| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "mir_graph.h" |
| |
| #include <inttypes.h> |
| #include <queue> |
| #include <unistd.h> |
| |
| #include "base/bit_vector-inl.h" |
| #include "base/logging.h" |
| #include "base/stl_util.h" |
| #include "base/stringprintf.h" |
| #include "base/scoped_arena_containers.h" |
| #include "compiler_ir.h" |
| #include "dex_file-inl.h" |
| #include "dex_flags.h" |
| #include "dex_instruction-inl.h" |
| #include "driver/compiler_driver.h" |
| #include "driver/dex_compilation_unit.h" |
| #include "dex/quick/quick_compiler.h" |
| #include "leb128.h" |
| #include "pass_driver_me_post_opt.h" |
| #include "stack.h" |
| #include "utils.h" |
| |
| namespace art { |
| |
| #define MAX_PATTERN_LEN 5 |
| |
| const char* MIRGraph::extended_mir_op_names_[kMirOpLast - kMirOpFirst] = { |
| "Phi", |
| "Copy", |
| "FusedCmplFloat", |
| "FusedCmpgFloat", |
| "FusedCmplDouble", |
| "FusedCmpgDouble", |
| "FusedCmpLong", |
| "Nop", |
| "OpNullCheck", |
| "OpRangeCheck", |
| "OpDivZeroCheck", |
| "Check", |
| "Select", |
| "ConstVector", |
| "MoveVector", |
| "PackedMultiply", |
| "PackedAddition", |
| "PackedSubtract", |
| "PackedShiftLeft", |
| "PackedSignedShiftRight", |
| "PackedUnsignedShiftRight", |
| "PackedAnd", |
| "PackedOr", |
| "PackedXor", |
| "PackedAddReduce", |
| "PackedReduce", |
| "PackedSet", |
| "ReserveVectorRegisters", |
| "ReturnVectorRegisters", |
| "MemBarrier", |
| "PackedArrayGet", |
| "PackedArrayPut", |
| "MaddInt", |
| "MsubInt", |
| "MaddLong", |
| "MsubLong", |
| }; |
| |
| MIRGraph::MIRGraph(CompilationUnit* cu, ArenaAllocator* arena) |
| : reg_location_(nullptr), |
| block_id_map_(std::less<unsigned int>(), arena->Adapter()), |
| cu_(cu), |
| ssa_base_vregs_(arena->Adapter(kArenaAllocSSAToDalvikMap)), |
| ssa_subscripts_(arena->Adapter(kArenaAllocSSAToDalvikMap)), |
| vreg_to_ssa_map_(nullptr), |
| ssa_last_defs_(nullptr), |
| is_constant_v_(nullptr), |
| constant_values_(nullptr), |
| use_counts_(arena->Adapter()), |
| raw_use_counts_(arena->Adapter()), |
| num_reachable_blocks_(0), |
| max_num_reachable_blocks_(0), |
| dfs_orders_up_to_date_(false), |
| domination_up_to_date_(false), |
| mir_ssa_rep_up_to_date_(false), |
| topological_order_up_to_date_(false), |
| dfs_order_(arena->Adapter(kArenaAllocDfsPreOrder)), |
| dfs_post_order_(arena->Adapter(kArenaAllocDfsPostOrder)), |
| dom_post_order_traversal_(arena->Adapter(kArenaAllocDomPostOrder)), |
| topological_order_(arena->Adapter(kArenaAllocTopologicalSortOrder)), |
| topological_order_loop_ends_(arena->Adapter(kArenaAllocTopologicalSortOrder)), |
| topological_order_indexes_(arena->Adapter(kArenaAllocTopologicalSortOrder)), |
| topological_order_loop_head_stack_(arena->Adapter(kArenaAllocTopologicalSortOrder)), |
| max_nested_loops_(0u), |
| i_dom_list_(nullptr), |
| temp_scoped_alloc_(), |
| block_list_(arena->Adapter(kArenaAllocBBList)), |
| try_block_addr_(nullptr), |
| entry_block_(nullptr), |
| exit_block_(nullptr), |
| current_code_item_(nullptr), |
| m_units_(arena->Adapter()), |
| method_stack_(arena->Adapter()), |
| current_method_(kInvalidEntry), |
| current_offset_(kInvalidEntry), |
| def_count_(0), |
| opcode_count_(nullptr), |
| num_ssa_regs_(0), |
| extended_basic_blocks_(arena->Adapter()), |
| method_sreg_(0), |
| attributes_(METHOD_IS_LEAF), // Start with leaf assumption, change on encountering invoke. |
| checkstats_(nullptr), |
| arena_(arena), |
| backward_branches_(0), |
| forward_branches_(0), |
| num_non_special_compiler_temps_(0), |
| max_available_special_compiler_temps_(1), // We only need the method ptr as a special temp for now. |
| requested_backend_temp_(false), |
| compiler_temps_committed_(false), |
| punt_to_interpreter_(false), |
| merged_df_flags_(0u), |
| ifield_lowering_infos_(arena->Adapter(kArenaAllocLoweringInfo)), |
| sfield_lowering_infos_(arena->Adapter(kArenaAllocLoweringInfo)), |
| method_lowering_infos_(arena->Adapter(kArenaAllocLoweringInfo)), |
| suspend_checks_in_loops_(nullptr) { |
| memset(&temp_, 0, sizeof(temp_)); |
| use_counts_.reserve(256); |
| raw_use_counts_.reserve(256); |
| block_list_.reserve(100); |
| try_block_addr_ = new (arena_) ArenaBitVector(arena_, 0, true /* expandable */); |
| |
| |
| if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) { |
| // X86 requires a temp to keep track of the method address. |
| // TODO For x86_64, addressing can be done with RIP. When that is implemented, |
| // this needs to be updated to reserve 0 temps for BE. |
| max_available_non_special_compiler_temps_ = cu_->target64 ? 2 : 1; |
| reserved_temps_for_backend_ = max_available_non_special_compiler_temps_; |
| } else { |
| // Other architectures do not have a known lower bound for non-special temps. |
| // We allow the update of the max to happen at BE initialization stage and simply set 0 for now. |
| max_available_non_special_compiler_temps_ = 0; |
| reserved_temps_for_backend_ = 0; |
| } |
| } |
| |
| MIRGraph::~MIRGraph() { |
| STLDeleteElements(&block_list_); |
| STLDeleteElements(&m_units_); |
| } |
| |
| /* |
| * Parse an instruction, return the length of the instruction |
| */ |
| int MIRGraph::ParseInsn(const uint16_t* code_ptr, MIR::DecodedInstruction* decoded_instruction) { |
| const Instruction* inst = Instruction::At(code_ptr); |
| decoded_instruction->opcode = inst->Opcode(); |
| decoded_instruction->vA = inst->HasVRegA() ? inst->VRegA() : 0; |
| decoded_instruction->vB = inst->HasVRegB() ? inst->VRegB() : 0; |
| decoded_instruction->vB_wide = inst->HasWideVRegB() ? inst->WideVRegB() : 0; |
| decoded_instruction->vC = inst->HasVRegC() ? inst->VRegC() : 0; |
| if (inst->HasVarArgs35c()) { |
| inst->GetVarArgs(decoded_instruction->arg); |
| } |
| return inst->SizeInCodeUnits(); |
| } |
| |
| |
| /* Split an existing block from the specified code offset into two */ |
| BasicBlock* MIRGraph::SplitBlock(DexOffset code_offset, |
| BasicBlock* orig_block, BasicBlock** immed_pred_block_p) { |
| DCHECK_GT(code_offset, orig_block->start_offset); |
| MIR* insn = orig_block->first_mir_insn; |
| MIR* prev = nullptr; // Will be set to instruction before split. |
| while (insn) { |
| if (insn->offset == code_offset) break; |
| prev = insn; |
| insn = insn->next; |
| } |
| if (insn == nullptr) { |
| LOG(FATAL) << "Break split failed"; |
| } |
| // Now insn is at the instruction where we want to split, namely |
| // insn will be the first instruction of the "bottom" block. |
| // Similarly, prev will be the last instruction of the "top" block |
| |
| BasicBlock* bottom_block = CreateNewBB(kDalvikByteCode); |
| |
| bottom_block->start_offset = code_offset; |
| bottom_block->first_mir_insn = insn; |
| bottom_block->last_mir_insn = orig_block->last_mir_insn; |
| |
| /* If this block was terminated by a return, conditional branch or throw, |
| * the flag needs to go with the bottom block |
| */ |
| bottom_block->terminated_by_return = orig_block->terminated_by_return; |
| orig_block->terminated_by_return = false; |
| |
| bottom_block->conditional_branch = orig_block->conditional_branch; |
| orig_block->conditional_branch = false; |
| |
| bottom_block->explicit_throw = orig_block->explicit_throw; |
| orig_block->explicit_throw = false; |
| |
| /* Handle the taken path */ |
| bottom_block->taken = orig_block->taken; |
| if (bottom_block->taken != NullBasicBlockId) { |
| orig_block->taken = NullBasicBlockId; |
| BasicBlock* bb_taken = GetBasicBlock(bottom_block->taken); |
| bb_taken->ErasePredecessor(orig_block->id); |
| bb_taken->predecessors.push_back(bottom_block->id); |
| } |
| |
| /* Handle the fallthrough path */ |
| bottom_block->fall_through = orig_block->fall_through; |
| orig_block->fall_through = bottom_block->id; |
| bottom_block->predecessors.push_back(orig_block->id); |
| if (bottom_block->fall_through != NullBasicBlockId) { |
| BasicBlock* bb_fall_through = GetBasicBlock(bottom_block->fall_through); |
| bb_fall_through->ErasePredecessor(orig_block->id); |
| bb_fall_through->predecessors.push_back(bottom_block->id); |
| } |
| |
| /* Handle the successor list */ |
| if (orig_block->successor_block_list_type != kNotUsed) { |
| bottom_block->successor_block_list_type = orig_block->successor_block_list_type; |
| bottom_block->successor_blocks.swap(orig_block->successor_blocks); |
| orig_block->successor_block_list_type = kNotUsed; |
| DCHECK(orig_block->successor_blocks.empty()); // Empty after the swap() above. |
| for (SuccessorBlockInfo* successor_block_info : bottom_block->successor_blocks) { |
| BasicBlock* bb = GetBasicBlock(successor_block_info->block); |
| if (bb != nullptr) { |
| bb->ErasePredecessor(orig_block->id); |
| bb->predecessors.push_back(bottom_block->id); |
| } |
| } |
| } |
| |
| orig_block->last_mir_insn = prev; |
| prev->next = nullptr; |
| |
| /* |
| * Update the immediate predecessor block pointer so that outgoing edges |
| * can be applied to the proper block. |
| */ |
| if (immed_pred_block_p) { |
| DCHECK_EQ(*immed_pred_block_p, orig_block); |
| *immed_pred_block_p = bottom_block; |
| } |
| |
| // Associate dex instructions in the bottom block with the new container. |
| DCHECK(insn != nullptr); |
| DCHECK(insn != orig_block->first_mir_insn); |
| DCHECK(insn == bottom_block->first_mir_insn); |
| DCHECK_EQ(insn->offset, bottom_block->start_offset); |
| // Scan the "bottom" instructions, remapping them to the |
| // newly created "bottom" block. |
| MIR* p = insn; |
| p->bb = bottom_block->id; |
| while (p != bottom_block->last_mir_insn) { |
| p = p->next; |
| DCHECK(p != nullptr); |
| p->bb = bottom_block->id; |
| } |
| |
| return bottom_block; |
| } |
| |
| /* |
| * Given a code offset, find out the block that starts with it. If the offset |
| * is in the middle of an existing block, split it into two. If immed_pred_block_p |
| * is not non-null and is the block being split, update *immed_pred_block_p to |
| * point to the bottom block so that outgoing edges can be set up properly |
| * (by the caller) |
| * Utilizes a map for fast lookup of the typical cases. |
| */ |
| BasicBlock* MIRGraph::FindBlock(DexOffset code_offset, bool create, |
| BasicBlock** immed_pred_block_p, |
| ScopedArenaVector<uint16_t>* dex_pc_to_block_map) { |
| if (UNLIKELY(code_offset >= current_code_item_->insns_size_in_code_units_)) { |
| // There can be a fall-through out of the method code. We shall record such a block |
| // here (assuming create==true) and check that it's dead at the end of InlineMethod(). |
| // Though we're only aware of the cases where code_offset is exactly the same as |
| // insns_size_in_code_units_, treat greater code_offset the same just in case. |
| code_offset = current_code_item_->insns_size_in_code_units_; |
| } |
| |
| int block_id = (*dex_pc_to_block_map)[code_offset]; |
| BasicBlock* bb = GetBasicBlock(block_id); |
| |
| if ((bb != nullptr) && (bb->start_offset == code_offset)) { |
| // Does this containing block start with the desired instruction? |
| return bb; |
| } |
| |
| // No direct hit. |
| if (!create) { |
| return nullptr; |
| } |
| |
| if (bb != nullptr) { |
| // The target exists somewhere in an existing block. |
| BasicBlock* bottom_block = SplitBlock(code_offset, bb, bb == *immed_pred_block_p ? immed_pred_block_p : nullptr); |
| DCHECK(bottom_block != nullptr); |
| MIR* p = bottom_block->first_mir_insn; |
| BasicBlock* orig_block = bb; |
| DCHECK_EQ((*dex_pc_to_block_map)[p->offset], orig_block->id); |
| // Scan the "bottom" instructions, remapping them to the |
| // newly created "bottom" block. |
| (*dex_pc_to_block_map)[p->offset] = bottom_block->id; |
| while (p != bottom_block->last_mir_insn) { |
| p = p->next; |
| DCHECK(p != nullptr); |
| int opcode = p->dalvikInsn.opcode; |
| /* |
| * Some messiness here to ensure that we only enter real opcodes and only the |
| * first half of a potentially throwing instruction that has been split into |
| * CHECK and work portions. Since the 2nd half of a split operation is always |
