjPtr<mirror::Class>>.
ScopedAssertNoThreadSuspension ants(__FUNCTION__);
ResolveCatchBlockExceptionsClassVisitor visitor;
class_linker->VisitClasses(&visitor);
visitor.FindExceptionTypesToResolve(&unresolved_exception_types);
}
for (const auto& exception_type : unresolved_exception_types) {
dex::TypeIndex exception_type_idx = exception_type.first;
const DexFile* dex_file = exception_type.second;
StackHandleScope<1> hs2(self);
Handle<mirror::DexCache> dex_cache(hs2.NewHandle(class_linker->RegisterDexFile(*dex_file,
nullptr)));
ObjPtr<mirror::Class> klass =
(dex_cache != nullptr)
? class_linker->ResolveType(exception_type_idx,
dex_cache,
ScopedNullHandle<mirror::ClassLoader>())
: nullptr;
if (klass == nullptr) {
const DexFile::TypeId& type_id = dex_file->GetTypeId(exception_type_idx);
const char* descriptor = dex_file->GetTypeDescriptor(type_id);
LOG(FATAL) << "Failed to resolve class " << descriptor;
}
DCHECK(java_lang_Throwable->IsAssignableFrom(klass));
}
// Resolving exceptions may load classes that reference more exceptions, iterate until no
// more are found
} while (!unresolved_exception_types.empty());
// We walk the roots looking for classes so that we'll pick up the
// above classes plus any classes them depend on such super
// classes, interfaces, and the required ClassLinker roots.
RecordImageClassesVisitor visitor(image_classes_.get());
class_linker->VisitClasses(&visitor);
CHECK_NE(image_classes_->size(), 0U);
}
static void MaybeAddToImageClasses(Thread* self,
ObjPtr<mirror::Class> klass,
std::unordered_set<std::string>* image_classes)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK_EQ(self, Thread::Current());
StackHandleScope<1> hs(self);
std::string temp;
const PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
while (!klass->IsObjectClass()) {
const char* descriptor = klass->GetDescriptor(&temp);
std::pair<std::unordered_set<std::string>::iterator, bool> result =
image_classes->insert(descriptor);
if (!result.second) { // Previously inserted.
break;
}
VLOG(compiler) << "Adding " << descriptor << " to image classes";
for (size_t i = 0, num_interfaces = klass->NumDirectInterfaces(); i != num_interfaces; ++i) {
ObjPtr<mirror::Class> interface = mirror::Class::GetDirectInterface(self, klass, i);
DCHECK(interface != nullptr);
MaybeAddToImageClasses(self, interface, image_classes);
}
for (auto& m : klass->GetVirtualMethods(pointer_size)) {
MaybeAddToImageClasses(self, m.GetDeclaringClass(), image_classes);
}
if (klass->IsArrayClass()) {
MaybeAddToImageClasses(self, klass->GetComponentType(), image_classes);
}
klass.Assign(klass->GetSuperClass());
}
}
// Keeps all the data for the update together. Also doubles as the reference visitor.
// Note: we can use object pointers because we suspend all threads.
class ClinitImageUpdate {
public:
static ClinitImageUpdate* Create(VariableSizedHandleScope& hs,
std::unordered_set<std::string>* image_class_descriptors,
Thread* self,
ClassLinker* linker) {
std::unique_ptr<ClinitImageUpdate> res(new ClinitImageUpdate(hs,
image_class_descriptors,
self,
linker));
return res.release();
}
~ClinitImageUpdate() {
// Allow others to suspend again.
self_->EndAssertNoThreadSuspension(old_cause_);
}
// Visitor for VisitReferences.
void operator()(ObjPtr<mirror::Object> object,
MemberOffset field_offset,
bool /* is_static */) const
REQUIRES_SHARED(Locks::mutator_lock_) {
mirror::Object* ref = object->GetFieldObject<mirror::Object>(field_offset);
if (ref != nullptr) {
VisitClinitClassesObject(ref);
}
}
// java.lang.ref.Reference visitor for VisitReferences.
void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const {}
// Ignore class native roots.
void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
const {}
void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
void Walk() REQUIRES_SHARED(Locks::mutator_lock_) {
// Use the initial classes as roots for a search.
for (Handle<mirror::Class> klass_root : image_classes_) {
VisitClinitClassesObject(klass_root.Get());
}
Thread* self = Thread::Current();
ScopedAssertNoThreadSuspension ants(__FUNCTION__);
for (Handle<mirror::Class> h_klass : to_insert_) {
MaybeAddToImageClasses(self, h_klass.Get(), image_class_descriptors_);
}
}
private:
class FindImageClassesVisitor : public ClassVisitor {
public:
explicit FindImageClassesVisitor(VariableSizedHandleScope& hs,
ClinitImageUpdate* data)
: data_(data),
hs_(hs) {}
bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
std::string temp;
const char* name = klass->GetDescriptor(&temp);
if (data_->image_class_descriptors_->find(name) != data_->image_class_descriptors_->end()) {
data_->image_classes_.push_back(hs_.NewHandle(klass));
} else {
// Check whether it is initialized and has a clinit. They must be kept, too.
if (klass->IsInitialized() && klass->FindClassInitializer(
Runtime::Current()->GetClassLinker()->GetImagePointerSize()) != nullptr) {
data_->image_classes_.push_back(hs_.NewHandle(klass));
}
}
return true;
}
private:
ClinitImageUpdate* const data_;
VariableSizedHandleScope& hs_;
};
ClinitImageUpdate(VariableSizedHandleScope& hs,
std::unordered_set<std::string>* image_class_descriptors,
Thread* self,
ClassLinker* linker) REQUIRES_SHARED(Locks::mutator_lock_)
: hs_(hs),
image_class_descriptors_(image_class_descriptors),
self_(self) {
CHECK(linker != nullptr);
CHECK(image_class_descriptors != nullptr);
// Make sure nobody interferes with us.
old_cause_ = self->StartAssertNoThreadSuspension("Boot image closure");
// Find all the already-marked classes.
WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
FindImageClassesVisitor visitor(hs_, this);
linker->VisitClasses(&visitor);
}
void VisitClinitClassesObject(mirror::Object* object) const
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(object != nullptr);
if (marked_objects_.find(object) != marked_objects_.end()) {
// Already processed.
return;
}
// Mark it.
marked_objects_.insert(object);
if (object->IsClass()) {
// Add to the TODO list since MaybeAddToImageClasses may cause thread suspension. Thread
// suspensionb is not safe to do in VisitObjects or VisitReferences.
to_insert_.push_back(hs_.NewHandle(object->AsClass()));
} else {
// Else visit the object's class.
VisitClinitClassesObject(object->GetClass());
}
// If it is not a DexCache, visit all references.
if (!object->IsDexCache()) {
object->VisitReferences(*this, *this);
}
}
VariableSizedHandleScope& hs_;
mutable std::vector<Handle<mirror::Class>> to_insert_;
mutable std::unordered_set<mirror::Object*> marked_objects_;
std::unordered_set<std::string>* const image_class_descriptors_;
std::vector<Handle<mirror::Class>> image_classes_;
Thread* const self_;
const char* old_cause_;
DISALLOW_COPY_AND_ASSIGN(ClinitImageUpdate);
};
void CompilerDriver::UpdateImageClasses(TimingLogger* timings) {
if (GetCompilerOptions().IsBootImage()) {
TimingLogger::ScopedTiming t("UpdateImageClasses", timings);
Runtime* runtime = Runtime::Current();
// Suspend all threads.
ScopedSuspendAll ssa(__FUNCTION__);
VariableSizedHandleScope hs(Thread::Current());
std::string error_msg;
std::unique_ptr<ClinitImageUpdate> update(ClinitImageUpdate::Create(hs,
image_classes_.get(),
Thread::Current(),
runtime->GetClassLinker()));
// Do the marking.
update->Walk();
}
}
bool CompilerDriver::CanAssumeClassIsLoaded(mirror::Class* klass) {
Runtime* runtime = Runtime::Current();
if (!runtime->IsAotCompiler()) {
DCHECK(runtime->UseJitCompilation());
// Having the klass reference here implies that the klass is already loaded.
return true;
}
if (!GetCompilerOptions().IsBootImage()) {
// Assume loaded only if klass is in the boot image. App classes cannot be assumed
// loaded because we don't even know what class loader will be used to load them.
bool class_in_image = runtime->GetHeap()->FindSpaceFromObject(klass, false)->IsImageSpace();
return class_in_image;
}
std::string temp;
const char* descriptor = klass->GetDescriptor(&temp);
return IsImageClass(descriptor);
}
bool CompilerDriver::CanAccessTypeWithoutChecks(ObjPtr<mirror::Class> referrer_class,
ObjPtr<mirror::Class> resolved_class) {
if (resolved_class == nullptr) {
stats_->TypeNeedsAccessCheck();
return false; // Unknown class needs access checks.
}
bool is_accessible = resolved_class->IsPublic(); // Public classes are always accessible.
if (!is_accessible) {
if (referrer_class == nullptr) {
stats_->TypeNeedsAccessCheck();
return false; // Incomplete referrer knowledge needs access check.
