blob: 91c266392cbe2e550aa0b6f77fd686cefc22b74f [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_
#define ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_
#include "entrypoint_utils.h"
#include <sstream>
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/enums.h"
#include "base/sdk_version.h"
#include "class_linker-inl.h"
#include "common_throws.h"
#include "dex/dex_file.h"
#include "dex/invoke_type.h"
#include "entrypoints/quick/callee_save_frame.h"
#include "handle_scope-inl.h"
#include "imt_conflict_table.h"
#include "imtable-inl.h"
#include "indirect_reference_table.h"
#include "jni/jni_internal.h"
#include "mirror/array-alloc-inl.h"
#include "mirror/class-alloc-inl.h"
#include "mirror/class-inl.h"
#include "mirror/object-inl.h"
#include "mirror/throwable.h"
#include "nth_caller_visitor.h"
#include "oat_file.h"
#include "reflective_handle_scope-inl.h"
#include "runtime.h"
#include "stack_map.h"
#include "thread.h"
#include "well_known_classes.h"
namespace art {
inline std::string GetResolvedMethodErrorString(ClassLinker* class_linker,
ArtMethod* inlined_method,
ArtMethod* parent_method,
ArtMethod* outer_method,
ObjPtr<mirror::DexCache> dex_cache,
MethodInfo method_info)
REQUIRES_SHARED(Locks::mutator_lock_) {
const uint32_t method_index = method_info.GetMethodIndex();
std::stringstream error_ss;
std::string separator = "";
error_ss << "BCP vector {";
for (const DexFile* df : class_linker->GetBootClassPath()) {
error_ss << separator << df << "(" << df->GetLocation() << ")";
separator = ", ";
}
error_ss << "}. oat_dex_files vector: {";
separator = "";
for (const OatDexFile* odf_value :
parent_method->GetDexFile()->GetOatDexFile()->GetOatFile()->GetOatDexFiles()) {
error_ss << separator << odf_value << "(" << odf_value->GetDexFileLocation() << ")";
separator = ", ";
}
error_ss << "}. ";
if (inlined_method != nullptr) {
error_ss << "Inlined method: " << inlined_method->PrettyMethod() << " ("
<< inlined_method->GetDexFile()->GetLocation() << "/"
<< static_cast<const void*>(inlined_method->GetDexFile()) << "). ";
} else if (dex_cache != nullptr) {
error_ss << "Could not find an inlined method from an .oat file, using dex_cache to print the "
"inlined method: "
<< dex_cache->GetDexFile()->PrettyMethod(method_index) << " ("
<< dex_cache->GetDexFile()->GetLocation() << "/"
<< static_cast<const void*>(dex_cache->GetDexFile()) << "). ";
} else {
error_ss << "Both inlined_method and dex_cache are null. This means that we had an OOB access "
<< "to either bcp_dex_files or oat_dex_files. ";
}
error_ss << "The outer method is: " << parent_method->PrettyMethod() << " ("
<< parent_method->GetDexFile()->GetLocation() << "/"
<< static_cast<const void*>(parent_method->GetDexFile())
<< "). The outermost method in the chain is: " << outer_method->PrettyMethod() << " ("
<< outer_method->GetDexFile()->GetLocation() << "/"
<< static_cast<const void*>(outer_method->GetDexFile())
<< "). MethodInfo: method_index=" << std::dec << method_index
<< ", is_in_bootclasspath=" << std::boolalpha
<< (method_info.GetDexFileIndexKind() == MethodInfo::kKindBCP) << std::noboolalpha
<< ", dex_file_index=" << std::dec << method_info.GetDexFileIndex() << ".";
return error_ss.str();
}
inline ArtMethod* GetResolvedMethod(ArtMethod* outer_method,
const CodeInfo& code_info,
const BitTableRange<InlineInfo>& inline_infos)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(!outer_method->IsObsolete());
// This method is being used by artQuickResolutionTrampoline, before it sets up
// the passed parameters in a GC friendly way. Therefore we must never be
// suspended while executing it.
ScopedAssertNoThreadSuspension sants(__FUNCTION__);
{
InlineInfo inline_info = inline_infos.back();
if (inline_info.EncodesArtMethod()) {
return inline_info.GetArtMethod();
}
uint32_t method_index = code_info.GetMethodIndexOf(inline_info);
if (inline_info.GetDexPc() == static_cast<uint32_t>(-1)) {
// "charAt" special case. It is the only non-leaf method we inline across dex files.
