| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "code_generator_mips64.h" |
| |
| #include "arch/mips64/asm_support_mips64.h" |
| #include "art_method.h" |
| #include "class_table.h" |
| #include "code_generator_utils.h" |
| #include "compiled_method.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "entrypoints/quick/quick_entrypoints_enum.h" |
| #include "gc/accounting/card_table.h" |
| #include "gc/space/image_space.h" |
| #include "heap_poisoning.h" |
| #include "intrinsics.h" |
| #include "intrinsics_mips64.h" |
| #include "linker/linker_patch.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/class-inl.h" |
| #include "offsets.h" |
| #include "stack_map_stream.h" |
| #include "thread.h" |
| #include "utils/assembler.h" |
| #include "utils/mips64/assembler_mips64.h" |
| #include "utils/stack_checks.h" |
| |
| namespace art { |
| namespace mips64 { |
| |
| static constexpr int kCurrentMethodStackOffset = 0; |
| static constexpr GpuRegister kMethodRegisterArgument = A0; |
| |
| // Flags controlling the use of thunks for Baker read barriers. |
| constexpr bool kBakerReadBarrierThunksEnableForFields = true; |
| constexpr bool kBakerReadBarrierThunksEnableForArrays = true; |
| constexpr bool kBakerReadBarrierThunksEnableForGcRoots = true; |
| |
| Location Mips64ReturnLocation(DataType::Type return_type) { |
| switch (return_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kUint32: |
| case DataType::Type::kInt32: |
| case DataType::Type::kReference: |
| case DataType::Type::kUint64: |
| case DataType::Type::kInt64: |
| return Location::RegisterLocation(V0); |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| return Location::FpuRegisterLocation(F0); |
| |
| case DataType::Type::kVoid: |
| return Location(); |
| } |
| UNREACHABLE(); |
| } |
| |
| Location InvokeDexCallingConventionVisitorMIPS64::GetReturnLocation(DataType::Type type) const { |
| return Mips64ReturnLocation(type); |
| } |
| |
| Location InvokeDexCallingConventionVisitorMIPS64::GetMethodLocation() const { |
| return Location::RegisterLocation(kMethodRegisterArgument); |
| } |
| |
| Location InvokeDexCallingConventionVisitorMIPS64::GetNextLocation(DataType::Type type) { |
| Location next_location; |
| if (type == DataType::Type::kVoid) { |
| LOG(FATAL) << "Unexpected parameter type " << type; |
| } |
| |
| if (DataType::IsFloatingPointType(type) && |
| (float_index_ < calling_convention.GetNumberOfFpuRegisters())) { |
| next_location = Location::FpuRegisterLocation( |
| calling_convention.GetFpuRegisterAt(float_index_++)); |
| gp_index_++; |
| } else if (!DataType::IsFloatingPointType(type) && |
| (gp_index_ < calling_convention.GetNumberOfRegisters())) { |
| next_location = Location::RegisterLocation(calling_convention.GetRegisterAt(gp_index_++)); |
| float_index_++; |
| } else { |
| size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_); |
| next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset) |
| : Location::StackSlot(stack_offset); |
| } |
| |
| // Space on the stack is reserved for all arguments. |
| stack_index_ += DataType::Is64BitType(type) ? 2 : 1; |
| |
| return next_location; |
| } |
| |
| Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type type) { |
| return Mips64ReturnLocation(type); |
| } |
| |
| static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() { |
| InvokeRuntimeCallingConvention calling_convention; |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| // The reference is returned in the same register. This differs from the standard return location. |
| return caller_saves; |
| } |
| |
| // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. |
| #define __ down_cast<CodeGeneratorMIPS64*>(codegen)->GetAssembler()-> // NOLINT |
| #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMips64PointerSize, x).Int32Value() |
| |
| class BoundsCheckSlowPathMIPS64 : public SlowPathCodeMIPS64 { |
| public: |
| explicit BoundsCheckSlowPathMIPS64(HBoundsCheck* instruction) : SlowPathCodeMIPS64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CodeGeneratorMIPS64* mips64_codegen = down_cast<CodeGeneratorMIPS64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| codegen->EmitParallelMoves(locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| DataType::Type::kInt32, |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| DataType::Type::kInt32); |
| QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() |
| ? kQuickThrowStringBounds |
| : kQuickThrowArrayBounds; |
| mips64_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>(); |
| CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); |
| } |
| |