| * the first in a BasicBlock, we can't hit it here. |
| */ |
| if ((opcode == kMirOpCheck) || !MIR::DecodedInstruction::IsPseudoMirOp(opcode)) { |
| BasicBlockId mapped_id = (*dex_pc_to_block_map)[p->offset]; |
| // At first glance the instructions should all be mapped to orig_block. |
| // However, multiple instructions may correspond to the same dex, hence an earlier |
| // instruction may have already moved the mapping for dex to bottom_block. |
| DCHECK((mapped_id == orig_block->id) || (mapped_id == bottom_block->id)); |
| (*dex_pc_to_block_map)[p->offset] = bottom_block->id; |
| } |
| } |
| return bottom_block; |
| } |
| |
| // Create a new block. |
| bb = CreateNewBB(kDalvikByteCode); |
| bb->start_offset = code_offset; |
| (*dex_pc_to_block_map)[bb->start_offset] = bb->id; |
| return bb; |
| } |
| |
| |
| /* Identify code range in try blocks and set up the empty catch blocks */ |
| void MIRGraph::ProcessTryCatchBlocks(ScopedArenaVector<uint16_t>* dex_pc_to_block_map) { |
| int tries_size = current_code_item_->tries_size_; |
| DexOffset offset; |
| |
| if (tries_size == 0) { |
| return; |
| } |
| |
| for (int i = 0; i < tries_size; i++) { |
| const DexFile::TryItem* pTry = |
| DexFile::GetTryItems(*current_code_item_, i); |
| DexOffset start_offset = pTry->start_addr_; |
| DexOffset end_offset = start_offset + pTry->insn_count_; |
| for (offset = start_offset; offset < end_offset; offset++) { |
| try_block_addr_->SetBit(offset); |
| } |
| } |
| |
| // Iterate over each of the handlers to enqueue the empty Catch blocks. |
| const uint8_t* handlers_ptr = DexFile::GetCatchHandlerData(*current_code_item_, 0); |
| uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); |
| for (uint32_t idx = 0; idx < handlers_size; idx++) { |
| CatchHandlerIterator iterator(handlers_ptr); |
| for (; iterator.HasNext(); iterator.Next()) { |
| uint32_t address = iterator.GetHandlerAddress(); |
| FindBlock(address, true /*create*/, /* immed_pred_block_p */ nullptr, dex_pc_to_block_map); |
| } |
| handlers_ptr = iterator.EndDataPointer(); |
| } |
| } |
| |
| bool MIRGraph::IsBadMonitorExitCatch(NarrowDexOffset monitor_exit_offset, |
| NarrowDexOffset catch_offset) { |
| // Catches for monitor-exit during stack unwinding have the pattern |
| // move-exception (move)* (goto)? monitor-exit throw |
| // In the currently generated dex bytecode we see these catching a bytecode range including |
| // either its own or an identical monitor-exit, http://b/15745363 . This function checks if |
| // it's the case for a given monitor-exit and catch block so that we can ignore it. |
| // (We don't want to ignore all monitor-exit catches since one could enclose a synchronized |
| // block in a try-block and catch the NPE, Error or Throwable and we should let it through; |
| // even though a throwing monitor-exit certainly indicates a bytecode error.) |
| const Instruction* monitor_exit = Instruction::At(current_code_item_->insns_ + monitor_exit_offset); |
| DCHECK(monitor_exit->Opcode() == Instruction::MONITOR_EXIT); |
| int monitor_reg = monitor_exit->VRegA_11x(); |
| const Instruction* check_insn = Instruction::At(current_code_item_->insns_ + catch_offset); |
| if (check_insn->Opcode() == Instruction::MOVE_EXCEPTION) { |
| if (check_insn->VRegA_11x() == monitor_reg) { |
| // Unexpected move-exception to the same register. Probably not the pattern we're looking for. |
| return false; |
| } |
| check_insn = check_insn->Next(); |
| } |
| while (true) { |
| int dest = -1; |
| bool wide = false; |
| switch (check_insn->Opcode()) { |
| case Instruction::MOVE_WIDE: |
| wide = true; |
| FALLTHROUGH_INTENDED; |
| case Instruction::MOVE_OBJECT: |
| case Instruction::MOVE: |
| dest = check_insn->VRegA_12x(); |
| break; |
| |
| case Instruction::MOVE_WIDE_FROM16: |
| wide = true; |
| FALLTHROUGH_INTENDED; |
| case Instruction::MOVE_OBJECT_FROM16: |
| case Instruction::MOVE_FROM16: |
| dest = check_insn->VRegA_22x(); |
| break; |
| |
| case Instruction::MOVE_WIDE_16: |
| wide = true; |
| FALLTHROUGH_INTENDED; |
| case Instruction::MOVE_OBJECT_16: |
| case Instruction::MOVE_16: |
| dest = check_insn->VRegA_32x(); |
| break; |
| |
| case Instruction::GOTO: |
| case Instruction::GOTO_16: |
| case Instruction::GOTO_32: |
| check_insn = check_insn->RelativeAt(check_insn->GetTargetOffset()); |
| FALLTHROUGH_INTENDED; |
| default: |
| return check_insn->Opcode() == Instruction::MONITOR_EXIT && |
| check_insn->VRegA_11x() == monitor_reg; |
| } |
| |
| if (dest == monitor_reg || (wide && dest + 1 == monitor_reg)) { |
| return false; |
| } |
| |
| check_insn = check_insn->Next(); |
| } |
| } |
| |
| /* Process instructions with the kBranch flag */ |
| BasicBlock* MIRGraph::ProcessCanBranch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, |
| int width, int flags, const uint16_t* code_ptr, |
| const uint16_t* code_end, |
| ScopedArenaVector<uint16_t>* dex_pc_to_block_map) { |
| DexOffset target = cur_offset; |
| switch (insn->dalvikInsn.opcode) { |
| case Instruction::GOTO: |
| case Instruction::GOTO_16: |
| case Instruction::GOTO_32: |
| target += insn->dalvikInsn.vA; |
| break; |
| case Instruction::IF_EQ: |
| case Instruction::IF_NE: |
| case Instruction::IF_LT: |
| case Instruction::IF_GE: |
| case Instruction::IF_GT: |
| case Instruction::IF_LE: |
| cur_block->conditional_branch = true; |
| target += insn->dalvikInsn.vC; |
| break; |
| case Instruction::IF_EQZ: |
| case Instruction::IF_NEZ: |
| case Instruction::IF_LTZ: |
| case Instruction::IF_GEZ: |
| case Instruction::IF_GTZ: |
| case Instruction::IF_LEZ: |
| cur_block->conditional_branch = true; |
| target += insn->dalvikInsn.vB; |
| break; |
| default: |
| LOG(FATAL) << "Unexpected opcode(" << insn->dalvikInsn.opcode << ") with kBranch set"; |
| } |
| CountBranch(target); |
| BasicBlock* taken_block = FindBlock(target, /* create */ true, |
| /* immed_pred_block_p */ &cur_block, |
| dex_pc_to_block_map); |
| DCHECK(taken_block != nullptr); |
| cur_block->taken = taken_block->id; |
| taken_block->predecessors.push_back(cur_block->id); |
| |
| /* Always terminate the current block for conditional branches */ |
| if (flags & Instruction::kContinue) { |
| BasicBlock* fallthrough_block = FindBlock(cur_offset + width, |
| /* create */ |
| true, |
| /* immed_pred_block_p */ |
| &cur_block, |
| dex_pc_to_block_map); |
| DCHECK(fallthrough_block != nullptr); |
| cur_block->fall_through = fallthrough_block->id; |
| fallthrough_block->predecessors.push_back(cur_block->id); |
| } else if (code_ptr < code_end) { |
| FindBlock(cur_offset + width, /* create */ true, /* immed_pred_block_p */ nullptr, dex_pc_to_block_map); |
| } |
| return cur_block; |
| } |
| |
| /* Process instructions with the kSwitch flag */ |
| BasicBlock* MIRGraph::ProcessCanSwitch(BasicBlock* cur_block, MIR* insn, DexOffset cur_offset, |
| int width, int flags ATTRIBUTE_UNUSED, |
| ScopedArenaVector<uint16_t>* dex_pc_to_block_map) { |
| const uint16_t* switch_data = |
| reinterpret_cast<const uint16_t*>(GetCurrentInsns() + cur_offset + |
| static_cast<int32_t>(insn->dalvikInsn.vB)); |
| int size; |
| const int* keyTable; |
| const int* target_table; |
| int i; |
| int first_key; |
| |
| /* |
| * Packed switch data format: |
| * ushort ident = 0x0100 magic value |
| * ushort size number of entries in the table |
| * int first_key first (and lowest) switch case value |
| * int targets[size] branch targets, relative to switch opcode |
| * |
| * Total size is (4+size*2) 16-bit code units. |
| */ |
| if (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) { |
| DCHECK_EQ(static_cast<int>(switch_data[0]), |
| static_cast<int>(Instruction::kPackedSwitchSignature)); |
| size = switch_data[1]; |
| first_key = switch_data[2] | (switch_data[3] << 16); |
| target_table = reinterpret_cast<const int*>(&switch_data[4]); |
| keyTable = nullptr; // Make the compiler happy. |
| /* |
| * Sparse switch data format: |
| * ushort ident = 0x0200 magic value |
| * ushort size number of entries in the table; > 0 |
| * int keys[size] keys, sorted low-to-high; 32-bit aligned |
| * int targets[size] branch targets, relative to switch opcode |
| * |
| * Total size is (2+size*4) 16-bit code units. |
| */ |
| } else { |
| DCHECK_EQ(static_cast<int>(switch_data[0]), |
| static_cast<int>(Instruction::kSparseSwitchSignature)); |
| size = switch_data[1]; |
| keyTable = reinterpret_cast<const int*>(&switch_data[2]); |
| target_table = reinterpret_cast<const int*>(&switch_data[2 + size*2]); |
| first_key = 0; // To make the compiler happy. |
| } |
| |
| if (cur_block->successor_block_list_type != kNotUsed) { |
| LOG(FATAL) << "Successor block list already in use: " |
| << static_cast<int>(cur_block->successor_block_list_type); |
| } |
| cur_block->successor_block_list_type = |
| (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) ? kPackedSwitch : kSparseSwitch; |
| cur_block->successor_blocks.reserve(size); |
| |
| for (i = 0; i < size; i++) { |
| BasicBlock* case_block = FindBlock(cur_offset + target_table[i], /* create */ true, |
| /* immed_pred_block_p */ &cur_block, |
| dex_pc_to_block_map); |
| DCHECK(case_block != nullptr); |
| SuccessorBlockInfo* successor_block_info = |
| static_cast<SuccessorBlockInfo*>(arena_->Alloc(sizeof(SuccessorBlockInfo), |
| kArenaAllocSuccessors)); |
| successor_block_info->block = case_block->id; |
| successor_block_info->key = |
| (insn->dalvikInsn.opcode == Instruction::PACKED_SWITCH) ? |
| first_key + i : keyTable[i]; |
| cur_block->successor_blocks.push_back(successor_block_info); |
| case_block->predecessors.push_back(cur_block->id); |
| } |
| |
| /* Fall-through case */ |
| BasicBlock* fallthrough_block = FindBlock(cur_offset + width, /* create */ true, |
| /* immed_pred_block_p */ nullptr, |
| dex_pc_to_block_map); |
| DCHECK(fallthrough_block != nullptr); |
| cur_block->fall_through = fallthrough_block->id; |
| fallthrough_block->predecessors.push_back(cur_block->id); |
| return cur_block; |
| } |
| |
| /* Process instructions with the kThrow flag */ |
| BasicBlock* MIRGraph::ProcessCanThrow(BasicBlock* cur_block, |
| MIR* insn, |
| DexOffset cur_offset, |
| int width, |
| int flags ATTRIBUTE_UNUSED, |
| ArenaBitVector* try_block_addr, |
| const uint16_t* code_ptr, |
| const uint16_t* code_end, |
| ScopedArenaVector<uint16_t>* dex_pc_to_block_map) { |
| bool in_try_block = try_block_addr->IsBitSet(cur_offset); |
| bool is_throw = (insn->dalvikInsn.opcode == Instruction::THROW); |
| |
| /* In try block */ |
| if (in_try_block) { |
| CatchHandlerIterator iterator(*current_code_item_, cur_offset); |
| |
| if (cur_block->successor_block_list_type != kNotUsed) { |
| LOG(INFO) << PrettyMethod(cu_->method_idx, *cu_->dex_file); |
| LOG(FATAL) << "Successor block list already in use: " |
| << static_cast<int>(cur_block->successor_block_list_type); |
| } |
| |
| for (; iterator.HasNext(); iterator.Next()) { |
| BasicBlock* catch_block = FindBlock(iterator.GetHandlerAddress(), false /* create */, |
| nullptr /* immed_pred_block_p */, |
| dex_pc_to_block_map); |
| if (insn->dalvikInsn.opcode == Instruction::MONITOR_EXIT && |
| IsBadMonitorExitCatch(insn->offset, catch_block->start_offset)) { |
| // Don't allow monitor-exit to catch its own exception, http://b/15745363 . |
| continue; |
| } |
| if (cur_block->successor_block_list_type == kNotUsed) { |
| cur_block->successor_block_list_type = kCatch; |
| } |
| catch_block->catch_entry = true; |
| if (kIsDebugBuild) { |
| catches_.insert(catch_block->start_offset); |
| } |
| SuccessorBlockInfo* successor_block_info = reinterpret_cast<SuccessorBlockInfo*> |
| (arena_->Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessors)); |
| successor_block_info->block = catch_block->id; |
| successor_block_info->key = iterator.GetHandlerTypeIndex(); |
| cur_block->successor_blocks.push_back(successor_block_info); |
| catch_block->predecessors.push_back(cur_block->id); |
| } |
