blob: 25c9b20514890bc41eed6bd2894ff2ce227ee417 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dex_file.h"
#include "dex_file-inl.h"
#include "driver/compiler_driver.h"
#include "driver/dex_compilation_unit.h"
#include "intrinsic_helper.h"
#include "ir_builder.h"
#include "method_reference.h"
#include "mirror/art_method.h"
#include "mirror/array.h"
#include "mirror/string.h"
#include "thread.h"
#include "utils_llvm.h"
#include "verifier/method_verifier.h"
#include "dex/compiler_ir.h"
#include "dex/mir_graph.h"
#include "dex/quick/mir_to_lir.h"
#include <llvm/ADT/STLExtras.h>
#include <llvm/IR/Intrinsics.h>
#include <llvm/IR/Metadata.h>
#include <llvm/Pass.h>
#include <llvm/Support/CFG.h>
#include <llvm/Support/InstIterator.h>
#include <vector>
#include <map>
#include <utility>
using ::art::kMIRIgnoreNullCheck;
using ::art::kMIRIgnoreRangeCheck;
using ::art::llvm::IRBuilder;
using ::art::llvm::IntrinsicHelper;
using ::art::llvm::JType;
using ::art::llvm::RuntimeSupportBuilder;
using ::art::llvm::kBoolean;
using ::art::llvm::kByte;
using ::art::llvm::kChar;
using ::art::llvm::kDouble;
using ::art::llvm::kFloat;
using ::art::llvm::kInt;
using ::art::llvm::kLikely;
using ::art::llvm::kLong;
using ::art::llvm::kObject;
using ::art::llvm::kShort;
using ::art::llvm::kTBAAConstJObject;
using ::art::llvm::kTBAAHeapArray;
using ::art::llvm::kTBAAHeapInstance;
using ::art::llvm::kTBAAHeapStatic;
using ::art::llvm::kTBAARegister;
using ::art::llvm::kTBAARuntimeInfo;
using ::art::llvm::kTBAAShadowFrame;
using ::art::llvm::kUnlikely;
using ::art::llvm::kVoid;
using ::art::llvm::runtime_support::AllocArray;
using ::art::llvm::runtime_support::AllocArrayWithAccessCheck;
using ::art::llvm::runtime_support::AllocObject;
using ::art::llvm::runtime_support::AllocObjectWithAccessCheck;
using ::art::llvm::runtime_support::CheckAndAllocArray;
using ::art::llvm::runtime_support::CheckAndAllocArrayWithAccessCheck;
using ::art::llvm::runtime_support::CheckCast;
using ::art::llvm::runtime_support::CheckPutArrayElement;
using ::art::llvm::runtime_support::FillArrayData;
using ::art::llvm::runtime_support::FindCatchBlock;
using ::art::llvm::runtime_support::FindDirectMethodWithAccessCheck;
using ::art::llvm::runtime_support::FindInterfaceMethod;
using ::art::llvm::runtime_support::FindInterfaceMethodWithAccessCheck;
using ::art::llvm::runtime_support::FindStaticMethodWithAccessCheck;
using ::art::llvm::runtime_support::FindSuperMethodWithAccessCheck;
using ::art::llvm::runtime_support::FindVirtualMethodWithAccessCheck;
using ::art::llvm::runtime_support::Get32Instance;
using ::art::llvm::runtime_support::Get32Static;
using ::art::llvm::runtime_support::Get64Instance;
using ::art::llvm::runtime_support::Get64Static;
using ::art::llvm::runtime_support::GetObjectInstance;
using ::art::llvm::runtime_support::GetObjectStatic;
using ::art::llvm::runtime_support::InitializeStaticStorage;
using ::art::llvm::runtime_support::InitializeType;
using ::art::llvm::runtime_support::InitializeTypeAndVerifyAccess;
using ::art::llvm::runtime_support::IsAssignable;
using ::art::llvm::runtime_support::ResolveString;
using ::art::llvm::runtime_support::RuntimeId;
using ::art::llvm::runtime_support::Set32Instance;
using ::art::llvm::runtime_support::Set32Static;
using ::art::llvm::runtime_support::Set64Instance;
using ::art::llvm::runtime_support::Set64Static;
using ::art::llvm::runtime_support::SetObjectInstance;
using ::art::llvm::runtime_support::SetObjectStatic;
using ::art::llvm::runtime_support::ThrowDivZeroException;
using ::art::llvm::runtime_support::ThrowException;
using ::art::llvm::runtime_support::ThrowIndexOutOfBounds;
using ::art::llvm::runtime_support::ThrowNullPointerException;
using ::art::llvm::runtime_support::ThrowStackOverflowException;
using ::art::llvm::runtime_support::art_d2i;
using ::art::llvm::runtime_support::art_d2l;
using ::art::llvm::runtime_support::art_f2i;
using ::art::llvm::runtime_support::art_f2l;
namespace art {
extern char RemapShorty(char shortyType);
} // namespace art
namespace {
class GBCExpanderPass : public llvm::FunctionPass {
private:
const IntrinsicHelper& intrinsic_helper_;
IRBuilder& irb_;
llvm::LLVMContext& context_;
RuntimeSupportBuilder& rtb_;
private:
llvm::AllocaInst* shadow_frame_;
llvm::Value* old_shadow_frame_;
private:
art::CompilerDriver* const driver_;
const art::DexCompilationUnit* const dex_compilation_unit_;
llvm::Function* func_;
std::vector<llvm::BasicBlock*> basic_blocks_;
std::vector<llvm::BasicBlock*> basic_block_landing_pads_;
llvm::BasicBlock* current_bb_;
std::map<llvm::BasicBlock*, std::vector<std::pair<llvm::BasicBlock*, llvm::BasicBlock*>>>
landing_pad_phi_mapping_;
llvm::BasicBlock* basic_block_unwind_;
// Maps each vreg to its shadow frame address.
std::vector<llvm::Value*> shadow_frame_vreg_addresses_;
bool changed_;
private:
//----------------------------------------------------------------------------
// Constant for GBC expansion
//----------------------------------------------------------------------------
enum IntegerShiftKind {
kIntegerSHL,
kIntegerSHR,
kIntegerUSHR,
};
private:
//----------------------------------------------------------------------------
// Helper function for GBC expansion
//----------------------------------------------------------------------------
llvm::Value* ExpandToRuntime(RuntimeId rt, llvm::CallInst& inst);
uint64_t LV2UInt(llvm::Value* lv) {
return llvm::cast<llvm::ConstantInt>(lv)->getZExtValue();
}
int64_t LV2SInt(llvm::Value* lv) {
return llvm::cast<llvm::ConstantInt>(lv)->getSExtValue();
}
private:
// TODO: Almost all Emit* are directly copy-n-paste from MethodCompiler.
// Refactor these utility functions from MethodCompiler to avoid forking.
void EmitStackOverflowCheck(llvm::Instruction* first_non_alloca);
void RewriteFunction();
void RewriteBasicBlock(llvm::BasicBlock* original_block);
void UpdatePhiInstruction(llvm::BasicBlock* old_basic_block,
llvm::BasicBlock* new_basic_block);
// Sign or zero extend category 1 types < 32bits in size to 32bits.
llvm::Value* SignOrZeroExtendCat1Types(llvm::Value* value, JType jty);
// Truncate category 1 types from 32bits to the given JType size.
llvm::Value* TruncateCat1Types(llvm::Value* value, JType jty);
//----------------------------------------------------------------------------
// Dex cache code generation helper function
//----------------------------------------------------------------------------
llvm::Value* EmitLoadDexCacheAddr(art::MemberOffset dex_cache_offset);
llvm::Value* EmitLoadDexCacheResolvedTypeFieldAddr(uint32_t type_idx);
llvm::Value* EmitLoadDexCacheResolvedMethodFieldAddr(uint32_t method_idx);
llvm::Value* EmitLoadDexCacheStringFieldAddr(uint32_t string_idx);
//----------------------------------------------------------------------------
// Code generation helper function
//----------------------------------------------------------------------------
llvm::Value* EmitLoadMethodObjectAddr();
llvm::Value* EmitLoadArrayLength(llvm::Value* array);
llvm::Value* EmitLoadSDCalleeMethodObjectAddr(uint32_t callee_method_idx);
llvm::Value* EmitLoadVirtualCalleeMethodObjectAddr(int vtable_idx,
llvm::Value* this_addr);
llvm::Value* EmitArrayGEP(llvm::Value* array_addr,
llvm::Value* index_value,
JType elem_jty);
//----------------------------------------------------------------------------
// Invoke helper function
//----------------------------------------------------------------------------
llvm::Value* EmitInvoke(llvm::CallInst& call_inst);
//----------------------------------------------------------------------------
// Inlining helper functions
//----------------------------------------------------------------------------
bool EmitIntrinsic(llvm::CallInst& call_inst, llvm::Value** result);
bool EmitIntrinsicStringLengthOrIsEmpty(llvm::CallInst& call_inst,
llvm::Value** result, bool is_empty);
private:
//----------------------------------------------------------------------------
// Expand Greenland intrinsics
//----------------------------------------------------------------------------
void Expand_TestSuspend(llvm::CallInst& call_inst);
void Expand_MarkGCCard(llvm::CallInst& call_inst);
llvm::Value* Expand_LoadStringFromDexCache(llvm::Value* string_idx_value);
llvm::Value* Expand_LoadTypeFromDexCache(llvm::Value* type_idx_value);
void Expand_LockObject(llvm::Value* obj);
void Expand_UnlockObject(llvm::Value* obj);
llvm::Value* Expand_ArrayGet(llvm::Value* array_addr,
llvm::Value* index_value,
JType elem_jty);
void Expand_ArrayPut(llvm::Value* new_value,
llvm::Value* array_addr,
llvm::Value* index_value,
JType elem_jty);
void Expand_FilledNewArray(llvm::CallInst& call_inst);
llvm::Value* Expand_IGetFast(llvm::Value* field_offset_value,
llvm::Value* is_volatile_value,
llvm::Value* object_addr,
JType field_jty);
void Expand_IPutFast(llvm::Value* field_offset_value,
llvm::Value* is_volatile_value,
llvm::Value* object_addr,
llvm::Value* new_value,
JType field_jty);
llvm::Value* Expand_SGetFast(llvm::Value* static_storage_addr,
llvm::Value* field_offset_value,
llvm::Value* is_volatile_value,
JType field_jty);
void Expand_SPutFast(llvm::Value* static_storage_addr,
llvm::Value* field_offset_value,
llvm::Value* is_volatile_value,
llvm::Value* new_value,
JType field_jty);
llvm::Value* Expand_LoadDeclaringClassSSB(llvm::Value* method_object_addr);
llvm::Value*
Expand_GetSDCalleeMethodObjAddrFast(llvm::Value* callee_method_idx_value);
llvm::Value*
Expand_GetVirtualCalleeMethodObjAddrFast(llvm::Value* vtable_idx_value,
llvm::Value* this_addr);
llvm::Value* Expand_Invoke(llvm::CallInst& call_inst);
llvm::Value* Expand_DivRem(llvm::CallInst& call_inst, bool is_div, JType op_jty);
void Expand_AllocaShadowFrame(llvm::Value* num_vregs_value);
void Expand_SetVReg(llvm::Value* entry_idx, llvm::Value* obj);
void Expand_PopShadowFrame();
void Expand_UpdateDexPC(llvm::Value* dex_pc_value);
//----------------------------------------------------------------------------
// Quick
//----------------------------------------------------------------------------
llvm::Value* Expand_FPCompare(llvm::Value* src1_value,
llvm::Value* src2_value,
bool gt_bias);
llvm::Value* Expand_LongCompare(llvm::Value* src1_value, llvm::Value* src2_value);
llvm::Value* EmitCompareResultSelection(llvm::Value* cmp_eq,
llvm::Value* cmp_lt);
llvm::Value* EmitLoadConstantClass(uint32_t dex_pc, uint32_t type_idx);
llvm::Value* EmitLoadStaticStorage(uint32_t dex_pc, uint32_t type_idx);
llvm::Value* Expand_HLIGet(llvm::CallInst& call_inst, JType field_jty);
void Expand_HLIPut(llvm::CallInst& call_inst, JType field_jty);
llvm::Value* Expand_HLSget(llvm::CallInst& call_inst, JType field_jty);
void Expand_HLSput(llvm::CallInst& call_inst, JType field_jty);
llvm::Value* Expand_HLArrayGet(llvm::CallInst& call_inst, JType field_jty);
void Expand_HLArrayPut(llvm::CallInst& call_inst, JType field_jty);
llvm::Value* Expand_ConstString(llvm::CallInst& call_inst);
llvm::Value* Expand_ConstClass(llvm::CallInst& call_inst);
void Expand_MonitorEnter(llvm::CallInst& call_inst);
void Expand_MonitorExit(llvm::CallInst& call_inst);
void Expand_HLCheckCast(llvm::CallInst& call_inst);
llvm::Value* Expand_InstanceOf(llvm::CallInst& call_inst);
llvm::Value* Expand_NewInstance(llvm::CallInst& call_inst);
llvm::Value* Expand_HLInvoke(llvm::CallInst& call_inst);
llvm::Value* Expand_OptArrayLength(llvm::CallInst& call_inst);
llvm::Value* Expand_NewArray(llvm::CallInst& call_inst);
llvm::Value* Expand_HLFilledNewArray(llvm::CallInst& call_inst);
void Expand_HLFillArrayData(llvm::CallInst& call_inst);
llvm::Value* EmitAllocNewArray(uint32_t dex_pc,
llvm::Value* array_length_value,
uint32_t type_idx,
bool is_filled_new_array);
llvm::Value* EmitCallRuntimeForCalleeMethodObjectAddr(uint32_t callee_method_idx,
art::InvokeType invoke_type,
llvm::Value* this_addr,
uint32_t dex_pc,
bool is_fast_path);
void EmitMarkGCCard(llvm::Value* value, llvm::Value* target_addr);
void EmitUpdateDexPC(uint32_t dex_pc);
void EmitGuard_DivZeroException(uint32_t dex_pc,
llvm::Value* denominator,
JType op_jty);
void EmitGuard_NullPointerException(uint32_t dex_pc, llvm::Value* object,
int opt_flags);
void EmitGuard_ArrayIndexOutOfBoundsException(uint32_t dex_pc,
llvm::Value* array,
llvm::Value* index,
int opt_flags);
llvm::FunctionType* GetFunctionType(llvm::Type* ret_type, uint32_t method_idx, bool is_static);
llvm::BasicBlock* GetBasicBlock(uint32_t dex_pc);
llvm::BasicBlock* CreateBasicBlockWithDexPC(uint32_t dex_pc,
const char* postfix);
int32_t GetTryItemOffset(uint32_t dex_pc);
llvm::BasicBlock* GetLandingPadBasicBlock(uint32_t dex_pc);
llvm::BasicBlock* GetUnwindBasicBlock();
void EmitGuard_ExceptionLandingPad(uint32_t dex_pc);
void EmitBranchExceptionLandingPad(uint32_t dex_pc);
//----------------------------------------------------------------------------
// Expand Arithmetic Helper Intrinsics
//----------------------------------------------------------------------------
llvm::Value* Expand_IntegerShift(llvm::Value* src1_value,
llvm::Value* src2_value,
IntegerShiftKind kind,
JType op_jty);
public:
static char ID;
GBCExpanderPass(const IntrinsicHelper& intrinsic_helper, IRBuilder& irb,
art::CompilerDriver* driver, const art::DexCompilationUnit* dex_compilation_unit)
: llvm::FunctionPass(ID), intrinsic_helper_(intrinsic_helper), irb_(irb),
context_(irb.getContext()), rtb_(irb.Runtime()),
shadow_frame_(NULL), old_shadow_frame_(NULL),
driver_(driver),
dex_compilation_unit_(dex_compilation_unit),
func_(NULL), current_bb_(NULL), basic_block_unwind_(NULL), changed_(false) {}
bool runOnFunction(llvm::Function& func);
private:
void InsertStackOverflowCheck(llvm::Function& func);
llvm::Value* ExpandIntrinsic(IntrinsicHelper::IntrinsicId intr_id,
llvm::CallInst& call_inst);
};
char GBCExpanderPass::ID = 0;
bool GBCExpanderPass::runOnFunction(llvm::Function& func) {
VLOG(compiler) << "GBC expansion on " << func.getName().str();
// Runtime support or stub
if (dex_compilation_unit_ == NULL) {
return false;
}
// Setup rewrite context
shadow_frame_ = NULL;
old_shadow_frame_ = NULL;
func_ = &func;
changed_ = false; // Assume unchanged
shadow_frame_vreg_addresses_.resize(dex_compilation_unit_->GetCodeItem()->registers_size_, NULL);
basic_blocks_.resize(dex_compilation_unit_->GetCodeItem()->insns_size_in_code_units_);
basic_block_landing_pads_.resize(dex_compilation_unit_->GetCodeItem()->tries_size_, NULL);
basic_block_unwind_ = NULL;
for (llvm::Function::iterator bb_iter = func_->begin(), bb_end = func_->end();
bb_iter != bb_end;
++bb_iter) {
if (bb_iter->begin()->getMetadata("DexOff") == NULL) {
continue;
}
uint32_t dex_pc = LV2UInt(bb_iter->begin()->getMetadata("DexOff")->getOperand(0));
basic_blocks_[dex_pc] = bb_iter;
}
// Insert stack overflow check
InsertStackOverflowCheck(func); // TODO: Use intrinsic.