ArtMethod* inlined_method = jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt);
DCHECK_EQ(inlined_method->GetDexMethodIndex(), method_index);
return inlined_method;
}
}
// Find which method did the call in the inlining hierarchy.
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ArtMethod* method = outer_method;
for (InlineInfo inline_info : inline_infos) {
DCHECK(!inline_info.EncodesArtMethod());
DCHECK_NE(inline_info.GetDexPc(), static_cast<uint32_t>(-1));
MethodInfo method_info = code_info.GetMethodInfoOf(inline_info);
uint32_t method_index = method_info.GetMethodIndex();
const uint32_t dex_file_index = method_info.GetDexFileIndex();
ArtMethod* inlined_method = nullptr;
ObjPtr<mirror::DexCache> dex_cache = nullptr;
if (method_info.HasDexFileIndex()) {
if (method_info.GetDexFileIndexKind() == MethodInfo::kKindBCP) {
ArrayRef<const DexFile* const> bcp_dex_files(class_linker->GetBootClassPath());
DCHECK_LT(dex_file_index, bcp_dex_files.size())
<< "OOB access to bcp_dex_files. Dumping info: "
<< GetResolvedMethodErrorString(
class_linker, inlined_method, method, outer_method, dex_cache, method_info);
const DexFile* dex_file = bcp_dex_files[dex_file_index];
DCHECK_NE(dex_file, nullptr);
dex_cache = class_linker->FindDexCache(Thread::Current(), *dex_file);
} else {
ArrayRef<const OatDexFile* const> oat_dex_files(
outer_method->GetDexFile()->GetOatDexFile()->GetOatFile()->GetOatDexFiles());
DCHECK_LT(dex_file_index, oat_dex_files.size())
<< "OOB access to oat_dex_files. Dumping info: "
<< GetResolvedMethodErrorString(
class_linker, inlined_method, method, outer_method, dex_cache, method_info);
const OatDexFile* odf = oat_dex_files[dex_file_index];
DCHECK_NE(odf, nullptr);
dex_cache = class_linker->FindDexCache(Thread::Current(), *odf);
}
} else {
dex_cache = outer_method->GetDexCache();
}
inlined_method =
class_linker->LookupResolvedMethod(method_index, dex_cache, dex_cache->GetClassLoader());
if (UNLIKELY(inlined_method == nullptr)) {
LOG(FATAL) << GetResolvedMethodErrorString(
class_linker, inlined_method, method, outer_method, dex_cache, method_info);
UNREACHABLE();
}
DCHECK(!inlined_method->IsRuntimeMethod());
DCHECK_EQ(inlined_method->GetDexFile() == outer_method->GetDexFile(),
dex_file_index == MethodInfo::kSameDexFile)
<< GetResolvedMethodErrorString(
class_linker, inlined_method, method, outer_method, dex_cache, method_info);
method = inlined_method;
}
return method;
}
ALWAYS_INLINE
inline ObjPtr<mirror::Class> CheckClassInitializedForObjectAlloc(ObjPtr<mirror::Class> klass,
Thread* self,
bool* slow_path)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!Roles::uninterruptible_) {
if (UNLIKELY(!klass->IsVisiblyInitialized())) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(klass));
// EnsureInitialized (the class initializer) might cause a GC.
// may cause us to suspend meaning that another thread may try to
// change the allocator while we are stuck in the entrypoints of
// an old allocator. Also, the class initialization may fail. To
// handle these cases we mark the slow path boolean as true so
// that the caller knows to check the allocator type to see if it
// has changed and to null-check the return value in case the
// initialization fails.
*slow_path = true;
if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
DCHECK(self->IsExceptionPending());
return nullptr; // Failure
} else {
DCHECK(!self->IsExceptionPending());
}
return h_class.Get();
}
return klass;
}
ALWAYS_INLINE inline ObjPtr<mirror::Class> CheckObjectAlloc(ObjPtr<mirror::Class> klass,
Thread* self,
bool* slow_path)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!Roles::uninterruptible_) {
if (UNLIKELY(!klass->IsInstantiable())) {
self->ThrowNewException("Ljava/lang/InstantiationError;", klass->PrettyDescriptor().c_str());
*slow_path = true;
return nullptr; // Failure
}
if (UNLIKELY(klass->IsClassClass())) {
ThrowIllegalAccessError(nullptr, "Class %s is inaccessible",
klass->PrettyDescriptor().c_str());
*slow_path = true;
return nullptr; // Failure
}
return CheckClassInitializedForObjectAlloc(klass, self, slow_path);
}
// Allocate an instance of klass. Throws InstantationError if klass is not instantiable,
// or IllegalAccessError if klass is j.l.Class. Performs a clinit check too.