}
// Perform access check, will return true if access is ok or false if we're going to have to
// check this at runtime (for example for class loaders).
is_accessible = referrer_class->CanAccess(resolved_class);
}
if (is_accessible) {
stats_->TypeDoesntNeedAccessCheck();
} else {
stats_->TypeNeedsAccessCheck();
}
return is_accessible;
}
bool CompilerDriver::CanAccessInstantiableTypeWithoutChecks(ObjPtr<mirror::Class> referrer_class,
ObjPtr<mirror::Class> resolved_class,
bool* finalizable) {
if (resolved_class == nullptr) {
stats_->TypeNeedsAccessCheck();
// Be conservative.
*finalizable = true;
return false; // Unknown class needs access checks.
}
*finalizable = resolved_class->IsFinalizable();
bool is_accessible = resolved_class->IsPublic(); // Public classes are always accessible.
if (!is_accessible) {
if (referrer_class == nullptr) {
stats_->TypeNeedsAccessCheck();
return false; // Incomplete referrer knowledge needs access check.
}
// Perform access and instantiable checks, will return true if access is ok or false if we're
// going to have to check this at runtime (for example for class loaders).
is_accessible = referrer_class->CanAccess(resolved_class);
}
bool result = is_accessible && resolved_class->IsInstantiable();
if (result) {
stats_->TypeDoesntNeedAccessCheck();
} else {
stats_->TypeNeedsAccessCheck();
}
return result;
}
void CompilerDriver::ProcessedInstanceField(bool resolved) {
if (!resolved) {
stats_->UnresolvedInstanceField();
} else {
stats_->ResolvedInstanceField();
}
}
void CompilerDriver::ProcessedStaticField(bool resolved, bool local) {
if (!resolved) {
stats_->UnresolvedStaticField();
} else if (local) {
stats_->ResolvedLocalStaticField();
} else {
stats_->ResolvedStaticField();
}
}
ArtField* CompilerDriver::ComputeInstanceFieldInfo(uint32_t field_idx,
const DexCompilationUnit* mUnit,
bool is_put,
const ScopedObjectAccess& soa) {
// Try to resolve the field and compiling method's class.
ArtField* resolved_field;
ObjPtr<mirror::Class> referrer_class;
Handle<mirror::DexCache> dex_cache(mUnit->GetDexCache());
{
Handle<mirror::ClassLoader> class_loader = mUnit->GetClassLoader();
resolved_field = ResolveField(soa, dex_cache, class_loader, field_idx, /* is_static */ false);
referrer_class = resolved_field != nullptr
? ResolveCompilingMethodsClass(soa, dex_cache, class_loader, mUnit) : nullptr;
}
bool can_link = false;
if (resolved_field != nullptr && referrer_class != nullptr) {
std::pair<bool, bool> fast_path = IsFastInstanceField(
dex_cache.Get(), referrer_class, resolved_field, field_idx);
can_link = is_put ? fast_path.second : fast_path.first;
}
ProcessedInstanceField(can_link);
return can_link ? resolved_field : nullptr;
}
bool CompilerDriver::ComputeInstanceFieldInfo(uint32_t field_idx, const DexCompilationUnit* mUnit,
bool is_put, MemberOffset* field_offset,
bool* is_volatile) {
ScopedObjectAccess soa(Thread::Current());
ArtField* resolved_field = ComputeInstanceFieldInfo(field_idx, mUnit, is_put, soa);
if (resolved_field == nullptr) {
// Conservative defaults.
*is_volatile = true;
*field_offset = MemberOffset(static_cast<size_t>(-1));
return false;
} else {
*is_volatile = resolved_field->IsVolatile();
*field_offset = resolved_field->GetOffset();
return true;
}
}
const VerifiedMethod* CompilerDriver::GetVerifiedMethod(const DexFile* dex_file,
uint32_t method_idx) const {
MethodReference ref(dex_file, method_idx);
return verification_results_->GetVerifiedMethod(ref);
}
bool CompilerDriver::IsSafeCast(const DexCompilationUnit* mUnit, uint32_t dex_pc) {
if (!compiler_options_->IsVerificationEnabled()) {
// If we didn't verify, every cast has to be treated as non-safe.
return false;
}
DCHECK(mUnit->GetVerifiedMethod() != nullptr);
bool result = mUnit->GetVerifiedMethod()->IsSafeCast(dex_pc);
if (result) {
stats_->SafeCast();
} else {
stats_->NotASafeCast();
}
return result;
}
class CompilationVisitor {
public:
virtual ~CompilationVisitor() {}
virtual void Visit(size_t index) = 0;
};
class ParallelCompilationManager {
public:
ParallelCompilationManager(ClassLinker* class_linker,
jobject class_loader,
CompilerDriver* compiler,
const DexFile* dex_file,
const std::vector<const DexFile*>& dex_files,
ThreadPool* thread_pool)
: index_(0),
class_linker_(class_linker),
class_loader_(class_loader),
compiler_(compiler),
dex_file_(dex_file),
dex_files_(dex_files),
thread_pool_(thread_pool) {}
ClassLinker* GetClassLinker() const {
CHECK(class_linker_ != nullptr);
return class_linker_;
}
jobject GetClassLoader() const {
return class_loader_;
}
CompilerDriver* GetCompiler() const {
CHECK(compiler_ != nullptr);
return compiler_;
}
const DexFile* GetDexFile() const {
CHECK(dex_file_ != nullptr);
return dex_file_;
}
const std::vector<const DexFile*>& GetDexFiles() const {
return dex_files_;
}
void ForAll(size_t begin, size_t end, CompilationVisitor* visitor, size_t work_units)
REQUIRES(!*Locks::mutator_lock_) {
ForAllLambda(begin, end, [visitor](size_t index) { visitor->Visit(index); }, work_units);
}
template <typename Fn>
void ForAllLambda(size_t begin, size_t end, Fn fn, size_t work_units)
REQUIRES(!*Locks::mutator_lock_) {
Thread* self = Thread::Current();
self->AssertNoPendingException();
CHECK_GT(work_units, 0U);
index_.store(begin, std::memory_order_relaxed);
for (size_t i = 0; i < work_units; ++i) {
thread_pool_->AddTask(self, new ForAllClosureLambda<Fn>(this, end, fn));
}
thread_pool_->StartWorkers(self);
// Ensure we're suspended while we're blocked waiting for the other threads to finish (worker
// thread destructor's called below perform join).
CHECK_NE(self->GetState(), kRunnable);
// Wait for all the worker threads to finish.
thread_pool_->Wait(self, true, false);
// And stop the workers accepting jobs.
thread_pool_->StopWorkers(self);
}
size_t NextIndex() {
return index_.fetch_add(1, std::memory_order_seq_cst);
}
private:
template <typename Fn>
class ForAllClosureLambda : public Task {
public:
ForAllClosureLambda(ParallelCompilationManager* manager, size_t end, Fn fn)
: manager_(manager),
end_(end),
fn_(fn) {}
void Run(Thread* self) OVERRIDE {
while (true) {
const size_t index = manager_->NextIndex();
if (UNLIKELY(index >= end_)) {
break;
}
fn_(index);
self->AssertNoPendingException();
}
}
void Finalize() OVERRIDE {
delete this;
}
private:
ParallelCompilationManager* const manager_;
const size_t end_;
Fn fn_;
};
AtomicInteger index_;
ClassLinker* const class_linker_;
const jobject class_loader_;
CompilerDriver* const compiler_;
const DexFile* const dex_file_;
const std::vector<const DexFile*>& dex_files_;
ThreadPool* const thread_pool_;
DISALLOW_COPY_AND_ASSIGN(ParallelCompilationManager);
};
// A fast version of SkipClass above if the class pointer is available
// that avoids the expensive FindInClassPath search.
static bool SkipClass(jobject class_loader, const DexFile& dex_file, ObjPtr<mirror::Class> klass)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(klass != nullptr);
const DexFile& original_dex_file = *klass->GetDexCache()->GetDexFile();
if (&dex_file != &original_dex_file) {
if (class_loader == nullptr) {
LOG(WARNING) << "Skipping class " << klass->PrettyDescriptor() << " from "
<< dex_file.GetLocation() << " previously found in "
<< original_dex_file.GetLocation();
}
return true;
}
return false;
}
static void CheckAndClearResolveException(Thread* self)
REQUIRES_SHARED(Locks::mutator_lock_) {
CHECK(self->IsExceptionPending());
mirror::Throwable* exception = self->GetException();
std::string temp;
const char* descriptor = exception->GetClass()->GetDescriptor(&temp);
const char* expected_exceptions[] = {
"Ljava/lang/IllegalAccessError;",
"Ljava/lang/IncompatibleClassChangeError;",
"Ljava/lang/InstantiationError;",
"Ljava/lang/LinkageError;",
"Ljava/lang/NoClassDefFoundError;",
"Ljava/lang/NoSuchFieldError;",
"Ljava/lang/NoSuchMethodError;"
};
bool found = false;
for (size_t i = 0; (found == false) && (i < arraysize(expected_exceptions)); ++i) {
if (strcmp(descriptor, expected_exceptions[i]) == 0) {
found = true;
}
}
if (!found) {
LOG(FATAL) << "Unexpected exception " << exception->Dump();
}
self->ClearException();
}
bool CompilerDriver::RequiresConstructorBarrier(const DexFile& dex_file,
uint16_t class_def_idx) const {
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_idx);
const uint8_t* class_data = dex_file.GetClassData(class_def);
if (class_data == nullptr) {
// Empty class such as a marker interface.