// Rewrite the intrinsics
RewriteFunction();
VERIFY_LLVM_FUNCTION(func);
return changed_;
}
void GBCExpanderPass::RewriteBasicBlock(llvm::BasicBlock* original_block) {
llvm::BasicBlock* curr_basic_block = original_block;
llvm::BasicBlock::iterator inst_iter = original_block->begin();
llvm::BasicBlock::iterator inst_end = original_block->end();
while (inst_iter != inst_end) {
llvm::CallInst* call_inst = llvm::dyn_cast<llvm::CallInst>(inst_iter);
IntrinsicHelper::IntrinsicId intr_id = IntrinsicHelper::UnknownId;
if (call_inst) {
llvm::Function* callee_func = call_inst->getCalledFunction();
intr_id = intrinsic_helper_.GetIntrinsicId(callee_func);
}
if (intr_id == IntrinsicHelper::UnknownId) {
// This is not intrinsic call. Skip this instruction.
++inst_iter;
continue;
}
// Rewrite the intrinsic and change the function
changed_ = true;
irb_.SetInsertPoint(inst_iter);
// Expand the intrinsic
if (llvm::Value* new_value = ExpandIntrinsic(intr_id, *call_inst)) {
inst_iter->replaceAllUsesWith(new_value);
}
// Remove the old intrinsic call instruction
llvm::BasicBlock::iterator old_inst = inst_iter++;
old_inst->eraseFromParent();
// Splice the instruction to the new basic block
llvm::BasicBlock* next_basic_block = irb_.GetInsertBlock();
if (next_basic_block != curr_basic_block) {
next_basic_block->getInstList().splice(
irb_.GetInsertPoint(), curr_basic_block->getInstList(),
inst_iter, inst_end);
curr_basic_block = next_basic_block;
inst_end = curr_basic_block->end();
}
}
}
void GBCExpanderPass::RewriteFunction() {
size_t num_basic_blocks = func_->getBasicBlockList().size();
// NOTE: We are not using (bb_iter != bb_end) as the for-loop condition,
// because we will create new basic block while expanding the intrinsics.
// We only want to iterate through the input basic blocks.
landing_pad_phi_mapping_.clear();
for (llvm::Function::iterator bb_iter = func_->begin();
num_basic_blocks > 0; ++bb_iter, --num_basic_blocks) {
// Set insert point to current basic block.
irb_.SetInsertPoint(bb_iter);
current_bb_ = bb_iter;
// Rewrite the basic block
RewriteBasicBlock(bb_iter);
// Update the phi-instructions in the successor basic block
llvm::BasicBlock* last_block = irb_.GetInsertBlock();
if (last_block != bb_iter) {
UpdatePhiInstruction(bb_iter, last_block);
}
}
typedef std::map<llvm::PHINode*, llvm::PHINode*> HandlerPHIMap;
HandlerPHIMap handler_phi;
// Iterate every used landing pad basic block
for (size_t i = 0, ei = basic_block_landing_pads_.size(); i != ei; ++i) {
llvm::BasicBlock* lbb = basic_block_landing_pads_[i];
if (lbb == NULL) {
continue;
}
llvm::TerminatorInst* term_inst = lbb->getTerminator();
std::vector<std::pair<llvm::BasicBlock*, llvm::BasicBlock*>>& rewrite_pair
= landing_pad_phi_mapping_[lbb];
irb_.SetInsertPoint(lbb->begin());
// Iterate every succeeding basic block (catch block)
for (unsigned succ_iter = 0, succ_end = term_inst->getNumSuccessors();
succ_iter != succ_end; ++succ_iter) {
llvm::BasicBlock* succ_basic_block = term_inst->getSuccessor(succ_iter);
// Iterate every phi instructions in the succeeding basic block
for (llvm::BasicBlock::iterator
inst_iter = succ_basic_block->begin(),
inst_end = succ_basic_block->end();
inst_iter != inst_end; ++inst_iter) {
llvm::PHINode *phi = llvm::dyn_cast<llvm::PHINode>(inst_iter);
if (!phi) {
break; // Meet non-phi instruction. Done.
}
if (handler_phi[phi] == NULL) {
handler_phi[phi] = llvm::PHINode::Create(phi->getType(), 1);
}
// Create new_phi in landing pad
llvm::PHINode* new_phi = irb_.CreatePHI(phi->getType(), rewrite_pair.size());
// Insert all incoming value into new_phi by rewrite_pair
for (size_t j = 0, ej = rewrite_pair.size(); j != ej; ++j) {
llvm::BasicBlock* old_bb = rewrite_pair[j].first;
llvm::BasicBlock* new_bb = rewrite_pair[j].second;
new_phi->addIncoming(phi->getIncomingValueForBlock(old_bb), new_bb);
}
// Delete all incoming value from phi by rewrite_pair
for (size_t j = 0, ej = rewrite_pair.size(); j != ej; ++j) {
llvm::BasicBlock* old_bb = rewrite_pair[j].first;
int old_bb_idx = phi->getBasicBlockIndex(old_bb);
if (old_bb_idx >= 0) {
phi->removeIncomingValue(old_bb_idx, false);
}
}
// Insert new_phi into new handler phi
handler_phi[phi]->addIncoming(new_phi, lbb);
}
}
}
// Replace all handler phi
// We can't just use the old handler phi, because some exception edges will disappear after we
// compute fast-path.
for (HandlerPHIMap::iterator it = handler_phi.begin(); it != handler_phi.end(); ++it) {
llvm::PHINode* old_phi = it->first;
llvm::PHINode* new_phi = it->second;
new_phi->insertBefore(old_phi);
old_phi->replaceAllUsesWith(new_phi);
old_phi->eraseFromParent();
}
}
void GBCExpanderPass::UpdatePhiInstruction(llvm::BasicBlock* old_basic_block,
llvm::BasicBlock* new_basic_block) {
llvm::TerminatorInst* term_inst = new_basic_block->getTerminator();
if (!term_inst) {
return; // No terminating instruction in new_basic_block. Nothing to do.
}
// Iterate every succeeding basic block
for (unsigned succ_iter = 0, succ_end = term_inst->getNumSuccessors();
succ_iter != succ_end; ++succ_iter) {
llvm::BasicBlock* succ_basic_block = term_inst->getSuccessor(succ_iter);
// Iterate every phi instructions in the succeeding basic block
for (llvm::BasicBlock::iterator
inst_iter = succ_basic_block->begin(),
inst_end = succ_basic_block->end();
inst_iter != inst_end; ++inst_iter) {
llvm::PHINode *phi = llvm::dyn_cast<llvm::PHINode>(inst_iter);
if (!phi) {
break; // Meet non-phi instruction. Done.
}
// Update the incoming block of this phi instruction
for (llvm::PHINode::block_iterator
ibb_iter = phi->block_begin(), ibb_end = phi->block_end();
ibb_iter != ibb_end; ++ibb_iter) {
if (*ibb_iter == old_basic_block) {
*ibb_iter = new_basic_block;
}
}
}
}
}
llvm::Value* GBCExpanderPass::ExpandToRuntime(RuntimeId rt, llvm::CallInst& inst) {
// Some GBC intrinsic can directly replace with IBC runtime. "Directly" means
// the arguments passed to the GBC intrinsic are as the same as IBC runtime
// function, therefore only called function is needed to change.
unsigned num_args = inst.getNumArgOperands();
if (num_args <= 0) {
return irb_.CreateCall(irb_.GetRuntime(rt));
} else {
std::vector<llvm::Value*> args;
for (unsigned i = 0; i < num_args; i++) {
args.push_back(inst.getArgOperand(i));
}
return irb_.CreateCall(irb_.GetRuntime(rt), args);
}
}
void
GBCExpanderPass::EmitStackOverflowCheck(llvm::Instruction* first_non_alloca) {
llvm::Function* func = first_non_alloca->getParent()->getParent();
llvm::Module* module = func->getParent();
// Call llvm intrinsic function to get frame address.
llvm::Function* frameaddress =
llvm::Intrinsic::getDeclaration(module, llvm::Intrinsic::frameaddress);
// The type of llvm::frameaddress is: i8* @llvm.frameaddress(i32)
llvm::Value* frame_address = irb_.CreateCall(frameaddress, irb_.getInt32(0));
// Cast i8* to int
frame_address = irb_.CreatePtrToInt(frame_address, irb_.getPtrEquivIntTy());
// Get thread.stack_end_
llvm::Value* stack_end =
irb_.Runtime().EmitLoadFromThreadOffset(art::Thread::StackEndOffset().Int32Value(),
irb_.getPtrEquivIntTy(),
kTBAARuntimeInfo);
// Check the frame address < thread.stack_end_ ?
llvm::Value* is_stack_overflow = irb_.CreateICmpULT(frame_address, stack_end);
llvm::BasicBlock* block_exception =
llvm::BasicBlock::Create(context_, "stack_overflow", func);
llvm::BasicBlock* block_continue =
llvm::BasicBlock::Create(context_, "stack_overflow_cont", func);
irb_.CreateCondBr(is_stack_overflow, block_exception, block_continue, kUnlikely);
// If stack overflow, throw exception.
irb_.SetInsertPoint(block_exception);
irb_.CreateCall(irb_.GetRuntime(ThrowStackOverflowException));
// Unwind.
llvm::Type* ret_type = func->getReturnType();
if (ret_type->isVoidTy()) {
irb_.CreateRetVoid();
} else {
// The return value is ignored when there's an exception. MethodCompiler
// returns zero value under the the corresponding return type in this case.
// GBCExpander returns LLVM undef value here for brevity
irb_.CreateRet(llvm::UndefValue::get(ret_type));
}
irb_.SetInsertPoint(block_continue);
}
llvm::Value* GBCExpanderPass::EmitLoadDexCacheAddr(art::MemberOffset offset) {
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
return irb_.LoadFromObjectOffset(method_object_addr,
offset.Int32Value(),
irb_.getJObjectTy(),
kTBAAConstJObject);
}
llvm::Value*
GBCExpanderPass::EmitLoadDexCacheResolvedTypeFieldAddr(uint32_t type_idx) {
llvm::Value* resolved_type_dex_cache_addr =
EmitLoadDexCacheAddr(art::mirror::ArtMethod::DexCacheResolvedTypesOffset());
llvm::Value* type_idx_value = irb_.getPtrEquivInt(type_idx);
return EmitArrayGEP(resolved_type_dex_cache_addr, type_idx_value, kObject);
}
llvm::Value* GBCExpanderPass::
EmitLoadDexCacheResolvedMethodFieldAddr(uint32_t method_idx) {
llvm::Value* resolved_method_dex_cache_addr =
EmitLoadDexCacheAddr(art::mirror::ArtMethod::DexCacheResolvedMethodsOffset());
llvm::Value* method_idx_value = irb_.getPtrEquivInt(method_idx);
return EmitArrayGEP(resolved_method_dex_cache_addr, method_idx_value, kObject);
}
llvm::Value* GBCExpanderPass::
EmitLoadDexCacheStringFieldAddr(uint32_t string_idx) {
llvm::Value* string_dex_cache_addr =
EmitLoadDexCacheAddr(art::mirror::ArtMethod::DexCacheStringsOffset());
llvm::Value* string_idx_value = irb_.getPtrEquivInt(string_idx);
return EmitArrayGEP(string_dex_cache_addr, string_idx_value, kObject);
}
llvm::Value* GBCExpanderPass::EmitLoadMethodObjectAddr() {
llvm::Function* parent_func = irb_.GetInsertBlock()->getParent();
return parent_func->arg_begin();
}
llvm::Value* GBCExpanderPass::EmitLoadArrayLength(llvm::Value* array) {
// Load array length
return irb_.LoadFromObjectOffset(array,
art::mirror::Array::LengthOffset().Int32Value(),
irb_.getJIntTy(),
kTBAAConstJObject);
}
llvm::Value*
GBCExpanderPass::EmitLoadSDCalleeMethodObjectAddr(uint32_t callee_method_idx) {
llvm::Value* callee_method_object_field_addr =
EmitLoadDexCacheResolvedMethodFieldAddr(callee_method_idx);
return irb_.CreateLoad(callee_method_object_field_addr, kTBAARuntimeInfo);
}
llvm::Value* GBCExpanderPass::
EmitLoadVirtualCalleeMethodObjectAddr(int vtable_idx, llvm::Value* this_addr) {
// Load class object of *this* pointer
llvm::Value* class_object_addr =
irb_.LoadFromObjectOffset(this_addr,
art::mirror::Object::ClassOffset().Int32Value(),
irb_.getJObjectTy(),
kTBAAConstJObject);
// Load vtable address
llvm::Value* vtable_addr =
irb_.LoadFromObjectOffset(class_object_addr,
art::mirror::Class::VTableOffset().Int32Value(),
irb_.getJObjectTy(),
kTBAAConstJObject);
// Load callee method object
llvm::Value* vtable_idx_value =
irb_.getPtrEquivInt(static_cast<uint64_t>(vtable_idx));
llvm::Value* method_field_addr =
EmitArrayGEP(vtable_addr, vtable_idx_value, kObject);
return irb_.CreateLoad(method_field_addr, kTBAAConstJObject);
}
// Emit Array GetElementPtr
llvm::Value* GBCExpanderPass::EmitArrayGEP(llvm::Value* array_addr,
llvm::Value* index_value,
JType elem_jty) {
int data_offset;
if (elem_jty == kLong || elem_jty == kDouble ||
(elem_jty == kObject && sizeof(uint64_t) == sizeof(art::mirror::Object*))) {
data_offset = art::mirror::Array::DataOffset(sizeof(int64_t)).Int32Value();
} else {
data_offset = art::mirror::Array::DataOffset(sizeof(int32_t)).Int32Value();
}
llvm::Constant* data_offset_value =
irb_.getPtrEquivInt(data_offset);
llvm::Type* elem_type = irb_.getJType(elem_jty);
llvm::Value* array_data_addr =
irb_.CreatePtrDisp(array_addr, data_offset_value,
elem_type->getPointerTo());
return irb_.CreateGEP(array_data_addr, index_value);
}
llvm::Value* GBCExpanderPass::EmitInvoke(llvm::CallInst& call_inst) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
art::InvokeType invoke_type =
static_cast<art::InvokeType>(LV2UInt(call_inst.getArgOperand(0)));
bool is_static = (invoke_type == art::kStatic);
art::MethodReference target_method(dex_compilation_unit_->GetDexFile(),
LV2UInt(call_inst.getArgOperand(1)));
// Load *this* actual parameter
llvm::Value* this_addr = (!is_static) ? call_inst.getArgOperand(3) : NULL;
// Compute invoke related information for compiler decision
int vtable_idx = -1;
uintptr_t direct_code = 0;
uintptr_t direct_method = 0;
bool is_fast_path = driver_->ComputeInvokeInfo(dex_compilation_unit_, dex_pc,
true, true,
&invoke_type, &target_method,
&vtable_idx,
&direct_code, &direct_method);
// Load the method object
llvm::Value* callee_method_object_addr = NULL;
if (!is_fast_path) {
callee_method_object_addr =
EmitCallRuntimeForCalleeMethodObjectAddr(target_method.dex_method_index, invoke_type,
this_addr, dex_pc, is_fast_path);
} else {
switch (invoke_type) {
case art::kStatic:
case art::kDirect:
if (direct_method != 0u &&
direct_method != static_cast<uintptr_t>(-1)) {
callee_method_object_addr =
irb_.CreateIntToPtr(irb_.getPtrEquivInt(direct_method),
irb_.getJObjectTy());
} else {
callee_method_object_addr =
EmitLoadSDCalleeMethodObjectAddr(target_method.dex_method_index);
}
break;
case art::kVirtual:
DCHECK_NE(vtable_idx, -1);
callee_method_object_addr =
EmitLoadVirtualCalleeMethodObjectAddr(vtable_idx, this_addr);
break;
case art::kSuper:
LOG(FATAL) << "invoke-super should be promoted to invoke-direct in "
"the fast path.";
break;
case art::kInterface:
callee_method_object_addr =
EmitCallRuntimeForCalleeMethodObjectAddr(target_method.dex_method_index,
invoke_type, this_addr,
dex_pc, is_fast_path);
break;
}
}
// Load the actual parameter
std::vector<llvm::Value*> args;
args.push_back(callee_method_object_addr); // method object for callee
for (uint32_t i = 3; i < call_inst.getNumArgOperands(); ++i) {
args.push_back(call_inst.getArgOperand(i));
}
llvm::Value* code_addr;
llvm::Type* func_type = GetFunctionType(call_inst.getType(),
target_method.dex_method_index, is_static);
if (direct_code != 0u && direct_code != static_cast<uintptr_t>(-1)) {
code_addr =
irb_.CreateIntToPtr(irb_.getPtrEquivInt(direct_code),
func_type->getPointerTo());
} else {
code_addr =
irb_.LoadFromObjectOffset(callee_method_object_addr,
art::mirror::ArtMethod::EntryPointFromPortableCompiledCodeOffset().Int32Value(),
func_type->getPointerTo(), kTBAARuntimeInfo);
}
// Invoke callee
EmitUpdateDexPC(dex_pc);
llvm::Value* retval = irb_.CreateCall(code_addr, args);
EmitGuard_ExceptionLandingPad(dex_pc);
return retval;
}
bool GBCExpanderPass::EmitIntrinsic(llvm::CallInst& call_inst,
llvm::Value** result) {
DCHECK(result != NULL);
uint32_t callee_method_idx = LV2UInt(call_inst.getArgOperand(1));
std::string callee_method_name(
PrettyMethod(callee_method_idx, *dex_compilation_unit_->GetDexFile()));
if (callee_method_name == "int java.lang.String.length()") {
return EmitIntrinsicStringLengthOrIsEmpty(call_inst, result,
false /* is_empty */);
}
if (callee_method_name == "boolean java.lang.String.isEmpty()") {
return EmitIntrinsicStringLengthOrIsEmpty(call_inst, result,
true /* is_empty */);
}
*result = NULL;
return false;
}
bool GBCExpanderPass::EmitIntrinsicStringLengthOrIsEmpty(llvm::CallInst& call_inst,
llvm::Value** result,
bool is_empty) {
art::InvokeType invoke_type =
static_cast<art::InvokeType>(LV2UInt(call_inst.getArgOperand(0)));
DCHECK_NE(invoke_type, art::kStatic);
DCHECK_EQ(call_inst.getNumArgOperands(), 4U);
llvm::Value* this_object = call_inst.getArgOperand(3);
llvm::Value* string_count =
irb_.LoadFromObjectOffset(this_object,
art::mirror::String::CountOffset().Int32Value(),
irb_.getJIntTy(),
kTBAAConstJObject);
if (is_empty) {
llvm::Value* count_equals_zero = irb_.CreateICmpEQ(string_count,
irb_.getJInt(0));
llvm::Value* is_empty = irb_.CreateSelect(count_equals_zero,
irb_.getJBoolean(true),
irb_.getJBoolean(false));
is_empty = SignOrZeroExtendCat1Types(is_empty, kBoolean);
*result = is_empty;
} else {
*result = string_count;
}
return true;
}
void GBCExpanderPass::Expand_TestSuspend(llvm::CallInst& call_inst) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
llvm::Value* suspend_count =
irb_.Runtime().EmitLoadFromThreadOffset(art::Thread::ThreadFlagsOffset().Int32Value(),
irb_.getInt16Ty(),
kTBAARuntimeInfo);
llvm::Value* is_suspend = irb_.CreateICmpNE(suspend_count, irb_.getInt16(0));
llvm::BasicBlock* basic_block_suspend = CreateBasicBlockWithDexPC(dex_pc, "suspend");
llvm::BasicBlock* basic_block_cont = CreateBasicBlockWithDexPC(dex_pc, "suspend_cont");
irb_.CreateCondBr(is_suspend, basic_block_suspend, basic_block_cont, kUnlikely);
irb_.SetInsertPoint(basic_block_suspend);
if (dex_pc != art::DexFile::kDexNoIndex) {
EmitUpdateDexPC(dex_pc);
}
irb_.Runtime().EmitTestSuspend();
llvm::BasicBlock* basic_block_exception = CreateBasicBlockWithDexPC(dex_pc, "exception");
llvm::Value* exception_pending = irb_.Runtime().EmitIsExceptionPending();
irb_.CreateCondBr(exception_pending, basic_block_exception, basic_block_cont, kUnlikely);
irb_.SetInsertPoint(basic_block_exception);
llvm::Type* ret_type = call_inst.getParent()->getParent()->getReturnType();
if (ret_type->isVoidTy()) {
irb_.CreateRetVoid();
} else {
// The return value is ignored when there's an exception.