template <bool kInstrumented>
ALWAYS_INLINE
inline ObjPtr<mirror::Object> AllocObjectFromCode(ObjPtr<mirror::Class> klass,
Thread* self,
gc::AllocatorType allocator_type) {
bool slow_path = false;
klass = CheckObjectAlloc(klass, self, &slow_path);
if (UNLIKELY(slow_path)) {
if (klass == nullptr) {
return nullptr;
}
// CheckObjectAlloc can cause thread suspension which means we may now be instrumented.
return klass->Alloc</*kInstrumented=*/true>(
self,
Runtime::Current()->GetHeap()->GetCurrentAllocator());
}
DCHECK(klass != nullptr);
return klass->Alloc<kInstrumented>(self, allocator_type);
}
// Given the context of a calling Method and a resolved class, create an instance.
template <bool kInstrumented>
ALWAYS_INLINE
inline ObjPtr<mirror::Object> AllocObjectFromCodeResolved(ObjPtr<mirror::Class> klass,
Thread* self,
gc::AllocatorType allocator_type) {
DCHECK(klass != nullptr);
bool slow_path = false;
klass = CheckClassInitializedForObjectAlloc(klass, self, &slow_path);
if (UNLIKELY(slow_path)) {
if (klass == nullptr) {
return nullptr;
}
gc::Heap* heap = Runtime::Current()->GetHeap();
// Pass in kNoAddFinalizer since the object cannot be finalizable.
// CheckClassInitializedForObjectAlloc can cause thread suspension which means we may now be
// instrumented.
return klass->Alloc</*kInstrumented=*/true, mirror::Class::AddFinalizer::kNoAddFinalizer>(
self, heap->GetCurrentAllocator());
}
// Pass in kNoAddFinalizer since the object cannot be finalizable.
return klass->Alloc<kInstrumented,
mirror::Class::AddFinalizer::kNoAddFinalizer>(self, allocator_type);
}
// Given the context of a calling Method and an initialized class, create an instance.
template <bool kInstrumented>
ALWAYS_INLINE
inline ObjPtr<mirror::Object> AllocObjectFromCodeInitialized(ObjPtr<mirror::Class> klass,
Thread* self,
gc::AllocatorType allocator_type) {
DCHECK(klass != nullptr);
// Pass in kNoAddFinalizer since the object cannot be finalizable.
return klass->Alloc<kInstrumented,
mirror::Class::AddFinalizer::kNoAddFinalizer>(self, allocator_type);
}
template <bool kAccessCheck>
ALWAYS_INLINE
inline ObjPtr<mirror::Class> CheckArrayAlloc(dex::TypeIndex type_idx,
int32_t component_count,
ArtMethod* method,
bool* slow_path) {
if (UNLIKELY(component_count < 0)) {
ThrowNegativeArraySizeException(component_count);
*slow_path = true;
return nullptr; // Failure
}
ObjPtr<mirror::Class> klass = method->GetDexCache()->GetResolvedType(type_idx);
if (UNLIKELY(klass == nullptr)) { // Not in dex cache so try to resolve
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
klass = class_linker->ResolveType(type_idx, method);
*slow_path = true;
if (klass == nullptr) { // Error
DCHECK(Thread::Current()->IsExceptionPending());
return nullptr; // Failure
}
CHECK(klass->IsArrayClass()) << klass->PrettyClass();
}
if (kAccessCheck) {
ObjPtr<mirror::Class> referrer = method->GetDeclaringClass();
if (UNLIKELY(!referrer->CanAccess(klass))) {
ThrowIllegalAccessErrorClass(referrer, klass);
*slow_path = true;
return nullptr; // Failure
}
}
return klass;
}
// Given the context of a calling Method, use its DexCache to resolve a type to an array Class. If
// it cannot be resolved, throw an error. If it can, use it to create an array.