return false;
}
ClassDataItemIterator it(dex_file, class_data);
it.SkipStaticFields();
// We require a constructor barrier if there are final instance fields.
while (it.HasNextInstanceField()) {
if (it.MemberIsFinal()) {
return true;
}
it.Next();
}
return false;
}
class ResolveClassFieldsAndMethodsVisitor : public CompilationVisitor {
public:
explicit ResolveClassFieldsAndMethodsVisitor(const ParallelCompilationManager* manager)
: manager_(manager) {}
void Visit(size_t class_def_index) OVERRIDE REQUIRES(!Locks::mutator_lock_) {
ScopedTrace trace(__FUNCTION__);
Thread* const self = Thread::Current();
jobject jclass_loader = manager_->GetClassLoader();
const DexFile& dex_file = *manager_->GetDexFile();
ClassLinker* class_linker = manager_->GetClassLinker();
// If an instance field is final then we need to have a barrier on the return, static final
// fields are assigned within the lock held for class initialization. Conservatively assume
// constructor barriers are always required.
bool requires_constructor_barrier = true;
// Method and Field are the worst. We can't resolve without either
// context from the code use (to disambiguate virtual vs direct
// method and instance vs static field) or from class
// definitions. While the compiler will resolve what it can as it
// needs it, here we try to resolve fields and methods used in class
// definitions, since many of them many never be referenced by
// generated code.
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
ScopedObjectAccess soa(self);
StackHandleScope<2> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader)));
Handle<mirror::DexCache> dex_cache(hs.NewHandle(class_linker->FindDexCache(
soa.Self(), dex_file)));
// Resolve the class.
ObjPtr<mirror::Class> klass =
class_linker->ResolveType(class_def.class_idx_, dex_cache, class_loader);
bool resolve_fields_and_methods;
if (klass == nullptr) {
// Class couldn't be resolved, for example, super-class is in a different dex file. Don't
// attempt to resolve methods and fields when there is no declaring class.
CheckAndClearResolveException(soa.Self());
resolve_fields_and_methods = false;
} else {
// We successfully resolved a class, should we skip it?
if (SkipClass(jclass_loader, dex_file, klass)) {
return;
}
// We want to resolve the methods and fields eagerly.
resolve_fields_and_methods = true;
}
// Note the class_data pointer advances through the headers,
// static fields, instance fields, direct methods, and virtual
// methods.
const uint8_t* class_data = dex_file.GetClassData(class_def);
if (class_data == nullptr) {
// Empty class such as a marker interface.
requires_constructor_barrier = false;
} else {
ClassDataItemIterator it(dex_file, class_data);
while (it.HasNextStaticField()) {
if (resolve_fields_and_methods) {
ArtField* field = class_linker->ResolveField(
it.GetMemberIndex(), dex_cache, class_loader, /* is_static */ true);
if (field == nullptr) {
CheckAndClearResolveException(soa.Self());
}
}
it.Next();
}
// We require a constructor barrier if there are final instance fields.
requires_constructor_barrier = false;
while (it.HasNextInstanceField()) {
if (it.MemberIsFinal()) {
requires_constructor_barrier = true;
}
if (resolve_fields_and_methods) {
ArtField* field = class_linker->ResolveField(
it.GetMemberIndex(), dex_cache, class_loader, /* is_static */ false);
if (field == nullptr) {
CheckAndClearResolveException(soa.Self());
}
}
it.Next();
}
if (resolve_fields_and_methods) {
while (it.HasNextMethod()) {
ArtMethod* method = class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
it.GetMemberIndex(),
dex_cache,
class_loader,
/* referrer */ nullptr,
it.GetMethodInvokeType(class_def));
if (method == nullptr) {
CheckAndClearResolveException(soa.Self());
}
it.Next();
}
DCHECK(!it.HasNext());
}
}
manager_->GetCompiler()->SetRequiresConstructorBarrier(self,
&dex_file,
class_def_index,
requires_constructor_barrier);
}
private:
const ParallelCompilationManager* const manager_;
};
class ResolveTypeVisitor : public CompilationVisitor {
public:
explicit ResolveTypeVisitor(const ParallelCompilationManager* manager) : manager_(manager) {
}
void Visit(size_t type_idx) OVERRIDE REQUIRES(!Locks::mutator_lock_) {
// Class derived values are more complicated, they require the linker and loader.
ScopedObjectAccess soa(Thread::Current());
ClassLinker* class_linker = manager_->GetClassLinker();
const DexFile& dex_file = *manager_->GetDexFile();
StackHandleScope<2> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(manager_->GetClassLoader())));
Handle<mirror::DexCache> dex_cache(hs.NewHandle(class_linker->RegisterDexFile(
dex_file,
class_loader.Get())));
ObjPtr<mirror::Class> klass = (dex_cache != nullptr)
? class_linker->ResolveType(dex::TypeIndex(type_idx), dex_cache, class_loader)
: nullptr;
if (klass == nullptr) {
soa.Self()->AssertPendingException();
mirror::Throwable* exception = soa.Self()->GetException();
VLOG(compiler) << "Exception during type resolution: " << exception->Dump();
if (exception->GetClass()->DescriptorEquals("Ljava/lang/OutOfMemoryError;")) {
// There's little point continuing compilation if the heap is exhausted.
LOG(FATAL) << "Out of memory during type resolution for compilation";
}
soa.Self()->ClearException();
}
}
private:
const ParallelCompilationManager* const manager_;
};
void CompilerDriver::ResolveDexFile(jobject class_loader,
const DexFile& dex_file,
const std::vector<const DexFile*>& dex_files,
ThreadPool* thread_pool,
size_t thread_count,
TimingLogger* timings) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
// TODO: we could resolve strings here, although the string table is largely filled with class
// and method names.
ParallelCompilationManager context(class_linker, class_loader, this, &dex_file, dex_files,
thread_pool);
if (GetCompilerOptions().IsBootImage()) {
// For images we resolve all types, such as array, whereas for applications just those with
// classdefs are resolved by ResolveClassFieldsAndMethods.
TimingLogger::ScopedTiming t("Resolve Types", timings);
ResolveTypeVisitor visitor(&context);
context.ForAll(0, dex_file.NumTypeIds(), &visitor, thread_count);
}
TimingLogger::ScopedTiming t("Resolve MethodsAndFields", timings);
ResolveClassFieldsAndMethodsVisitor visitor(&context);
context.ForAll(0, dex_file.NumClassDefs(), &visitor, thread_count);
}
void CompilerDriver::SetVerified(jobject class_loader,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
// This can be run in parallel.
for (const DexFile* dex_file : dex_files) {
CHECK(dex_file != nullptr);
SetVerifiedDexFile(class_loader,
*dex_file,
dex_files,
parallel_thread_pool_.get(),
parallel_thread_count_,
timings);
}
}
static void PopulateVerifiedMethods(const DexFile& dex_file,
uint32_t class_def_index,
VerificationResults* verification_results) {
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
const uint8_t* class_data = dex_file.GetClassData(class_def);
if (class_data == nullptr) {
return;
}
ClassDataItemIterator it(dex_file, class_data);
it.SkipAllFields();
while (it.HasNextMethod()) {
verification_results->CreateVerifiedMethodFor(MethodReference(&dex_file, it.GetMemberIndex()));
it.Next();
}
DCHECK(!it.HasNext());
}
static void LoadAndUpdateStatus(const DexFile& dex_file,
const DexFile::ClassDef& class_def,
ClassStatus status,
Handle<mirror::ClassLoader> class_loader,
Thread* self)
REQUIRES_SHARED(Locks::mutator_lock_) {
StackHandleScope<1> hs(self);
const char* descriptor = dex_file.GetClassDescriptor(class_def);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Handle<mirror::Class> cls(hs.NewHandle<mirror::Class>(
class_linker->FindClass(self, descriptor, class_loader)));
if (cls != nullptr) {
// Check that the class is resolved with the current dex file. We might get
// a boot image class, or a class in a different dex file for multidex, and
// we should not update the status in that case.
if (&cls->GetDexFile() == &dex_file) {
ObjectLock<mirror::Class> lock(self, cls);
mirror::Class::SetStatus(cls, status, self);
}
} else {
DCHECK(self->IsExceptionPending());
self->ClearException();
}
}
bool CompilerDriver::FastVerify(jobject jclass_loader,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
verifier::VerifierDeps* verifier_deps =
Runtime::Current()->GetCompilerCallbacks()->GetVerifierDeps();
// If there exist VerifierDeps that aren't the ones we just created to output, use them to verify.
if (verifier_deps == nullptr || verifier_deps->OutputOnly()) {
return false;
}
TimingLogger::ScopedTiming t("Fast Verify", timings);
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<2> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader)));
if (!verifier_deps->ValidateDependencies(class_loader, soa.Self())) {
return false;
}
bool compiler_only_verifies = !GetCompilerOptions().IsAnyCompilationEnabled();
// We successfully validated the dependencies, now update class status
// of verified classes. Note that the dependencies also record which classes
// could not be fully verified; we could try again, but that would hurt verification
// time. So instead we assume these classes still need to be verified at
// runtime.
for (const DexFile* dex_file : dex_files) {
// Fetch the list of unverified classes.
const std::set<dex::TypeIndex>& unverified_classes =
verifier_deps->GetUnverifiedClasses(*dex_file);
for (uint32_t i = 0; i < dex_file->NumClassDefs(); ++i) {
const DexFile::ClassDef& class_def = dex_file->GetClassDef(i);
if (unverified_classes.find(class_def.class_idx_) == unverified_classes.end()) {
if (compiler_only_verifies) {
// Just update the compiled_classes_ map. The compiler doesn't need to resolve
// the type.