irb_.CreateRet(llvm::UndefValue::get(ret_type));
}
irb_.SetInsertPoint(basic_block_cont);
return;
}
void GBCExpanderPass::Expand_MarkGCCard(llvm::CallInst& call_inst) {
irb_.Runtime().EmitMarkGCCard(call_inst.getArgOperand(0), call_inst.getArgOperand(1));
return;
}
llvm::Value*
GBCExpanderPass::Expand_LoadStringFromDexCache(llvm::Value* string_idx_value) {
uint32_t string_idx =
llvm::cast<llvm::ConstantInt>(string_idx_value)->getZExtValue();
llvm::Value* string_field_addr = EmitLoadDexCacheStringFieldAddr(string_idx);
return irb_.CreateLoad(string_field_addr, kTBAARuntimeInfo);
}
llvm::Value*
GBCExpanderPass::Expand_LoadTypeFromDexCache(llvm::Value* type_idx_value) {
uint32_t type_idx =
llvm::cast<llvm::ConstantInt>(type_idx_value)->getZExtValue();
llvm::Value* type_field_addr =
EmitLoadDexCacheResolvedTypeFieldAddr(type_idx);
return irb_.CreateLoad(type_field_addr, kTBAARuntimeInfo);
}
void GBCExpanderPass::Expand_LockObject(llvm::Value* obj) {
rtb_.EmitLockObject(obj);
return;
}
void GBCExpanderPass::Expand_UnlockObject(llvm::Value* obj) {
rtb_.EmitUnlockObject(obj);
return;
}
llvm::Value* GBCExpanderPass::Expand_ArrayGet(llvm::Value* array_addr,
llvm::Value* index_value,
JType elem_jty) {
llvm::Value* array_elem_addr =
EmitArrayGEP(array_addr, index_value, elem_jty);
return irb_.CreateLoad(array_elem_addr, kTBAAHeapArray, elem_jty);
}
void GBCExpanderPass::Expand_ArrayPut(llvm::Value* new_value,
llvm::Value* array_addr,
llvm::Value* index_value,
JType elem_jty) {
llvm::Value* array_elem_addr =
EmitArrayGEP(array_addr, index_value, elem_jty);
irb_.CreateStore(new_value, array_elem_addr, kTBAAHeapArray, elem_jty);
return;
}
void GBCExpanderPass::Expand_FilledNewArray(llvm::CallInst& call_inst) {
// Most of the codes refer to MethodCompiler::EmitInsn_FilledNewArray
llvm::Value* array = call_inst.getArgOperand(0);
uint32_t element_jty =
llvm::cast<llvm::ConstantInt>(call_inst.getArgOperand(1))->getZExtValue();
DCHECK_GT(call_inst.getNumArgOperands(), 2U);
unsigned num_elements = (call_inst.getNumArgOperands() - 2);
bool is_elem_int_ty = (static_cast<JType>(element_jty) == kInt);
uint32_t alignment;
llvm::Constant* elem_size;
llvm::PointerType* field_type;
// NOTE: Currently filled-new-array only supports 'L', '[', and 'I'
// as the element, thus we are only checking 2 cases: primitive int and
// non-primitive type.
if (is_elem_int_ty) {
alignment = sizeof(int32_t);
elem_size = irb_.getPtrEquivInt(sizeof(int32_t));
field_type = irb_.getJIntTy()->getPointerTo();
} else {
alignment = irb_.getSizeOfPtrEquivInt();
elem_size = irb_.getSizeOfPtrEquivIntValue();
field_type = irb_.getJObjectTy()->getPointerTo();
}
llvm::Value* data_field_offset =
irb_.getPtrEquivInt(art::mirror::Array::DataOffset(alignment).Int32Value());
llvm::Value* data_field_addr =
irb_.CreatePtrDisp(array, data_field_offset, field_type);
for (unsigned i = 0; i < num_elements; ++i) {
// Values to fill the array begin at the 3rd argument
llvm::Value* reg_value = call_inst.getArgOperand(2 + i);
irb_.CreateStore(reg_value, data_field_addr, kTBAAHeapArray);
data_field_addr =
irb_.CreatePtrDisp(data_field_addr, elem_size, field_type);
}
return;
}
llvm::Value* GBCExpanderPass::Expand_IGetFast(llvm::Value* field_offset_value,
llvm::Value* /*is_volatile_value*/,
llvm::Value* object_addr,
JType field_jty) {
int field_offset =
llvm::cast<llvm::ConstantInt>(field_offset_value)->getSExtValue();
DCHECK_GE(field_offset, 0);
llvm::PointerType* field_type =
irb_.getJType(field_jty)->getPointerTo();
field_offset_value = irb_.getPtrEquivInt(field_offset);
llvm::Value* field_addr =
irb_.CreatePtrDisp(object_addr, field_offset_value, field_type);
// TODO: Check is_volatile. We need to generate atomic load instruction
// when is_volatile is true.
return irb_.CreateLoad(field_addr, kTBAAHeapInstance, field_jty);
}
void GBCExpanderPass::Expand_IPutFast(llvm::Value* field_offset_value,
llvm::Value* /* is_volatile_value */,
llvm::Value* object_addr,
llvm::Value* new_value,
JType field_jty) {
int field_offset =
llvm::cast<llvm::ConstantInt>(field_offset_value)->getSExtValue();
DCHECK_GE(field_offset, 0);
llvm::PointerType* field_type =
irb_.getJType(field_jty)->getPointerTo();
field_offset_value = irb_.getPtrEquivInt(field_offset);
llvm::Value* field_addr =
irb_.CreatePtrDisp(object_addr, field_offset_value, field_type);
// TODO: Check is_volatile. We need to generate atomic store instruction
// when is_volatile is true.
irb_.CreateStore(new_value, field_addr, kTBAAHeapInstance, field_jty);
return;
}
llvm::Value* GBCExpanderPass::Expand_SGetFast(llvm::Value* static_storage_addr,
llvm::Value* field_offset_value,
llvm::Value* /*is_volatile_value*/,
JType field_jty) {
int field_offset =
llvm::cast<llvm::ConstantInt>(field_offset_value)->getSExtValue();
DCHECK_GE(field_offset, 0);
llvm::Value* static_field_offset_value = irb_.getPtrEquivInt(field_offset);
llvm::Value* static_field_addr =
irb_.CreatePtrDisp(static_storage_addr, static_field_offset_value,
irb_.getJType(field_jty)->getPointerTo());
// TODO: Check is_volatile. We need to generate atomic store instruction
// when is_volatile is true.
return irb_.CreateLoad(static_field_addr, kTBAAHeapStatic, field_jty);
}
void GBCExpanderPass::Expand_SPutFast(llvm::Value* static_storage_addr,
llvm::Value* field_offset_value,
llvm::Value* /* is_volatile_value */,
llvm::Value* new_value,
JType field_jty) {
int field_offset =
llvm::cast<llvm::ConstantInt>(field_offset_value)->getSExtValue();
DCHECK_GE(field_offset, 0);
llvm::Value* static_field_offset_value = irb_.getPtrEquivInt(field_offset);
llvm::Value* static_field_addr =
irb_.CreatePtrDisp(static_storage_addr, static_field_offset_value,
irb_.getJType(field_jty)->getPointerTo());
// TODO: Check is_volatile. We need to generate atomic store instruction
// when is_volatile is true.
irb_.CreateStore(new_value, static_field_addr, kTBAAHeapStatic, field_jty);
return;
}
llvm::Value*
GBCExpanderPass::Expand_LoadDeclaringClassSSB(llvm::Value* method_object_addr) {
return irb_.LoadFromObjectOffset(method_object_addr,
art::mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
irb_.getJObjectTy(),
kTBAAConstJObject);
}
llvm::Value*
GBCExpanderPass::Expand_GetSDCalleeMethodObjAddrFast(llvm::Value* callee_method_idx_value) {
uint32_t callee_method_idx =
llvm::cast<llvm::ConstantInt>(callee_method_idx_value)->getZExtValue();
return EmitLoadSDCalleeMethodObjectAddr(callee_method_idx);
}
llvm::Value* GBCExpanderPass::Expand_GetVirtualCalleeMethodObjAddrFast(
llvm::Value* vtable_idx_value,
llvm::Value* this_addr) {
int vtable_idx =
llvm::cast<llvm::ConstantInt>(vtable_idx_value)->getSExtValue();
return EmitLoadVirtualCalleeMethodObjectAddr(vtable_idx, this_addr);
}
llvm::Value* GBCExpanderPass::Expand_Invoke(llvm::CallInst& call_inst) {
// Most of the codes refer to MethodCompiler::EmitInsn_Invoke
llvm::Value* callee_method_object_addr = call_inst.getArgOperand(0);
unsigned num_args = call_inst.getNumArgOperands();
llvm::Type* ret_type = call_inst.getType();
// Determine the function type of the callee method
std::vector<llvm::Type*> args_type;
std::vector<llvm::Value*> args;
for (unsigned i = 0; i < num_args; i++) {
args.push_back(call_inst.getArgOperand(i));
args_type.push_back(args[i]->getType());
}
llvm::FunctionType* callee_method_type =
llvm::FunctionType::get(ret_type, args_type, false);
llvm::Value* code_addr =
irb_.LoadFromObjectOffset(callee_method_object_addr,
art::mirror::ArtMethod::EntryPointFromPortableCompiledCodeOffset().Int32Value(),
callee_method_type->getPointerTo(),
kTBAARuntimeInfo);
// Invoke callee
llvm::Value* retval = irb_.CreateCall(code_addr, args);
return retval;
}
llvm::Value* GBCExpanderPass::Expand_DivRem(llvm::CallInst& call_inst,
bool is_div, JType op_jty) {
llvm::Value* dividend = call_inst.getArgOperand(0);
llvm::Value* divisor = call_inst.getArgOperand(1);
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
EmitGuard_DivZeroException(dex_pc, divisor, op_jty);
// Most of the codes refer to MethodCompiler::EmitIntDivRemResultComputation
// Check the special case: MININT / -1 = MININT
// That case will cause overflow, which is undefined behavior in llvm.
// So we check the divisor is -1 or not, if the divisor is -1, we do
// the special path to avoid undefined behavior.
llvm::Type* op_type = irb_.getJType(op_jty);
llvm::Value* zero = irb_.getJZero(op_jty);
llvm::Value* neg_one = llvm::ConstantInt::getSigned(op_type, -1);
llvm::Function* parent = irb_.GetInsertBlock()->getParent();
llvm::BasicBlock* eq_neg_one = llvm::BasicBlock::Create(context_, "", parent);
llvm::BasicBlock* ne_neg_one = llvm::BasicBlock::Create(context_, "", parent);
llvm::BasicBlock* neg_one_cont =
llvm::BasicBlock::Create(context_, "", parent);
llvm::Value* is_equal_neg_one = irb_.CreateICmpEQ(divisor, neg_one);
irb_.CreateCondBr(is_equal_neg_one, eq_neg_one, ne_neg_one, kUnlikely);
// If divisor == -1
irb_.SetInsertPoint(eq_neg_one);
llvm::Value* eq_result;
if (is_div) {
// We can just change from "dividend div -1" to "neg dividend". The sub
// don't care the sign/unsigned because of two's complement representation.