| in_try_block = (cur_block->successor_block_list_type != kNotUsed); |
| } |
| bool build_all_edges = |
| (cu_->disable_opt & (1 << kSuppressExceptionEdges)) || is_throw || in_try_block; |
| if (!in_try_block && build_all_edges) { |
| BasicBlock* eh_block = CreateNewBB(kExceptionHandling); |
| cur_block->taken = eh_block->id; |
| eh_block->start_offset = cur_offset; |
| eh_block->predecessors.push_back(cur_block->id); |
| } |
| |
| if (is_throw) { |
| cur_block->explicit_throw = true; |
| if (code_ptr < code_end) { |
| // Force creation of new block following THROW via side-effect. |
| FindBlock(cur_offset + width, /* create */ true, /* immed_pred_block_p */ nullptr, dex_pc_to_block_map); |
| } |
| if (!in_try_block) { |
| // Don't split a THROW that can't rethrow - we're done. |
| return cur_block; |
| } |
| } |
| |
| if (!build_all_edges) { |
| /* |
| * Even though there is an exception edge here, control cannot return to this |
| * method. Thus, for the purposes of dataflow analysis and optimization, we can |
| * ignore the edge. Doing this reduces compile time, and increases the scope |
| * of the basic-block level optimization pass. |
| */ |
| return cur_block; |
| } |
| |
| /* |
| * Split the potentially-throwing instruction into two parts. |
| * The first half will be a pseudo-op that captures the exception |
| * edges and terminates the basic block. It always falls through. |
| * Then, create a new basic block that begins with the throwing instruction |
| * (minus exceptions). Note: this new basic block must NOT be entered into |
| * the block_map. If the potentially-throwing instruction is the target of a |
| * future branch, we need to find the check psuedo half. The new |
| * basic block containing the work portion of the instruction should |
| * only be entered via fallthrough from the block containing the |
| * pseudo exception edge MIR. Note also that this new block is |
| * not automatically terminated after the work portion, and may |
| * contain following instructions. |
| * |
| * Note also that the dex_pc_to_block_map entry for the potentially |
| * throwing instruction will refer to the original basic block. |
| */ |
| BasicBlock* new_block = CreateNewBB(kDalvikByteCode); |
| new_block->start_offset = insn->offset; |
| cur_block->fall_through = new_block->id; |
| new_block->predecessors.push_back(cur_block->id); |
| MIR* new_insn = NewMIR(); |
| *new_insn = *insn; |
| insn->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpCheck); |
| // Associate the two halves. |
| insn->meta.throw_insn = new_insn; |
| new_block->AppendMIR(new_insn); |
| return new_block; |
| } |
| |
| /* Parse a Dex method and insert it into the MIRGraph at the current insert point. */ |
| void MIRGraph::InlineMethod(const DexFile::CodeItem* code_item, uint32_t access_flags, |
| InvokeType invoke_type ATTRIBUTE_UNUSED, uint16_t class_def_idx, |
| uint32_t method_idx, jobject class_loader, const DexFile& dex_file, |
| Handle<mirror::DexCache> dex_cache) { |
| current_code_item_ = code_item; |
| method_stack_.push_back(std::make_pair(current_method_, current_offset_)); |
| current_method_ = m_units_.size(); |
| current_offset_ = 0; |
| // TODO: will need to snapshot stack image and use that as the mir context identification. |
| m_units_.push_back(new (arena_) DexCompilationUnit( |
| cu_, class_loader, Runtime::Current()->GetClassLinker(), dex_file, current_code_item_, |
| class_def_idx, method_idx, access_flags, |
| cu_->compiler_driver->GetVerifiedMethod(&dex_file, method_idx), dex_cache)); |
| const uint16_t* code_ptr = current_code_item_->insns_; |
| const uint16_t* code_end = |
| current_code_item_->insns_ + current_code_item_->insns_size_in_code_units_; |
| |
| // TODO: need to rework expansion of block list & try_block_addr when inlining activated. |
| // TUNING: use better estimate of basic blocks for following resize. |
| block_list_.reserve(block_list_.size() + current_code_item_->insns_size_in_code_units_); |
| // FindBlock lookup cache. |
| ScopedArenaAllocator allocator(&cu_->arena_stack); |
| ScopedArenaVector<uint16_t> dex_pc_to_block_map(allocator.Adapter()); |
| dex_pc_to_block_map.resize(current_code_item_->insns_size_in_code_units_ + |
| 1 /* Fall-through on last insn; dead or punt to interpreter. */); |
| |
| // TODO: replace with explicit resize routine. Using automatic extension side effect for now. |
| try_block_addr_->SetBit(current_code_item_->insns_size_in_code_units_); |
| try_block_addr_->ClearBit(current_code_item_->insns_size_in_code_units_); |
| |
| // If this is the first method, set up default entry and exit blocks. |
| if (current_method_ == 0) { |
| DCHECK(entry_block_ == nullptr); |
| DCHECK(exit_block_ == nullptr); |
| DCHECK_EQ(GetNumBlocks(), 0U); |
| // Use id 0 to represent a null block. |
| BasicBlock* null_block = CreateNewBB(kNullBlock); |
| DCHECK_EQ(null_block->id, NullBasicBlockId); |
| null_block->hidden = true; |
| entry_block_ = CreateNewBB(kEntryBlock); |
| exit_block_ = CreateNewBB(kExitBlock); |
| } else { |
| UNIMPLEMENTED(FATAL) << "Nested inlining not implemented."; |
| /* |
| * Will need to manage storage for ins & outs, push prevous state and update |
| * insert point. |
| */ |
| } |
| |
| /* Current block to record parsed instructions */ |
| BasicBlock* cur_block = CreateNewBB(kDalvikByteCode); |
| DCHECK_EQ(current_offset_, 0U); |
| cur_block->start_offset = current_offset_; |
| // TODO: for inlining support, insert at the insert point rather than entry block. |
| entry_block_->fall_through = cur_block->id; |
| cur_block->predecessors.push_back(entry_block_->id); |
| |
| /* Identify code range in try blocks and set up the empty catch blocks */ |
| ProcessTryCatchBlocks(&dex_pc_to_block_map); |
| |
| uint64_t merged_df_flags = 0u; |
| |
| /* Parse all instructions and put them into containing basic blocks */ |
| while (code_ptr < code_end) { |
| MIR *insn = NewMIR(); |
| insn->offset = current_offset_; |
| insn->m_unit_index = current_method_; |
| int width = ParseInsn(code_ptr, &insn->dalvikInsn); |
| Instruction::Code opcode = insn->dalvikInsn.opcode; |
| if (opcode_count_ != nullptr) { |
| opcode_count_[static_cast<int>(opcode)]++; |
| } |
| |
| int flags = insn->dalvikInsn.FlagsOf(); |
| int verify_flags = Instruction::VerifyFlagsOf(insn->dalvikInsn.opcode); |
| |
| uint64_t df_flags = GetDataFlowAttributes(insn); |
| merged_df_flags |= df_flags; |
| |
| if (df_flags & DF_HAS_DEFS) { |
| def_count_ += (df_flags & DF_A_WIDE) ? 2 : 1; |
| } |
| |
| if (df_flags & DF_LVN) { |
| cur_block->use_lvn = true; // Run local value numbering on this basic block. |
| } |
| |
| // Check for inline data block signatures. |
| if (opcode == Instruction::NOP) { |
| // A simple NOP will have a width of 1 at this point, embedded data NOP > 1. |
| if ((width == 1) && ((current_offset_ & 0x1) == 0x1) && ((code_end - code_ptr) > 1)) { |
| // Could be an aligning nop. If an embedded data NOP follows, treat pair as single unit. |
| uint16_t following_raw_instruction = code_ptr[1]; |
| if ((following_raw_instruction == Instruction::kSparseSwitchSignature) || |
| (following_raw_instruction == Instruction::kPackedSwitchSignature) || |
| (following_raw_instruction == Instruction::kArrayDataSignature)) { |
| width += Instruction::At(code_ptr + 1)->SizeInCodeUnits(); |
| } |
| } |
| if (width == 1) { |
| // It is a simple nop - treat normally. |
| cur_block->AppendMIR(insn); |
| } else { |
| DCHECK(cur_block->fall_through == NullBasicBlockId); |
| DCHECK(cur_block->taken == NullBasicBlockId); |
| // Unreachable instruction, mark for no continuation and end basic block. |
| flags &= ~Instruction::kContinue; |
| FindBlock(current_offset_ + width, /* create */ true, |
| /* immed_pred_block_p */ nullptr, &dex_pc_to_block_map); |
| } |
| } else { |
| cur_block->AppendMIR(insn); |
| } |
| |
| // Associate the starting dex_pc for this opcode with its containing basic block. |
| dex_pc_to_block_map[insn->offset] = cur_block->id; |
| |
| code_ptr += width; |
| |
| if (flags & Instruction::kBranch) { |
| cur_block = ProcessCanBranch(cur_block, insn, current_offset_, |
| width, flags, code_ptr, code_end, &dex_pc_to_block_map); |
| } else if (flags & Instruction::kReturn) { |
| cur_block->terminated_by_return = true; |
| cur_block->fall_through = exit_block_->id; |
| exit_block_->predecessors.push_back(cur_block->id); |
| /* |
| * Terminate the current block if there are instructions |
| * afterwards. |
| */ |
| if (code_ptr < code_end) { |
| /* |
| * Create a fallthrough block for real instructions |
| * (incl. NOP). |
| */ |
| FindBlock(current_offset_ + width, /* create */ true, |
| /* immed_pred_block_p */ nullptr, &dex_pc_to_block_map); |
| } |
| } else if (flags & Instruction::kThrow) { |
| cur_block = ProcessCanThrow(cur_block, insn, current_offset_, width, flags, try_block_addr_, |
| code_ptr, code_end, &dex_pc_to_block_map); |
| } else if (flags & Instruction::kSwitch) { |
| cur_block = ProcessCanSwitch(cur_block, insn, current_offset_, width, |
| flags, &dex_pc_to_block_map); |
| } |
| if (verify_flags & Instruction::kVerifyVarArgRange || |
| verify_flags & Instruction::kVerifyVarArgRangeNonZero) { |
| /* |
| * The Quick backend's runtime model includes a gap between a method's |
| * argument ("in") vregs and the rest of its vregs. Handling a range instruction |
| * which spans the gap is somewhat complicated, and should not happen |
| * in normal usage of dx. Punt to the interpreter. |
| */ |
| int first_reg_in_range = insn->dalvikInsn.vC; |
| int last_reg_in_range = first_reg_in_range + insn->dalvikInsn.vA - 1; |
| if (IsInVReg(first_reg_in_range) != IsInVReg(last_reg_in_range)) { |
| punt_to_interpreter_ = true; |
| } |
| } |
| current_offset_ += width; |
| BasicBlock* next_block = FindBlock(current_offset_, /* create */ false, |
| /* immed_pred_block_p */ nullptr, |
| &dex_pc_to_block_map); |
| if (next_block) { |
| /* |
| * The next instruction could be the target of a previously parsed |
| * forward branch so a block is already created. If the current |
| * instruction is not an unconditional branch, connect them through |
| * the fall-through link. |
| */ |
| DCHECK(cur_block->fall_through == NullBasicBlockId || |
| GetBasicBlock(cur_block->fall_through) == next_block || |
| GetBasicBlock(cur_block->fall_through) == exit_block_); |
| |
| if ((cur_block->fall_through == NullBasicBlockId) && (flags & Instruction::kContinue)) { |
| cur_block->fall_through = next_block->id; |
| next_block->predecessors.push_back(cur_block->id); |
| } |
| cur_block = next_block; |
| } |
| } |
| merged_df_flags_ = merged_df_flags; |
| |
| if (cu_->enable_debug & (1 << kDebugDumpCFG)) { |
| DumpCFG("/sdcard/1_post_parse_cfg/", true); |
| } |
| |
| if (cu_->verbose) { |
| DumpMIRGraph(); |
| } |
| |
| // Check if there's been a fall-through out of the method code. |
| BasicBlockId out_bb_id = dex_pc_to_block_map[current_code_item_->insns_size_in_code_units_]; |
| if (UNLIKELY(out_bb_id != NullBasicBlockId)) { |
| // Eagerly calculate DFS order to determine if the block is dead. |
| DCHECK(!DfsOrdersUpToDate()); |
| ComputeDFSOrders(); |
| BasicBlock* out_bb = GetBasicBlock(out_bb_id); |
| DCHECK(out_bb != nullptr); |
| if (out_bb->block_type != kDead) { |
| LOG(WARNING) << "Live fall-through out of method in " << PrettyMethod(method_idx, dex_file); |
| SetPuntToInterpreter(true); |
| } |
| } |
| } |
| |
| void MIRGraph::ShowOpcodeStats() { |
| DCHECK(opcode_count_ != nullptr); |
| LOG(INFO) << "Opcode Count"; |
| for (int i = 0; i < kNumPackedOpcodes; i++) { |
| if (opcode_count_[i] != 0) { |
| LOG(INFO) << "-C- " << Instruction::Name(static_cast<Instruction::Code>(i)) |
| << " " << opcode_count_[i]; |
| } |
| } |
| } |
| |
| uint64_t MIRGraph::GetDataFlowAttributes(Instruction::Code opcode) { |
| DCHECK_LT((size_t) opcode, (sizeof(oat_data_flow_attributes_) / sizeof(oat_data_flow_attributes_[0]))); |