ClassReference ref(dex_file, i);
ClassStatus existing = ClassStatus::kNotReady;
DCHECK(compiled_classes_.Get(ref, &existing)) << ref.dex_file->GetLocation();
ClassStateTable::InsertResult result =
compiled_classes_.Insert(ref, existing, ClassStatus::kVerified);
CHECK_EQ(result, ClassStateTable::kInsertResultSuccess);
} else {
// Update the class status, so later compilation stages know they don't need to verify
// the class.
LoadAndUpdateStatus(
*dex_file, class_def, ClassStatus::kVerified, class_loader, soa.Self());
// Create `VerifiedMethod`s for each methods, the compiler expects one for
// quickening or compiling.
// Note that this means:
// - We're only going to compile methods that did verify.
// - Quickening will not do checkcast ellision.
// TODO(ngeoffray): Reconsider this once we refactor compiler filters.
PopulateVerifiedMethods(*dex_file, i, verification_results_);
}
} else if (!compiler_only_verifies) {
// Make sure later compilation stages know they should not try to verify
// this class again.
LoadAndUpdateStatus(*dex_file,
class_def,
ClassStatus::kRetryVerificationAtRuntime,
class_loader,
soa.Self());
}
}
}
return true;
}
void CompilerDriver::Verify(jobject jclass_loader,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
if (FastVerify(jclass_loader, dex_files, timings)) {
return;
}
// If there is no existing `verifier_deps` (because of non-existing vdex), or
// the existing `verifier_deps` is not valid anymore, create a new one for
// non boot image compilation. The verifier will need it to record the new dependencies.
// Then dex2oat can update the vdex file with these new dependencies.
if (!GetCompilerOptions().IsBootImage()) {
// Dex2oat creates the verifier deps.
// Create the main VerifierDeps, and set it to this thread.
verifier::VerifierDeps* verifier_deps =
Runtime::Current()->GetCompilerCallbacks()->GetVerifierDeps();
CHECK(verifier_deps != nullptr);
Thread::Current()->SetVerifierDeps(verifier_deps);
// Create per-thread VerifierDeps to avoid contention on the main one.
// We will merge them after verification.
for (ThreadPoolWorker* worker : parallel_thread_pool_->GetWorkers()) {
worker->GetThread()->SetVerifierDeps(new verifier::VerifierDeps(dex_files_for_oat_file_));
}
}
// Verification updates VerifierDeps and needs to run single-threaded to be deterministic.
bool force_determinism = GetCompilerOptions().IsForceDeterminism();
ThreadPool* verify_thread_pool =
force_determinism ? single_thread_pool_.get() : parallel_thread_pool_.get();
size_t verify_thread_count = force_determinism ? 1U : parallel_thread_count_;
for (const DexFile* dex_file : dex_files) {
CHECK(dex_file != nullptr);
VerifyDexFile(jclass_loader,
*dex_file,
dex_files,
verify_thread_pool,
verify_thread_count,
timings);
}
if (!GetCompilerOptions().IsBootImage()) {
// Merge all VerifierDeps into the main one.
verifier::VerifierDeps* verifier_deps = Thread::Current()->GetVerifierDeps();
for (ThreadPoolWorker* worker : parallel_thread_pool_->GetWorkers()) {
verifier::VerifierDeps* thread_deps = worker->GetThread()->GetVerifierDeps();
worker->GetThread()->SetVerifierDeps(nullptr);
verifier_deps->MergeWith(*thread_deps, dex_files_for_oat_file_);
delete thread_deps;
}
Thread::Current()->SetVerifierDeps(nullptr);
}
}
class VerifyClassVisitor : public CompilationVisitor {
public:
VerifyClassVisitor(const ParallelCompilationManager* manager, verifier::HardFailLogMode log_level)
: manager_(manager), log_level_(log_level) {}
virtual void Visit(size_t class_def_index) REQUIRES(!Locks::mutator_lock_) OVERRIDE {
ScopedTrace trace(__FUNCTION__);
ScopedObjectAccess soa(Thread::Current());
const DexFile& dex_file = *manager_->GetDexFile();
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
const char* descriptor = dex_file.GetClassDescriptor(class_def);
ClassLinker* class_linker = manager_->GetClassLinker();
jobject jclass_loader = manager_->GetClassLoader();
StackHandleScope<3> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader)));
Handle<mirror::Class> klass(
hs.NewHandle(class_linker->FindClass(soa.Self(), descriptor, class_loader)));
verifier::FailureKind failure_kind;
if (klass == nullptr) {
CHECK(soa.Self()->IsExceptionPending());
soa.Self()->ClearException();
/*
* At compile time, we can still structurally verify the class even if FindClass fails.
* This is to ensure the class is structurally sound for compilation. An unsound class
* will be rejected by the verifier and later skipped during compilation in the compiler.
*/
Handle<mirror::DexCache> dex_cache(hs.NewHandle(class_linker->FindDexCache(
soa.Self(), dex_file)));
std::string error_msg;
failure_kind =
verifier::MethodVerifier::VerifyClass(soa.Self(),
&dex_file,
dex_cache,
class_loader,
class_def,
Runtime::Current()->GetCompilerCallbacks(),
true /* allow soft failures */,
log_level_,
&error_msg);
if (failure_kind == verifier::FailureKind::kHardFailure) {
LOG(ERROR) << "Verification failed on class " << PrettyDescriptor(descriptor)
<< " because: " << error_msg;
manager_->GetCompiler()->SetHadHardVerifierFailure();
} else if (failure_kind == verifier::FailureKind::kSoftFailure) {
manager_->GetCompiler()->AddSoftVerifierFailure();
} else {
// Force a soft failure for the VerifierDeps. This is a sanity measure, as
// the vdex file already records that the class hasn't been resolved. It avoids
// trying to do future verification optimizations when processing the vdex file.
DCHECK(failure_kind == verifier::FailureKind::kNoFailure) << failure_kind;
failure_kind = verifier::FailureKind::kSoftFailure;
}
} else if (!SkipClass(jclass_loader, dex_file, klass.Get())) {
CHECK(klass->IsResolved()) << klass->PrettyClass();
failure_kind = class_linker->VerifyClass(soa.Self(), klass, log_level_);
if (klass->IsErroneous()) {
// ClassLinker::VerifyClass throws, which isn't useful in the compiler.
CHECK(soa.Self()->IsExceptionPending());
soa.Self()->ClearException();
manager_->GetCompiler()->SetHadHardVerifierFailure();
} else if (failure_kind == verifier::FailureKind::kSoftFailure) {
manager_->GetCompiler()->AddSoftVerifierFailure();
}
CHECK(klass->ShouldVerifyAtRuntime() || klass->IsVerified() || klass->IsErroneous())
<< klass->PrettyDescriptor() << ": state=" << klass->GetStatus();
// Class has a meaningful status for the compiler now, record it.
ClassReference ref(manager_->GetDexFile(), class_def_index);
manager_->GetCompiler()->RecordClassStatus(ref, klass->GetStatus());
// It is *very* problematic if there are resolution errors in the boot classpath.