// And the behavior is what we want:
// -(2^n) (2^n)-1
// MININT < k <= MAXINT -> mul k -1 = -k
// MININT == k -> mul k -1 = k
//
// LLVM use sub to represent 'neg'
eq_result = irb_.CreateSub(zero, dividend);
} else {
// Everything modulo -1 will be 0.
eq_result = zero;
}
irb_.CreateBr(neg_one_cont);
// If divisor != -1, just do the division.
irb_.SetInsertPoint(ne_neg_one);
llvm::Value* ne_result;
if (is_div) {
ne_result = irb_.CreateSDiv(dividend, divisor);
} else {
ne_result = irb_.CreateSRem(dividend, divisor);
}
irb_.CreateBr(neg_one_cont);
irb_.SetInsertPoint(neg_one_cont);
llvm::PHINode* result = irb_.CreatePHI(op_type, 2);
result->addIncoming(eq_result, eq_neg_one);
result->addIncoming(ne_result, ne_neg_one);
return result;
}
void GBCExpanderPass::Expand_AllocaShadowFrame(llvm::Value* num_vregs_value) {
// Most of the codes refer to MethodCompiler::EmitPrologueAllocShadowFrame and
// MethodCompiler::EmitPushShadowFrame
uint16_t num_vregs =
llvm::cast<llvm::ConstantInt>(num_vregs_value)->getZExtValue();
llvm::StructType* shadow_frame_type =
irb_.getShadowFrameTy(num_vregs);
// Create allocas at the start of entry block.
llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP();
llvm::BasicBlock* entry_block = &func_->front();
irb_.SetInsertPoint(&entry_block->front());
shadow_frame_ = irb_.CreateAlloca(shadow_frame_type);
// Alloca a pointer to old shadow frame
old_shadow_frame_ =
irb_.CreateAlloca(shadow_frame_type->getElementType(0)->getPointerTo());
irb_.restoreIP(irb_ip_original);
// Push the shadow frame
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* shadow_frame_upcast =
irb_.CreateConstGEP2_32(shadow_frame_, 0, 0);
llvm::Value* result = rtb_.EmitPushShadowFrame(shadow_frame_upcast,
method_object_addr,
num_vregs);
irb_.CreateStore(result, old_shadow_frame_, kTBAARegister);
return;
}
void GBCExpanderPass::Expand_SetVReg(llvm::Value* entry_idx,
llvm::Value* value) {
unsigned vreg_idx = LV2UInt(entry_idx);
DCHECK_LT(vreg_idx, dex_compilation_unit_->GetCodeItem()->registers_size_);
llvm::Value* vreg_addr = shadow_frame_vreg_addresses_[vreg_idx];
if (UNLIKELY(vreg_addr == NULL)) {
DCHECK(shadow_frame_ != NULL);
llvm::Value* gep_index[] = {
irb_.getInt32(0), // No pointer displacement
irb_.getInt32(1), // VRegs
entry_idx // Pointer field
};
// A shadow frame address must dominate every use in the function so we
// place it in the entry block right after the allocas.
llvm::BasicBlock::iterator first_non_alloca = func_->getEntryBlock().begin();
while (llvm::isa<llvm::AllocaInst>(first_non_alloca)) {
++first_non_alloca;
}
llvm::IRBuilderBase::InsertPoint ip = irb_.saveIP();
irb_.SetInsertPoint(static_cast<llvm::Instruction*>(first_non_alloca));
vreg_addr = irb_.CreateGEP(shadow_frame_, gep_index);
shadow_frame_vreg_addresses_[vreg_idx] = vreg_addr;
irb_.restoreIP(ip);
}
irb_.CreateStore(value,
irb_.CreateBitCast(vreg_addr, value->getType()->getPointerTo()),
kTBAAShadowFrame);
return;
}
void GBCExpanderPass::Expand_PopShadowFrame() {
if (old_shadow_frame_ == NULL) {
return;
}
rtb_.EmitPopShadowFrame(irb_.CreateLoad(old_shadow_frame_, kTBAARegister));
return;
}
void GBCExpanderPass::Expand_UpdateDexPC(llvm::Value* dex_pc_value) {
irb_.StoreToObjectOffset(shadow_frame_,
art::ShadowFrame::DexPCOffset(),
dex_pc_value,
kTBAAShadowFrame);
return;
}
void GBCExpanderPass::InsertStackOverflowCheck(llvm::Function& func) {
// All alloca instructions are generated in the first basic block of the
// function, and there are no alloca instructions after the first non-alloca
// instruction.
llvm::BasicBlock* first_basic_block = &func.front();
// Look for first non-alloca instruction
llvm::BasicBlock::iterator first_non_alloca = first_basic_block->begin();
while (llvm::isa<llvm::AllocaInst>(first_non_alloca)) {
++first_non_alloca;
}
irb_.SetInsertPoint(first_non_alloca);
// Insert stack overflow check codes before first_non_alloca (i.e., after all
// alloca instructions)
EmitStackOverflowCheck(&*first_non_alloca);
irb_.Runtime().EmitTestSuspend();
llvm::BasicBlock* next_basic_block = irb_.GetInsertBlock();
if (next_basic_block != first_basic_block) {
// Splice the rest of the instruction to the continuing basic block
next_basic_block->getInstList().splice(
irb_.GetInsertPoint(), first_basic_block->getInstList(),
first_non_alloca, first_basic_block->end());
// Rewrite the basic block
RewriteBasicBlock(next_basic_block);
// Update the phi-instructions in the successor basic block
UpdatePhiInstruction(first_basic_block, irb_.GetInsertBlock());
}
// We have changed the basic block
changed_ = true;
}
// ==== High-level intrinsic expander ==========================================
llvm::Value* GBCExpanderPass::Expand_FPCompare(llvm::Value* src1_value,
llvm::Value* src2_value,
bool gt_bias) {
llvm::Value* cmp_eq = irb_.CreateFCmpOEQ(src1_value, src2_value);
llvm::Value* cmp_lt;
if (gt_bias) {
cmp_lt = irb_.CreateFCmpOLT(src1_value, src2_value);
} else {
cmp_lt = irb_.CreateFCmpULT(src1_value, src2_value);
}
return EmitCompareResultSelection(cmp_eq, cmp_lt);
}
llvm::Value* GBCExpanderPass::Expand_LongCompare(llvm::Value* src1_value, llvm::Value* src2_value) {
llvm::Value* cmp_eq = irb_.CreateICmpEQ(src1_value, src2_value);
llvm::Value* cmp_lt = irb_.CreateICmpSLT(src1_value, src2_value);
return EmitCompareResultSelection(cmp_eq, cmp_lt);
}
llvm::Value* GBCExpanderPass::EmitCompareResultSelection(llvm::Value* cmp_eq,
llvm::Value* cmp_lt) {
llvm::Constant* zero = irb_.getJInt(0);
llvm::Constant* pos1 = irb_.getJInt(1);
llvm::Constant* neg1 = irb_.getJInt(-1);
llvm::Value* result_lt = irb_.CreateSelect(cmp_lt, neg1, pos1);
llvm::Value* result_eq = irb_.CreateSelect(cmp_eq, zero, result_lt);
return result_eq;
}
llvm::Value* GBCExpanderPass::Expand_IntegerShift(llvm::Value* src1_value,
llvm::Value* src2_value,
IntegerShiftKind kind,
JType op_jty) {
DCHECK(op_jty == kInt || op_jty == kLong);
// Mask and zero-extend RHS properly
if (op_jty == kInt) {
src2_value = irb_.CreateAnd(src2_value, 0x1f);
} else {
llvm::Value* masked_src2_value = irb_.CreateAnd(src2_value, 0x3f);
src2_value = irb_.CreateZExt(masked_src2_value, irb_.getJLongTy());
}
// Create integer shift llvm instruction
switch (kind) {
case kIntegerSHL:
return irb_.CreateShl(src1_value, src2_value);
case kIntegerSHR:
return irb_.CreateAShr(src1_value, src2_value);
case kIntegerUSHR:
return irb_.CreateLShr(src1_value, src2_value);
default:
LOG(FATAL) << "Unknown integer shift kind: " << kind;
return NULL;
}
}
llvm::Value* GBCExpanderPass::SignOrZeroExtendCat1Types(llvm::Value* value, JType jty) {
switch (jty) {
case kBoolean:
case kChar:
return irb_.CreateZExt(value, irb_.getJType(kInt));
case kByte:
case kShort:
return irb_.CreateSExt(value, irb_.getJType(kInt));
case kVoid:
case kInt:
case kLong:
case kFloat:
case kDouble:
case kObject:
return value; // Nothing to do.
default:
LOG(FATAL) << "Unknown java type: " << jty;
return NULL;
}
}
llvm::Value* GBCExpanderPass::TruncateCat1Types(llvm::Value* value, JType jty) {
switch (jty) {
case kBoolean:
case kChar:
case kByte:
case kShort:
return irb_.CreateTrunc(value, irb_.getJType(jty));
case kVoid:
case kInt:
case kLong:
case kFloat:
case kDouble:
case kObject:
return value; // Nothing to do.
default:
LOG(FATAL) << "Unknown java type: " << jty;
return NULL;
}
}
llvm::Value* GBCExpanderPass::Expand_HLArrayGet(llvm::CallInst& call_inst,
JType elem_jty) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
llvm::Value* array_addr = call_inst.getArgOperand(1);
llvm::Value* index_value = call_inst.getArgOperand(2);
int opt_flags = LV2UInt(call_inst.getArgOperand(0));
EmitGuard_NullPointerException(dex_pc, array_addr, opt_flags);
EmitGuard_ArrayIndexOutOfBoundsException(dex_pc, array_addr, index_value,
opt_flags);
llvm::Value* array_elem_addr = EmitArrayGEP(array_addr, index_value, elem_jty);
llvm::Value* array_elem_value = irb_.CreateLoad(array_elem_addr, kTBAAHeapArray, elem_jty);
return SignOrZeroExtendCat1Types(array_elem_value, elem_jty);
}
void GBCExpanderPass::Expand_HLArrayPut(llvm::CallInst& call_inst,
JType elem_jty) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
llvm::Value* new_value = call_inst.getArgOperand(1);
llvm::Value* array_addr = call_inst.getArgOperand(2);
llvm::Value* index_value = call_inst.getArgOperand(3);
int opt_flags = LV2UInt(call_inst.getArgOperand(0));
EmitGuard_NullPointerException(dex_pc, array_addr, opt_flags);
EmitGuard_ArrayIndexOutOfBoundsException(dex_pc, array_addr, index_value,
opt_flags);
new_value = TruncateCat1Types(new_value, elem_jty);
llvm::Value* array_elem_addr = EmitArrayGEP(array_addr, index_value, elem_jty);
if (elem_jty == kObject) { // If put an object, check the type, and mark GC card table.
llvm::Function* runtime_func = irb_.GetRuntime(CheckPutArrayElement);
irb_.CreateCall2(runtime_func, new_value, array_addr);
EmitGuard_ExceptionLandingPad(dex_pc);
EmitMarkGCCard(new_value, array_addr);
}
irb_.CreateStore(new_value, array_elem_addr, kTBAAHeapArray, elem_jty);
return;
}
llvm::Value* GBCExpanderPass::Expand_HLIGet(llvm::CallInst& call_inst,
JType field_jty) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
llvm::Value* object_addr = call_inst.getArgOperand(1);
uint32_t field_idx = LV2UInt(call_inst.getArgOperand(2));
int opt_flags = LV2UInt(call_inst.getArgOperand(0));
EmitGuard_NullPointerException(dex_pc, object_addr, opt_flags);
llvm::Value* field_value;
art::MemberOffset field_offset(0u);
bool is_volatile;
bool is_fast_path = driver_->ComputeInstanceFieldInfo(
field_idx, dex_compilation_unit_, false, &field_offset, &is_volatile);
if (!is_fast_path) {
llvm::Function* runtime_func;
if (field_jty == kObject) {
runtime_func = irb_.GetRuntime(GetObjectInstance);
} else if (field_jty == kLong || field_jty == kDouble) {
runtime_func = irb_.GetRuntime(Get64Instance);
} else {
runtime_func = irb_.GetRuntime(Get32Instance);
}
llvm::ConstantInt* field_idx_value = irb_.getInt32(field_idx);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
EmitUpdateDexPC(dex_pc);
field_value = irb_.CreateCall3(runtime_func, field_idx_value,
method_object_addr, object_addr);
EmitGuard_ExceptionLandingPad(dex_pc);
if (field_jty == kFloat || field_jty == kDouble) {
field_value = irb_.CreateBitCast(field_value, irb_.getJType(field_jty));
}
} else {
DCHECK_GE(field_offset.Int32Value(), 0);
llvm::PointerType* field_type =
irb_.getJType(field_jty)->getPointerTo();
llvm::ConstantInt* field_offset_value = irb_.getPtrEquivInt(field_offset.Int32Value());
llvm::Value* field_addr =
irb_.CreatePtrDisp(object_addr, field_offset_value, field_type);
field_value = irb_.CreateLoad(field_addr, kTBAAHeapInstance, field_jty);
field_value = SignOrZeroExtendCat1Types(field_value, field_jty);
if (is_volatile) {
irb_.CreateMemoryBarrier(art::kLoadLoad);
}
}
return field_value;
}
void GBCExpanderPass::Expand_HLIPut(llvm::CallInst& call_inst,
JType field_jty) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
llvm::Value* new_value = call_inst.getArgOperand(1);
llvm::Value* object_addr = call_inst.getArgOperand(2);
uint32_t field_idx = LV2UInt(call_inst.getArgOperand(3));
int opt_flags = LV2UInt(call_inst.getArgOperand(0));
EmitGuard_NullPointerException(dex_pc, object_addr, opt_flags);
art::MemberOffset field_offset(0u);
bool is_volatile;
bool is_fast_path = driver_->ComputeInstanceFieldInfo(
field_idx, dex_compilation_unit_, true, &field_offset, &is_volatile);
if (!is_fast_path) {
llvm::Function* runtime_func;
if (field_jty == kFloat) {
new_value = irb_.CreateBitCast(new_value, irb_.getJType(kInt));
} else if (field_jty == kDouble) {
new_value = irb_.CreateBitCast(new_value, irb_.getJType(kLong));
}
if (field_jty == kObject) {
runtime_func = irb_.GetRuntime(SetObjectInstance);
} else if (field_jty == kLong || field_jty == kDouble) {
runtime_func = irb_.GetRuntime(Set64Instance);
} else {
runtime_func = irb_.GetRuntime(Set32Instance);
}
llvm::Value* field_idx_value = irb_.getInt32(field_idx);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
EmitUpdateDexPC(dex_pc);
irb_.CreateCall4(runtime_func, field_idx_value,
method_object_addr, object_addr, new_value);
EmitGuard_ExceptionLandingPad(dex_pc);
} else {
DCHECK_GE(field_offset.Int32Value(), 0);
if (is_volatile) {
irb_.CreateMemoryBarrier(art::kStoreStore);
}
llvm::PointerType* field_type =
irb_.getJType(field_jty)->getPointerTo();
llvm::Value* field_offset_value = irb_.getPtrEquivInt(field_offset.Int32Value());
llvm::Value* field_addr =
irb_.CreatePtrDisp(object_addr, field_offset_value, field_type);
new_value = TruncateCat1Types(new_value, field_jty);
irb_.CreateStore(new_value, field_addr, kTBAAHeapInstance, field_jty);
if (is_volatile) {
irb_.CreateMemoryBarrier(art::kLoadLoad);
}
if (field_jty == kObject) { // If put an object, mark the GC card table.