| bool IsFatal() const override { return true; } |
| |
| const char* GetDescription() const override { return "BoundsCheckSlowPathMIPS64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathMIPS64); |
| }; |
| |
| class DivZeroCheckSlowPathMIPS64 : public SlowPathCodeMIPS64 { |
| public: |
| explicit DivZeroCheckSlowPathMIPS64(HDivZeroCheck* instruction) |
| : SlowPathCodeMIPS64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorMIPS64* mips64_codegen = down_cast<CodeGeneratorMIPS64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| mips64_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); |
| } |
| |
| bool IsFatal() const override { return true; } |
| |
| const char* GetDescription() const override { return "DivZeroCheckSlowPathMIPS64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathMIPS64); |
| }; |
| |
| class LoadClassSlowPathMIPS64 : public SlowPathCodeMIPS64 { |
| public: |
| LoadClassSlowPathMIPS64(HLoadClass* cls, HInstruction* at) |
| : SlowPathCodeMIPS64(at), cls_(cls) { |
| DCHECK(at->IsLoadClass() || at->IsClinitCheck()); |
| DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Location out = locations->Out(); |
| const uint32_t dex_pc = instruction_->GetDexPc(); |
| bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath(); |
| bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck(); |
| |
| CodeGeneratorMIPS64* mips64_codegen = down_cast<CodeGeneratorMIPS64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| if (must_resolve_type) { |
| DCHECK(IsSameDexFile(cls_->GetDexFile(), mips64_codegen->GetGraph()->GetDexFile())); |
| dex::TypeIndex type_index = cls_->GetTypeIndex(); |
| __ LoadConst32(calling_convention.GetRegisterAt(0), type_index.index_); |
| mips64_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>(); |
| // If we also must_do_clinit, the resolved type is now in the correct register. |
| } else { |
| DCHECK(must_do_clinit); |
| Location source = instruction_->IsLoadClass() ? out : locations->InAt(0); |
| mips64_codegen->MoveLocation(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| source, |
| cls_->GetType()); |
| } |
| if (must_do_clinit) { |
| mips64_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>(); |
| } |
| |
| // Move the class to the desired location. |
| if (out.IsValid()) { |
| DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); |
| DataType::Type type = instruction_->GetType(); |
| mips64_codegen->MoveLocation(out, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| type); |
| } |
| RestoreLiveRegisters(codegen, locations); |
| |
| __ Bc(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "LoadClassSlowPathMIPS64"; } |
| |
| private: |
| // The class this slow path will load. |
| HLoadClass* const cls_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathMIPS64); |
| }; |
| |
| class LoadStringSlowPathMIPS64 : public SlowPathCodeMIPS64 { |
| public: |
| explicit LoadStringSlowPathMIPS64(HLoadString* instruction) |
| : SlowPathCodeMIPS64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| DCHECK(instruction_->IsLoadString()); |
| DCHECK_EQ(instruction_->AsLoadString()->GetLoadKind(), HLoadString::LoadKind::kBssEntry); |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex(); |
| CodeGeneratorMIPS64* mips64_codegen = down_cast<CodeGeneratorMIPS64*>(codegen); |
| InvokeRuntimeCallingConvention calling_convention; |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| __ LoadConst32(calling_convention.GetRegisterAt(0), string_index.index_); |
| mips64_codegen->InvokeRuntime(kQuickResolveString, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| |
| DataType::Type type = instruction_->GetType(); |
| mips64_codegen->MoveLocation(locations->Out(), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| type); |
| RestoreLiveRegisters(codegen, locations); |
| |
| __ Bc(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "LoadStringSlowPathMIPS64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathMIPS64); |
| }; |
| |
| class NullCheckSlowPathMIPS64 : public SlowPathCodeMIPS64 { |
| public: |
| explicit NullCheckSlowPathMIPS64(HNullCheck* instr) : SlowPathCodeMIPS64(instr) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorMIPS64* mips64_codegen = down_cast<CodeGeneratorMIPS64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| mips64_codegen->InvokeRuntime(kQuickThrowNullPointer, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); |
| } |
| |
| bool IsFatal() const override { return true; } |
| |
| const char* GetDescription() const override { return "NullCheckSlowPathMIPS64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathMIPS64); |