//
// It is also bad if classes fail verification. For example, we rely on things working
// OK without verification when the decryption dialog is brought up. It is thus highly
// recommended to compile the boot classpath with
// --abort-on-hard-verifier-error --abort-on-soft-verifier-error
// which is the default build system configuration.
if (kIsDebugBuild) {
if (manager_->GetCompiler()->GetCompilerOptions().IsBootImage()) {
if (!klass->IsResolved() || klass->IsErroneous()) {
LOG(FATAL) << "Boot classpath class " << klass->PrettyClass()
<< " failed to resolve/is erroneous: state= " << klass->GetStatus();
UNREACHABLE();
}
}
if (klass->IsVerified()) {
DCHECK_EQ(failure_kind, verifier::FailureKind::kNoFailure);
} else if (klass->ShouldVerifyAtRuntime()) {
DCHECK_EQ(failure_kind, verifier::FailureKind::kSoftFailure);
} else {
DCHECK_EQ(failure_kind, verifier::FailureKind::kHardFailure);
}
}
} else {
// Make the skip a soft failure, essentially being considered as verify at runtime.
failure_kind = verifier::FailureKind::kSoftFailure;
}
verifier::VerifierDeps::MaybeRecordVerificationStatus(
dex_file, class_def.class_idx_, failure_kind);
soa.Self()->AssertNoPendingException();
}
private:
const ParallelCompilationManager* const manager_;
const verifier::HardFailLogMode log_level_;
};
void CompilerDriver::VerifyDexFile(jobject class_loader,
const DexFile& dex_file,
const std::vector<const DexFile*>& dex_files,
ThreadPool* thread_pool,
size_t thread_count,
TimingLogger* timings) {
TimingLogger::ScopedTiming t("Verify Dex File", timings);
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ParallelCompilationManager context(class_linker, class_loader, this, &dex_file, dex_files,
thread_pool);
bool abort_on_verifier_failures = GetCompilerOptions().AbortOnHardVerifierFailure()
|| GetCompilerOptions().AbortOnSoftVerifierFailure();
verifier::HardFailLogMode log_level = abort_on_verifier_failures
? verifier::HardFailLogMode::kLogInternalFatal
: verifier::HardFailLogMode::kLogWarning;
VerifyClassVisitor visitor(&context, log_level);
context.ForAll(0, dex_file.NumClassDefs(), &visitor, thread_count);
}
class SetVerifiedClassVisitor : public CompilationVisitor {
public:
explicit SetVerifiedClassVisitor(const ParallelCompilationManager* manager) : manager_(manager) {}
virtual void Visit(size_t class_def_index) REQUIRES(!Locks::mutator_lock_) OVERRIDE {
ScopedTrace trace(__FUNCTION__);
ScopedObjectAccess soa(Thread::Current());
const DexFile& dex_file = *manager_->GetDexFile();
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
const char* descriptor = dex_file.GetClassDescriptor(class_def);
ClassLinker* class_linker = manager_->GetClassLinker();
jobject jclass_loader = manager_->GetClassLoader();
StackHandleScope<3> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader)));
Handle<mirror::Class> klass(
hs.NewHandle(class_linker->FindClass(soa.Self(), descriptor, class_loader)));
// Class might have failed resolution. Then don't set it to verified.
if (klass != nullptr) {
// Only do this if the class is resolved. If even resolution fails, quickening will go very,
// very wrong.
if (klass->IsResolved() && !klass->IsErroneousResolved()) {
if (klass->GetStatus() < ClassStatus::kVerified) {
ObjectLock<mirror::Class> lock(soa.Self(), klass);
// Set class status to verified.
mirror::Class::SetStatus(klass, ClassStatus::kVerified, soa.Self());
// Mark methods as pre-verified. If we don't do this, the interpreter will run with
// access checks.
klass->SetSkipAccessChecksFlagOnAllMethods(
GetInstructionSetPointerSize(manager_->GetCompiler()->GetInstructionSet()));
klass->SetVerificationAttempted();
}
// Record the final class status if necessary.
ClassReference ref(manager_->GetDexFile(), class_def_index);
manager_->GetCompiler()->RecordClassStatus(ref, klass->GetStatus());
}
} else {
Thread* self = soa.Self();
DCHECK(self->IsExceptionPending());
self->ClearException();
}
}
private:
const ParallelCompilationManager* const manager_;
};
void CompilerDriver::SetVerifiedDexFile(jobject class_loader,
const DexFile& dex_file,
const std::vector<const DexFile*>& dex_files,
ThreadPool* thread_pool,
size_t thread_count,
TimingLogger* timings) {
TimingLogger::ScopedTiming t("Verify Dex File", timings);
if (!compiled_classes_.HaveDexFile(&dex_file)) {
compiled_classes_.AddDexFile(&dex_file);
}
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ParallelCompilationManager context(class_linker, class_loader, this, &dex_file, dex_files,
thread_pool);
SetVerifiedClassVisitor visitor(&context);
context.ForAll(0, dex_file.NumClassDefs(), &visitor, thread_count);
}
class InitializeClassVisitor : public CompilationVisitor {
public:
explicit InitializeClassVisitor(const ParallelCompilationManager* manager) : manager_(manager) {}
void Visit(size_t class_def_index) OVERRIDE {
ScopedTrace trace(__FUNCTION__);
jobject jclass_loader = manager_->GetClassLoader();
const DexFile& dex_file = *manager_->GetDexFile();
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
const DexFile::TypeId& class_type_id = dex_file.GetTypeId(class_def.class_idx_);
const char* descriptor = dex_file.StringDataByIdx(class_type_id.descriptor_idx_);
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<3> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader)));
Handle<mirror::Class> klass(
hs.NewHandle(manager_->GetClassLinker()->FindClass(soa.Self(), descriptor, class_loader)));
if (klass != nullptr && !SkipClass(manager_->GetClassLoader(), dex_file, klass.Get())) {
TryInitializeClass(klass, class_loader);
}
// Clear any class not found or verification exceptions.
soa.Self()->ClearException();
}
// A helper function for initializing klass.
void TryInitializeClass(Handle<mirror::Class> klass, Handle<mirror::ClassLoader>& class_loader)
REQUIRES_SHARED(Locks::mutator_lock_) {
const DexFile& dex_file = klass->GetDexFile();
const DexFile::ClassDef* class_def = klass->GetClassDef();
const DexFile::TypeId& class_type_id = dex_file.GetTypeId(class_def->class_idx_);
const char* descriptor = dex_file.StringDataByIdx(class_type_id.descriptor_idx_);
ScopedObjectAccessUnchecked soa(Thread::Current());
StackHandleScope<3> hs(soa.Self());
const bool is_boot_image = manager_->GetCompiler()->GetCompilerOptions().IsBootImage();
const bool is_app_image = manager_->GetCompiler()->GetCompilerOptions().IsAppImage();
ClassStatus old_status = klass->GetStatus();
// Don't initialize classes in boot space when compiling app image
if (is_app_image && klass->IsBootStrapClassLoaded()) {
// Also return early and don't store the class status in the recorded class status.
return;
}
// Only try to initialize classes that were successfully verified.
if (klass->IsVerified()) {
// Attempt to initialize the class but bail if we either need to initialize the super-class
// or static fields.
manager_->GetClassLinker()->EnsureInitialized(soa.Self(), klass, false, false);
old_status = klass->GetStatus();
if (!klass->IsInitialized()) {
// We don't want non-trivial class initialization occurring on multiple threads due to
// deadlock problems. For example, a parent class is initialized (holding its lock) that
// refers to a sub-class in its static/class initializer causing it to try to acquire the
// sub-class' lock. While on a second thread the sub-class is initialized (holding its lock)
// after first initializing its parents, whose locks are acquired. This leads to a
// parent-to-child and a child-to-parent lock ordering and consequent potential deadlock.
// We need to use an ObjectLock due to potential suspension in the interpreting code. Rather
// than use a special Object for the purpose we use the Class of java.lang.Class.
Handle<mirror::Class> h_klass(hs.NewHandle(klass->GetClass()));
ObjectLock<mirror::Class> lock(soa.Self(), h_klass);
// Attempt to initialize allowing initialization of parent classes but still not static
// fields.
// Initialize dependencies first only for app image, to make TryInitialize recursive.
bool is_superclass_initialized = !is_app_image ? true :
InitializeDependencies(klass, class_loader, soa.Self());
if (!is_app_image || (is_app_image && is_superclass_initialized)) {
manager_->GetClassLinker()->EnsureInitialized(soa.Self(), klass, false, true);
}
// Otherwise it's in app image but superclasses can't be initialized, no need to proceed.
old_status = klass->GetStatus();
bool too_many_encoded_fields = false;
if (!is_boot_image && klass->NumStaticFields() > kMaxEncodedFields) {
too_many_encoded_fields = true;
}
// If the class was not initialized, we can proceed to see if we can initialize static
// fields. Limit the max number of encoded fields.
if (!klass->IsInitialized() &&
(is_app_image || is_boot_image) &&
is_superclass_initialized &&
!too_many_encoded_fields &&
manager_->GetCompiler()->IsImageClass(descriptor)) {
bool can_init_static_fields = false;
if (is_boot_image) {
// We need to initialize static fields, we only do this for image classes that aren't
// marked with the $NoPreloadHolder (which implies this should not be initialized
// early).
can_init_static_fields = !StringPiece(descriptor).ends_with("$NoPreloadHolder;");
} else {
CHECK(is_app_image);
// The boot image case doesn't need to recursively initialize the dependencies with
// special logic since the class linker already does this.
can_init_static_fields =
ClassLinker::kAppImageMayContainStrings &&
!soa.Self()->IsExceptionPending() &&
is_superclass_initialized &&
NoClinitInDependency(klass, soa.Self(), &class_loader);
// TODO The checking for clinit can be removed since it's already
// checked when init superclass. Currently keep it because it contains
// processing of intern strings. Will be removed later when intern strings
// and clinit are both initialized.