| return oat_data_flow_attributes_[opcode]; |
| } |
| |
| uint64_t MIRGraph::GetDataFlowAttributes(MIR* mir) { |
| DCHECK(mir != nullptr); |
| Instruction::Code opcode = mir->dalvikInsn.opcode; |
| return GetDataFlowAttributes(opcode); |
| } |
| |
| // The path can easily surpass FS limits because of parameters etc. Use pathconf to get FS |
| // restrictions here. Note that a successful invocation will return an actual value. If the path |
| // is too long for some reason, the return will be ENAMETOOLONG. Then cut off part of the name. |
| // |
| // It's possible the path is not valid, or some other errors appear. In that case return false. |
| static bool CreateDumpFile(std::string& fname, const char* dir_prefix, NarrowDexOffset start_offset, |
| const char *suffix, int nr, std::string* output) { |
| std::string dir = StringPrintf("./%s", dir_prefix); |
| int64_t max_name_length = pathconf(dir.c_str(), _PC_NAME_MAX); |
| if (max_name_length <= 0) { |
| PLOG(ERROR) << "Could not get file name restrictions for " << dir; |
| return false; |
| } |
| |
| std::string name = StringPrintf("%s%x%s_%d.dot", fname.c_str(), start_offset, |
| suffix == nullptr ? "" : suffix, nr); |
| std::string fpath; |
| if (static_cast<int64_t>(name.size()) > max_name_length) { |
| std::string suffix_str = StringPrintf("_%d.dot", nr); |
| name = name.substr(0, static_cast<size_t>(max_name_length) - suffix_str.size()) + suffix_str; |
| } |
| // Sanity check. |
| DCHECK_LE(name.size(), static_cast<size_t>(max_name_length)); |
| |
| *output = StringPrintf("%s%s", dir_prefix, name.c_str()); |
| return true; |
| } |
| |
| // TODO: use a configurable base prefix, and adjust callers to supply pass name. |
| /* Dump the CFG into a DOT graph */ |
| void MIRGraph::DumpCFG(const char* dir_prefix, bool all_blocks, const char *suffix) { |
| FILE* file; |
| static AtomicInteger cnt(0); |
| |
| // Increment counter to get a unique file number. |
| cnt++; |
| int nr = cnt.LoadRelaxed(); |
| |
| std::string fname(PrettyMethod(cu_->method_idx, *cu_->dex_file)); |
| ReplaceSpecialChars(fname); |
| std::string fpath; |
| if (!CreateDumpFile(fname, dir_prefix, GetBasicBlock(GetEntryBlock()->fall_through)->start_offset, |
| suffix, nr, &fpath)) { |
| LOG(ERROR) << "Could not create dump file name for " << fname; |
| return; |
| } |
| file = fopen(fpath.c_str(), "w"); |
| if (file == nullptr) { |
| PLOG(ERROR) << "Could not open " << fpath << " for DumpCFG."; |
| return; |
| } |
| fprintf(file, "digraph G {\n"); |
| |
| fprintf(file, " rankdir=TB\n"); |
| |
| int num_blocks = all_blocks ? GetNumBlocks() : num_reachable_blocks_; |
| int idx; |
| |
| for (idx = 0; idx < num_blocks; idx++) { |
| int block_idx = all_blocks ? idx : dfs_order_[idx]; |
| BasicBlock* bb = GetBasicBlock(block_idx); |
| if (bb == nullptr) continue; |
| if (bb->block_type == kDead) continue; |
| if (bb->hidden) continue; |
| if (bb->block_type == kEntryBlock) { |
| fprintf(file, " entry_%d [shape=Mdiamond];\n", bb->id); |
| } else if (bb->block_type == kExitBlock) { |
| fprintf(file, " exit_%d [shape=Mdiamond];\n", bb->id); |
| } else if (bb->block_type == kDalvikByteCode) { |
| fprintf(file, " block%04x_%d [shape=record,label = \"{ \\\n", |
| bb->start_offset, bb->id); |
| const MIR* mir; |
| fprintf(file, " {block id %d\\l}%s\\\n", bb->id, |
| bb->first_mir_insn ? " | " : " "); |
| for (mir = bb->first_mir_insn; mir; mir = mir->next) { |
| int opcode = mir->dalvikInsn.opcode; |
| fprintf(file, " {%04x %s %s %s %s %s %s %s %s %s\\l}%s\\\n", mir->offset, |
| mir->ssa_rep ? GetDalvikDisassembly(mir) : |
| !MIR::DecodedInstruction::IsPseudoMirOp(opcode) ? |
| Instruction::Name(mir->dalvikInsn.opcode) : |
| extended_mir_op_names_[opcode - kMirOpFirst], |
| (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0 ? " no_rangecheck" : " ", |
| (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0 ? " no_nullcheck" : " ", |
| (mir->optimization_flags & MIR_IGNORE_SUSPEND_CHECK) != 0 ? " no_suspendcheck" : " ", |
| (mir->optimization_flags & MIR_STORE_NON_TEMPORAL) != 0 ? " non_temporal" : " ", |
| (mir->optimization_flags & MIR_CALLEE) != 0 ? " inlined" : " ", |
| (mir->optimization_flags & MIR_CLASS_IS_INITIALIZED) != 0 ? " cl_inited" : " ", |
| (mir->optimization_flags & MIR_CLASS_IS_IN_DEX_CACHE) != 0 ? " cl_in_cache" : " ", |
| (mir->optimization_flags & MIR_IGNORE_DIV_ZERO_CHECK) != 0 ? " no_div_check" : " ", |
| mir->next ? " | " : " "); |
| } |
| fprintf(file, " }\"];\n\n"); |
| } else if (bb->block_type == kExceptionHandling) { |
| char block_name[BLOCK_NAME_LEN]; |
| |
| GetBlockName(bb, block_name); |
| fprintf(file, " %s [shape=invhouse];\n", block_name); |
| } |
| |
| char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN]; |
| |
| if (bb->taken != NullBasicBlockId) { |
| GetBlockName(bb, block_name1); |
| GetBlockName(GetBasicBlock(bb->taken), block_name2); |
| fprintf(file, " %s:s -> %s:n [style=dotted]\n", |
| block_name1, block_name2); |
| } |
| if (bb->fall_through != NullBasicBlockId) { |
| GetBlockName(bb, block_name1); |
| GetBlockName(GetBasicBlock(bb->fall_through), block_name2); |
| fprintf(file, " %s:s -> %s:n\n", block_name1, block_name2); |
| } |
| |
| if (bb->successor_block_list_type != kNotUsed) { |
| fprintf(file, " succ%04x_%d [shape=%s,label = \"{ \\\n", |
| bb->start_offset, bb->id, |
| (bb->successor_block_list_type == kCatch) ? "Mrecord" : "record"); |
| |
| int last_succ_id = static_cast<int>(bb->successor_blocks.size() - 1u); |
| int succ_id = 0; |
| for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) { |
| BasicBlock* dest_block = GetBasicBlock(successor_block_info->block); |
| fprintf(file, " {<f%d> %04x: %04x\\l}%s\\\n", |
| succ_id, |
| successor_block_info->key, |
| dest_block->start_offset, |
| (succ_id != last_succ_id) ? " | " : " "); |
| ++succ_id; |
| } |
| fprintf(file, " }\"];\n\n"); |
| |
| GetBlockName(bb, block_name1); |
| fprintf(file, " %s:s -> succ%04x_%d:n [style=dashed]\n", |
| block_name1, bb->start_offset, bb->id); |
| |
| // Link the successor pseudo-block with all of its potential targets. |
| succ_id = 0; |
| for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) { |
| BasicBlock* dest_block = GetBasicBlock(successor_block_info->block); |
| |
| GetBlockName(dest_block, block_name2); |
| fprintf(file, " succ%04x_%d:f%d:e -> %s:n\n", bb->start_offset, |
| bb->id, succ_id++, block_name2); |
| } |
| } |
| fprintf(file, "\n"); |
| |
| if (cu_->verbose) { |
| /* Display the dominator tree */ |
| GetBlockName(bb, block_name1); |
| fprintf(file, " cfg%s [label=\"%s\", shape=none];\n", |
| block_name1, block_name1); |
| if (bb->i_dom) { |
| GetBlockName(GetBasicBlock(bb->i_dom), block_name2); |
| fprintf(file, " cfg%s:s -> cfg%s:n\n\n", block_name2, block_name1); |
| } |
| } |
| } |
| fprintf(file, "}\n"); |
| fclose(file); |
| } |
| |
| /* Insert an MIR instruction to the end of a basic block. */ |
| void BasicBlock::AppendMIR(MIR* mir) { |
| // Insert it after the last MIR. |
| InsertMIRListAfter(last_mir_insn, mir, mir); |
| } |
| |
| void BasicBlock::AppendMIRList(MIR* first_list_mir, MIR* last_list_mir) { |
| // Insert it after the last MIR. |
| InsertMIRListAfter(last_mir_insn, first_list_mir, last_list_mir); |
| } |
| |
| void BasicBlock::AppendMIRList(const std::vector<MIR*>& insns) { |
| for (std::vector<MIR*>::const_iterator it = insns.begin(); it != insns.end(); it++) { |
| MIR* new_mir = *it; |
| |
| // Add a copy of each MIR. |
| InsertMIRListAfter(last_mir_insn, new_mir, new_mir); |
| } |
| } |
| |
| /* Insert a MIR instruction after the specified MIR. */ |
| void BasicBlock::InsertMIRAfter(MIR* current_mir, MIR* new_mir) { |
| InsertMIRListAfter(current_mir, new_mir, new_mir); |
| } |
| |
| void BasicBlock::InsertMIRListAfter(MIR* insert_after, MIR* first_list_mir, MIR* last_list_mir) { |
| // If no MIR, we are done. |
| if (first_list_mir == nullptr || last_list_mir == nullptr) { |
| return; |
| } |
| |
| // If insert_after is null, assume BB is empty. |
| if (insert_after == nullptr) { |
| first_mir_insn = first_list_mir; |
| last_mir_insn = last_list_mir; |
| last_list_mir->next = nullptr; |
| } else { |
| MIR* after_list = insert_after->next; |
| insert_after->next = first_list_mir; |
| last_list_mir->next = after_list; |
| if (after_list == nullptr) { |
| last_mir_insn = last_list_mir; |
| } |
| } |
| |
| // Set this BB to be the basic block of the MIRs. |
| MIR* last = last_list_mir->next; |
| for (MIR* mir = first_list_mir; mir != last; mir = mir->next) { |
| mir->bb = id; |
| } |
| } |
| |
| /* Insert an MIR instruction to the head of a basic block. */ |
| void BasicBlock::PrependMIR(MIR* mir) { |
| InsertMIRListBefore(first_mir_insn, mir, mir); |
| } |
| |
| void BasicBlock::PrependMIRList(MIR* first_list_mir, MIR* last_list_mir) { |
| // Insert it before the first MIR. |
| InsertMIRListBefore(first_mir_insn, first_list_mir, last_list_mir); |
| } |
| |
| void BasicBlock::PrependMIRList(const std::vector<MIR*>& to_add) { |
| for (std::vector<MIR*>::const_iterator it = to_add.begin(); it != to_add.end(); it++) { |
| MIR* mir = *it; |
| |
| InsertMIRListBefore(first_mir_insn, mir, mir); |
| } |
| } |
| |
| /* Insert a MIR instruction before the specified MIR. */ |
| void BasicBlock::InsertMIRBefore(MIR* current_mir, MIR* new_mir) { |
| // Insert as a single element list. |
| return InsertMIRListBefore(current_mir, new_mir, new_mir); |
| } |
| |
| MIR* BasicBlock::FindPreviousMIR(MIR* mir) { |
| MIR* current = first_mir_insn; |
| |
| while (current != nullptr) { |
| MIR* next = current->next; |
| |
| if (next == mir) { |
| return current; |
| } |
| |
| current = next; |
| } |
| |
| return nullptr; |
| } |
| |
| void BasicBlock::InsertMIRListBefore(MIR* insert_before, MIR* first_list_mir, MIR* last_list_mir) { |
| // If no MIR, we are done. |
| if (first_list_mir == nullptr || last_list_mir == nullptr) { |
| return; |
| } |
| |
| // If insert_before is null, assume BB is empty. |
| if (insert_before == nullptr) { |
| first_mir_insn = first_list_mir; |
| last_mir_insn = last_list_mir; |
| last_list_mir->next = nullptr; |
| } else { |
| if (first_mir_insn == insert_before) { |
| last_list_mir->next = first_mir_insn; |
| first_mir_insn = first_list_mir; |
| } else { |
| // Find the preceding MIR. |
| MIR* before_list = FindPreviousMIR(insert_before); |
| DCHECK(before_list != nullptr); |
| before_list->next = first_list_mir; |
| last_list_mir->next = insert_before; |
| } |
| } |
| |
| // Set this BB to be the basic block of the MIRs. |
| for (MIR* mir = first_list_mir; mir != last_list_mir->next; mir = mir->next) { |
| mir->bb = id; |
| } |
| } |
| |
| bool BasicBlock::RemoveMIR(MIR* mir) { |
| // Remove as a single element list. |
| return RemoveMIRList(mir, mir); |
| } |
| |
| bool BasicBlock::RemoveMIRList(MIR* first_list_mir, MIR* last_list_mir) { |
| if (first_list_mir == nullptr) { |
| return false; |
| } |
| |
| // Try to find the MIR. |
| MIR* before_list = nullptr; |
| MIR* after_list = nullptr; |
| |
| // If we are removing from the beginning of the MIR list. |
| if (first_mir_insn == first_list_mir) { |
| before_list = nullptr; |
| } else { |
| before_list = FindPreviousMIR(first_list_mir); |
| if (before_list == nullptr) { |
| // We did not find the mir. |
| return false; |
| } |
| } |
| |
| // Remove the BB information and also find the after_list. |
| for (MIR* mir = first_list_mir; mir != last_list_mir->next; mir = mir->next) { |
| mir->bb = NullBasicBlockId; |
| } |
| |
| after_list = last_list_mir->next; |
| |
| // If there is nothing before the list, after_list is the first_mir. |
| if (before_list == nullptr) { |
| first_mir_insn = after_list; |
| } else { |
| before_list->next = after_list; |
| } |
| |
| // If there is nothing after the list, before_list is last_mir. |
| if (after_list == nullptr) { |
| last_mir_insn = before_list; |
| } |
| |
| return true; |
| } |
| |
| MIR* BasicBlock::GetFirstNonPhiInsn() { |