| }; |
| |
| class SuspendCheckSlowPathMIPS64 : public SlowPathCodeMIPS64 { |
| public: |
| SuspendCheckSlowPathMIPS64(HSuspendCheck* instruction, HBasicBlock* successor) |
| : SlowPathCodeMIPS64(instruction), successor_(successor) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CodeGeneratorMIPS64* mips64_codegen = down_cast<CodeGeneratorMIPS64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); // Only saves live vector registers for SIMD. |
| mips64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickTestSuspend, void, void>(); |
| RestoreLiveRegisters(codegen, locations); // Only restores live vector registers for SIMD. |
| if (successor_ == nullptr) { |
| __ Bc(GetReturnLabel()); |
| } else { |
| __ Bc(mips64_codegen->GetLabelOf(successor_)); |
| } |
| } |
| |
| Mips64Label* GetReturnLabel() { |
| DCHECK(successor_ == nullptr); |
| return &return_label_; |
| } |
| |
| const char* GetDescription() const override { return "SuspendCheckSlowPathMIPS64"; } |
| |
| HBasicBlock* GetSuccessor() const { |
| return successor_; |
| } |
| |
| private: |
| // If not null, the block to branch to after the suspend check. |
| HBasicBlock* const successor_; |
| |
| // If `successor_` is null, the label to branch to after the suspend check. |
| Mips64Label return_label_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathMIPS64); |
| }; |
| |
| class TypeCheckSlowPathMIPS64 : public SlowPathCodeMIPS64 { |
| public: |
| explicit TypeCheckSlowPathMIPS64(HInstruction* instruction, bool is_fatal) |
| : SlowPathCodeMIPS64(instruction), is_fatal_(is_fatal) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| |
| uint32_t dex_pc = instruction_->GetDexPc(); |
| DCHECK(instruction_->IsCheckCast() |
| || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| CodeGeneratorMIPS64* mips64_codegen = down_cast<CodeGeneratorMIPS64*>(codegen); |
| |
| __ Bind(GetEntryLabel()); |
| if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) { |
| SaveLiveRegisters(codegen, locations); |
| } |
| |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| codegen->EmitParallelMoves(locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| DataType::Type::kReference, |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| DataType::Type::kReference); |
| if (instruction_->IsInstanceOf()) { |
| mips64_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>(); |
| DataType::Type ret_type = instruction_->GetType(); |
| Location ret_loc = calling_convention.GetReturnLocation(ret_type); |
| mips64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type); |
| } else { |
| DCHECK(instruction_->IsCheckCast()); |
| mips64_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>(); |
| } |
| |
| if (!is_fatal_) { |
| RestoreLiveRegisters(codegen, locations); |
| __ Bc(GetExitLabel()); |
| } |
| } |
| |
| const char* GetDescription() const override { return "TypeCheckSlowPathMIPS64"; } |
| |
| bool IsFatal() const override { return is_fatal_; } |
| |
| private: |
| const bool is_fatal_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathMIPS64); |
| }; |
| |
| class DeoptimizationSlowPathMIPS64 : public SlowPathCodeMIPS64 { |
| public: |
| explicit DeoptimizationSlowPathMIPS64(HDeoptimize* instruction) |
| : SlowPathCodeMIPS64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorMIPS64* mips64_codegen = down_cast<CodeGeneratorMIPS64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| LocationSummary* locations = instruction_->GetLocations(); |
| SaveLiveRegisters(codegen, locations); |
| InvokeRuntimeCallingConvention calling_convention; |
| __ LoadConst32(calling_convention.GetRegisterAt(0), |
| static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind())); |
| mips64_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>(); |
| } |
| |
| const char* GetDescription() const override { return "DeoptimizationSlowPathMIPS64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathMIPS64); |
| }; |
| |
| class ArraySetSlowPathMIPS64 : public SlowPathCodeMIPS64 { |
| public: |
| explicit ArraySetSlowPathMIPS64(HInstruction* instruction) : SlowPathCodeMIPS64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); |
| parallel_move.AddMove( |
| locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| DataType::Type::kReference, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| DataType::Type::kInt32, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(2), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(2)), |
| DataType::Type::kReference, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| |
| CodeGeneratorMIPS64* mips64_codegen = down_cast<CodeGeneratorMIPS64*>(codegen); |