}
if (can_init_static_fields) {
VLOG(compiler) << "Initializing: " << descriptor;
// TODO multithreading support. We should ensure the current compilation thread has
// exclusive access to the runtime and the transaction. To achieve this, we could use
// a ReaderWriterMutex but we're holding the mutator lock so we fail mutex sanity
// checks in Thread::AssertThreadSuspensionIsAllowable.
Runtime* const runtime = Runtime::Current();
// Run the class initializer in transaction mode.
runtime->EnterTransactionMode(is_app_image, klass.Get());
bool success = manager_->GetClassLinker()->EnsureInitialized(soa.Self(), klass, true,
true);
// TODO we detach transaction from runtime to indicate we quit the transactional
// mode which prevents the GC from visiting objects modified during the transaction.
// Ensure GC is not run so don't access freed objects when aborting transaction.
{
ScopedAssertNoThreadSuspension ants("Transaction end");
if (success) {
runtime->ExitTransactionMode();
DCHECK(!runtime->IsActiveTransaction());
}
if (!success) {
CHECK(soa.Self()->IsExceptionPending());
mirror::Throwable* exception = soa.Self()->GetException();
VLOG(compiler) << "Initialization of " << descriptor << " aborted because of "
<< exception->Dump();
std::ostream* file_log = manager_->GetCompiler()->
GetCompilerOptions().GetInitFailureOutput();
if (file_log != nullptr) {
*file_log << descriptor << "\n";
*file_log << exception->Dump() << "\n";
}
soa.Self()->ClearException();
runtime->RollbackAllTransactions();
CHECK_EQ(old_status, klass->GetStatus()) << "Previous class status not restored";
} else if (is_boot_image) {
// For boot image, we want to put the updated status in the oat class since we can't
// reject the image anyways.
old_status = klass->GetStatus();
}
}
if (!success) {
// On failure, still intern strings of static fields and seen in <clinit>, as these
// will be created in the zygote. This is separated from the transaction code just
// above as we will allocate strings, so must be allowed to suspend.
if (&klass->GetDexFile() == manager_->GetDexFile()) {
InternStrings(klass, class_loader);
} else {
DCHECK(!is_boot_image) << "Boot image must have equal dex files";
}
}
}
}
// If the class still isn't initialized, at least try some checks that initialization
// would do so they can be skipped at runtime.
if (!klass->IsInitialized() &&
manager_->GetClassLinker()->ValidateSuperClassDescriptors(klass)) {
old_status = ClassStatus::kSuperclassValidated;
} else {
soa.Self()->ClearException();
}
soa.Self()->AssertNoPendingException();
}
}
// Record the final class status if necessary.
ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
// Back up the status before doing initialization for static encoded fields,
// because the static encoded branch wants to keep the status to uninitialized.
manager_->GetCompiler()->RecordClassStatus(ref, old_status);
}
private:
void InternStrings(Handle<mirror::Class> klass, Handle<mirror::ClassLoader> class_loader)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(manager_->GetCompiler()->GetCompilerOptions().IsBootImage());
DCHECK(klass->IsVerified());
DCHECK(!klass->IsInitialized());
StackHandleScope<1> hs(Thread::Current());
Handle<mirror::DexCache> dex_cache = hs.NewHandle(klass->GetDexCache());
const DexFile::ClassDef* class_def = klass->GetClassDef();
ClassLinker* class_linker = manager_->GetClassLinker();
// Check encoded final field values for strings and intern.
annotations::RuntimeEncodedStaticFieldValueIterator value_it(dex_cache,
class_loader,
manager_->GetClassLinker(),
*class_def);
for ( ; value_it.HasNext(); value_it.Next()) {
if (value_it.GetValueType() == annotations::RuntimeEncodedStaticFieldValueIterator::kString) {
// Resolve the string. This will intern the string.
art::ObjPtr<mirror::String> resolved = class_linker->ResolveString(
dex::StringIndex(value_it.GetJavaValue().i), dex_cache);
CHECK(resolved != nullptr);
}
}
// Intern strings seen in <clinit>.
ArtMethod* clinit = klass->FindClassInitializer(class_linker->GetImagePointerSize());
if (clinit != nullptr) {
for (const DexInstructionPcPair& inst : clinit->DexInstructions()) {
if (inst->Opcode() == Instruction::CONST_STRING) {
ObjPtr<mirror::String> s = class_linker->ResolveString(
dex::StringIndex(inst->VRegB_21c()), dex_cache);
CHECK(s != nullptr);
} else if (inst->Opcode() == Instruction::CONST_STRING_JUMBO) {
ObjPtr<mirror::String> s = class_linker->ResolveString(
dex::StringIndex(inst->VRegB_31c()), dex_cache);
CHECK(s != nullptr);
}
}
}
}
bool ResolveTypesOfMethods(Thread* self, ArtMethod* m)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Return value of ResolveReturnType() is discarded because resolve will be done internally.
ObjPtr<mirror::Class> rtn_type = m->ResolveReturnType();
if (rtn_type == nullptr) {
self->ClearException();
return false;
}
const DexFile::TypeList* types = m->GetParameterTypeList();
if (types != nullptr) {
for (uint32_t i = 0; i < types->Size(); ++i) {
dex::TypeIndex param_type_idx = types->GetTypeItem(i).type_idx_;
ObjPtr<mirror::Class> param_type = m->ResolveClassFromTypeIndex(param_type_idx);
if (param_type == nullptr) {
self->ClearException();
return false;
}
}
}
return true;
}
// Pre resolve types mentioned in all method signatures before start a transaction
// since ResolveType doesn't work in transaction mode.
bool PreResolveTypes(Thread* self, const Handle<mirror::Class>& klass)
REQUIRES_SHARED(Locks::mutator_lock_) {
PointerSize pointer_size = manager_->GetClassLinker()->GetImagePointerSize();
for (ArtMethod& m : klass->GetMethods(pointer_size)) {
if (!ResolveTypesOfMethods(self, &m)) {
return false;
}
}
if (klass->IsInterface()) {
return true;
} else if (klass->HasSuperClass()) {
StackHandleScope<1> hs(self);
MutableHandle<mirror::Class> super_klass(hs.NewHandle<mirror::Class>(klass->GetSuperClass()));
for (int i = super_klass->GetVTableLength() - 1; i >= 0; --i) {
ArtMethod* m = klass->GetVTableEntry(i, pointer_size);
ArtMethod* super_m = super_klass->GetVTableEntry(i, pointer_size);
if (!ResolveTypesOfMethods(self, m) || !ResolveTypesOfMethods(self, super_m)) {
return false;
}
}
for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
super_klass.Assign(klass->GetIfTable()->GetInterface(i));
if (klass->GetClassLoader() != super_klass->GetClassLoader()) {
uint32_t num_methods = super_klass->NumVirtualMethods();
for (uint32_t j = 0; j < num_methods; ++j) {
ArtMethod* m = klass->GetIfTable()->GetMethodArray(i)->GetElementPtrSize<ArtMethod*>(
j, pointer_size);
ArtMethod* super_m = super_klass->GetVirtualMethod(j, pointer_size);
if (!ResolveTypesOfMethods(self, m) || !ResolveTypesOfMethods(self, super_m)) {
return false;
}
}
}
}
}
return true;
}
// Initialize the klass's dependencies recursively before initializing itself.
// Checking for interfaces is also necessary since interfaces can contain
// both default methods and static encoded fields.
bool InitializeDependencies(const Handle<mirror::Class>& klass,
Handle<mirror::ClassLoader> class_loader,
Thread* self)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (klass->HasSuperClass()) {
ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
StackHandleScope<1> hs(self);
Handle<mirror::Class> handle_scope_super(hs.NewHandle(super_class));
if (!handle_scope_super->IsInitialized()) {
this->TryInitializeClass(handle_scope_super, class_loader);
if (!handle_scope_super->IsInitialized()) {
return false;
}
}
}
uint32_t num_if = klass->NumDirectInterfaces();
for (size_t i = 0; i < num_if; i++) {
ObjPtr<mirror::Class>
interface = mirror::Class::GetDirectInterface(self, klass.Get(), i);
StackHandleScope<1> hs(self);
Handle<mirror::Class> handle_interface(hs.NewHandle(interface));
TryInitializeClass(handle_interface, class_loader);
if (!handle_interface->IsInitialized()) {
return false;
}
}
return PreResolveTypes(self, klass);
}
// In this phase the classes containing class initializers are ignored. Make sure no
// clinit appears in kalss's super class chain and interfaces.