// When verification/compiler hasn't been able to verify access, optionally perform an access
// check.
template <bool kAccessCheck, bool kInstrumented>
ALWAYS_INLINE
inline ObjPtr<mirror::Array> AllocArrayFromCode(dex::TypeIndex type_idx,
int32_t component_count,
ArtMethod* method,
Thread* self,
gc::AllocatorType allocator_type) {
bool slow_path = false;
ObjPtr<mirror::Class> klass =
CheckArrayAlloc<kAccessCheck>(type_idx, component_count, method, &slow_path);
if (UNLIKELY(slow_path)) {
if (klass == nullptr) {
return nullptr;
}
gc::Heap* heap = Runtime::Current()->GetHeap();
// CheckArrayAlloc can cause thread suspension which means we may now be instrumented.
return mirror::Array::Alloc</*kInstrumented=*/true>(self,
klass,
component_count,
klass->GetComponentSizeShift(),
heap->GetCurrentAllocator());
}
return mirror::Array::Alloc<kInstrumented>(self,
klass,
component_count,
klass->GetComponentSizeShift(),
allocator_type);
}
template <bool kInstrumented>
ALWAYS_INLINE
inline ObjPtr<mirror::Array> AllocArrayFromCodeResolved(ObjPtr<mirror::Class> klass,
int32_t component_count,
Thread* self,
gc::AllocatorType allocator_type) {
DCHECK(klass != nullptr);
if (UNLIKELY(component_count < 0)) {
ThrowNegativeArraySizeException(component_count);
return nullptr; // Failure
}
// No need to retry a slow-path allocation as the above code won't cause a GC or thread
// suspension.
return mirror::Array::Alloc<kInstrumented>(self,
klass,
component_count,
klass->GetComponentSizeShift(),
allocator_type);
}
template<FindFieldType type, bool access_check>
inline ArtField* FindFieldFromCode(uint32_t field_idx,
ArtMethod* referrer,
Thread* self,
size_t expected_size) {
constexpr bool is_primitive = (type & FindFieldFlags::PrimitiveBit) != 0;
constexpr bool is_set = (type & FindFieldFlags::WriteBit) != 0;
constexpr bool is_static = (type & FindFieldFlags::StaticBit) != 0;
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ArtField* resolved_field;
if (access_check) {
// Slow path: According to JLS 13.4.8, a linkage error may occur if a compile-time
// qualifying type of a field and the resolved run-time qualifying type of a field differed
// in their static-ness.
//
// In particular, don't assume the dex instruction already correctly knows if the
// real field is static or not. The resolution must not be aware of this.
ArtMethod* method = referrer->GetInterfaceMethodIfProxy(kRuntimePointerSize);
StackHandleScope<2> hs(self);
Handle<mirror::DexCache> h_dex_cache(hs.NewHandle(method->GetDexCache()));
Handle<mirror::ClassLoader> h_class_loader(hs.NewHandle(method->GetClassLoader()));
resolved_field = class_linker->ResolveFieldJLS(field_idx,
h_dex_cache,
h_class_loader);
} else {
// Fast path: Verifier already would've called ResolveFieldJLS and we wouldn't
// be executing here if there was a static/non-static mismatch.
resolved_field = class_linker->ResolveField(field_idx, referrer, is_static);
}
if (UNLIKELY(resolved_field == nullptr)) {
DCHECK(self->IsExceptionPending()); // Throw exception and unwind.
return nullptr; // Failure.
}
ObjPtr<mirror::Class> fields_class = resolved_field->GetDeclaringClass();
if (access_check) {
if (UNLIKELY(resolved_field->IsStatic() != is_static)) {
ThrowIncompatibleClassChangeErrorField(resolved_field, is_static, referrer);
return nullptr;
}
ObjPtr<mirror::Class> referring_class = referrer->GetDeclaringClass();
if (UNLIKELY(!referring_class->CheckResolvedFieldAccess(fields_class,
resolved_field,
referrer->GetDexCache(),
field_idx))) {
DCHECK(self->IsExceptionPending()); // Throw exception and unwind.
return nullptr; // Failure.
}
if (UNLIKELY(is_set && !resolved_field->CanBeChangedBy(referrer))) {
ThrowIllegalAccessErrorFinalField(referrer, resolved_field);
return nullptr; // Failure.