EmitMarkGCCard(new_value, object_addr);
}
}
return;
}
llvm::Value* GBCExpanderPass::EmitLoadConstantClass(uint32_t dex_pc,
uint32_t type_idx) {
if (!driver_->CanAccessTypeWithoutChecks(dex_compilation_unit_->GetDexMethodIndex(),
*dex_compilation_unit_->GetDexFile(), type_idx)) {
llvm::Value* type_idx_value = irb_.getInt32(type_idx);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread();
llvm::Function* runtime_func = irb_.GetRuntime(InitializeTypeAndVerifyAccess);
EmitUpdateDexPC(dex_pc);
llvm::Value* type_object_addr =
irb_.CreateCall3(runtime_func, type_idx_value, method_object_addr, thread_object_addr);
EmitGuard_ExceptionLandingPad(dex_pc);
return type_object_addr;
} else {
// Try to load the class (type) object from the test cache.
llvm::Value* type_field_addr =
EmitLoadDexCacheResolvedTypeFieldAddr(type_idx);
llvm::Value* type_object_addr = irb_.CreateLoad(type_field_addr, kTBAARuntimeInfo);
if (driver_->CanAssumeTypeIsPresentInDexCache(*dex_compilation_unit_->GetDexFile(), type_idx)) {
return type_object_addr;
}
llvm::BasicBlock* block_original = irb_.GetInsertBlock();
// Test whether class (type) object is in the dex cache or not
llvm::Value* equal_null =
irb_.CreateICmpEQ(type_object_addr, irb_.getJNull());
llvm::BasicBlock* block_cont =
CreateBasicBlockWithDexPC(dex_pc, "cont");
llvm::BasicBlock* block_load_class =
CreateBasicBlockWithDexPC(dex_pc, "load_class");
irb_.CreateCondBr(equal_null, block_load_class, block_cont, kUnlikely);
// Failback routine to load the class object
irb_.SetInsertPoint(block_load_class);
llvm::Function* runtime_func = irb_.GetRuntime(InitializeType);
llvm::Constant* type_idx_value = irb_.getInt32(type_idx);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread();
EmitUpdateDexPC(dex_pc);
llvm::Value* loaded_type_object_addr =
irb_.CreateCall3(runtime_func, type_idx_value, method_object_addr, thread_object_addr);
EmitGuard_ExceptionLandingPad(dex_pc);
llvm::BasicBlock* block_after_load_class = irb_.GetInsertBlock();
irb_.CreateBr(block_cont);
// Now the class object must be loaded
irb_.SetInsertPoint(block_cont);
llvm::PHINode* phi = irb_.CreatePHI(irb_.getJObjectTy(), 2);
phi->addIncoming(type_object_addr, block_original);
phi->addIncoming(loaded_type_object_addr, block_after_load_class);
return phi;
}
}
llvm::Value* GBCExpanderPass::EmitLoadStaticStorage(uint32_t dex_pc,
uint32_t type_idx) {
llvm::BasicBlock* block_load_static =
CreateBasicBlockWithDexPC(dex_pc, "load_static");
llvm::BasicBlock* block_check_init = CreateBasicBlockWithDexPC(dex_pc, "init");
llvm::BasicBlock* block_cont = CreateBasicBlockWithDexPC(dex_pc, "cont");
// Load static storage from dex cache
llvm::Value* storage_field_addr = EmitLoadDexCacheResolvedTypeFieldAddr(type_idx);
llvm::Value* storage_object_addr = irb_.CreateLoad(storage_field_addr, kTBAARuntimeInfo);
// Test: Is the class resolved?
llvm::Value* equal_null = irb_.CreateICmpEQ(storage_object_addr, irb_.getJNull());
irb_.CreateCondBr(equal_null, block_load_static, block_check_init, kUnlikely);
// storage_object_addr != null, so check if its initialized.
irb_.SetInsertPoint(block_check_init);
llvm::Value* class_status =
irb_.LoadFromObjectOffset(storage_object_addr,
art::mirror::Class::StatusOffset().Int32Value(),
irb_.getJIntTy(), kTBAAHeapInstance);
llvm::Value* is_not_initialized =
irb_.CreateICmpULT(class_status, irb_.getInt32(art::mirror::Class::kStatusInitialized));
irb_.CreateCondBr(is_not_initialized, block_load_static, block_cont, kUnlikely);
// Failback routine to load the class object
irb_.SetInsertPoint(block_load_static);
llvm::Function* runtime_func = irb_.GetRuntime(InitializeStaticStorage);
llvm::Constant* type_idx_value = irb_.getInt32(type_idx);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread();
EmitUpdateDexPC(dex_pc);
llvm::Value* loaded_storage_object_addr =
irb_.CreateCall3(runtime_func, type_idx_value, method_object_addr, thread_object_addr);
EmitGuard_ExceptionLandingPad(dex_pc);
llvm::BasicBlock* block_after_load_static = irb_.GetInsertBlock();
irb_.CreateBr(block_cont);
// Now the class object must be loaded
irb_.SetInsertPoint(block_cont);
llvm::PHINode* phi = irb_.CreatePHI(irb_.getJObjectTy(), 2);
phi->addIncoming(storage_object_addr, block_check_init);
phi->addIncoming(loaded_storage_object_addr, block_after_load_static);
return phi;
}
llvm::Value* GBCExpanderPass::Expand_HLSget(llvm::CallInst& call_inst,
JType field_jty) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
uint32_t field_idx = LV2UInt(call_inst.getArgOperand(0));
art::MemberOffset field_offset(0u);
uint32_t ssb_index;
bool is_referrers_class;
bool is_volatile;
bool is_initialized;
bool is_fast_path = driver_->ComputeStaticFieldInfo(
field_idx, dex_compilation_unit_, false,
&field_offset, &ssb_index, &is_referrers_class, &is_volatile, &is_initialized);
llvm::Value* static_field_value;
if (!is_fast_path) {
llvm::Function* runtime_func;
if (field_jty == kObject) {
runtime_func = irb_.GetRuntime(GetObjectStatic);
} else if (field_jty == kLong || field_jty == kDouble) {
runtime_func = irb_.GetRuntime(Get64Static);
} else {
runtime_func = irb_.GetRuntime(Get32Static);
}
llvm::Constant* field_idx_value = irb_.getInt32(field_idx);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
EmitUpdateDexPC(dex_pc);
static_field_value =
irb_.CreateCall2(runtime_func, field_idx_value, method_object_addr);
EmitGuard_ExceptionLandingPad(dex_pc);
if (field_jty == kFloat || field_jty == kDouble) {
static_field_value = irb_.CreateBitCast(static_field_value, irb_.getJType(field_jty));
}
} else {
DCHECK_GE(field_offset.Int32Value(), 0);
llvm::Value* static_storage_addr = NULL;
if (is_referrers_class) {
// Fast path, static storage base is this method's class
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
static_storage_addr =
irb_.LoadFromObjectOffset(method_object_addr,
art::mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
irb_.getJObjectTy(),
kTBAAConstJObject);
} else {
// Medium path, static storage base in a different class which
// requires checks that the other class is initialized
DCHECK_NE(ssb_index, art::DexFile::kDexNoIndex);
static_storage_addr = EmitLoadStaticStorage(dex_pc, ssb_index);
}
llvm::Value* static_field_offset_value = irb_.getPtrEquivInt(field_offset.Int32Value());
llvm::Value* static_field_addr =
irb_.CreatePtrDisp(static_storage_addr, static_field_offset_value,
irb_.getJType(field_jty)->getPointerTo());
static_field_value = irb_.CreateLoad(static_field_addr, kTBAAHeapStatic, field_jty);
static_field_value = SignOrZeroExtendCat1Types(static_field_value, field_jty);
if (is_volatile) {
irb_.CreateMemoryBarrier(art::kLoadLoad);
}
}
return static_field_value;
}
void GBCExpanderPass::Expand_HLSput(llvm::CallInst& call_inst,
JType field_jty) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
uint32_t field_idx = LV2UInt(call_inst.getArgOperand(0));
llvm::Value* new_value = call_inst.getArgOperand(1);
if (field_jty == kFloat || field_jty == kDouble) {
new_value = irb_.CreateBitCast(new_value, irb_.getJType(field_jty));
}
art::MemberOffset field_offset(0u);
uint32_t ssb_index;
bool is_referrers_class;
bool is_volatile;
bool is_initialized;
bool is_fast_path = driver_->ComputeStaticFieldInfo(
field_idx, dex_compilation_unit_, true,
&field_offset, &ssb_index, &is_referrers_class, &is_volatile, &is_initialized);
if (!is_fast_path) {
llvm::Function* runtime_func;
if (field_jty == kObject) {
runtime_func = irb_.GetRuntime(SetObjectStatic);
} else if (field_jty == kLong || field_jty == kDouble) {
runtime_func = irb_.GetRuntime(Set64Static);
} else {
runtime_func = irb_.GetRuntime(Set32Static);
}
if (field_jty == kFloat) {
new_value = irb_.CreateBitCast(new_value, irb_.getJType(kInt));
} else if (field_jty == kDouble) {
new_value = irb_.CreateBitCast(new_value, irb_.getJType(kLong));
}
llvm::Constant* field_idx_value = irb_.getInt32(field_idx);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
EmitUpdateDexPC(dex_pc);
irb_.CreateCall3(runtime_func, field_idx_value,
method_object_addr, new_value);
EmitGuard_ExceptionLandingPad(dex_pc);
} else {
DCHECK_GE(field_offset.Int32Value(), 0);
llvm::Value* static_storage_addr = NULL;
if (is_referrers_class) {
// Fast path, static storage base is this method's class
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
static_storage_addr =
irb_.LoadFromObjectOffset(method_object_addr,
art::mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
irb_.getJObjectTy(),
kTBAAConstJObject);
} else {
// Medium path, static storage base in a different class which
// requires checks that the other class is initialized
DCHECK_NE(ssb_index, art::DexFile::kDexNoIndex);
static_storage_addr = EmitLoadStaticStorage(dex_pc, ssb_index);
}
if (is_volatile) {
irb_.CreateMemoryBarrier(art::kStoreStore);
}
llvm::Value* static_field_offset_value = irb_.getPtrEquivInt(field_offset.Int32Value());
llvm::Value* static_field_addr =
irb_.CreatePtrDisp(static_storage_addr, static_field_offset_value,
irb_.getJType(field_jty)->getPointerTo());
new_value = TruncateCat1Types(new_value, field_jty);
irb_.CreateStore(new_value, static_field_addr, kTBAAHeapStatic, field_jty);
if (is_volatile) {
irb_.CreateMemoryBarrier(art::kStoreLoad);
}
if (field_jty == kObject) { // If put an object, mark the GC card table.
EmitMarkGCCard(new_value, static_storage_addr);
}
}
return;
}
llvm::Value* GBCExpanderPass::Expand_ConstString(llvm::CallInst& call_inst) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
uint32_t string_idx = LV2UInt(call_inst.getArgOperand(0));
llvm::Value* string_field_addr = EmitLoadDexCacheStringFieldAddr(string_idx);
llvm::Value* string_addr = irb_.CreateLoad(string_field_addr, kTBAARuntimeInfo);
if (!driver_->CanAssumeStringIsPresentInDexCache(*dex_compilation_unit_->GetDexFile(),
string_idx)) {
llvm::BasicBlock* block_str_exist =
CreateBasicBlockWithDexPC(dex_pc, "str_exist");
llvm::BasicBlock* block_str_resolve =
CreateBasicBlockWithDexPC(dex_pc, "str_resolve");
llvm::BasicBlock* block_cont =
CreateBasicBlockWithDexPC(dex_pc, "str_cont");
// Test: Is the string resolved and in the dex cache?
llvm::Value* equal_null = irb_.CreateICmpEQ(string_addr, irb_.getJNull());
irb_.CreateCondBr(equal_null, block_str_resolve, block_str_exist, kUnlikely);
// String is resolved, go to next basic block.
irb_.SetInsertPoint(block_str_exist);
irb_.CreateBr(block_cont);
// String is not resolved yet, resolve it now.
irb_.SetInsertPoint(block_str_resolve);
llvm::Function* runtime_func = irb_.GetRuntime(ResolveString);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* string_idx_value = irb_.getInt32(string_idx);
EmitUpdateDexPC(dex_pc);
llvm::Value* result = irb_.CreateCall2(runtime_func, method_object_addr,
string_idx_value);
EmitGuard_ExceptionLandingPad(dex_pc);
irb_.CreateBr(block_cont);
llvm::BasicBlock* block_pre_cont = irb_.GetInsertBlock();
irb_.SetInsertPoint(block_cont);
llvm::PHINode* phi = irb_.CreatePHI(irb_.getJObjectTy(), 2);
phi->addIncoming(string_addr, block_str_exist);
phi->addIncoming(result, block_pre_cont);
string_addr = phi;
}
return string_addr;
}
llvm::Value* GBCExpanderPass::Expand_ConstClass(llvm::CallInst& call_inst) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
uint32_t type_idx = LV2UInt(call_inst.getArgOperand(0));
llvm::Value* type_object_addr = EmitLoadConstantClass(dex_pc, type_idx);
return type_object_addr;
}
void GBCExpanderPass::Expand_MonitorEnter(llvm::CallInst& call_inst) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
llvm::Value* object_addr = call_inst.getArgOperand(1);
int opt_flags = LV2UInt(call_inst.getArgOperand(0));
EmitGuard_NullPointerException(dex_pc, object_addr, opt_flags);
EmitUpdateDexPC(dex_pc);
irb_.Runtime().EmitLockObject(object_addr);
return;
}
void GBCExpanderPass::Expand_MonitorExit(llvm::CallInst& call_inst) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
llvm::Value* object_addr = call_inst.getArgOperand(1);
int opt_flags = LV2UInt(call_inst.getArgOperand(0));
EmitGuard_NullPointerException(dex_pc, object_addr, opt_flags);
EmitUpdateDexPC(dex_pc);
irb_.Runtime().EmitUnlockObject(object_addr);
EmitGuard_ExceptionLandingPad(dex_pc);
return;
}
void GBCExpanderPass::Expand_HLCheckCast(llvm::CallInst& call_inst) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
uint32_t type_idx = LV2UInt(call_inst.getArgOperand(0));
llvm::Value* object_addr = call_inst.getArgOperand(1);
llvm::BasicBlock* block_test_class =
CreateBasicBlockWithDexPC(dex_pc, "test_class");
llvm::BasicBlock* block_test_sub_class =
CreateBasicBlockWithDexPC(dex_pc, "test_sub_class");
llvm::BasicBlock* block_cont =
CreateBasicBlockWithDexPC(dex_pc, "checkcast_cont");
// Test: Is the reference equal to null? Act as no-op when it is null.
llvm::Value* equal_null = irb_.CreateICmpEQ(object_addr, irb_.getJNull());
irb_.CreateCondBr(equal_null, block_cont, block_test_class, kUnlikely);
// Test: Is the object instantiated from the given class?
irb_.SetInsertPoint(block_test_class);
llvm::Value* type_object_addr = EmitLoadConstantClass(dex_pc, type_idx);
DCHECK_EQ(art::mirror::Object::ClassOffset().Int32Value(), 0);
llvm::PointerType* jobject_ptr_ty = irb_.getJObjectTy();
llvm::Value* object_type_field_addr =
irb_.CreateBitCast(object_addr, jobject_ptr_ty->getPointerTo());
llvm::Value* object_type_object_addr =
irb_.CreateLoad(object_type_field_addr, kTBAAConstJObject);
llvm::Value* equal_class =
irb_.CreateICmpEQ(type_object_addr, object_type_object_addr);
irb_.CreateCondBr(equal_class, block_cont, block_test_sub_class, kLikely);
// Test: Is the object instantiated from the subclass of the given class?
irb_.SetInsertPoint(block_test_sub_class);
EmitUpdateDexPC(dex_pc);
irb_.CreateCall2(irb_.GetRuntime(CheckCast),
type_object_addr, object_type_object_addr);
EmitGuard_ExceptionLandingPad(dex_pc);
irb_.CreateBr(block_cont);
irb_.SetInsertPoint(block_cont);
return;
}
llvm::Value* GBCExpanderPass::Expand_InstanceOf(llvm::CallInst& call_inst) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
uint32_t type_idx = LV2UInt(call_inst.getArgOperand(0));
llvm::Value* object_addr = call_inst.getArgOperand(1);
llvm::BasicBlock* block_nullp =
CreateBasicBlockWithDexPC(dex_pc, "nullp");
llvm::BasicBlock* block_test_class =
CreateBasicBlockWithDexPC(dex_pc, "test_class");
llvm::BasicBlock* block_class_equals =
CreateBasicBlockWithDexPC(dex_pc, "class_eq");
llvm::BasicBlock* block_test_sub_class =
CreateBasicBlockWithDexPC(dex_pc, "test_sub_class");
llvm::BasicBlock* block_cont =
CreateBasicBlockWithDexPC(dex_pc, "instance_of_cont");
// Overview of the following code :
// We check for null, if so, then false, otherwise check for class == . If so
// then true, otherwise do callout slowpath.