bool NoClinitInDependency(const Handle<mirror::Class>& klass,
Thread* self,
Handle<mirror::ClassLoader>* class_loader)
REQUIRES_SHARED(Locks::mutator_lock_) {
ArtMethod* clinit =
klass->FindClassInitializer(manager_->GetClassLinker()->GetImagePointerSize());
if (clinit != nullptr) {
VLOG(compiler) << klass->PrettyClass() << ' ' << clinit->PrettyMethod(true);
return false;
}
if (klass->HasSuperClass()) {
ObjPtr<mirror::Class> super_class = klass->GetSuperClass();
StackHandleScope<1> hs(self);
Handle<mirror::Class> handle_scope_super(hs.NewHandle(super_class));
if (!NoClinitInDependency(handle_scope_super, self, class_loader)) {
return false;
}
}
uint32_t num_if = klass->NumDirectInterfaces();
for (size_t i = 0; i < num_if; i++) {
ObjPtr<mirror::Class>
interface = mirror::Class::GetDirectInterface(self, klass.Get(), i);
StackHandleScope<1> hs(self);
Handle<mirror::Class> handle_interface(hs.NewHandle(interface));
if (!NoClinitInDependency(handle_interface, self, class_loader)) {
return false;
}
}
return true;
}
const ParallelCompilationManager* const manager_;
};
void CompilerDriver::InitializeClasses(jobject jni_class_loader,
const DexFile& dex_file,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
TimingLogger::ScopedTiming t("InitializeNoClinit", timings);
// Initialization allocates objects and needs to run single-threaded to be deterministic.
bool force_determinism = GetCompilerOptions().IsForceDeterminism();
ThreadPool* init_thread_pool = force_determinism
? single_thread_pool_.get()
: parallel_thread_pool_.get();
size_t init_thread_count = force_determinism ? 1U : parallel_thread_count_;
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ParallelCompilationManager context(class_linker, jni_class_loader, this, &dex_file, dex_files,
init_thread_pool);
if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsAppImage()) {
// Set the concurrency thread to 1 to support initialization for App Images since transaction
// doesn't support multithreading now.
// TODO: remove this when transactional mode supports multithreading.
init_thread_count = 1U;
}
InitializeClassVisitor visitor(&context);
context.ForAll(0, dex_file.NumClassDefs(), &visitor, init_thread_count);
}
class InitializeArrayClassesAndCreateConflictTablesVisitor : public ClassVisitor {
public:
explicit InitializeArrayClassesAndCreateConflictTablesVisitor(VariableSizedHandleScope& hs)
: hs_(hs) {}
virtual bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE
REQUIRES_SHARED(Locks::mutator_lock_) {
if (Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
return true;
}
if (klass->IsArrayClass()) {
StackHandleScope<1> hs(Thread::Current());
auto h_klass = hs.NewHandleWrapper(&klass);
Runtime::Current()->GetClassLinker()->EnsureInitialized(hs.Self(), h_klass, true, true);
}
// Collect handles since there may be thread suspension in future EnsureInitialized.
to_visit_.push_back(hs_.NewHandle(klass));
return true;
}
void FillAllIMTAndConflictTables() REQUIRES_SHARED(Locks::mutator_lock_) {
for (Handle<mirror::Class> c : to_visit_) {
// Create the conflict tables.
FillIMTAndConflictTables(c.Get());
}
}
private:
void FillIMTAndConflictTables(ObjPtr<mirror::Class> klass)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (!klass->ShouldHaveImt()) {
return;
}
if (visited_classes_.find(klass) != visited_classes_.end()) {
return;
}
if (klass->HasSuperClass()) {
FillIMTAndConflictTables(klass->GetSuperClass());
}
if (!klass->IsTemp()) {
Runtime::Current()->GetClassLinker()->FillIMTAndConflictTables(klass);
}
visited_classes_.insert(klass);
}
VariableSizedHandleScope& hs_;
std::vector<Handle<mirror::Class>> to_visit_;
std::unordered_set<ObjPtr<mirror::Class>, HashObjPtr> visited_classes_;
};
void CompilerDriver::InitializeClasses(jobject class_loader,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
for (size_t i = 0; i != dex_files.size(); ++i) {
const DexFile* dex_file = dex_files[i];
CHECK(dex_file != nullptr);
InitializeClasses(class_loader, *dex_file, dex_files, timings);
}
if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsAppImage()) {
// Make sure that we call EnsureIntiailized on all the array classes to call
// SetVerificationAttempted so that the access flags are set. If we do not do this they get
// changed at runtime resulting in more dirty image pages.
// Also create conflict tables.
// Only useful if we are compiling an image (image_classes_ is not null).
ScopedObjectAccess soa(Thread::Current());
VariableSizedHandleScope hs(soa.Self());
InitializeArrayClassesAndCreateConflictTablesVisitor visitor(hs);
Runtime::Current()->GetClassLinker()->VisitClassesWithoutClassesLock(&visitor);
visitor.FillAllIMTAndConflictTables();
}
if (GetCompilerOptions().IsBootImage()) {
// Prune garbage objects created during aborted transactions.
Runtime::Current()->GetHeap()->CollectGarbage(/* clear_soft_references */ true);
}
}
template <typename CompileFn>
static void CompileDexFile(CompilerDriver* driver,
jobject class_loader,
const DexFile& dex_file,
const std::vector<const DexFile*>& dex_files,
ThreadPool* thread_pool,
size_t thread_count,
TimingLogger* timings,
const char* timing_name,
CompileFn compile_fn) {
TimingLogger::ScopedTiming t(timing_name, timings);
ParallelCompilationManager context(Runtime::Current()->GetClassLinker(),
class_loader,
driver,
&dex_file,
dex_files,
thread_pool);
auto compile = [&context, &compile_fn](size_t class_def_index) {
ScopedTrace trace(__FUNCTION__);
const DexFile& dex_file = *context.GetDexFile();
const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index);
ClassLinker* class_linker = context.GetClassLinker();
jobject jclass_loader = context.GetClassLoader();
ClassReference ref(&dex_file, class_def_index);
// Skip compiling classes with generic verifier failures since they will still fail at runtime
if (context.GetCompiler()->GetVerificationResults()->IsClassRejected(ref)) {
return;
}
// Use a scoped object access to perform to the quick SkipClass check.
const char* descriptor = dex_file.GetClassDescriptor(class_def);
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<3> hs(soa.Self());
Handle<mirror::ClassLoader> class_loader(
hs.NewHandle(soa.Decode<mirror::ClassLoader>(jclass_loader)));
Handle<mirror::Class> klass(
hs.NewHandle(class_linker->FindClass(soa.Self(), descriptor, class_loader)));
Handle<mirror::DexCache> dex_cache;
if (klass == nullptr) {
soa.Self()->AssertPendingException();
soa.Self()->ClearException();
dex_cache = hs.NewHandle(class_linker->FindDexCache(soa.Self(), dex_file));
} else if (SkipClass(jclass_loader, dex_file, klass.Get())) {
return;
} else {
dex_cache = hs.NewHandle(klass->GetDexCache());
}
const uint8_t* class_data = dex_file.GetClassData(class_def);
if (class_data == nullptr) {
// empty class, probably a marker interface
return;
}
// Go to native so that we don't block GC during compilation.
ScopedThreadSuspension sts(soa.Self(), kNative);
CompilerDriver* const driver = context.GetCompiler();
// Can we run DEX-to-DEX compiler on this class ?
optimizer::DexToDexCompiler::CompilationLevel dex_to_dex_compilation_level =
GetDexToDexCompilationLevel(soa.Self(), *driver, jclass_loader, dex_file, class_def);
ClassDataItemIterator it(dex_file, class_data);
it.SkipAllFields();
bool compilation_enabled = driver->IsClassToCompile(
dex_file.StringByTypeIdx(class_def.class_idx_));
// Compile direct and virtual methods.
int64_t previous_method_idx = -1;
while (it.HasNextMethod()) {
uint32_t method_idx = it.GetMemberIndex();
if (method_idx == previous_method_idx) {
// smali can create dex files with two encoded_methods sharing the same method_idx
// http://code.google.com/p/smali/issues/detail?id=119
it.Next();
continue;
}
previous_method_idx = method_idx;
compile_fn(soa.Self(),
driver,
it.GetMethodCodeItem(),
it.GetMethodAccessFlags(),
it.GetMethodInvokeType(class_def),
class_def_index,
method_idx,
class_loader,
dex_file,
dex_to_dex_compilation_level,
compilation_enabled,
dex_cache);
it.Next();
}
DCHECK(!it.HasNext());
};
context.ForAllLambda(0, dex_file.NumClassDefs(), compile, thread_count);
}
void CompilerDriver::Compile(jobject class_loader,
const std::vector<const DexFile*>& dex_files,
TimingLogger* timings) {
if (kDebugProfileGuidedCompilation) {
LOG(INFO) << "[ProfileGuidedCompilation] " <<
((profile_compilation_info_ == nullptr)
? "null"
: profile_compilation_info_->DumpInfo(&dex_files));
}
dex_to_dex_compiler_.ClearState();
for (const DexFile* dex_file : dex_files) {
CHECK(dex_file != nullptr);
CompileDexFile(this,
class_loader,
*dex_file,
dex_files,
parallel_thread_pool_.get(),
parallel_thread_count_,
timings,
"Compile Dex File Quick",
CompileMethodQuick);
const ArenaPool* const arena_pool = Runtime::Current()->GetArenaPool();
const size_t arena_alloc = arena_pool->GetBytesAllocated();
max_arena_alloc_ = std::max(arena_alloc, max_arena_alloc_);
Runtime::Current()->ReclaimArenaPoolMemory();
}
if (dex_to_dex_compiler_.NumCodeItemsToQuicken(Thread::Current()) > 0u) {
// TODO: Not visit all of the dex files, its probably rare that only one would have quickened
// methods though.