| MIR* mir = first_mir_insn; |
| while (mir != nullptr && static_cast<int>(mir->dalvikInsn.opcode) == kMirOpPhi) { |
| mir = mir->next; |
| } |
| return mir; |
| } |
| |
| MIR* BasicBlock::GetNextUnconditionalMir(MIRGraph* mir_graph, MIR* current) { |
| MIR* next_mir = nullptr; |
| |
| if (current != nullptr) { |
| next_mir = current->next; |
| } |
| |
| if (next_mir == nullptr) { |
| // Only look for next MIR that follows unconditionally. |
| if ((taken == NullBasicBlockId) && (fall_through != NullBasicBlockId)) { |
| next_mir = mir_graph->GetBasicBlock(fall_through)->first_mir_insn; |
| } |
| } |
| |
| return next_mir; |
| } |
| |
| static void FillTypeSizeString(uint32_t type_size, std::string* decoded_mir) { |
| DCHECK(decoded_mir != nullptr); |
| OpSize type = static_cast<OpSize>(type_size >> 16); |
| uint16_t vect_size = (type_size & 0xFFFF); |
| |
| // Now print the type and vector size. |
| std::stringstream ss; |
| ss << " (type:"; |
| ss << type; |
| ss << " vectsize:"; |
| ss << vect_size; |
| ss << ")"; |
| |
| decoded_mir->append(ss.str()); |
| } |
| |
| void MIRGraph::DisassembleExtendedInstr(const MIR* mir, std::string* decoded_mir) { |
| DCHECK(decoded_mir != nullptr); |
| int opcode = mir->dalvikInsn.opcode; |
| SSARepresentation* ssa_rep = mir->ssa_rep; |
| int defs = (ssa_rep != nullptr) ? ssa_rep->num_defs : 0; |
| int uses = (ssa_rep != nullptr) ? ssa_rep->num_uses : 0; |
| |
| if (opcode < kMirOpFirst) { |
| return; // It is not an extended instruction. |
| } |
| |
| decoded_mir->append(extended_mir_op_names_[opcode - kMirOpFirst]); |
| |
| switch (opcode) { |
| case kMirOpPhi: { |
| if (defs > 0 && uses > 0) { |
| BasicBlockId* incoming = mir->meta.phi_incoming; |
| decoded_mir->append(StringPrintf(" %s = (%s", |
| GetSSANameWithConst(ssa_rep->defs[0], true).c_str(), |
| GetSSANameWithConst(ssa_rep->uses[0], true).c_str())); |
| decoded_mir->append(StringPrintf(":%d", incoming[0])); |
| for (int i = 1; i < uses; i++) { |
| decoded_mir->append(StringPrintf(", %s:%d", GetSSANameWithConst(ssa_rep->uses[i], true).c_str(), incoming[i])); |
| } |
| decoded_mir->append(")"); |
| } |
| break; |
| } |
| case kMirOpCopy: |
| if (ssa_rep != nullptr) { |
| decoded_mir->append(" "); |
| decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[0], false)); |
| if (defs > 1) { |
| decoded_mir->append(", "); |
| decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[1], false)); |
| } |
| decoded_mir->append(" = "); |
| decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[0], false)); |
| if (uses > 1) { |
| decoded_mir->append(", "); |
| decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[1], false)); |
| } |
| } else { |
| decoded_mir->append(StringPrintf(" v%d = v%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB)); |
| } |
| break; |
| case kMirOpFusedCmplFloat: |
| case kMirOpFusedCmpgFloat: |
| case kMirOpFusedCmplDouble: |
| case kMirOpFusedCmpgDouble: |
| case kMirOpFusedCmpLong: |
| if (ssa_rep != nullptr) { |
| decoded_mir->append(" "); |
| decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[0], false)); |
| for (int i = 1; i < uses; i++) { |
| decoded_mir->append(", "); |
| decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[i], false)); |
| } |
| } else { |
| decoded_mir->append(StringPrintf(" v%d, v%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB)); |
| } |
| break; |
| case kMirOpMoveVector: |
| decoded_mir->append(StringPrintf(" vect%d = vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB)); |
| FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); |
| break; |
| case kMirOpPackedAddition: |
| decoded_mir->append(StringPrintf(" vect%d = vect%d + vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB)); |
| FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); |
| break; |
| case kMirOpPackedMultiply: |
| decoded_mir->append(StringPrintf(" vect%d = vect%d * vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB)); |
| FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); |
| break; |
| case kMirOpPackedSubtract: |
| decoded_mir->append(StringPrintf(" vect%d = vect%d - vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB)); |
| FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); |
| break; |
| case kMirOpPackedAnd: |
| decoded_mir->append(StringPrintf(" vect%d = vect%d & vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB)); |
| FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); |
| break; |
| case kMirOpPackedOr: |
| decoded_mir->append(StringPrintf(" vect%d = vect%d \\| vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB)); |
| FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); |
| break; |
| case kMirOpPackedXor: |
| decoded_mir->append(StringPrintf(" vect%d = vect%d ^ vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB)); |
| FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); |
| break; |
| case kMirOpPackedShiftLeft: |
| decoded_mir->append(StringPrintf(" vect%d = vect%d \\<\\< %d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB)); |
| FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); |
| break; |
| case kMirOpPackedUnsignedShiftRight: |
| decoded_mir->append(StringPrintf(" vect%d = vect%d \\>\\>\\> %d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB)); |
| FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); |
| break; |
| case kMirOpPackedSignedShiftRight: |
| decoded_mir->append(StringPrintf(" vect%d = vect%d \\>\\> %d", mir->dalvikInsn.vA, mir->dalvikInsn.vA, mir->dalvikInsn.vB)); |
| FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); |
| break; |
| case kMirOpConstVector: |
| decoded_mir->append(StringPrintf(" vect%d = %x, %x, %x, %x", mir->dalvikInsn.vA, mir->dalvikInsn.arg[0], |
| mir->dalvikInsn.arg[1], mir->dalvikInsn.arg[2], mir->dalvikInsn.arg[3])); |
| break; |
| case kMirOpPackedSet: |
| if (ssa_rep != nullptr) { |
| decoded_mir->append(StringPrintf(" vect%d = %s", mir->dalvikInsn.vA, |
| GetSSANameWithConst(ssa_rep->uses[0], false).c_str())); |
| if (uses > 1) { |
| decoded_mir->append(", "); |
| decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[1], false)); |
| } |
| } else { |
| decoded_mir->append(StringPrintf(" vect%d = v%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB)); |
| } |
| FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); |
| break; |
| case kMirOpPackedAddReduce: |
| if (ssa_rep != nullptr) { |
| decoded_mir->append(" "); |
| decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[0], false)); |
| if (defs > 1) { |
| decoded_mir->append(", "); |
| decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[1], false)); |
| } |
| decoded_mir->append(StringPrintf(" = vect%d + %s", mir->dalvikInsn.vB, |
| GetSSANameWithConst(ssa_rep->uses[0], false).c_str())); |
| if (uses > 1) { |
| decoded_mir->append(", "); |
| decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[1], false)); |
| } |
| } else { |
| decoded_mir->append(StringPrintf("v%d = vect%d + v%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB, mir->dalvikInsn.vA)); |
| } |
| FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); |
| break; |
| case kMirOpPackedReduce: |
| if (ssa_rep != nullptr) { |
| decoded_mir->append(" "); |
| decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[0], false)); |
| if (defs > 1) { |
| decoded_mir->append(", "); |
| decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[1], false)); |
| } |
| decoded_mir->append(StringPrintf(" = vect%d (extr_idx:%d)", mir->dalvikInsn.vB, mir->dalvikInsn.arg[0])); |
| } else { |
| decoded_mir->append(StringPrintf(" v%d = vect%d (extr_idx:%d)", mir->dalvikInsn.vA, |
| mir->dalvikInsn.vB, mir->dalvikInsn.arg[0])); |
| } |
| FillTypeSizeString(mir->dalvikInsn.vC, decoded_mir); |
| break; |
| case kMirOpReserveVectorRegisters: |
| case kMirOpReturnVectorRegisters: |
| decoded_mir->append(StringPrintf(" vect%d - vect%d", mir->dalvikInsn.vA, mir->dalvikInsn.vB)); |
| break; |
| case kMirOpMemBarrier: { |
| decoded_mir->append(" type:"); |
| std::stringstream ss; |
| ss << static_cast<MemBarrierKind>(mir->dalvikInsn.vA); |
| decoded_mir->append(ss.str()); |
| break; |
| } |
| case kMirOpPackedArrayGet: |
| case kMirOpPackedArrayPut: |
| decoded_mir->append(StringPrintf(" vect%d", mir->dalvikInsn.vA)); |
| if (ssa_rep != nullptr) { |
| decoded_mir->append(StringPrintf(", %s[%s]", |
| GetSSANameWithConst(ssa_rep->uses[0], false).c_str(), |
| GetSSANameWithConst(ssa_rep->uses[1], false).c_str())); |
| } else { |
| decoded_mir->append(StringPrintf(", v%d[v%d]", mir->dalvikInsn.vB, mir->dalvikInsn.vC)); |
| } |
| FillTypeSizeString(mir->dalvikInsn.arg[0], decoded_mir); |
| break; |
| case kMirOpMaddInt: |
| case kMirOpMsubInt: |
| case kMirOpMaddLong: |
| case kMirOpMsubLong: |
| if (ssa_rep != nullptr) { |
| decoded_mir->append(" "); |
| decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[0], false)); |
| if (defs > 1) { |
| decoded_mir->append(", "); |
| decoded_mir->append(GetSSANameWithConst(ssa_rep->defs[1], false)); |
| } |
| for (int i = 0; i < uses; i++) { |
| decoded_mir->append(", "); |
| decoded_mir->append(GetSSANameWithConst(ssa_rep->uses[i], false)); |
| } |
| } else { |
| decoded_mir->append(StringPrintf(" v%d, v%d, v%d, v%d", |
| mir->dalvikInsn.vA, mir->dalvikInsn.vB, |
| mir->dalvikInsn.vC, mir->dalvikInsn.arg[0])); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| char* MIRGraph::GetDalvikDisassembly(const MIR* mir) { |
| MIR::DecodedInstruction insn = mir->dalvikInsn; |
| std::string str; |
| int flags = 0; |
| int opcode = insn.opcode; |
| char* ret; |
| bool nop = false; |
| SSARepresentation* ssa_rep = mir->ssa_rep; |
| Instruction::Format dalvik_format = Instruction::k10x; // Default to no-operand format. |
| |
| // Handle special cases that recover the original dalvik instruction. |
| if (opcode == kMirOpCheck) { |
| str.append(extended_mir_op_names_[opcode - kMirOpFirst]); |
| str.append(": "); |
| // Recover the original Dex instruction. |
| insn = mir->meta.throw_insn->dalvikInsn; |
| ssa_rep = mir->meta.throw_insn->ssa_rep; |
| opcode = insn.opcode; |
| } else if (opcode == kMirOpNop) { |
| str.append("["); |
| if (mir->offset < current_code_item_->insns_size_in_code_units_) { |
| // Recover original opcode. |
| insn.opcode = Instruction::At(current_code_item_->insns_ + mir->offset)->Opcode(); |
| opcode = insn.opcode; |
| } |
| nop = true; |
| } |
| int defs = (ssa_rep != nullptr) ? ssa_rep->num_defs : 0; |
| int uses = (ssa_rep != nullptr) ? ssa_rep->num_uses : 0; |
| |
| if (MIR::DecodedInstruction::IsPseudoMirOp(opcode)) { |
| // Note that this does not check the MIR's opcode in all cases. In cases where it |
| // recovered dalvik instruction, it uses opcode of that instead of the extended one. |
| DisassembleExtendedInstr(mir, &str); |
| } else { |
| dalvik_format = Instruction::FormatOf(insn.opcode); |
| flags = insn.FlagsOf(); |
| str.append(Instruction::Name(insn.opcode)); |
| |
| // For invokes-style formats, treat wide regs as a pair of singles. |
| bool show_singles = ((dalvik_format == Instruction::k35c) || |
| (dalvik_format == Instruction::k3rc)); |
| if (defs != 0) { |
| str.append(" "); |
| str.append(GetSSANameWithConst(ssa_rep->defs[0], false)); |
| if (defs > 1) { |
| str.append(", "); |
| str.append(GetSSANameWithConst(ssa_rep->defs[1], false)); |
| } |
| if (uses != 0) { |
| str.append(", "); |
| } |
| } |
| for (int i = 0; i < uses; i++) { |
| str.append(" "); |
| str.append(GetSSANameWithConst(ssa_rep->uses[i], show_singles)); |
| if (!show_singles && (reg_location_ != nullptr) && reg_location_[i].wide) { |
| // For the listing, skip the high sreg. |
| i++; |
| } |
| if (i != (uses - 1)) { |
| str.append(","); |
| } |
| } |
| |
| switch (dalvik_format) { |
| case Instruction::k11n: // Add one immediate from vB. |
| case Instruction::k21s: |
| case Instruction::k31i: |
| case Instruction::k21h: |
| str.append(StringPrintf(", #0x%x", insn.vB)); |