//
// Test: Is the reference equal to null? Set 0 when it is null.
llvm::Value* equal_null = irb_.CreateICmpEQ(object_addr, irb_.getJNull());
irb_.CreateCondBr(equal_null, block_nullp, block_test_class, kUnlikely);
irb_.SetInsertPoint(block_nullp);
irb_.CreateBr(block_cont);
// Test: Is the object instantiated from the given class?
irb_.SetInsertPoint(block_test_class);
llvm::Value* type_object_addr = EmitLoadConstantClass(dex_pc, type_idx);
DCHECK_EQ(art::mirror::Object::ClassOffset().Int32Value(), 0);
llvm::PointerType* jobject_ptr_ty = irb_.getJObjectTy();
llvm::Value* object_type_field_addr =
irb_.CreateBitCast(object_addr, jobject_ptr_ty->getPointerTo());
llvm::Value* object_type_object_addr =
irb_.CreateLoad(object_type_field_addr, kTBAAConstJObject);
llvm::Value* equal_class =
irb_.CreateICmpEQ(type_object_addr, object_type_object_addr);
irb_.CreateCondBr(equal_class, block_class_equals, block_test_sub_class, kLikely);
irb_.SetInsertPoint(block_class_equals);
irb_.CreateBr(block_cont);
// Test: Is the object instantiated from the subclass of the given class?
irb_.SetInsertPoint(block_test_sub_class);
llvm::Value* result =
irb_.CreateCall2(irb_.GetRuntime(IsAssignable),
type_object_addr, object_type_object_addr);
irb_.CreateBr(block_cont);
irb_.SetInsertPoint(block_cont);
llvm::PHINode* phi = irb_.CreatePHI(irb_.getJIntTy(), 3);
phi->addIncoming(irb_.getJInt(0), block_nullp);
phi->addIncoming(irb_.getJInt(1), block_class_equals);
phi->addIncoming(result, block_test_sub_class);
return phi;
}
llvm::Value* GBCExpanderPass::Expand_NewInstance(llvm::CallInst& call_inst) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
uint32_t type_idx = LV2UInt(call_inst.getArgOperand(0));
llvm::Function* runtime_func;
if (driver_->CanAccessInstantiableTypeWithoutChecks(dex_compilation_unit_->GetDexMethodIndex(),
*dex_compilation_unit_->GetDexFile(),
type_idx)) {
runtime_func = irb_.GetRuntime(AllocObject);
} else {
runtime_func = irb_.GetRuntime(AllocObjectWithAccessCheck);
}
llvm::Constant* type_index_value = irb_.getInt32(type_idx);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread();
EmitUpdateDexPC(dex_pc);
llvm::Value* object_addr =
irb_.CreateCall3(runtime_func, type_index_value, method_object_addr, thread_object_addr);
EmitGuard_ExceptionLandingPad(dex_pc);
return object_addr;
}
llvm::Value* GBCExpanderPass::Expand_HLInvoke(llvm::CallInst& call_inst) {
art::InvokeType invoke_type = static_cast<art::InvokeType>(LV2UInt(call_inst.getArgOperand(0)));
bool is_static = (invoke_type == art::kStatic);
if (!is_static) {
// Test: Is *this* parameter equal to null?
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
llvm::Value* this_addr = call_inst.getArgOperand(3);
int opt_flags = LV2UInt(call_inst.getArgOperand(2));
EmitGuard_NullPointerException(dex_pc, this_addr, opt_flags);
}
llvm::Value* result = NULL;
if (EmitIntrinsic(call_inst, &result)) {
return result;
}
return EmitInvoke(call_inst);
}
llvm::Value* GBCExpanderPass::Expand_OptArrayLength(llvm::CallInst& call_inst) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
// Get the array object address
llvm::Value* array_addr = call_inst.getArgOperand(1);
int opt_flags = LV2UInt(call_inst.getArgOperand(0));
EmitGuard_NullPointerException(dex_pc, array_addr, opt_flags);
// Get the array length and store it to the register
return EmitLoadArrayLength(array_addr);
}
llvm::Value* GBCExpanderPass::Expand_NewArray(llvm::CallInst& call_inst) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
uint32_t type_idx = LV2UInt(call_inst.getArgOperand(0));
llvm::Value* length = call_inst.getArgOperand(1);
return EmitAllocNewArray(dex_pc, length, type_idx, false);
}
llvm::Value* GBCExpanderPass::Expand_HLFilledNewArray(llvm::CallInst& call_inst) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
uint32_t type_idx = LV2UInt(call_inst.getArgOperand(1));
uint32_t length = call_inst.getNumArgOperands() - 3;
llvm::Value* object_addr =
EmitAllocNewArray(dex_pc, irb_.getInt32(length), type_idx, true);
if (length > 0) {
// Check for the element type
uint32_t type_desc_len = 0;
const char* type_desc =
dex_compilation_unit_->GetDexFile()->StringByTypeIdx(type_idx, &type_desc_len);
DCHECK_GE(type_desc_len, 2u); // should be guaranteed by verifier
DCHECK_EQ(type_desc[0], '['); // should be guaranteed by verifier
bool is_elem_int_ty = (type_desc[1] == 'I');
uint32_t alignment;
llvm::Constant* elem_size;
llvm::PointerType* field_type;
// NOTE: Currently filled-new-array only supports 'L', '[', and 'I'
// as the element, thus we are only checking 2 cases: primitive int and
// non-primitive type.
if (is_elem_int_ty) {
alignment = sizeof(int32_t);
elem_size = irb_.getPtrEquivInt(sizeof(int32_t));
field_type = irb_.getJIntTy()->getPointerTo();
} else {
alignment = irb_.getSizeOfPtrEquivInt();
elem_size = irb_.getSizeOfPtrEquivIntValue();
field_type = irb_.getJObjectTy()->getPointerTo();
}
llvm::Value* data_field_offset =
irb_.getPtrEquivInt(art::mirror::Array::DataOffset(alignment).Int32Value());
llvm::Value* data_field_addr =
irb_.CreatePtrDisp(object_addr, data_field_offset, field_type);
// TODO: Tune this code. Currently we are generating one instruction for
// one element which may be very space consuming. Maybe changing to use
// memcpy may help; however, since we can't guarantee that the alloca of
// dalvik register are continuous, we can't perform such optimization yet.
for (uint32_t i = 0; i < length; ++i) {
llvm::Value* reg_value = call_inst.getArgOperand(i+3);
irb_.CreateStore(reg_value, data_field_addr, kTBAAHeapArray);
data_field_addr =
irb_.CreatePtrDisp(data_field_addr, elem_size, field_type);
}
}
return object_addr;
}
void GBCExpanderPass::Expand_HLFillArrayData(llvm::CallInst& call_inst) {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
int32_t payload_offset = static_cast<int32_t>(dex_pc) +
LV2SInt(call_inst.getArgOperand(0));
llvm::Value* array_addr = call_inst.getArgOperand(1);
const art::Instruction::ArrayDataPayload* payload =
reinterpret_cast<const art::Instruction::ArrayDataPayload*>(
dex_compilation_unit_->GetCodeItem()->insns_ + payload_offset);
if (payload->element_count == 0) {
// When the number of the elements in the payload is zero, we don't have
// to copy any numbers. However, we should check whether the array object
// address is equal to null or not.
EmitGuard_NullPointerException(dex_pc, array_addr, 0);
} else {
// To save the code size, we are going to call the runtime function to
// copy the content from DexFile.
// NOTE: We will check for the NullPointerException in the runtime.
llvm::Function* runtime_func = irb_.GetRuntime(FillArrayData);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
EmitUpdateDexPC(dex_pc);
irb_.CreateCall4(runtime_func,
method_object_addr, irb_.getInt32(dex_pc),
array_addr, irb_.getInt32(payload_offset));
EmitGuard_ExceptionLandingPad(dex_pc);
}
return;
}
llvm::Value* GBCExpanderPass::EmitAllocNewArray(uint32_t dex_pc,
llvm::Value* array_length_value,
uint32_t type_idx,
bool is_filled_new_array) {
llvm::Function* runtime_func;
bool skip_access_check =
driver_->CanAccessTypeWithoutChecks(dex_compilation_unit_->GetDexMethodIndex(),
*dex_compilation_unit_->GetDexFile(), type_idx);
if (is_filled_new_array) {
runtime_func = skip_access_check ?
irb_.GetRuntime(CheckAndAllocArray) :
irb_.GetRuntime(CheckAndAllocArrayWithAccessCheck);
} else {
runtime_func = skip_access_check ?
irb_.GetRuntime(AllocArray) :
irb_.GetRuntime(AllocArrayWithAccessCheck);
}
llvm::Constant* type_index_value = irb_.getInt32(type_idx);
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread();
EmitUpdateDexPC(dex_pc);
llvm::Value* object_addr =
irb_.CreateCall4(runtime_func, type_index_value, method_object_addr,
array_length_value, thread_object_addr);
EmitGuard_ExceptionLandingPad(dex_pc);
return object_addr;
}
llvm::Value* GBCExpanderPass::
EmitCallRuntimeForCalleeMethodObjectAddr(uint32_t callee_method_idx,
art::InvokeType invoke_type,
llvm::Value* this_addr,
uint32_t dex_pc,
bool is_fast_path) {
llvm::Function* runtime_func = NULL;
switch (invoke_type) {
case art::kStatic:
runtime_func = irb_.GetRuntime(FindStaticMethodWithAccessCheck);
break;
case art::kDirect:
runtime_func = irb_.GetRuntime(FindDirectMethodWithAccessCheck);
break;
case art::kVirtual:
runtime_func = irb_.GetRuntime(FindVirtualMethodWithAccessCheck);
break;
case art::kSuper:
runtime_func = irb_.GetRuntime(FindSuperMethodWithAccessCheck);
break;
case art::kInterface:
if (is_fast_path) {
runtime_func = irb_.GetRuntime(FindInterfaceMethod);
} else {
runtime_func = irb_.GetRuntime(FindInterfaceMethodWithAccessCheck);
}
break;
}
llvm::Value* callee_method_idx_value = irb_.getInt32(callee_method_idx);
if (this_addr == NULL) {
DCHECK_EQ(invoke_type, art::kStatic);
this_addr = irb_.getJNull();
}
llvm::Value* caller_method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread();
EmitUpdateDexPC(dex_pc);
llvm::Value* callee_method_object_addr =
irb_.CreateCall4(runtime_func,
callee_method_idx_value,
this_addr,
caller_method_object_addr,
thread_object_addr);
EmitGuard_ExceptionLandingPad(dex_pc);
return callee_method_object_addr;
}
void GBCExpanderPass::EmitMarkGCCard(llvm::Value* value, llvm::Value* target_addr) {
// Using runtime support, let the target can override by InlineAssembly.
irb_.Runtime().EmitMarkGCCard(value, target_addr);
}
void GBCExpanderPass::EmitUpdateDexPC(uint32_t dex_pc) {
if (shadow_frame_ == NULL) {
return;
}
irb_.StoreToObjectOffset(shadow_frame_,
art::ShadowFrame::DexPCOffset(),
irb_.getInt32(dex_pc),
kTBAAShadowFrame);
}
void GBCExpanderPass::EmitGuard_DivZeroException(uint32_t dex_pc,
llvm::Value* denominator,
JType op_jty) {
DCHECK(op_jty == kInt || op_jty == kLong) << op_jty;
llvm::Constant* zero = irb_.getJZero(op_jty);
llvm::Value* equal_zero = irb_.CreateICmpEQ(denominator, zero);
llvm::BasicBlock* block_exception = CreateBasicBlockWithDexPC(dex_pc, "div0");
llvm::BasicBlock* block_continue = CreateBasicBlockWithDexPC(dex_pc, "cont");
irb_.CreateCondBr(equal_zero, block_exception, block_continue, kUnlikely);
irb_.SetInsertPoint(block_exception);
EmitUpdateDexPC(dex_pc);
irb_.CreateCall(irb_.GetRuntime(ThrowDivZeroException));
EmitBranchExceptionLandingPad(dex_pc);
irb_.SetInsertPoint(block_continue);
}
void GBCExpanderPass::EmitGuard_NullPointerException(uint32_t dex_pc,
llvm::Value* object,
int opt_flags) {
bool ignore_null_check = ((opt_flags & MIR_IGNORE_NULL_CHECK) != 0);
if (ignore_null_check) {
llvm::BasicBlock* lpad = GetLandingPadBasicBlock(dex_pc);
if (lpad) {
// There is at least one catch: create a "fake" conditional branch to
// keep the exception edge to the catch block.
landing_pad_phi_mapping_[lpad].push_back(
std::make_pair(current_bb_->getUniquePredecessor(),
irb_.GetInsertBlock()));
llvm::BasicBlock* block_continue =
CreateBasicBlockWithDexPC(dex_pc, "cont");
irb_.CreateCondBr(irb_.getFalse(), lpad, block_continue, kUnlikely);
irb_.SetInsertPoint(block_continue);
}
} else {
llvm::Value* equal_null = irb_.CreateICmpEQ(object, irb_.getJNull());
llvm::BasicBlock* block_exception =
CreateBasicBlockWithDexPC(dex_pc, "nullp");
llvm::BasicBlock* block_continue =
CreateBasicBlockWithDexPC(dex_pc, "cont");
irb_.CreateCondBr(equal_null, block_exception, block_continue, kUnlikely);
irb_.SetInsertPoint(block_exception);
EmitUpdateDexPC(dex_pc);
irb_.CreateCall(irb_.GetRuntime(ThrowNullPointerException),
irb_.getInt32(dex_pc));
EmitBranchExceptionLandingPad(dex_pc);
irb_.SetInsertPoint(block_continue);
}
}
void
GBCExpanderPass::EmitGuard_ArrayIndexOutOfBoundsException(uint32_t dex_pc,
llvm::Value* array,
llvm::Value* index,
int opt_flags) {
bool ignore_range_check = ((opt_flags & MIR_IGNORE_RANGE_CHECK) != 0);
if (ignore_range_check) {
llvm::BasicBlock* lpad = GetLandingPadBasicBlock(dex_pc);
if (lpad) {
// There is at least one catch: create a "fake" conditional branch to
// keep the exception edge to the catch block.
landing_pad_phi_mapping_[lpad].push_back(
std::make_pair(current_bb_->getUniquePredecessor(),
irb_.GetInsertBlock()));
llvm::BasicBlock* block_continue =
CreateBasicBlockWithDexPC(dex_pc, "cont");
irb_.CreateCondBr(irb_.getFalse(), lpad, block_continue, kUnlikely);
irb_.SetInsertPoint(block_continue);
}
} else {
llvm::Value* array_len = EmitLoadArrayLength(array);
llvm::Value* cmp = irb_.CreateICmpUGE(index, array_len);
llvm::BasicBlock* block_exception =
CreateBasicBlockWithDexPC(dex_pc, "overflow");
llvm::BasicBlock* block_continue =
CreateBasicBlockWithDexPC(dex_pc, "cont");
irb_.CreateCondBr(cmp, block_exception, block_continue, kUnlikely);
irb_.SetInsertPoint(block_exception);
EmitUpdateDexPC(dex_pc);
irb_.CreateCall2(irb_.GetRuntime(ThrowIndexOutOfBounds), index, array_len);
EmitBranchExceptionLandingPad(dex_pc);
irb_.SetInsertPoint(block_continue);
}
}
llvm::FunctionType* GBCExpanderPass::GetFunctionType(llvm::Type* ret_type, uint32_t method_idx,
bool is_static) {
// Get method signature
art::DexFile::MethodId const& method_id =
dex_compilation_unit_->GetDexFile()->GetMethodId(method_idx);
uint32_t shorty_size;
const char* shorty = dex_compilation_unit_->GetDexFile()->GetMethodShorty(method_id, &shorty_size);
CHECK_GE(shorty_size, 1u);
// Get argument type
std::vector<llvm::Type*> args_type;
args_type.push_back(irb_.getJObjectTy()); // method object pointer
if (!is_static) {
args_type.push_back(irb_.getJType('L')); // "this" object pointer
}
for (uint32_t i = 1; i < shorty_size; ++i) {
char shorty_type = art::RemapShorty(shorty[i]);
args_type.push_back(irb_.getJType(shorty_type));
}
return llvm::FunctionType::get(ret_type, args_type, false);
}
llvm::BasicBlock* GBCExpanderPass::
CreateBasicBlockWithDexPC(uint32_t dex_pc, const char* postfix) {
std::string name;
#if !defined(NDEBUG)
art::StringAppendF(&name, "B%04x.%s", dex_pc, postfix);
#endif
return llvm::BasicBlock::Create(context_, name, func_);
}
llvm::BasicBlock* GBCExpanderPass::GetBasicBlock(uint32_t dex_pc) {
DCHECK(dex_pc < dex_compilation_unit_->GetCodeItem()->insns_size_in_code_units_);
CHECK(basic_blocks_[dex_pc] != NULL);
return basic_blocks_[dex_pc];
}
int32_t GBCExpanderPass::GetTryItemOffset(uint32_t dex_pc) {
int32_t min = 0;
int32_t max = dex_compilation_unit_->GetCodeItem()->tries_size_ - 1;
while (min <= max) {
int32_t mid = min + (max - min) / 2;
const art::DexFile::TryItem* ti =
art::DexFile::GetTryItems(*dex_compilation_unit_->GetCodeItem(), mid);
uint32_t start = ti->start_addr_;
uint32_t end = start + ti->insn_count_;
if (dex_pc < start) {
max = mid - 1;
} else if (dex_pc >= end) {
min = mid + 1;
} else {
return mid; // found
}
}
return -1; // not found
}
llvm::BasicBlock* GBCExpanderPass::GetLandingPadBasicBlock(uint32_t dex_pc) {
// Find the try item for this address in this method
int32_t ti_offset = GetTryItemOffset(dex_pc);
if (ti_offset == -1) {
return NULL; // No landing pad is available for this address.