| mips64_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); |
| RestoreLiveRegisters(codegen, locations); |
| __ Bc(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "ArraySetSlowPathMIPS64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathMIPS64); |
| }; |
| |
| // Slow path marking an object reference `ref` during a read |
| // barrier. The field `obj.field` in the object `obj` holding this |
| // reference does not get updated by this slow path after marking (see |
| // ReadBarrierMarkAndUpdateFieldSlowPathMIPS64 below for that). |
| // |
| // This means that after the execution of this slow path, `ref` will |
| // always be up-to-date, but `obj.field` may not; i.e., after the |
| // flip, `ref` will be a to-space reference, but `obj.field` will |
| // probably still be a from-space reference (unless it gets updated by |
| // another thread, or if another thread installed another object |
| // reference (different from `ref`) in `obj.field`). |
| // |
| // If `entrypoint` is a valid location it is assumed to already be |
| // holding the entrypoint. The case where the entrypoint is passed in |
| // is for the GcRoot read barrier. |
| class ReadBarrierMarkSlowPathMIPS64 : public SlowPathCodeMIPS64 { |
| public: |
| ReadBarrierMarkSlowPathMIPS64(HInstruction* instruction, |
| Location ref, |
| Location entrypoint = Location::NoLocation()) |
| : SlowPathCodeMIPS64(instruction), ref_(ref), entrypoint_(entrypoint) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| const char* GetDescription() const override { return "ReadBarrierMarkSlowPathMIPS"; } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| GpuRegister ref_reg = ref_.AsRegister<GpuRegister>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsArraySet() || |
| instruction_->IsLoadClass() || |
| instruction_->IsLoadString() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast() || |
| (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) || |
| (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier marking slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| CodeGeneratorMIPS64* mips64_codegen = down_cast<CodeGeneratorMIPS64*>(codegen); |
| DCHECK((V0 <= ref_reg && ref_reg <= T2) || |
| (S2 <= ref_reg && ref_reg <= S7) || |
| (ref_reg == S8)) << ref_reg; |
| // "Compact" slow path, saving two moves. |
| // |
| // Instead of using the standard runtime calling convention (input |
| // and output in A0 and V0 respectively): |
| // |
| // A0 <- ref |
| // V0 <- ReadBarrierMark(A0) |
| // ref <- V0 |
| // |
| // we just use rX (the register containing `ref`) as input and output |
| // of a dedicated entrypoint: |
| // |
| // rX <- ReadBarrierMarkRegX(rX) |
| // |
| if (entrypoint_.IsValid()) { |
| mips64_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this); |
| DCHECK_EQ(entrypoint_.AsRegister<GpuRegister>(), T9); |
| __ Jalr(entrypoint_.AsRegister<GpuRegister>()); |
| __ Nop(); |
| } else { |
| int32_t entry_point_offset = |
| Thread::ReadBarrierMarkEntryPointsOffset<kMips64PointerSize>(ref_reg - 1); |
| // This runtime call does not require a stack map. |
| mips64_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, |
| instruction_, |
| this); |
| } |
| __ Bc(GetExitLabel()); |
| } |
| |
| private: |
| // The location (register) of the marked object reference. |
| const Location ref_; |
| |
| // The location of the entrypoint if already loaded. |
| const Location entrypoint_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathMIPS64); |
| }; |
| |
| // Slow path marking an object reference `ref` during a read barrier, |
| // and if needed, atomically updating the field `obj.field` in the |
| // object `obj` holding this reference after marking (contrary to |
| // ReadBarrierMarkSlowPathMIPS64 above, which never tries to update |
| // `obj.field`). |
| // |
| // This means that after the execution of this slow path, both `ref` |
| // and `obj.field` will be up-to-date; i.e., after the flip, both will |
| // hold the same to-space reference (unless another thread installed |
| // another object reference (different from `ref`) in `obj.field`). |
| class ReadBarrierMarkAndUpdateFieldSlowPathMIPS64 : public SlowPathCodeMIPS64 { |
| public: |
| ReadBarrierMarkAndUpdateFieldSlowPathMIPS64(HInstruction* instruction, |
| Location ref, |
| GpuRegister obj, |
| Location field_offset, |
| GpuRegister temp1) |
| : SlowPathCodeMIPS64(instruction), |
| ref_(ref), |
| obj_(obj), |
| field_offset_(field_offset), |
| temp1_(temp1) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| const char* GetDescription() const override { |