} else {
if (UNLIKELY(resolved_field->IsPrimitiveType() != is_primitive ||
resolved_field->FieldSize() != expected_size)) {
self->ThrowNewExceptionF("Ljava/lang/NoSuchFieldError;",
"Attempted read of %zd-bit %s on field '%s'",
expected_size * (32 / sizeof(int32_t)),
is_primitive ? "primitive" : "non-primitive",
resolved_field->PrettyField(true).c_str());
return nullptr; // Failure.
}
}
}
if (!is_static) {
// instance fields must be being accessed on an initialized class
return resolved_field;
} else {
// If the class is initialized we're done.
if (LIKELY(fields_class->IsVisiblyInitialized())) {
return resolved_field;
} else {
StackHandleScope<1> hs(self);
StackArtFieldHandleScope<1> rhs(self);
ReflectiveHandle<ArtField> resolved_field_handle(rhs.NewHandle(resolved_field));
if (LIKELY(class_linker->EnsureInitialized(self, hs.NewHandle(fields_class), true, true))) {
// Otherwise let's ensure the class is initialized before resolving the field.
return resolved_field_handle.Get();
}
DCHECK(self->IsExceptionPending()); // Throw exception and unwind
return nullptr; // Failure.
}
}
}
// Explicit template declarations of FindFieldFromCode for all field access types.
#define EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, _access_check) \
template REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE \
ArtField* FindFieldFromCode<_type, _access_check>(uint32_t field_idx, \
ArtMethod* referrer, \
Thread* self, size_t expected_size) \
#define EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(_type) \
EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, false); \
EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, true)
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstanceObjectRead);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstanceObjectWrite);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstancePrimitiveRead);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstancePrimitiveWrite);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticObjectRead);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticObjectWrite);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticPrimitiveRead);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticPrimitiveWrite);
#undef EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL
#undef EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL
static inline bool IsStringInit(const DexFile* dex_file, uint32_t method_idx)
REQUIRES_SHARED(Locks::mutator_lock_) {
const dex::MethodId& method_id = dex_file->GetMethodId(method_idx);
const char* class_name = dex_file->StringByTypeIdx(method_id.class_idx_);
const char* method_name = dex_file->GetMethodName(method_id);
// Instead of calling ResolveMethod() which has suspend point and can trigger
// GC, look up the method symbolically.
// Compare method's class name and method name against string init.
// It's ok since it's not allowed to create your own java/lang/String.
// TODO: verify that assumption.
if ((strcmp(class_name, "Ljava/lang/String;") == 0) &&
(strcmp(method_name, "<init>") == 0)) {
return true;
}
return false;
}
static inline bool IsStringInit(const Instruction& instr, ArtMethod* caller)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (instr.Opcode() == Instruction::INVOKE_DIRECT ||
instr.Opcode() == Instruction::INVOKE_DIRECT_RANGE) {
uint16_t callee_method_idx = (instr.Opcode() == Instruction::INVOKE_DIRECT_RANGE) ?
instr.VRegB_3rc() : instr.VRegB_35c();
return IsStringInit(caller->GetDexFile(), callee_method_idx);
}
return false;
}
extern "C" size_t NterpGetMethod(Thread* self, ArtMethod* caller, const uint16_t* dex_pc_ptr);
template <InvokeType type>
ArtMethod* FindMethodToCall(Thread* self,
ArtMethod* caller,
ObjPtr<mirror::Object>* this_object,
const Instruction& inst,
/*out*/ bool* string_init)
REQUIRES_SHARED(Locks::mutator_lock_) {
PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
// Try to find the method in thread-local cache.
size_t tls_value = 0u;
if (!self->GetInterpreterCache()->Get(self, &inst, &tls_value)) {
DCHECK(!self->IsExceptionPending());
// NterpGetMethod can suspend, so save this_object.
StackHandleScope<1> hs(self);
HandleWrapperObjPtr<mirror::Object> h_this(hs.NewHandleWrapper(this_object));
tls_value = NterpGetMethod(self, caller, reinterpret_cast<const uint16_t*>(&inst));
if (self->IsExceptionPending()) {
return nullptr;
}
}
if (type != kStatic && UNLIKELY((*this_object) == nullptr)) {
if (UNLIKELY(IsStringInit(inst, caller))) {
// Hack for String init:
//
// We assume that the input of String.<init> in verified code is always
// an uninitialized reference. If it is a null constant, it must have been
// optimized out by the compiler and we arrive here after deoptimization.
// Do not throw NullPointerException.