| break; |
| case Instruction::k51l: // Add one wide immediate. |
| str.append(StringPrintf(", #%" PRId64, insn.vB_wide)); |
| break; |
| case Instruction::k21c: // One register, one string/type/method index. |
| case Instruction::k31c: |
| str.append(StringPrintf(", index #0x%x", insn.vB)); |
| break; |
| case Instruction::k22c: // Two registers, one string/type/method index. |
| str.append(StringPrintf(", index #0x%x", insn.vC)); |
| break; |
| case Instruction::k22s: // Add one immediate from vC. |
| case Instruction::k22b: |
| str.append(StringPrintf(", #0x%x", insn.vC)); |
| break; |
| default: |
| // Nothing left to print. |
| break; |
| } |
| |
| if ((flags & Instruction::kBranch) != 0) { |
| // For branches, decode the instructions to print out the branch targets. |
| int offset = 0; |
| switch (dalvik_format) { |
| case Instruction::k21t: |
| offset = insn.vB; |
| break; |
| case Instruction::k22t: |
| offset = insn.vC; |
| break; |
| case Instruction::k10t: |
| case Instruction::k20t: |
| case Instruction::k30t: |
| offset = insn.vA; |
| break; |
| default: |
| LOG(FATAL) << "Unexpected branch format " << dalvik_format << " from " << insn.opcode; |
| break; |
| } |
| str.append(StringPrintf(", 0x%x (%c%x)", mir->offset + offset, |
| offset > 0 ? '+' : '-', offset > 0 ? offset : -offset)); |
| } |
| |
| if (nop) { |
| str.append("]--optimized away"); |
| } |
| } |
| int length = str.length() + 1; |
| ret = arena_->AllocArray<char>(length, kArenaAllocDFInfo); |
| strncpy(ret, str.c_str(), length); |
| return ret; |
| } |
| |
| /* Turn method name into a legal Linux file name */ |
| void MIRGraph::ReplaceSpecialChars(std::string& str) { |
| static const struct { const char before; const char after; } match[] = { |
| {'/', '-'}, {';', '#'}, {' ', '#'}, {'$', '+'}, |
| {'(', '@'}, {')', '@'}, {'<', '='}, {'>', '='} |
| }; |
| for (unsigned int i = 0; i < sizeof(match)/sizeof(match[0]); i++) { |
| std::replace(str.begin(), str.end(), match[i].before, match[i].after); |
| } |
| } |
| |
| std::string MIRGraph::GetSSAName(int ssa_reg) { |
| // TODO: This value is needed for debugging. Currently, we compute this and then copy to the |
| // arena. We should be smarter and just place straight into the arena, or compute the |
| // value more lazily. |
| int vreg = SRegToVReg(ssa_reg); |
| if (vreg >= static_cast<int>(GetFirstTempVR())) { |
| return StringPrintf("t%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg)); |
| } else { |
| return StringPrintf("v%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg)); |
| } |
| } |
| |
| // Similar to GetSSAName, but if ssa name represents an immediate show that as well. |
| std::string MIRGraph::GetSSANameWithConst(int ssa_reg, bool singles_only) { |
| if (reg_location_ == nullptr) { |
| // Pre-SSA - just use the standard name. |
| return GetSSAName(ssa_reg); |
| } |
| if (IsConst(reg_location_[ssa_reg])) { |
| if (!singles_only && reg_location_[ssa_reg].wide && |
| !reg_location_[ssa_reg].high_word) { |
| return StringPrintf("v%d_%d#0x%" PRIx64, SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg), |
| ConstantValueWide(reg_location_[ssa_reg])); |
| } else { |
| return StringPrintf("v%d_%d#0x%x", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg), |
| ConstantValue(reg_location_[ssa_reg])); |
| } |
| } else { |
| int vreg = SRegToVReg(ssa_reg); |
| if (vreg >= static_cast<int>(GetFirstTempVR())) { |
| return StringPrintf("t%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg)); |
| } else { |
| return StringPrintf("v%d_%d", SRegToVReg(ssa_reg), GetSSASubscript(ssa_reg)); |
| } |
| } |
| } |
| |
| void MIRGraph::GetBlockName(BasicBlock* bb, char* name) { |
| switch (bb->block_type) { |
| case kEntryBlock: |
| snprintf(name, BLOCK_NAME_LEN, "entry_%d", bb->id); |
| break; |
| case kExitBlock: |
| snprintf(name, BLOCK_NAME_LEN, "exit_%d", bb->id); |
| break; |
| case kDalvikByteCode: |
| snprintf(name, BLOCK_NAME_LEN, "block%04x_%d", bb->start_offset, bb->id); |
| break; |
| case kExceptionHandling: |
| snprintf(name, BLOCK_NAME_LEN, "exception%04x_%d", bb->start_offset, |
| bb->id); |
| break; |
| default: |
| snprintf(name, BLOCK_NAME_LEN, "_%d", bb->id); |
| break; |
| } |
| } |
| |
| const char* MIRGraph::GetShortyFromMethodReference(const MethodReference& target_method) { |
| const DexFile::MethodId& method_id = |
| target_method.dex_file->GetMethodId(target_method.dex_method_index); |
| return target_method.dex_file->GetShorty(method_id.proto_idx_); |
| } |
| |
| /* Debug Utility - dump a compilation unit */ |
| void MIRGraph::DumpMIRGraph() { |
| const char* block_type_names[] = { |
| "Null Block", |
| "Entry Block", |
| "Code Block", |
| "Exit Block", |
| "Exception Handling", |
| "Catch Block" |
| }; |
| |
| LOG(INFO) << "Compiling " << PrettyMethod(cu_->method_idx, *cu_->dex_file); |
| LOG(INFO) << GetInsns(0) << " insns"; |
| LOG(INFO) << GetNumBlocks() << " blocks in total"; |
| |
| for (BasicBlock* bb : block_list_) { |
| LOG(INFO) << StringPrintf("Block %d (%s) (insn %04x - %04x%s)", |
| bb->id, |
| block_type_names[bb->block_type], |
| bb->start_offset, |
| bb->last_mir_insn ? bb->last_mir_insn->offset : bb->start_offset, |
| bb->last_mir_insn ? "" : " empty"); |
| if (bb->taken != NullBasicBlockId) { |
| LOG(INFO) << " Taken branch: block " << bb->taken |
| << "(0x" << std::hex << GetBasicBlock(bb->taken)->start_offset << ")"; |
| } |
| if (bb->fall_through != NullBasicBlockId) { |
| LOG(INFO) << " Fallthrough : block " << bb->fall_through |
| << " (0x" << std::hex << GetBasicBlock(bb->fall_through)->start_offset << ")"; |
| } |
| } |
| } |
| |
| /* |
| * Build an array of location records for the incoming arguments. |
| * Note: one location record per word of arguments, with dummy |
| * high-word loc for wide arguments. Also pull up any following |
| * MOVE_RESULT and incorporate it into the invoke. |
| */ |
| CallInfo* MIRGraph::NewMemCallInfo(BasicBlock* bb, MIR* mir, InvokeType type, bool is_range) { |
| CallInfo* info = static_cast<CallInfo*>(arena_->Alloc(sizeof(CallInfo), |
| kArenaAllocMisc)); |
| MIR* move_result_mir = FindMoveResult(bb, mir); |
| if (move_result_mir == nullptr) { |
| info->result.location = kLocInvalid; |
| } else { |
| info->result = GetRawDest(move_result_mir); |
| move_result_mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop); |
| } |
| info->num_arg_words = mir->ssa_rep->num_uses; |
| info->args = (info->num_arg_words == 0) ? nullptr : |
| arena_->AllocArray<RegLocation>(info->num_arg_words, kArenaAllocMisc); |
| for (size_t i = 0; i < info->num_arg_words; i++) { |
| info->args[i] = GetRawSrc(mir, i); |
| } |
| info->opt_flags = mir->optimization_flags; |
| info->type = type; |
| info->is_range = is_range; |
| if (IsInstructionQuickInvoke(mir->dalvikInsn.opcode)) { |
| const auto& method_info = GetMethodLoweringInfo(mir); |
| info->method_ref = method_info.GetTargetMethod(); |
| } else { |
| info->method_ref = MethodReference(GetCurrentDexCompilationUnit()->GetDexFile(), |
| mir->dalvikInsn.vB); |
| } |
| info->index = mir->dalvikInsn.vB; |
| info->offset = mir->offset; |
| info->mir = mir; |
| return info; |
| } |
| |
| // Allocate a new MIR. |
| MIR* MIRGraph::NewMIR() { |
| MIR* mir = new (arena_) MIR(); |
| return mir; |
| } |
| |
| // Allocate a new basic block. |
| BasicBlock* MIRGraph::NewMemBB(BBType block_type, int block_id) { |
| BasicBlock* bb = new (arena_) BasicBlock(block_id, block_type, arena_); |
| |
| // TUNING: better estimate of the exit block predecessors? |
| bb->predecessors.reserve((block_type == kExitBlock) ? 2048 : 2); |
| block_id_map_.Put(block_id, block_id); |
| return bb; |
| } |
| |
| void MIRGraph::InitializeConstantPropagation() { |
| is_constant_v_ = new (arena_) ArenaBitVector(arena_, GetNumSSARegs(), false); |
| constant_values_ = arena_->AllocArray<int>(GetNumSSARegs(), kArenaAllocDFInfo); |
| } |
| |
| void MIRGraph::InitializeMethodUses() { |
| // The gate starts by initializing the use counts. |
| int num_ssa_regs = GetNumSSARegs(); |
| use_counts_.clear(); |
| use_counts_.reserve(num_ssa_regs + 32); |
| use_counts_.resize(num_ssa_regs, 0u); |
| raw_use_counts_.clear(); |
| raw_use_counts_.reserve(num_ssa_regs + 32); |
| raw_use_counts_.resize(num_ssa_regs, 0u); |
| } |
| |
| void MIRGraph::SSATransformationStart() { |
| DCHECK(temp_scoped_alloc_.get() == nullptr); |
| temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack)); |
| temp_.ssa.num_vregs = GetNumOfCodeAndTempVRs(); |
| temp_.ssa.work_live_vregs = new (temp_scoped_alloc_.get()) ArenaBitVector( |
| temp_scoped_alloc_.get(), temp_.ssa.num_vregs, false, kBitMapRegisterV); |
| } |
| |
| void MIRGraph::SSATransformationEnd() { |
| // Verify the dataflow information after the pass. |
| if (cu_->enable_debug & (1 << kDebugVerifyDataflow)) { |
| VerifyDataflow(); |
| } |
| |
| temp_.ssa.num_vregs = 0u; |
| temp_.ssa.work_live_vregs = nullptr; |
| DCHECK(temp_.ssa.def_block_matrix == nullptr); |
| temp_.ssa.phi_node_blocks = nullptr; |
| DCHECK(temp_scoped_alloc_.get() != nullptr); |
| temp_scoped_alloc_.reset(); |
| |
| // Update the maximum number of reachable blocks. |
| max_num_reachable_blocks_ = num_reachable_blocks_; |
| |
| // Mark MIR SSA representations as up to date. |
| mir_ssa_rep_up_to_date_ = true; |
| } |
| |
| size_t MIRGraph::GetNumDalvikInsns() const { |
| size_t cumulative_size = 0u; |
| bool counted_current_item = false; |
| const uint8_t size_for_null_code_item = 2u; |
| |
| for (auto it : m_units_) { |
| const DexFile::CodeItem* code_item = it->GetCodeItem(); |
| // Even if the code item is null, we still count non-zero value so that |
| // each m_unit is counted as having impact. |
| cumulative_size += (code_item == nullptr ? |
| size_for_null_code_item : code_item->insns_size_in_code_units_); |
| if (code_item == current_code_item_) { |
| counted_current_item = true; |
| } |
| } |
| |
| // If the current code item was not counted yet, count it now. |
| // This can happen for example in unit tests where some fields like m_units_ |
| // are not initialized. |
| if (counted_current_item == false) { |
| cumulative_size += (current_code_item_ == nullptr ? |
| size_for_null_code_item : current_code_item_->insns_size_in_code_units_); |
| } |
| |
| return cumulative_size; |
| } |
| |
| static BasicBlock* SelectTopologicalSortOrderFallBack( |
| MIRGraph* mir_graph, const ArenaBitVector* current_loop, |
| const ScopedArenaVector<size_t>* visited_cnt_values, ScopedArenaAllocator* allocator, |
| ScopedArenaVector<BasicBlockId>* tmp_stack) { |
| // No true loop head has been found but there may be true loop heads after the mess we need |
| // to resolve. To avoid taking one of those, pick the candidate with the highest number of |
| // reachable unvisited nodes. That candidate will surely be a part of a loop. |
| BasicBlock* fall_back = nullptr; |
| size_t fall_back_num_reachable = 0u; |
| // Reuse the same bit vector for each candidate to mark reachable unvisited blocks. |
| ArenaBitVector candidate_reachable(allocator, mir_graph->GetNumBlocks(), false, kBitMapMisc); |
| AllNodesIterator iter(mir_graph); |
| for (BasicBlock* candidate = iter.Next(); candidate != nullptr; candidate = iter.Next()) { |
| if (candidate->hidden || // Hidden, or |
| candidate->visited || // already processed, or |
| (*visited_cnt_values)[candidate->id] == 0u || // no processed predecessors, or |
| (current_loop != nullptr && // outside current loop. |
| !current_loop->IsBitSet(candidate->id))) { |
| continue; |
| } |
| DCHECK(tmp_stack->empty()); |
| tmp_stack->push_back(candidate->id); |
| candidate_reachable.ClearAllBits(); |
| size_t num_reachable = 0u; |
| while (!tmp_stack->empty()) { |
| BasicBlockId current_id = tmp_stack->back(); |
| tmp_stack->pop_back(); |
| BasicBlock* current_bb = mir_graph->GetBasicBlock(current_id); |
| DCHECK(current_bb != nullptr); |
| ChildBlockIterator child_iter(current_bb, mir_graph); |