| return "ReadBarrierMarkAndUpdateFieldSlowPathMIPS64"; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| GpuRegister ref_reg = ref_.AsRegister<GpuRegister>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; |
| // This slow path is only used by the UnsafeCASObject intrinsic. |
| DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier marking and field updating slow path: " |
| << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject); |
| DCHECK(field_offset_.IsRegister()) << field_offset_; |
| |
| __ Bind(GetEntryLabel()); |
| |
| // Save the old reference. |
| // Note that we cannot use AT or TMP to save the old reference, as those |
| // are used by the code that follows, but we need the old reference after |
| // the call to the ReadBarrierMarkRegX entry point. |
| DCHECK_NE(temp1_, AT); |
| DCHECK_NE(temp1_, TMP); |
| __ Move(temp1_, ref_reg); |
| |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| CodeGeneratorMIPS64* mips64_codegen = down_cast<CodeGeneratorMIPS64*>(codegen); |
| DCHECK((V0 <= ref_reg && ref_reg <= T2) || |
| (S2 <= ref_reg && ref_reg <= S7) || |
| (ref_reg == S8)) << ref_reg; |
| // "Compact" slow path, saving two moves. |
| // |
| // Instead of using the standard runtime calling convention (input |
| // and output in A0 and V0 respectively): |
| // |
| // A0 <- ref |
| // V0 <- ReadBarrierMark(A0) |
| // ref <- V0 |
| // |
| // we just use rX (the register containing `ref`) as input and output |
| // of a dedicated entrypoint: |
| // |
| // rX <- ReadBarrierMarkRegX(rX) |
| // |
| int32_t entry_point_offset = |
| Thread::ReadBarrierMarkEntryPointsOffset<kMips64PointerSize>(ref_reg - 1); |
| // This runtime call does not require a stack map. |
| mips64_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, |
| instruction_, |
| this); |
| |
| // If the new reference is different from the old reference, |
| // update the field in the holder (`*(obj_ + field_offset_)`). |
| // |
| // Note that this field could also hold a different object, if |
| // another thread had concurrently changed it. In that case, the |
| // the compare-and-set (CAS) loop below would abort, leaving the |
| // field as-is. |
| Mips64Label done; |
| __ Beqc(temp1_, ref_reg, &done); |
| |
| // Update the the holder's field atomically. This may fail if |
| // mutator updates before us, but it's OK. This is achieved |
| // using a strong compare-and-set (CAS) operation with relaxed |
| // memory synchronization ordering, where the expected value is |
| // the old reference and the desired value is the new reference. |
| |
| // Convenience aliases. |
| GpuRegister base = obj_; |
| GpuRegister offset = field_offset_.AsRegister<GpuRegister>(); |
| GpuRegister expected = temp1_; |
| GpuRegister value = ref_reg; |
| GpuRegister tmp_ptr = TMP; // Pointer to actual memory. |
| GpuRegister tmp = AT; // Value in memory. |
| |
| __ Daddu(tmp_ptr, base, offset); |
| |
| if (kPoisonHeapReferences) { |
| __ PoisonHeapReference(expected); |
| // Do not poison `value` if it is the same register as |
| // `expected`, which has just been poisoned. |
| if (value != expected) { |
| __ PoisonHeapReference(value); |
| } |
| } |
| |
| // do { |
| // tmp = [r_ptr] - expected; |
| // } while (tmp == 0 && failure([r_ptr] <- r_new_value)); |
| |
| Mips64Label loop_head, exit_loop; |
| __ Bind(&loop_head); |
| __ Ll(tmp, tmp_ptr); |
| // The LL instruction sign-extends the 32-bit value, but |
| // 32-bit references must be zero-extended. Zero-extend `tmp`. |
| __ Dext(tmp, tmp, 0, 32); |
| __ Bnec(tmp, expected, &exit_loop); |
| __ Move(tmp, value); |
| __ Sc(tmp, tmp_ptr); |
| __ Beqzc(tmp, &loop_head); |
| __ Bind(&exit_loop); |
| |
| if (kPoisonHeapReferences) { |
| __ UnpoisonHeapReference(expected); |
| // Do not unpoison `value` if it is the same register as |
| // `expected`, which has just been unpoisoned. |
| if (value != expected) { |
| __ UnpoisonHeapReference(value); |
| } |
| } |
| |
| __ Bind(&done); |
| __ Bc(GetExitLabel()); |
| } |
| |
| private: |
| // The location (register) of the marked object reference. |
| const Location ref_; |
| // The register containing the object holding the marked object reference field. |
| const GpuRegister obj_; |
| // The location of the offset of the marked reference field within `obj_`. |
| Location field_offset_; |
| |
| const GpuRegister temp1_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathMIPS64); |
| }; |
| |
| // Slow path generating a read barrier for a heap reference. |
| class ReadBarrierForHeapReferenceSlowPathMIPS64 : public SlowPathCodeMIPS64 { |
| public: |