} else {
// Maintain interpreter-like semantics where NullPointerException is thrown
// after potential NoSuchMethodError from class linker.
const uint32_t method_idx = inst.VRegB();
ThrowNullPointerExceptionForMethodAccess(method_idx, type);
return nullptr;
}
}
static constexpr size_t kStringInitMethodFlag = 0b1;
static constexpr size_t kInvokeInterfaceOnObjectMethodFlag = 0b1;
static constexpr size_t kMethodMask = ~0b11;
ArtMethod* called_method = nullptr;
switch (type) {
case kDirect:
case kSuper:
case kStatic:
// Note: for the interpreter, the String.<init> special casing for invocation is handled
// in DoCallCommon.
*string_init = ((tls_value & kStringInitMethodFlag) != 0);
DCHECK_EQ(*string_init, IsStringInit(inst, caller));
called_method = reinterpret_cast<ArtMethod*>(tls_value & kMethodMask);
break;
case kInterface:
if ((tls_value & kInvokeInterfaceOnObjectMethodFlag) != 0) {
// invokeinterface on a j.l.Object method.
uint16_t method_index = tls_value >> 16;
called_method = (*this_object)->GetClass()->GetVTableEntry(method_index, pointer_size);
} else {
ArtMethod* interface_method = reinterpret_cast<ArtMethod*>(tls_value & kMethodMask);
called_method = (*this_object)->GetClass()->GetImt(pointer_size)->Get(
interface_method->GetImtIndex(), pointer_size);
if (called_method->IsRuntimeMethod()) {
called_method = (*this_object)->GetClass()->FindVirtualMethodForInterface(
interface_method, pointer_size);
if (UNLIKELY(called_method == nullptr)) {
ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
interface_method, *this_object, caller);
return nullptr;
}
}
}
break;
case kVirtual:
called_method = (*this_object)->GetClass()->GetVTableEntry(tls_value, pointer_size);
break;
}
if (UNLIKELY(!called_method->IsInvokable())) {
called_method->ThrowInvocationTimeError((type == kStatic) ? nullptr : *this_object);
return nullptr;
}
DCHECK(!called_method->IsRuntimeMethod()) << called_method->PrettyMethod();
return called_method;
}
template<bool access_check>
ALWAYS_INLINE ArtMethod* FindSuperMethodToCall(uint32_t method_idx,
ArtMethod* resolved_method,
ArtMethod* referrer,
Thread* self)
REQUIRES_SHARED(Locks::mutator_lock_) {
// TODO This lookup is quite slow.
// NB This is actually quite tricky to do any other way. We cannot use GetDeclaringClass since
// that will actually not be what we want in some cases where there are miranda methods or
// defaults. What we actually need is a GetContainingClass that says which classes virtuals
// this method is coming from.
ClassLinker* linker = Runtime::Current()->GetClassLinker();
dex::TypeIndex type_idx = referrer->GetDexFile()->GetMethodId(method_idx).class_idx_;
ObjPtr<mirror::Class> referenced_class = linker->ResolveType(type_idx, referrer);
if (UNLIKELY(referenced_class == nullptr)) {
DCHECK(self->IsExceptionPending());
return nullptr;
}
if (access_check) {
if (!referenced_class->IsAssignableFrom(referrer->GetDeclaringClass())) {
ThrowNoSuchMethodError(kSuper,
resolved_method->GetDeclaringClass(),
resolved_method->GetName(),
resolved_method->GetSignature());
return nullptr;
}
}
if (referenced_class->IsInterface()) {
// TODO We can do better than this for a (compiled) fastpath.
ArtMethod* found_method = referenced_class->FindVirtualMethodForInterfaceSuper(
resolved_method, linker->GetImagePointerSize());
DCHECK(found_method != nullptr);
return found_method;
}
DCHECK(resolved_method->IsCopied() ||
!resolved_method->GetDeclaringClass()->IsInterface());
uint16_t vtable_index = resolved_method->GetMethodIndex();
ObjPtr<mirror::Class> super_class = referrer->GetDeclaringClass()->GetSuperClass();
if (access_check) {
DCHECK(super_class == nullptr || super_class->HasVTable());
// Check existence of super class.
if (super_class == nullptr ||
vtable_index >= static_cast<uint32_t>(super_class->GetVTableLength())) {
// Behavior to agree with that of the verifier.