}
// Check for the existing landing pad basic block
DCHECK_GT(basic_block_landing_pads_.size(), static_cast<size_t>(ti_offset));
llvm::BasicBlock* block_lpad = basic_block_landing_pads_[ti_offset];
if (block_lpad) {
// We have generated landing pad for this try item already. Return the
// same basic block.
return block_lpad;
}
// Get try item from code item
const art::DexFile::TryItem* ti = art::DexFile::GetTryItems(*dex_compilation_unit_->GetCodeItem(),
ti_offset);
std::string lpadname;
#if !defined(NDEBUG)
art::StringAppendF(&lpadname, "lpad%d_%04x_to_%04x", ti_offset, ti->start_addr_, ti->handler_off_);
#endif
// Create landing pad basic block
block_lpad = llvm::BasicBlock::Create(context_, lpadname, func_);
// Change IRBuilder insert point
llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP();
irb_.SetInsertPoint(block_lpad);
// Find catch block with matching type
llvm::Value* method_object_addr = EmitLoadMethodObjectAddr();
llvm::Value* ti_offset_value = irb_.getInt32(ti_offset);
llvm::Value* catch_handler_index_value =
irb_.CreateCall2(irb_.GetRuntime(FindCatchBlock),
method_object_addr, ti_offset_value);
// Switch instruction (Go to unwind basic block by default)
llvm::SwitchInst* sw =
irb_.CreateSwitch(catch_handler_index_value, GetUnwindBasicBlock());
// Cases with matched catch block
art::CatchHandlerIterator iter(*dex_compilation_unit_->GetCodeItem(), ti->start_addr_);
for (uint32_t c = 0; iter.HasNext(); iter.Next(), ++c) {
sw->addCase(irb_.getInt32(c), GetBasicBlock(iter.GetHandlerAddress()));
}
// Restore the orignal insert point for IRBuilder
irb_.restoreIP(irb_ip_original);
// Cache this landing pad
DCHECK_GT(basic_block_landing_pads_.size(), static_cast<size_t>(ti_offset));
basic_block_landing_pads_[ti_offset] = block_lpad;
return block_lpad;
}
llvm::BasicBlock* GBCExpanderPass::GetUnwindBasicBlock() {
// Check the existing unwinding baisc block block
if (basic_block_unwind_ != NULL) {
return basic_block_unwind_;
}
// Create new basic block for unwinding
basic_block_unwind_ =
llvm::BasicBlock::Create(context_, "exception_unwind", func_);
// Change IRBuilder insert point
llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP();
irb_.SetInsertPoint(basic_block_unwind_);
// Pop the shadow frame
Expand_PopShadowFrame();
// Emit the code to return default value (zero) for the given return type.
char ret_shorty = dex_compilation_unit_->GetShorty()[0];
ret_shorty = art::RemapShorty(ret_shorty);
if (ret_shorty == 'V') {
irb_.CreateRetVoid();
} else {
irb_.CreateRet(irb_.getJZero(ret_shorty));
}
// Restore the orignal insert point for IRBuilder
irb_.restoreIP(irb_ip_original);
return basic_block_unwind_;
}
void GBCExpanderPass::EmitBranchExceptionLandingPad(uint32_t dex_pc) {
if (llvm::BasicBlock* lpad = GetLandingPadBasicBlock(dex_pc)) {
landing_pad_phi_mapping_[lpad].push_back(std::make_pair(current_bb_->getUniquePredecessor(),
irb_.GetInsertBlock()));
irb_.CreateBr(lpad);
} else {
irb_.CreateBr(GetUnwindBasicBlock());
}
}
void GBCExpanderPass::EmitGuard_ExceptionLandingPad(uint32_t dex_pc) {
llvm::Value* exception_pending = irb_.Runtime().EmitIsExceptionPending();
llvm::BasicBlock* block_cont = CreateBasicBlockWithDexPC(dex_pc, "cont");
if (llvm::BasicBlock* lpad = GetLandingPadBasicBlock(dex_pc)) {
landing_pad_phi_mapping_[lpad].push_back(std::make_pair(current_bb_->getUniquePredecessor(),
irb_.GetInsertBlock()));
irb_.CreateCondBr(exception_pending, lpad, block_cont, kUnlikely);
} else {
irb_.CreateCondBr(exception_pending, GetUnwindBasicBlock(), block_cont, kUnlikely);
}
irb_.SetInsertPoint(block_cont);
}
llvm::Value*
GBCExpanderPass::ExpandIntrinsic(IntrinsicHelper::IntrinsicId intr_id,
llvm::CallInst& call_inst) {
switch (intr_id) {
//==- Thread -----------------------------------------------------------==//
case IntrinsicHelper::GetCurrentThread: {
return irb_.Runtime().EmitGetCurrentThread();
}
case IntrinsicHelper::CheckSuspend: {
Expand_TestSuspend(call_inst);
return NULL;
}
case IntrinsicHelper::TestSuspend: {
Expand_TestSuspend(call_inst);
return NULL;
}
case IntrinsicHelper::MarkGCCard: {
Expand_MarkGCCard(call_inst);
return NULL;
}
//==- Exception --------------------------------------------------------==//
case IntrinsicHelper::ThrowException: {
return ExpandToRuntime(ThrowException, call_inst);
}
case IntrinsicHelper::HLThrowException: {
uint32_t dex_pc = LV2UInt(call_inst.getMetadata("DexOff")->getOperand(0));
EmitUpdateDexPC(dex_pc);
irb_.CreateCall(irb_.GetRuntime(ThrowException),
call_inst.getArgOperand(0));
EmitGuard_ExceptionLandingPad(dex_pc);
return NULL;
}
case IntrinsicHelper::GetException: {
return irb_.Runtime().EmitGetAndClearException();
}
case IntrinsicHelper::IsExceptionPending: {
return irb_.Runtime().EmitIsExceptionPending();
}
case IntrinsicHelper::FindCatchBlock: {
return ExpandToRuntime(FindCatchBlock, call_inst);
}
case IntrinsicHelper::ThrowDivZeroException: {
return ExpandToRuntime(ThrowDivZeroException, call_inst);
}
case IntrinsicHelper::ThrowNullPointerException: {
return ExpandToRuntime(ThrowNullPointerException, call_inst);
}
case IntrinsicHelper::ThrowIndexOutOfBounds: {
return ExpandToRuntime(ThrowIndexOutOfBounds, call_inst);
}
//==- Const String -----------------------------------------------------==//
case IntrinsicHelper::ConstString: {
return Expand_ConstString(call_inst);
}
case IntrinsicHelper::LoadStringFromDexCache: {
return Expand_LoadStringFromDexCache(call_inst.getArgOperand(0));
}
case IntrinsicHelper::ResolveString: {
return ExpandToRuntime(ResolveString, call_inst);
}
//==- Const Class ------------------------------------------------------==//
case IntrinsicHelper::ConstClass: {
return Expand_ConstClass(call_inst);
}
case IntrinsicHelper::InitializeTypeAndVerifyAccess: {
return ExpandToRuntime(InitializeTypeAndVerifyAccess, call_inst);
}
case IntrinsicHelper::LoadTypeFromDexCache: {
return Expand_LoadTypeFromDexCache(call_inst.getArgOperand(0));
}
case IntrinsicHelper::InitializeType: {
return ExpandToRuntime(InitializeType, call_inst);
}
//==- Lock -------------------------------------------------------------==//
case IntrinsicHelper::LockObject: {
Expand_LockObject(call_inst.getArgOperand(0));
return NULL;
}
case IntrinsicHelper::UnlockObject: {
Expand_UnlockObject(call_inst.getArgOperand(0));
return NULL;
}
//==- Cast -------------------------------------------------------------==//
case IntrinsicHelper::CheckCast: {
return ExpandToRuntime(CheckCast, call_inst);
}
case IntrinsicHelper::HLCheckCast: {
Expand_HLCheckCast(call_inst);
return NULL;
}
case IntrinsicHelper::IsAssignable: {
return ExpandToRuntime(IsAssignable, call_inst);
}
//==- Alloc ------------------------------------------------------------==//
case IntrinsicHelper::AllocObject: {
return ExpandToRuntime(AllocObject, call_inst);
}
case IntrinsicHelper::AllocObjectWithAccessCheck: {
return ExpandToRuntime(AllocObjectWithAccessCheck, call_inst);
}
//==- Instance ---------------------------------------------------------==//
case IntrinsicHelper::NewInstance: {
return Expand_NewInstance(call_inst);
}
case IntrinsicHelper::InstanceOf: {
return Expand_InstanceOf(call_inst);
}
//==- Array ------------------------------------------------------------==//
case IntrinsicHelper::NewArray: {
return Expand_NewArray(call_inst);
}
case IntrinsicHelper::OptArrayLength: {
return Expand_OptArrayLength(call_inst);
}
case IntrinsicHelper::ArrayLength: {
return EmitLoadArrayLength(call_inst.getArgOperand(0));
}
case IntrinsicHelper::AllocArray: {
return ExpandToRuntime(AllocArray, call_inst);
}
case IntrinsicHelper::AllocArrayWithAccessCheck: {
return ExpandToRuntime(AllocArrayWithAccessCheck,
call_inst);
}
case IntrinsicHelper::CheckAndAllocArray: {
return ExpandToRuntime(CheckAndAllocArray, call_inst);
}
case IntrinsicHelper::CheckAndAllocArrayWithAccessCheck: {
return ExpandToRuntime(CheckAndAllocArrayWithAccessCheck,
call_inst);
}
case IntrinsicHelper::ArrayGet: {
return Expand_ArrayGet(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
kInt);
}
case IntrinsicHelper::ArrayGetWide: {
return Expand_ArrayGet(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
kLong);
}
case IntrinsicHelper::ArrayGetObject: {
return Expand_ArrayGet(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
kObject);
}
case IntrinsicHelper::ArrayGetBoolean: {
return Expand_ArrayGet(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
kBoolean);
}
case IntrinsicHelper::ArrayGetByte: {
return Expand_ArrayGet(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
kByte);
}
case IntrinsicHelper::ArrayGetChar: {
return Expand_ArrayGet(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
kChar);
}
case IntrinsicHelper::ArrayGetShort: {
return Expand_ArrayGet(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
kShort);
}
case IntrinsicHelper::ArrayPut: {
Expand_ArrayPut(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kInt);
return NULL;
}
case IntrinsicHelper::ArrayPutWide: {
Expand_ArrayPut(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kLong);
return NULL;
}
case IntrinsicHelper::ArrayPutObject: {
Expand_ArrayPut(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kObject);
return NULL;
}
case IntrinsicHelper::ArrayPutBoolean: {
Expand_ArrayPut(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kBoolean);
return NULL;
}
case IntrinsicHelper::ArrayPutByte: {
Expand_ArrayPut(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kByte);
return NULL;
}
case IntrinsicHelper::ArrayPutChar: {
Expand_ArrayPut(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kChar);
return NULL;
}
case IntrinsicHelper::ArrayPutShort: {
Expand_ArrayPut(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kShort);
return NULL;
}
case IntrinsicHelper::CheckPutArrayElement: {
return ExpandToRuntime(CheckPutArrayElement, call_inst);
}
case IntrinsicHelper::FilledNewArray: {
Expand_FilledNewArray(call_inst);
return NULL;
}
case IntrinsicHelper::FillArrayData: {
return ExpandToRuntime(FillArrayData, call_inst);
}
case IntrinsicHelper::HLFillArrayData: {
Expand_HLFillArrayData(call_inst);
return NULL;
}
case IntrinsicHelper::HLFilledNewArray: {
return Expand_HLFilledNewArray(call_inst);
}
//==- Instance Field ---------------------------------------------------==//
case IntrinsicHelper::InstanceFieldGet:
case IntrinsicHelper::InstanceFieldGetBoolean:
case IntrinsicHelper::InstanceFieldGetByte:
case IntrinsicHelper::InstanceFieldGetChar:
case IntrinsicHelper::InstanceFieldGetShort: {
return ExpandToRuntime(Get32Instance, call_inst);
}
case IntrinsicHelper::InstanceFieldGetWide: {
return ExpandToRuntime(Get64Instance, call_inst);
}
case IntrinsicHelper::InstanceFieldGetObject: {
return ExpandToRuntime(GetObjectInstance, call_inst);
}
case IntrinsicHelper::InstanceFieldGetFast: {
return Expand_IGetFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kInt);
}
case IntrinsicHelper::InstanceFieldGetWideFast: {
return Expand_IGetFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kLong);
}
case IntrinsicHelper::InstanceFieldGetObjectFast: {
return Expand_IGetFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kObject);
}
case IntrinsicHelper::InstanceFieldGetBooleanFast: {
return Expand_IGetFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kBoolean);
}
case IntrinsicHelper::InstanceFieldGetByteFast: {
return Expand_IGetFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kByte);
}
case IntrinsicHelper::InstanceFieldGetCharFast: {
return Expand_IGetFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kChar);
}
case IntrinsicHelper::InstanceFieldGetShortFast: {
return Expand_IGetFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kShort);
}
case IntrinsicHelper::InstanceFieldPut:
case IntrinsicHelper::InstanceFieldPutBoolean:
case IntrinsicHelper::InstanceFieldPutByte:
case IntrinsicHelper::InstanceFieldPutChar:
case IntrinsicHelper::InstanceFieldPutShort: {
return ExpandToRuntime(Set32Instance, call_inst);
}
case IntrinsicHelper::InstanceFieldPutWide: {
return ExpandToRuntime(Set64Instance, call_inst);
}
case IntrinsicHelper::InstanceFieldPutObject: {
return ExpandToRuntime(SetObjectInstance, call_inst);
}
case IntrinsicHelper::InstanceFieldPutFast: {
Expand_IPutFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
call_inst.getArgOperand(3),
kInt);
return NULL;
}
case IntrinsicHelper::InstanceFieldPutWideFast: {
Expand_IPutFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
call_inst.getArgOperand(3),
kLong);
return NULL;
}
case IntrinsicHelper::InstanceFieldPutObjectFast: {
Expand_IPutFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
call_inst.getArgOperand(3),
kObject);
return NULL;
}
case IntrinsicHelper::InstanceFieldPutBooleanFast: {
Expand_IPutFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
call_inst.getArgOperand(3),
kBoolean);
return NULL;
}
case IntrinsicHelper::InstanceFieldPutByteFast: {
Expand_IPutFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
call_inst.getArgOperand(3),
kByte);
return NULL;
}
case IntrinsicHelper::InstanceFieldPutCharFast: {
Expand_IPutFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
call_inst.getArgOperand(3),
kChar);
return NULL;
}
case IntrinsicHelper::InstanceFieldPutShortFast: {
Expand_IPutFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
call_inst.getArgOperand(3),
kShort);
return NULL;
}
//==- Static Field -----------------------------------------------------==//
case IntrinsicHelper::StaticFieldGet:
case IntrinsicHelper::StaticFieldGetBoolean:
case IntrinsicHelper::StaticFieldGetByte:
case IntrinsicHelper::StaticFieldGetChar:
case IntrinsicHelper::StaticFieldGetShort: {
return ExpandToRuntime(Get32Static, call_inst);
}
case IntrinsicHelper::StaticFieldGetWide: {
return ExpandToRuntime(Get64Static, call_inst);
}
case IntrinsicHelper::StaticFieldGetObject: {
return ExpandToRuntime(GetObjectStatic, call_inst);
}
case IntrinsicHelper::StaticFieldGetFast: {
return Expand_SGetFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kInt);
}
case IntrinsicHelper::StaticFieldGetWideFast: {
return Expand_SGetFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kLong);
}
case IntrinsicHelper::StaticFieldGetObjectFast: {
return Expand_SGetFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kObject);
}
case IntrinsicHelper::StaticFieldGetBooleanFast: {
return Expand_SGetFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kBoolean);
}
case IntrinsicHelper::StaticFieldGetByteFast: {
return Expand_SGetFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kByte);
}
case IntrinsicHelper::StaticFieldGetCharFast: {