| ReadBarrierForHeapReferenceSlowPathMIPS64(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) |
| : SlowPathCodeMIPS64(instruction), |
| out_(out), |
| ref_(ref), |
| obj_(obj), |
| offset_(offset), |
| index_(index) { |
| DCHECK(kEmitCompilerReadBarrier); |
| // If `obj` is equal to `out` or `ref`, it means the initial object |
| // has been overwritten by (or after) the heap object reference load |
| // to be instrumented, e.g.: |
| // |
| // __ LoadFromOffset(kLoadWord, out, out, offset); |
| // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); |
| // |
| // In that case, we have lost the information about the original |
| // object, and the emitted read barrier cannot work properly. |
| DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; |
| DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorMIPS64* mips64_codegen = down_cast<CodeGeneratorMIPS64*>(codegen); |
| LocationSummary* locations = instruction_->GetLocations(); |
| DataType::Type type = DataType::Type::kReference; |
| GpuRegister reg_out = out_.AsRegister<GpuRegister>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast() || |
| (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier for heap reference slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| // We may have to change the index's value, but as `index_` is a |
| // constant member (like other "inputs" of this slow path), |
| // introduce a copy of it, `index`. |
| Location index = index_; |
| if (index_.IsValid()) { |
| // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. |
| if (instruction_->IsArrayGet()) { |
| // Compute the actual memory offset and store it in `index`. |
| GpuRegister index_reg = index_.AsRegister<GpuRegister>(); |
| DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg)); |
| if (codegen->IsCoreCalleeSaveRegister(index_reg)) { |
| // We are about to change the value of `index_reg` (see the |
| // calls to art::mips64::Mips64Assembler::Sll and |
| // art::mips64::MipsAssembler::Addiu32 below), but it has |
| // not been saved by the previous call to |
| // art::SlowPathCode::SaveLiveRegisters, as it is a |
| // callee-save register -- |
| // art::SlowPathCode::SaveLiveRegisters does not consider |
| // callee-save registers, as it has been designed with the |
| // assumption that callee-save registers are supposed to be |
| // handled by the called function. So, as a callee-save |
| // register, `index_reg` _would_ eventually be saved onto |
| // the stack, but it would be too late: we would have |
| // changed its value earlier. Therefore, we manually save |
| // it here into another freely available register, |
| // `free_reg`, chosen of course among the caller-save |
| // registers (as a callee-save `free_reg` register would |
| // exhibit the same problem). |
| // |
| // Note we could have requested a temporary register from |
| // the register allocator instead; but we prefer not to, as |
| // this is a slow path, and we know we can find a |
| // caller-save register that is available. |
| GpuRegister free_reg = FindAvailableCallerSaveRegister(codegen); |
| __ Move(free_reg, index_reg); |
| index_reg = free_reg; |
| index = Location::RegisterLocation(index_reg); |
| } else { |
| // The initial register stored in `index_` has already been |
| // saved in the call to art::SlowPathCode::SaveLiveRegisters |
| // (as it is not a callee-save register), so we can freely |
| // use it. |
| } |
| // Shifting the index value contained in `index_reg` by the scale |
| // factor (2) cannot overflow in practice, as the runtime is |
| // unable to allocate object arrays with a size larger than |
| // 2^26 - 1 (that is, 2^28 - 4 bytes). |
| __ Sll(index_reg, index_reg, TIMES_4); |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| __ Addiu32(index_reg, index_reg, offset_); |
| } else { |
| // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile |
| // intrinsics, `index_` is not shifted by a scale factor of 2 |
| // (as in the case of ArrayGet), as it is actually an offset |
| // to an object field within an object. |
| DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) || |
| (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile)) |
| << instruction_->AsInvoke()->GetIntrinsic(); |
| DCHECK_EQ(offset_, 0U); |
| DCHECK(index_.IsRegister()); |
| } |
| } |
| |
| // We're moving two or three locations to locations that could |
| // overlap, so we need a parallel move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); |
| parallel_move.AddMove(ref_, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| DataType::Type::kReference, |
| nullptr); |