for (const DexFile* dex_file : dex_files) {
CompileDexFile(this,
class_loader,
*dex_file,
dex_files,
parallel_thread_pool_.get(),
parallel_thread_count_,
timings,
"Compile Dex File Dex2Dex",
CompileMethodDex2Dex);
}
dex_to_dex_compiler_.ClearState();
}
VLOG(compiler) << "Compile: " << GetMemoryUsageString(false);
}
void CompilerDriver::AddCompiledMethod(const MethodReference& method_ref,
CompiledMethod* const compiled_method,
size_t non_relative_linker_patch_count) {
DCHECK(GetCompiledMethod(method_ref) == nullptr) << method_ref.PrettyMethod();
MethodTable::InsertResult result = compiled_methods_.Insert(method_ref,
/*expected*/ nullptr,
compiled_method);
CHECK(result == MethodTable::kInsertResultSuccess);
non_relative_linker_patch_count_.fetch_add(non_relative_linker_patch_count,
std::memory_order_relaxed);
DCHECK(GetCompiledMethod(method_ref) != nullptr) << method_ref.PrettyMethod();
}
CompiledMethod* CompilerDriver::RemoveCompiledMethod(const MethodReference& method_ref) {
CompiledMethod* ret = nullptr;
CHECK(compiled_methods_.Remove(method_ref, &ret));
return ret;
}
bool CompilerDriver::GetCompiledClass(const ClassReference& ref, ClassStatus* status) const {
DCHECK(status != nullptr);
// The table doesn't know if something wasn't inserted. For this case it will return
// ClassStatus::kNotReady. To handle this, just assume anything we didn't try to verify
// is not compiled.
if (!compiled_classes_.Get(ref, status) ||
*status < ClassStatus::kRetryVerificationAtRuntime) {
return false;
}
return true;
}
ClassStatus CompilerDriver::GetClassStatus(const ClassReference& ref) const {
ClassStatus status = ClassStatus::kNotReady;
if (!GetCompiledClass(ref, &status)) {
classpath_classes_.Get(ref, &status);
}
return status;
}
void CompilerDriver::RecordClassStatus(const ClassReference& ref, ClassStatus status) {
switch (status) {
case ClassStatus::kErrorResolved:
case ClassStatus::kErrorUnresolved:
case ClassStatus::kNotReady:
case ClassStatus::kResolved:
case ClassStatus::kRetryVerificationAtRuntime:
case ClassStatus::kVerified:
case ClassStatus::kSuperclassValidated:
case ClassStatus::kInitialized:
break; // Expected states.
default:
LOG(FATAL) << "Unexpected class status for class "
<< PrettyDescriptor(
ref.dex_file->GetClassDescriptor(ref.dex_file->GetClassDef(ref.index)))
<< " of " << status;
}
ClassStateTable::InsertResult result;
ClassStateTable* table = &compiled_classes_;
do {
ClassStatus existing = ClassStatus::kNotReady;
if (!table->Get(ref, &existing)) {
// A classpath class.
if (kIsDebugBuild) {
// Check to make sure it's not a dex file for an oat file we are compiling since these
// should always succeed. These do not include classes in for used libraries.
for (const DexFile* dex_file : GetDexFilesForOatFile()) {
CHECK_NE(ref.dex_file, dex_file) << ref.dex_file->GetLocation();
}
}
if (!classpath_classes_.HaveDexFile(ref.dex_file)) {
// Boot classpath dex file.
return;
}
table = &classpath_classes_;
table->Get(ref, &existing);
}
if (existing >= status) {
// Existing status is already better than we expect, break.
break;
}
// Update the status if we now have a greater one. This happens with vdex,
// which records a class is verified, but does not resolve it.
result = table->Insert(ref, existing, status);
CHECK(result != ClassStateTable::kInsertResultInvalidDexFile) << ref.dex_file->GetLocation();
} while (result != ClassStateTable::kInsertResultSuccess);
}
CompiledMethod* CompilerDriver::GetCompiledMethod(MethodReference ref) const {
CompiledMethod* compiled_method = nullptr;
compiled_methods_.Get(ref, &compiled_method);
return compiled_method;
}
bool CompilerDriver::IsMethodVerifiedWithoutFailures(uint32_t method_idx,
uint16_t class_def_idx,
const DexFile& dex_file) const {
const VerifiedMethod* verified_method = GetVerifiedMethod(&dex_file, method_idx);
if (verified_method != nullptr) {
return !verified_method->HasVerificationFailures();
}
// If we can't find verification metadata, check if this is a system class (we trust that system
// classes have their methods verified). If it's not, be conservative and assume the method
// has not been verified successfully.
// TODO: When compiling the boot image it should be safe to assume that everything is verified,
// even if methods are not found in the verification cache.
const char* descriptor = dex_file.GetClassDescriptor(dex_file.GetClassDef(class_def_idx));
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
bool is_system_class = class_linker->FindSystemClass(self, descriptor) != nullptr;
if (!is_system_class) {
self->ClearException();
}
return is_system_class;
}
size_t CompilerDriver::GetNonRelativeLinkerPatchCount() const {
return non_relative_linker_patch_count_.load(std::memory_order_relaxed);
}
void CompilerDriver::SetRequiresConstructorBarrier(Thread* self,
const DexFile* dex_file,
uint16_t class_def_index,
bool requires) {
WriterMutexLock mu(self, requires_constructor_barrier_lock_);
requires_constructor_barrier_.emplace(ClassReference(dex_file, class_def_index), requires);
}
bool CompilerDriver::RequiresConstructorBarrier(Thread* self,
const DexFile* dex_file,
uint16_t class_def_index) {
ClassReference class_ref(dex_file, class_def_index);
{
ReaderMutexLock mu(self, requires_constructor_barrier_lock_);
auto it = requires_constructor_barrier_.find(class_ref);
if (it != requires_constructor_barrier_.end()) {
return it->second;
}
}
WriterMutexLock mu(self, requires_constructor_barrier_lock_);
const bool requires = RequiresConstructorBarrier(*dex_file, class_def_index);
requires_constructor_barrier_.emplace(class_ref, requires);
return requires;
}
std::string CompilerDriver::GetMemoryUsageString(bool extended) const {
std::ostringstream oss;
const gc::Heap* const heap = Runtime::Current()->GetHeap();
const size_t java_alloc = heap->GetBytesAllocated();
oss << "arena alloc=" << PrettySize(max_arena_alloc_) << " (" << max_arena_alloc_ << "B)";
oss << " java alloc=" << PrettySize(java_alloc) << " (" << java_alloc << "B)";
#if defined(__BIONIC__) || defined(__GLIBC__)
const struct mallinfo info = mallinfo();
const size_t allocated_space = static_cast<size_t>(info.uordblks);
const size_t free_space = static_cast<size_t>(info.fordblks);
oss << " native alloc=" << PrettySize(allocated_space) << " (" << allocated_space << "B)"
<< " free=" << PrettySize(free_space) << " (" << free_space << "B)";
#endif
compiled_method_storage_.DumpMemoryUsage(oss, extended);
return oss.str();
}
bool CompilerDriver::MayInlineInternal(const DexFile* inlined_from,
const DexFile* inlined_into) const {
// We're not allowed to inline across dex files if we're the no-inline-from dex file.
if (inlined_from != inlined_into &&
compiler_options_->GetNoInlineFromDexFile() != nullptr &&
ContainsElement(*compiler_options_->GetNoInlineFromDexFile(), inlined_from)) {
return false;
}
return true;
}
void CompilerDriver::InitializeThreadPools() {
size_t parallel_count = parallel_thread_count_ > 0 ? parallel_thread_count_ - 1 : 0;
parallel_thread_pool_.reset(
new ThreadPool("Compiler driver thread pool", parallel_count));
single_thread_pool_.reset(new ThreadPool("Single-threaded Compiler driver thread pool", 0));
}
void CompilerDriver::FreeThreadPools() {
parallel_thread_pool_.reset();
single_thread_pool_.reset();
}
void CompilerDriver::SetDexFilesForOatFile(const std::vector<const DexFile*>& dex_files) {
dex_files_for_oat_file_ = dex_files;
compiled_classes_.AddDexFiles(dex_files);
dex_to_dex_compiler_.SetDexFiles(dex_files);
}
void CompilerDriver::SetClasspathDexFiles(const std::vector<const DexFile*>& dex_files) {
classpath_classes_.AddDexFiles(dex_files);
}
} // namespace art