| BasicBlock* child_bb = child_iter.Next(); |
| for ( ; child_bb != nullptr; child_bb = child_iter.Next()) { |
| DCHECK(!child_bb->hidden); |
| if (child_bb->visited || // Already processed, or |
| (current_loop != nullptr && // outside current loop. |
| !current_loop->IsBitSet(child_bb->id))) { |
| continue; |
| } |
| if (!candidate_reachable.IsBitSet(child_bb->id)) { |
| candidate_reachable.SetBit(child_bb->id); |
| tmp_stack->push_back(child_bb->id); |
| num_reachable += 1u; |
| } |
| } |
| } |
| if (fall_back_num_reachable < num_reachable) { |
| fall_back_num_reachable = num_reachable; |
| fall_back = candidate; |
| } |
| } |
| return fall_back; |
| } |
| |
| // Compute from which unvisited blocks is bb_id reachable through unvisited blocks. |
| static void ComputeUnvisitedReachableFrom(MIRGraph* mir_graph, BasicBlockId bb_id, |
| ArenaBitVector* reachable, |
| ScopedArenaVector<BasicBlockId>* tmp_stack) { |
| // NOTE: Loop heads indicated by the "visited" flag. |
| DCHECK(tmp_stack->empty()); |
| reachable->ClearAllBits(); |
| tmp_stack->push_back(bb_id); |
| while (!tmp_stack->empty()) { |
| BasicBlockId current_id = tmp_stack->back(); |
| tmp_stack->pop_back(); |
| BasicBlock* current_bb = mir_graph->GetBasicBlock(current_id); |
| DCHECK(current_bb != nullptr); |
| for (BasicBlockId pred_id : current_bb->predecessors) { |
| BasicBlock* pred_bb = mir_graph->GetBasicBlock(pred_id); |
| DCHECK(pred_bb != nullptr); |
| if (!pred_bb->visited && !reachable->IsBitSet(pred_bb->id)) { |
| reachable->SetBit(pred_bb->id); |
| tmp_stack->push_back(pred_bb->id); |
| } |
| } |
| } |
| } |
| |
| void MIRGraph::ComputeTopologicalSortOrder() { |
| ScopedArenaAllocator allocator(&cu_->arena_stack); |
| unsigned int num_blocks = GetNumBlocks(); |
| |
| ScopedArenaQueue<BasicBlock*> q(allocator.Adapter()); |
| ScopedArenaVector<size_t> visited_cnt_values(num_blocks, 0u, allocator.Adapter()); |
| ScopedArenaVector<BasicBlockId> loop_head_stack(allocator.Adapter()); |
| size_t max_nested_loops = 0u; |
| ArenaBitVector loop_exit_blocks(&allocator, num_blocks, false, kBitMapMisc); |
| loop_exit_blocks.ClearAllBits(); |
| |
| // Count the number of blocks to process and add the entry block(s). |
| unsigned int num_blocks_to_process = 0u; |
| for (BasicBlock* bb : block_list_) { |
| if (bb->hidden == true) { |
| continue; |
| } |
| |
| num_blocks_to_process += 1u; |
| |
| if (bb->predecessors.size() == 0u) { |
| // Add entry block to the queue. |
| q.push(bb); |
| } |
| } |
| |
| // Clear the topological order arrays. |
| topological_order_.clear(); |
| topological_order_.reserve(num_blocks); |
| topological_order_loop_ends_.clear(); |
| topological_order_loop_ends_.resize(num_blocks, 0u); |
| topological_order_indexes_.clear(); |
| topological_order_indexes_.resize(num_blocks, static_cast<uint16_t>(-1)); |
| |
| // Mark all blocks as unvisited. |
| ClearAllVisitedFlags(); |
| |
| // For loop heads, keep track from which blocks they are reachable not going through other |
| // loop heads. Other loop heads are excluded to detect the heads of nested loops. The children |
| // in this set go into the loop body, the other children are jumping over the loop. |
| ScopedArenaVector<ArenaBitVector*> loop_head_reachable_from(allocator.Adapter()); |
| loop_head_reachable_from.resize(num_blocks, nullptr); |
| // Reuse the same temp stack whenever calculating a loop_head_reachable_from[loop_head_id]. |
| ScopedArenaVector<BasicBlockId> tmp_stack(allocator.Adapter()); |
| |
| while (num_blocks_to_process != 0u) { |
| BasicBlock* bb = nullptr; |
| if (!q.empty()) { |
| num_blocks_to_process -= 1u; |
| // Get top. |
| bb = q.front(); |
| q.pop(); |
| if (bb->visited) { |
| // Loop head: it was already processed, mark end and copy exit blocks to the queue. |
| DCHECK(q.empty()) << PrettyMethod(cu_->method_idx, *cu_->dex_file); |
| uint16_t idx = static_cast<uint16_t>(topological_order_.size()); |
| topological_order_loop_ends_[topological_order_indexes_[bb->id]] = idx; |
| DCHECK_EQ(loop_head_stack.back(), bb->id); |
| loop_head_stack.pop_back(); |
| ArenaBitVector* reachable = |
| loop_head_stack.empty() ? nullptr : loop_head_reachable_from[loop_head_stack.back()]; |
| for (BasicBlockId candidate_id : loop_exit_blocks.Indexes()) { |
| if (reachable == nullptr || reachable->IsBitSet(candidate_id)) { |
| q.push(GetBasicBlock(candidate_id)); |
| // NOTE: The BitVectorSet::IndexIterator will not check the pointed-to bit again, |
| // so clearing the bit has no effect on the iterator. |
| loop_exit_blocks.ClearBit(candidate_id); |
| } |
| } |
| continue; |
| } |
| } else { |
| // Find the new loop head. |
| AllNodesIterator iter(this); |
| while (true) { |
| BasicBlock* candidate = iter.Next(); |
| if (candidate == nullptr) { |
| // We did not find a true loop head, fall back to a reachable block in any loop. |
| ArenaBitVector* current_loop = |
| loop_head_stack.empty() ? nullptr : loop_head_reachable_from[loop_head_stack.back()]; |
| bb = SelectTopologicalSortOrderFallBack(this, current_loop, &visited_cnt_values, |
| &allocator, &tmp_stack); |
| DCHECK(bb != nullptr) << PrettyMethod(cu_->method_idx, *cu_->dex_file); |
| if (kIsDebugBuild && cu_->dex_file != nullptr) { |
| LOG(INFO) << "Topological sort order: Using fall-back in " |
| << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " BB #" << bb->id |
| << " @0x" << std::hex << bb->start_offset |
| << ", num_blocks = " << std::dec << num_blocks; |
| } |
| break; |
| } |
| if (candidate->hidden || // Hidden, or |
| candidate->visited || // already processed, or |
| visited_cnt_values[candidate->id] == 0u || // no processed predecessors, or |
| (!loop_head_stack.empty() && // outside current loop. |
| !loop_head_reachable_from[loop_head_stack.back()]->IsBitSet(candidate->id))) { |
| continue; |
| } |
| |
| for (BasicBlockId pred_id : candidate->predecessors) { |
| BasicBlock* pred_bb = GetBasicBlock(pred_id); |
| DCHECK(pred_bb != nullptr); |
| if (pred_bb != candidate && !pred_bb->visited && |
| !pred_bb->dominators->IsBitSet(candidate->id)) { |
| candidate = nullptr; // Set candidate to null to indicate failure. |
| break; |
| } |
| } |
| if (candidate != nullptr) { |
| bb = candidate; |
| break; |
| } |
| } |
| // Compute blocks from which the loop head is reachable and process those blocks first. |
| ArenaBitVector* reachable = |
| new (&allocator) ArenaBitVector(&allocator, num_blocks, false, kBitMapMisc); |
| loop_head_reachable_from[bb->id] = reachable; |
| ComputeUnvisitedReachableFrom(this, bb->id, reachable, &tmp_stack); |
| // Now mark as loop head. (Even if it's only a fall back when we don't find a true loop.) |
| loop_head_stack.push_back(bb->id); |
| max_nested_loops = std::max(max_nested_loops, loop_head_stack.size()); |
| } |
| |
| DCHECK_EQ(bb->hidden, false); |
| DCHECK_EQ(bb->visited, false); |
| bb->visited = true; |
| bb->nesting_depth = loop_head_stack.size(); |
| |
| // Now add the basic block. |
| uint16_t idx = static_cast<uint16_t>(topological_order_.size()); |
| topological_order_indexes_[bb->id] = idx; |
| topological_order_.push_back(bb->id); |
| |
| // Update visited_cnt_values for children. |
| ChildBlockIterator succIter(bb, this); |
| BasicBlock* successor = succIter.Next(); |
| for ( ; successor != nullptr; successor = succIter.Next()) { |
| if (successor->hidden) { |
| continue; |
| } |
| |
| // One more predecessor was visited. |
| visited_cnt_values[successor->id] += 1u; |
| if (visited_cnt_values[successor->id] == successor->predecessors.size()) { |
| if (loop_head_stack.empty() || |
| loop_head_reachable_from[loop_head_stack.back()]->IsBitSet(successor->id)) { |
| q.push(successor); |
| } else { |
| DCHECK(!loop_exit_blocks.IsBitSet(successor->id)); |
| loop_exit_blocks.SetBit(successor->id); |
| } |
| } |
| } |
| } |
| |
| // Prepare the loop head stack for iteration. |
| topological_order_loop_head_stack_.clear(); |
| topological_order_loop_head_stack_.reserve(max_nested_loops); |
| max_nested_loops_ = max_nested_loops; |
| topological_order_up_to_date_ = true; |
| } |
| |
| bool BasicBlock::IsExceptionBlock() const { |
| if (block_type == kExceptionHandling) { |
| return true; |
| } |
| return false; |
| } |
| |
| ChildBlockIterator::ChildBlockIterator(BasicBlock* bb, MIRGraph* mir_graph) |
| : basic_block_(bb), mir_graph_(mir_graph), visited_fallthrough_(false), |
| visited_taken_(false), have_successors_(false) { |
| // Check if we actually do have successors. |
| if (basic_block_ != 0 && basic_block_->successor_block_list_type != kNotUsed) { |
| have_successors_ = true; |
| successor_iter_ = basic_block_->successor_blocks.cbegin(); |
| } |
| } |
| |
| BasicBlock* ChildBlockIterator::Next() { |
| // We check if we have a basic block. If we don't we cannot get next child. |
| if (basic_block_ == nullptr) { |
| return nullptr; |
| } |
| |
| // If we haven't visited fallthrough, return that. |
| if (visited_fallthrough_ == false) { |
| visited_fallthrough_ = true; |
| |
| BasicBlock* result = mir_graph_->GetBasicBlock(basic_block_->fall_through); |
| if (result != nullptr) { |
| return result; |
| } |
| } |
| |
| // If we haven't visited taken, return that. |
| if (visited_taken_ == false) { |
| visited_taken_ = true; |
| |
| BasicBlock* result = mir_graph_->GetBasicBlock(basic_block_->taken); |
| if (result != nullptr) { |
| return result; |
| } |
| } |
| |
| // We visited both taken and fallthrough. Now check if we have successors we need to visit. |
| if (have_successors_ == true) { |
| // Get information about next successor block. |
| auto end = basic_block_->successor_blocks.cend(); |
| while (successor_iter_ != end) { |
| SuccessorBlockInfo* successor_block_info = *successor_iter_; |
| ++successor_iter_; |
| // If block was replaced by zero block, take next one. |
| if (successor_block_info->block != NullBasicBlockId) { |
| return mir_graph_->GetBasicBlock(successor_block_info->block); |
| } |
| } |
| } |
| |
| // We do not have anything. |
| return nullptr; |
| } |
| |
| BasicBlock* BasicBlock::Copy(CompilationUnit* c_unit) { |
| MIRGraph* mir_graph = c_unit->mir_graph.get(); |
| return Copy(mir_graph); |
| } |
| |
| BasicBlock* BasicBlock::Copy(MIRGraph* mir_graph) { |
| BasicBlock* result_bb = mir_graph->CreateNewBB(block_type); |
| |
| // We don't do a memcpy style copy here because it would lead to a lot of things |
| // to clean up. Let us do it by hand instead. |
| // Copy in taken and fallthrough. |
| result_bb->fall_through = fall_through; |
| result_bb->taken = taken; |
| |
| // Copy successor links if needed. |
| ArenaAllocator* arena = mir_graph->GetArena(); |
| |
| result_bb->successor_block_list_type = successor_block_list_type; |
| if (result_bb->successor_block_list_type != kNotUsed) { |
| result_bb->successor_blocks.reserve(successor_blocks.size()); |
| for (SuccessorBlockInfo* sbi_old : successor_blocks) { |
| SuccessorBlockInfo* sbi_new = static_cast<SuccessorBlockInfo*>( |
| arena->Alloc(sizeof(SuccessorBlockInfo), kArenaAllocSuccessors)); |
| memcpy(sbi_new, sbi_old, sizeof(SuccessorBlockInfo)); |
| result_bb->successor_blocks.push_back(sbi_new); |
| } |
| } |
| |
| // Copy offset, method. |
| result_bb->start_offset = start_offset; |
| |
| // Now copy instructions. |
| for (MIR* mir = first_mir_insn; mir != 0; mir = mir->next) { |
| // Get a copy first. |
| MIR* copy = mir->Copy(mir_graph); |
| |
| // Append it. |
| result_bb->AppendMIR(copy); |
| } |
| |
| return result_bb; |
| } |
| |
| MIR* MIR::Copy(MIRGraph* mir_graph) { |
| MIR* res = mir_graph->NewMIR(); |
| *res = *this; |
| |
| // Remove links |
| res->next = nullptr; |
| res->bb = NullBasicBlockId; |
| res->ssa_rep = nullptr; |
| |
| return res; |
| } |
| |
| MIR* MIR::Copy(CompilationUnit* c_unit) { |
| return Copy(c_unit->mir_graph.get()); |
| } |
| |
| uint32_t SSARepresentation::GetStartUseIndex(Instruction::Code opcode) { |
| // Default result. |
| int res = 0; |