return Expand_SGetFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kChar);
}
case IntrinsicHelper::StaticFieldGetShortFast: {
return Expand_SGetFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
kShort);
}
case IntrinsicHelper::StaticFieldPut:
case IntrinsicHelper::StaticFieldPutBoolean:
case IntrinsicHelper::StaticFieldPutByte:
case IntrinsicHelper::StaticFieldPutChar:
case IntrinsicHelper::StaticFieldPutShort: {
return ExpandToRuntime(Set32Static, call_inst);
}
case IntrinsicHelper::StaticFieldPutWide: {
return ExpandToRuntime(Set64Static, call_inst);
}
case IntrinsicHelper::StaticFieldPutObject: {
return ExpandToRuntime(SetObjectStatic, call_inst);
}
case IntrinsicHelper::StaticFieldPutFast: {
Expand_SPutFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
call_inst.getArgOperand(3),
kInt);
return NULL;
}
case IntrinsicHelper::StaticFieldPutWideFast: {
Expand_SPutFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
call_inst.getArgOperand(3),
kLong);
return NULL;
}
case IntrinsicHelper::StaticFieldPutObjectFast: {
Expand_SPutFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
call_inst.getArgOperand(3),
kObject);
return NULL;
}
case IntrinsicHelper::StaticFieldPutBooleanFast: {
Expand_SPutFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
call_inst.getArgOperand(3),
kBoolean);
return NULL;
}
case IntrinsicHelper::StaticFieldPutByteFast: {
Expand_SPutFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
call_inst.getArgOperand(3),
kByte);
return NULL;
}
case IntrinsicHelper::StaticFieldPutCharFast: {
Expand_SPutFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
call_inst.getArgOperand(3),
kChar);
return NULL;
}
case IntrinsicHelper::StaticFieldPutShortFast: {
Expand_SPutFast(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
call_inst.getArgOperand(2),
call_inst.getArgOperand(3),
kShort);
return NULL;
}
case IntrinsicHelper::LoadDeclaringClassSSB: {
return Expand_LoadDeclaringClassSSB(call_inst.getArgOperand(0));
}
case IntrinsicHelper::InitializeAndLoadClassSSB: {
return ExpandToRuntime(InitializeStaticStorage, call_inst);
}
//==- High-level Array -------------------------------------------------==//
case IntrinsicHelper::HLArrayGet: {
return Expand_HLArrayGet(call_inst, kInt);
}
case IntrinsicHelper::HLArrayGetBoolean: {
return Expand_HLArrayGet(call_inst, kBoolean);
}
case IntrinsicHelper::HLArrayGetByte: {
return Expand_HLArrayGet(call_inst, kByte);
}
case IntrinsicHelper::HLArrayGetChar: {
return Expand_HLArrayGet(call_inst, kChar);
}
case IntrinsicHelper::HLArrayGetShort: {
return Expand_HLArrayGet(call_inst, kShort);
}
case IntrinsicHelper::HLArrayGetFloat: {
return Expand_HLArrayGet(call_inst, kFloat);
}
case IntrinsicHelper::HLArrayGetWide: {
return Expand_HLArrayGet(call_inst, kLong);
}
case IntrinsicHelper::HLArrayGetDouble: {
return Expand_HLArrayGet(call_inst, kDouble);
}
case IntrinsicHelper::HLArrayGetObject: {
return Expand_HLArrayGet(call_inst, kObject);
}
case IntrinsicHelper::HLArrayPut: {
Expand_HLArrayPut(call_inst, kInt);
return NULL;
}
case IntrinsicHelper::HLArrayPutBoolean: {
Expand_HLArrayPut(call_inst, kBoolean);
return NULL;
}
case IntrinsicHelper::HLArrayPutByte: {
Expand_HLArrayPut(call_inst, kByte);
return NULL;
}
case IntrinsicHelper::HLArrayPutChar: {
Expand_HLArrayPut(call_inst, kChar);
return NULL;
}
case IntrinsicHelper::HLArrayPutShort: {
Expand_HLArrayPut(call_inst, kShort);
return NULL;
}
case IntrinsicHelper::HLArrayPutFloat: {
Expand_HLArrayPut(call_inst, kFloat);
return NULL;
}
case IntrinsicHelper::HLArrayPutWide: {
Expand_HLArrayPut(call_inst, kLong);
return NULL;
}
case IntrinsicHelper::HLArrayPutDouble: {
Expand_HLArrayPut(call_inst, kDouble);
return NULL;
}
case IntrinsicHelper::HLArrayPutObject: {
Expand_HLArrayPut(call_inst, kObject);
return NULL;
}
//==- High-level Instance ----------------------------------------------==//
case IntrinsicHelper::HLIGet: {
return Expand_HLIGet(call_inst, kInt);
}
case IntrinsicHelper::HLIGetBoolean: {
return Expand_HLIGet(call_inst, kBoolean);
}
case IntrinsicHelper::HLIGetByte: {
return Expand_HLIGet(call_inst, kByte);
}
case IntrinsicHelper::HLIGetChar: {
return Expand_HLIGet(call_inst, kChar);
}
case IntrinsicHelper::HLIGetShort: {
return Expand_HLIGet(call_inst, kShort);
}
case IntrinsicHelper::HLIGetFloat: {
return Expand_HLIGet(call_inst, kFloat);
}
case IntrinsicHelper::HLIGetWide: {
return Expand_HLIGet(call_inst, kLong);
}
case IntrinsicHelper::HLIGetDouble: {
return Expand_HLIGet(call_inst, kDouble);
}
case IntrinsicHelper::HLIGetObject: {
return Expand_HLIGet(call_inst, kObject);
}
case IntrinsicHelper::HLIPut: {
Expand_HLIPut(call_inst, kInt);
return NULL;
}
case IntrinsicHelper::HLIPutBoolean: {
Expand_HLIPut(call_inst, kBoolean);
return NULL;
}
case IntrinsicHelper::HLIPutByte: {
Expand_HLIPut(call_inst, kByte);
return NULL;
}
case IntrinsicHelper::HLIPutChar: {
Expand_HLIPut(call_inst, kChar);
return NULL;
}
case IntrinsicHelper::HLIPutShort: {
Expand_HLIPut(call_inst, kShort);
return NULL;
}
case IntrinsicHelper::HLIPutFloat: {
Expand_HLIPut(call_inst, kFloat);
return NULL;
}
case IntrinsicHelper::HLIPutWide: {
Expand_HLIPut(call_inst, kLong);
return NULL;
}
case IntrinsicHelper::HLIPutDouble: {
Expand_HLIPut(call_inst, kDouble);
return NULL;
}
case IntrinsicHelper::HLIPutObject: {
Expand_HLIPut(call_inst, kObject);
return NULL;
}
//==- High-level Invoke ------------------------------------------------==//
case IntrinsicHelper::HLInvokeVoid:
case IntrinsicHelper::HLInvokeObj:
case IntrinsicHelper::HLInvokeInt:
case IntrinsicHelper::HLInvokeFloat:
case IntrinsicHelper::HLInvokeLong:
case IntrinsicHelper::HLInvokeDouble: {
return Expand_HLInvoke(call_inst);
}
//==- Invoke -----------------------------------------------------------==//
case IntrinsicHelper::FindStaticMethodWithAccessCheck: {
return ExpandToRuntime(FindStaticMethodWithAccessCheck, call_inst);
}
case IntrinsicHelper::FindDirectMethodWithAccessCheck: {
return ExpandToRuntime(FindDirectMethodWithAccessCheck, call_inst);
}
case IntrinsicHelper::FindVirtualMethodWithAccessCheck: {
return ExpandToRuntime(FindVirtualMethodWithAccessCheck, call_inst);
}
case IntrinsicHelper::FindSuperMethodWithAccessCheck: {
return ExpandToRuntime(FindSuperMethodWithAccessCheck, call_inst);
}
case IntrinsicHelper::FindInterfaceMethodWithAccessCheck: {
return ExpandToRuntime(FindInterfaceMethodWithAccessCheck, call_inst);
}
case IntrinsicHelper::GetSDCalleeMethodObjAddrFast: {
return Expand_GetSDCalleeMethodObjAddrFast(call_inst.getArgOperand(0));
}
case IntrinsicHelper::GetVirtualCalleeMethodObjAddrFast: {
return Expand_GetVirtualCalleeMethodObjAddrFast(
call_inst.getArgOperand(0), call_inst.getArgOperand(1));
}
case IntrinsicHelper::GetInterfaceCalleeMethodObjAddrFast: {
return ExpandToRuntime(FindInterfaceMethod, call_inst);
}
case IntrinsicHelper::InvokeRetVoid:
case IntrinsicHelper::InvokeRetBoolean:
case IntrinsicHelper::InvokeRetByte:
case IntrinsicHelper::InvokeRetChar:
case IntrinsicHelper::InvokeRetShort:
case IntrinsicHelper::InvokeRetInt:
case IntrinsicHelper::InvokeRetLong:
case IntrinsicHelper::InvokeRetFloat:
case IntrinsicHelper::InvokeRetDouble:
case IntrinsicHelper::InvokeRetObject: {
return Expand_Invoke(call_inst);
}
//==- Math -------------------------------------------------------------==//
case IntrinsicHelper::DivInt: {
return Expand_DivRem(call_inst, /* is_div */true, kInt);
}
case IntrinsicHelper::RemInt: {
return Expand_DivRem(call_inst, /* is_div */false, kInt);
}
case IntrinsicHelper::DivLong: {
return Expand_DivRem(call_inst, /* is_div */true, kLong);
}
case IntrinsicHelper::RemLong: {
return Expand_DivRem(call_inst, /* is_div */false, kLong);
}
case IntrinsicHelper::D2L: {
return ExpandToRuntime(art_d2l, call_inst);
}
case IntrinsicHelper::D2I: {
return ExpandToRuntime(art_d2i, call_inst);
}
case IntrinsicHelper::F2L: {
return ExpandToRuntime(art_f2l, call_inst);
}
case IntrinsicHelper::F2I: {
return ExpandToRuntime(art_f2i, call_inst);
}
//==- High-level Static ------------------------------------------------==//
case IntrinsicHelper::HLSget: {
return Expand_HLSget(call_inst, kInt);
}
case IntrinsicHelper::HLSgetBoolean: {
return Expand_HLSget(call_inst, kBoolean);
}
case IntrinsicHelper::HLSgetByte: {
return Expand_HLSget(call_inst, kByte);
}
case IntrinsicHelper::HLSgetChar: {
return Expand_HLSget(call_inst, kChar);
}
case IntrinsicHelper::HLSgetShort: {
return Expand_HLSget(call_inst, kShort);
}
case IntrinsicHelper::HLSgetFloat: {
return Expand_HLSget(call_inst, kFloat);
}
case IntrinsicHelper::HLSgetWide: {
return Expand_HLSget(call_inst, kLong);
}
case IntrinsicHelper::HLSgetDouble: {
return Expand_HLSget(call_inst, kDouble);
}
case IntrinsicHelper::HLSgetObject: {
return Expand_HLSget(call_inst, kObject);
}
case IntrinsicHelper::HLSput: {
Expand_HLSput(call_inst, kInt);
return NULL;
}
case IntrinsicHelper::HLSputBoolean: {
Expand_HLSput(call_inst, kBoolean);
return NULL;
}
case IntrinsicHelper::HLSputByte: {
Expand_HLSput(call_inst, kByte);
return NULL;
}
case IntrinsicHelper::HLSputChar: {
Expand_HLSput(call_inst, kChar);
return NULL;
}
case IntrinsicHelper::HLSputShort: {
Expand_HLSput(call_inst, kShort);
return NULL;
}
case IntrinsicHelper::HLSputFloat: {
Expand_HLSput(call_inst, kFloat);
return NULL;
}
case IntrinsicHelper::HLSputWide: {
Expand_HLSput(call_inst, kLong);
return NULL;
}
case IntrinsicHelper::HLSputDouble: {
Expand_HLSput(call_inst, kDouble);
return NULL;
}
case IntrinsicHelper::HLSputObject: {
Expand_HLSput(call_inst, kObject);
return NULL;
}
//==- High-level Monitor -----------------------------------------------==//
case IntrinsicHelper::MonitorEnter: {
Expand_MonitorEnter(call_inst);
return NULL;
}
case IntrinsicHelper::MonitorExit: {
Expand_MonitorExit(call_inst);
return NULL;
}
//==- Shadow Frame -----------------------------------------------------==//
case IntrinsicHelper::AllocaShadowFrame: {
Expand_AllocaShadowFrame(call_inst.getArgOperand(0));
return NULL;
}
case IntrinsicHelper::SetVReg: {
Expand_SetVReg(call_inst.getArgOperand(0),
call_inst.getArgOperand(1));
return NULL;
}
case IntrinsicHelper::PopShadowFrame: {
Expand_PopShadowFrame();
return NULL;
}
case IntrinsicHelper::UpdateDexPC: {
Expand_UpdateDexPC(call_inst.getArgOperand(0));
return NULL;
}
//==- Comparison -------------------------------------------------------==//
case IntrinsicHelper::CmplFloat:
case IntrinsicHelper::CmplDouble: {
return Expand_FPCompare(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
false);
}
case IntrinsicHelper::CmpgFloat:
case IntrinsicHelper::CmpgDouble: {
return Expand_FPCompare(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
true);
}
case IntrinsicHelper::CmpLong: {
return Expand_LongCompare(call_inst.getArgOperand(0),
call_inst.getArgOperand(1));
}
//==- Const ------------------------------------------------------------==//
case IntrinsicHelper::ConstInt:
case IntrinsicHelper::ConstLong: {
return call_inst.getArgOperand(0);
}
case IntrinsicHelper::ConstFloat: {
return irb_.CreateBitCast(call_inst.getArgOperand(0),
irb_.getJFloatTy());
}
case IntrinsicHelper::ConstDouble: {
return irb_.CreateBitCast(call_inst.getArgOperand(0),
irb_.getJDoubleTy());
}
case IntrinsicHelper::ConstObj: {
CHECK_EQ(LV2UInt(call_inst.getArgOperand(0)), 0U);
return irb_.getJNull();
}
//==- Method Info ------------------------------------------------------==//
case IntrinsicHelper::MethodInfo: {
// Nothing to be done, because MethodInfo carries optional hints that are
// not needed by the portable path.
return NULL;
}
//==- Copy -------------------------------------------------------------==//
case IntrinsicHelper::CopyInt:
case IntrinsicHelper::CopyFloat:
case IntrinsicHelper::CopyLong:
case IntrinsicHelper::CopyDouble:
case IntrinsicHelper::CopyObj: {
return call_inst.getArgOperand(0);
}
//==- Shift ------------------------------------------------------------==//
case IntrinsicHelper::SHLLong: {
return Expand_IntegerShift(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
kIntegerSHL, kLong);
}
case IntrinsicHelper::SHRLong: {
return Expand_IntegerShift(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
kIntegerSHR, kLong);
}
case IntrinsicHelper::USHRLong: {
return Expand_IntegerShift(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
kIntegerUSHR, kLong);
}
case IntrinsicHelper::SHLInt: {
return Expand_IntegerShift(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
kIntegerSHL, kInt);
}
case IntrinsicHelper::SHRInt: {
return Expand_IntegerShift(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
kIntegerSHR, kInt);
}
case IntrinsicHelper::USHRInt: {
return Expand_IntegerShift(call_inst.getArgOperand(0),
call_inst.getArgOperand(1),
kIntegerUSHR, kInt);
}
//==- Conversion -------------------------------------------------------==//
case IntrinsicHelper::IntToChar: {
return irb_.CreateZExt(irb_.CreateTrunc(call_inst.getArgOperand(0), irb_.getJCharTy()),
irb_.getJIntTy());
}
case IntrinsicHelper::IntToShort: {
return irb_.CreateSExt(irb_.CreateTrunc(call_inst.getArgOperand(0), irb_.getJShortTy()),
irb_.getJIntTy());
}
case IntrinsicHelper::IntToByte: {
return irb_.CreateSExt(irb_.CreateTrunc(call_inst.getArgOperand(0), irb_.getJByteTy()),
irb_.getJIntTy());
}
//==- Exception --------------------------------------------------------==//
case IntrinsicHelper::CatchTargets: {
UpdatePhiInstruction(current_bb_, irb_.GetInsertBlock());
llvm::SwitchInst* si = llvm::dyn_cast<llvm::SwitchInst>(call_inst.getNextNode());
CHECK(si != NULL);
irb_.CreateBr(si->getDefaultDest());
si->eraseFromParent();
return call_inst.getArgOperand(0);
}
//==- Constructor barrier-----------------------------------------------==//
case IntrinsicHelper::ConstructorBarrier: {
irb_.CreateMemoryBarrier(art::kStoreStore);
return NULL;
}
//==- Unknown Cases ----------------------------------------------------==//
case IntrinsicHelper::MaxIntrinsicId:
case IntrinsicHelper::UnknownId:
// default:
// NOTE: "default" is intentionally commented so that C/C++ compiler will
// give some warning on unmatched cases.
// NOTE: We should not implement these cases.
break;
}
UNIMPLEMENTED(FATAL) << "Unexpected GBC intrinsic: " << static_cast<int>(intr_id);
return NULL;
} // NOLINT(readability/fn_size)
} // anonymous namespace
namespace art {
namespace llvm {
::llvm::FunctionPass*
CreateGBCExpanderPass(const IntrinsicHelper& intrinsic_helper, IRBuilder& irb,
CompilerDriver* driver, const DexCompilationUnit* dex_compilation_unit) {
return new GBCExpanderPass(intrinsic_helper, irb, driver, dex_compilation_unit);
}
} // namespace llvm
} // namespace art