ThrowNoSuchMethodError(kSuper,
resolved_method->GetDeclaringClass(),
resolved_method->GetName(),
resolved_method->GetSignature());
return nullptr; // Failure.
}
}
DCHECK(super_class != nullptr);
DCHECK(super_class->HasVTable());
return super_class->GetVTableEntry(vtable_index, linker->GetImagePointerSize());
}
inline ObjPtr<mirror::Class> ResolveVerifyAndClinit(dex::TypeIndex type_idx,
ArtMethod* referrer,
Thread* self,
bool can_run_clinit,
bool verify_access) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ObjPtr<mirror::Class> klass = class_linker->ResolveType(type_idx, referrer);
if (UNLIKELY(klass == nullptr)) {
CHECK(self->IsExceptionPending());
return nullptr; // Failure - Indicate to caller to deliver exception
}
// Perform access check if necessary.
ObjPtr<mirror::Class> referring_class = referrer->GetDeclaringClass();
if (verify_access && UNLIKELY(!referring_class->CanAccess(klass))) {
ThrowIllegalAccessErrorClass(referring_class, klass);
return nullptr; // Failure - Indicate to caller to deliver exception
}
// If we're just implementing const-class, we shouldn't call <clinit>.
if (!can_run_clinit) {
return klass;
}
// If we are the <clinit> of this class, just return our storage.
//
// Do not set the DexCache InitializedStaticStorage, since that implies <clinit> has finished
// running.
if (klass == referring_class && referrer->IsConstructor() && referrer->IsStatic()) {
return klass;
}
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(klass));
if (!class_linker->EnsureInitialized(self, h_class, true, true)) {
CHECK(self->IsExceptionPending());
return nullptr; // Failure - Indicate to caller to deliver exception
}
return h_class.Get();
}
template <typename INT_TYPE, typename FLOAT_TYPE>
inline INT_TYPE art_float_to_integral(FLOAT_TYPE f) {
const INT_TYPE kMaxInt = static_cast<INT_TYPE>(std::numeric_limits<INT_TYPE>::max());
const INT_TYPE kMinInt = static_cast<INT_TYPE>(std::numeric_limits<INT_TYPE>::min());
const FLOAT_TYPE kMaxIntAsFloat = static_cast<FLOAT_TYPE>(kMaxInt);
const FLOAT_TYPE kMinIntAsFloat = static_cast<FLOAT_TYPE>(kMinInt);
if (LIKELY(f > kMinIntAsFloat)) {
if (LIKELY(f < kMaxIntAsFloat)) {
return static_cast<INT_TYPE>(f);
} else {
return kMaxInt;
}
} else {
return (f != f) ? 0 : kMinInt; // f != f implies NaN
}
}
inline bool NeedsClinitCheckBeforeCall(ArtMethod* method) {
// The class needs to be visibly initialized before we can use entrypoints to
// compiled code for static methods. See b/18161648 . The class initializer is
// special as it is invoked during initialization and does not need the check.
return method->IsStatic() && !method->IsConstructor();
}
inline ObjPtr<mirror::Object> GetGenericJniSynchronizationObject(Thread* self, ArtMethod* called)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(!called->IsCriticalNative());
DCHECK(!called->IsFastNative());
DCHECK(self->GetManagedStack()->GetTopQuickFrame() != nullptr);
DCHECK_EQ(*self->GetManagedStack()->GetTopQuickFrame(), called);
// We do not need read barriers here.
// On method entry, all reference arguments are to-space references and we mark the
// declaring class of a static native method if needed. When visiting thread roots at
// the start of a GC, we visit all these references to ensure they point to the to-space.
if (called->IsStatic()) {
// Static methods synchronize on the declaring class object.
return called->GetDeclaringClass<kWithoutReadBarrier>();
} else {
// Instance methods synchronize on the `this` object.
// The `this` reference is stored in the first out vreg in the caller's frame.
uint8_t* sp = reinterpret_cast<uint8_t*>(self->GetManagedStack()->GetTopQuickFrame());
size_t frame_size = RuntimeCalleeSaveFrame::GetFrameSize(CalleeSaveType::kSaveRefsAndArgs);
StackReference<mirror::Object>* this_ref = reinterpret_cast<StackReference<mirror::Object>*>(
sp + frame_size + static_cast<size_t>(kRuntimePointerSize));
return this_ref->AsMirrorPtr();
}
}
} // namespace art
#endif // ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_