| |
| // We are basically setting the iputs to their igets counterparts. |
| switch (opcode) { |
| case Instruction::IPUT: |
| case Instruction::IPUT_OBJECT: |
| case Instruction::IPUT_BOOLEAN: |
| case Instruction::IPUT_BYTE: |
| case Instruction::IPUT_CHAR: |
| case Instruction::IPUT_SHORT: |
| case Instruction::IPUT_QUICK: |
| case Instruction::IPUT_OBJECT_QUICK: |
| case Instruction::IPUT_BOOLEAN_QUICK: |
| case Instruction::IPUT_BYTE_QUICK: |
| case Instruction::IPUT_CHAR_QUICK: |
| case Instruction::IPUT_SHORT_QUICK: |
| case Instruction::APUT: |
| case Instruction::APUT_OBJECT: |
| case Instruction::APUT_BOOLEAN: |
| case Instruction::APUT_BYTE: |
| case Instruction::APUT_CHAR: |
| case Instruction::APUT_SHORT: |
| case Instruction::SPUT: |
| case Instruction::SPUT_OBJECT: |
| case Instruction::SPUT_BOOLEAN: |
| case Instruction::SPUT_BYTE: |
| case Instruction::SPUT_CHAR: |
| case Instruction::SPUT_SHORT: |
| // Skip the VR containing what to store. |
| res = 1; |
| break; |
| case Instruction::IPUT_WIDE: |
| case Instruction::IPUT_WIDE_QUICK: |
| case Instruction::APUT_WIDE: |
| case Instruction::SPUT_WIDE: |
| // Skip the two VRs containing what to store. |
| res = 2; |
| break; |
| default: |
| // Do nothing in the general case. |
| break; |
| } |
| |
| return res; |
| } |
| |
| /** |
| * @brief Given a decoded instruction, it checks whether the instruction |
| * sets a constant and if it does, more information is provided about the |
| * constant being set. |
| * @param ptr_value pointer to a 64-bit holder for the constant. |
| * @param wide Updated by function whether a wide constant is being set by bytecode. |
| * @return Returns false if the decoded instruction does not represent a constant bytecode. |
| */ |
| bool MIR::DecodedInstruction::GetConstant(int64_t* ptr_value, bool* wide) const { |
| bool sets_const = true; |
| int64_t value = vB; |
| |
| DCHECK(ptr_value != nullptr); |
| DCHECK(wide != nullptr); |
| |
| switch (opcode) { |
| case Instruction::CONST_4: |
| case Instruction::CONST_16: |
| case Instruction::CONST: |
| *wide = false; |
| value <<= 32; // In order to get the sign extend. |
| value >>= 32; |
| break; |
| case Instruction::CONST_HIGH16: |
| *wide = false; |
| value <<= 48; // In order to get the sign extend. |
| value >>= 32; |
| break; |
| case Instruction::CONST_WIDE_16: |
| case Instruction::CONST_WIDE_32: |
| *wide = true; |
| value <<= 32; // In order to get the sign extend. |
| value >>= 32; |
| break; |
| case Instruction::CONST_WIDE: |
| *wide = true; |
| value = vB_wide; |
| break; |
| case Instruction::CONST_WIDE_HIGH16: |
| *wide = true; |
| value <<= 48; // In order to get the sign extend. |
| break; |
| default: |
| sets_const = false; |
| break; |
| } |
| |
| if (sets_const) { |
| *ptr_value = value; |
| } |
| |
| return sets_const; |
| } |
| |
| void BasicBlock::ResetOptimizationFlags(uint16_t reset_flags) { |
| // Reset flags for all MIRs in bb. |
| for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) { |
| mir->optimization_flags &= (~reset_flags); |
| } |
| } |
| |
| void BasicBlock::Kill(MIRGraph* mir_graph) { |
| for (BasicBlockId pred_id : predecessors) { |
| BasicBlock* pred_bb = mir_graph->GetBasicBlock(pred_id); |
| DCHECK(pred_bb != nullptr); |
| |
| // Sadly we have to go through the children by hand here. |
| pred_bb->ReplaceChild(id, NullBasicBlockId); |
| } |
| predecessors.clear(); |
| |
| // Mark as dead and hidden. |
| block_type = kDead; |
| hidden = true; |
| |
| // Detach it from its MIRs so we don't generate code for them. Also detached MIRs |
| // are updated to know that they no longer have a parent. |
| for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) { |
| mir->bb = NullBasicBlockId; |
| } |
| first_mir_insn = nullptr; |
| last_mir_insn = nullptr; |
| |
| data_flow_info = nullptr; |
| |
| // Erase this bb from all children's predecessors and kill unreachable children. |
| ChildBlockIterator iter(this, mir_graph); |
| for (BasicBlock* succ_bb = iter.Next(); succ_bb != nullptr; succ_bb = iter.Next()) { |
| succ_bb->ErasePredecessor(id); |
| } |
| |
| // Remove links to children. |
| fall_through = NullBasicBlockId; |
| taken = NullBasicBlockId; |
| successor_block_list_type = kNotUsed; |
| |
| if (kIsDebugBuild) { |
| if (catch_entry) { |
| DCHECK_EQ(mir_graph->catches_.count(start_offset), 1u); |
| mir_graph->catches_.erase(start_offset); |
| } |
| } |
| } |
| |
| bool BasicBlock::IsSSALiveOut(const CompilationUnit* c_unit, int ssa_reg) { |
| // In order to determine if the ssa reg is live out, we scan all the MIRs. We remember |
| // the last SSA number of the same dalvik register. At the end, if it is different than ssa_reg, |
| // then it is not live out of this BB. |
| int dalvik_reg = c_unit->mir_graph->SRegToVReg(ssa_reg); |
| |
| int last_ssa_reg = -1; |
| |
| // Walk through the MIRs backwards. |
| for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) { |
| // Get ssa rep. |
| SSARepresentation *ssa_rep = mir->ssa_rep; |
| |
| // Go through the defines for this MIR. |
| for (int i = 0; i < ssa_rep->num_defs; i++) { |
| DCHECK(ssa_rep->defs != nullptr); |
| |
| // Get the ssa reg. |
| int def_ssa_reg = ssa_rep->defs[i]; |
| |
| // Get dalvik reg. |
| int def_dalvik_reg = c_unit->mir_graph->SRegToVReg(def_ssa_reg); |
| |
| // Compare dalvik regs. |
| if (dalvik_reg == def_dalvik_reg) { |
| // We found a def of the register that we are being asked about. |
| // Remember it. |
| last_ssa_reg = def_ssa_reg; |
| } |
| } |
| } |
| |
| if (last_ssa_reg == -1) { |
| // If we get to this point we couldn't find a define of register user asked about. |
| // Let's assume the user knows what he's doing so we can be safe and say that if we |
| // couldn't find a def, it is live out. |
| return true; |
| } |
| |
| // If it is not -1, we found a match, is it ssa_reg? |
| return (ssa_reg == last_ssa_reg); |
| } |
| |
| bool BasicBlock::ReplaceChild(BasicBlockId old_bb, BasicBlockId new_bb) { |
| // We need to check taken, fall_through, and successor_blocks to replace. |
| bool found = false; |
| if (taken == old_bb) { |
| taken = new_bb; |
| found = true; |
| } |
| |
| if (fall_through == old_bb) { |
| fall_through = new_bb; |
| found = true; |
| } |
| |
| if (successor_block_list_type != kNotUsed) { |
| for (SuccessorBlockInfo* successor_block_info : successor_blocks) { |
| if (successor_block_info->block == old_bb) { |
| successor_block_info->block = new_bb; |
| found = true; |
| } |
| } |
| } |
| |
| return found; |
| } |
| |
| void BasicBlock::ErasePredecessor(BasicBlockId old_pred) { |
| auto pos = std::find(predecessors.begin(), predecessors.end(), old_pred); |
| DCHECK(pos != predecessors.end()); |
| // It's faster to move the back() to *pos than erase(pos). |
| *pos = predecessors.back(); |
| predecessors.pop_back(); |
| size_t idx = std::distance(predecessors.begin(), pos); |
| for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) { |
| if (static_cast<int>(mir->dalvikInsn.opcode) != kMirOpPhi) { |
| break; |
| } |
| DCHECK_EQ(mir->ssa_rep->num_uses - 1u, predecessors.size()); |
| DCHECK_EQ(mir->meta.phi_incoming[idx], old_pred); |
| mir->meta.phi_incoming[idx] = mir->meta.phi_incoming[predecessors.size()]; |
| mir->ssa_rep->uses[idx] = mir->ssa_rep->uses[predecessors.size()]; |
| mir->ssa_rep->num_uses = predecessors.size(); |
| } |
| } |
| |
| void BasicBlock::UpdatePredecessor(BasicBlockId old_pred, BasicBlockId new_pred) { |
| DCHECK_NE(new_pred, NullBasicBlockId); |
| auto pos = std::find(predecessors.begin(), predecessors.end(), old_pred); |
| DCHECK(pos != predecessors.end()); |
| *pos = new_pred; |
| size_t idx = std::distance(predecessors.begin(), pos); |
| for (MIR* mir = first_mir_insn; mir != nullptr; mir = mir->next) { |
| if (static_cast<int>(mir->dalvikInsn.opcode) != kMirOpPhi) { |
| break; |
| } |
| DCHECK_EQ(mir->meta.phi_incoming[idx], old_pred); |
| mir->meta.phi_incoming[idx] = new_pred; |
| } |
| } |
| |
| // Create a new basic block with block_id as num_blocks_ that is |
| // post-incremented. |
| BasicBlock* MIRGraph::CreateNewBB(BBType block_type) { |
| BasicBlockId id = static_cast<BasicBlockId>(block_list_.size()); |
| BasicBlock* res = NewMemBB(block_type, id); |
| block_list_.push_back(res); |
| return res; |
| } |
| |
| void MIRGraph::CalculateBasicBlockInformation(const PassManager* const post_opt_pass_manager) { |
| /* Create the pass driver and launch it */ |
| PassDriverMEPostOpt driver(post_opt_pass_manager, cu_); |
| driver.Launch(); |
| } |
| |
| int MIR::DecodedInstruction::FlagsOf() const { |
| // Calculate new index. |
| int idx = static_cast<int>(opcode) - kNumPackedOpcodes; |
| |
| // Check if it is an extended or not. |
| if (idx < 0) { |
| return Instruction::FlagsOf(opcode); |
| } |
| |
| // For extended, we use a switch. |
| switch (static_cast<int>(opcode)) { |
| case kMirOpPhi: |
| return Instruction::kContinue; |
| case kMirOpCopy: |
| return Instruction::kContinue; |
| case kMirOpFusedCmplFloat: |
| return Instruction::kContinue | Instruction::kBranch; |
| case kMirOpFusedCmpgFloat: |
| return Instruction::kContinue | Instruction::kBranch; |
| case kMirOpFusedCmplDouble: |
| return Instruction::kContinue | Instruction::kBranch; |
| case kMirOpFusedCmpgDouble: |
| return Instruction::kContinue | Instruction::kBranch; |
| case kMirOpFusedCmpLong: |
| return Instruction::kContinue | Instruction::kBranch; |
| case kMirOpNop: |
| return Instruction::kContinue; |
| case kMirOpNullCheck: |
| return Instruction::kContinue | Instruction::kThrow; |
| case kMirOpRangeCheck: |
| return Instruction::kContinue | Instruction::kThrow; |
| case kMirOpDivZeroCheck: |
| return Instruction::kContinue | Instruction::kThrow; |
| case kMirOpCheck: |
| return Instruction::kContinue | Instruction::kThrow; |
| case kMirOpSelect: |
| return Instruction::kContinue; |
| case kMirOpConstVector: |
| return Instruction::kContinue; |
| case kMirOpMoveVector: |
| return Instruction::kContinue; |
| case kMirOpPackedMultiply: |
| return Instruction::kContinue; |
| case kMirOpPackedAddition: |
| return Instruction::kContinue; |
| case kMirOpPackedSubtract: |
| return Instruction::kContinue; |
| case kMirOpPackedShiftLeft: |
| return Instruction::kContinue; |
| case kMirOpPackedSignedShiftRight: |
| return Instruction::kContinue; |
| case kMirOpPackedUnsignedShiftRight: |
| return Instruction::kContinue; |
| case kMirOpPackedAnd: |
| return Instruction::kContinue; |
| case kMirOpPackedOr: |
| return Instruction::kContinue; |
| case kMirOpPackedXor: |
| return Instruction::kContinue; |
| case kMirOpPackedAddReduce: |
| return Instruction::kContinue; |
| case kMirOpPackedReduce: |
| return Instruction::kContinue; |
| case kMirOpPackedSet: |
| return Instruction::kContinue; |
| case kMirOpReserveVectorRegisters: |
| return Instruction::kContinue; |
| case kMirOpReturnVectorRegisters: |
| return Instruction::kContinue; |
| case kMirOpMemBarrier: |
| return Instruction::kContinue; |
| case kMirOpPackedArrayGet: |
| return Instruction::kContinue | Instruction::kThrow; |
| case kMirOpPackedArrayPut: |
| return Instruction::kContinue | Instruction::kThrow; |
| case kMirOpMaddInt: |
| case kMirOpMsubInt: |
| case kMirOpMaddLong: |
| case kMirOpMsubLong: |
| return Instruction::kContinue; |
| default: |
| LOG(WARNING) << "ExtendedFlagsOf: Unhandled case: " << static_cast<int> (opcode); |
| return 0; |
| } |
| } |
| |
| const uint16_t* MIRGraph::GetInsns(int m_unit_index) const { |
| return m_units_[m_unit_index]->GetCodeItem()->insns_; |
| } |
| |
| void MIRGraph::SetPuntToInterpreter(bool val) { |
| punt_to_interpreter_ = val; |
| if (val) { |
| // Disable all subsequent optimizations. They may not be safe to run. (For example, |
| // LVN/GVN assumes there are no conflicts found by the type inference pass.) |
| cu_->disable_opt = ~static_cast<decltype(cu_->disable_opt)>(0); |
| } |
| } |
| |
| } // namespace art |