| parallel_move.AddMove(obj_, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| DataType::Type::kReference, |
| nullptr); |
| if (index.IsValid()) { |
| parallel_move.AddMove(index, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(2)), |
| DataType::Type::kInt32, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } else { |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| __ LoadConst32(calling_convention.GetRegisterAt(2), offset_); |
| } |
| mips64_codegen->InvokeRuntime(kQuickReadBarrierSlow, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes< |
| kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); |
| mips64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ Bc(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { |
| return "ReadBarrierForHeapReferenceSlowPathMIPS64"; |
| } |
| |
| private: |
| GpuRegister FindAvailableCallerSaveRegister(CodeGenerator* codegen) { |
| size_t ref = static_cast<int>(ref_.AsRegister<GpuRegister>()); |
| size_t obj = static_cast<int>(obj_.AsRegister<GpuRegister>()); |
| for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { |
| if (i != ref && |
| i != obj && |
| !codegen->IsCoreCalleeSaveRegister(i) && |
| !codegen->IsBlockedCoreRegister(i)) { |
| return static_cast<GpuRegister>(i); |
| } |
| } |
| // We shall never fail to find a free caller-save register, as |
| // there are more than two core caller-save registers on MIPS64 |
| // (meaning it is possible to find one which is different from |
| // `ref` and `obj`). |
| DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); |
| LOG(FATAL) << "Could not find a free caller-save register"; |
| UNREACHABLE(); |
| } |
| |
| const Location out_; |
| const Location ref_; |
| const Location obj_; |
| const uint32_t offset_; |
| // An additional location containing an index to an array. |
| // Only used for HArrayGet and the UnsafeGetObject & |
| // UnsafeGetObjectVolatile intrinsics. |
| const Location index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathMIPS64); |
| }; |
| |
| // Slow path generating a read barrier for a GC root. |
| class ReadBarrierForRootSlowPathMIPS64 : public SlowPathCodeMIPS64 { |
| public: |
| ReadBarrierForRootSlowPathMIPS64(HInstruction* instruction, Location out, Location root) |
| : SlowPathCodeMIPS64(instruction), out_(out), root_(root) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| DataType::Type type = DataType::Type::kReference; |
| GpuRegister reg_out = out_.AsRegister<GpuRegister>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); |
| DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) |
| << "Unexpected instruction in read barrier for GC root slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| CodeGeneratorMIPS64* mips64_codegen = down_cast<CodeGeneratorMIPS64*>(codegen); |
| mips64_codegen->MoveLocation(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| root_, |
| DataType::Type::kReference); |
| mips64_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>(); |
| mips64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ Bc(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "ReadBarrierForRootSlowPathMIPS64"; } |
| |
| private: |
| const Location out_; |
| const Location root_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathMIPS64); |
| }; |
| |
| CodeGeneratorMIPS64::CodeGeneratorMIPS64(HGraph* graph, |
| const CompilerOptions& compiler_options, |
| OptimizingCompilerStats* stats) |
| : CodeGenerator(graph, |
| kNumberOfGpuRegisters, |
| kNumberOfFpuRegisters, |
| /* number_of_register_pairs */ 0, |
| ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves), |
| arraysize(kCoreCalleeSaves)), |
| ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves), |
| arraysize(kFpuCalleeSaves)), |
| compiler_options, |
| stats), |
| block_labels_(nullptr), |
| location_builder_(graph, this), |
| instruction_visitor_(graph, this), |
| move_resolver_(graph->GetAllocator(), this), |
| assembler_(graph->GetAllocator(), |
| compiler_options.GetInstructionSetFeatures()->AsMips64InstructionSetFeatures()), |
| uint32_literals_(std::less<uint32_t>(), |
| graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| uint64_literals_(std::less<uint64_t>(), |
| graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_intrinsic_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| jit_string_patches_(StringReferenceValueComparator(), |
| graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| jit_class_patches_(TypeReferenceValueComparator(), |
| graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) { |
| // Save RA (containing the return address) to mimic Quick. |
| AddAllocatedRegister(Location::RegisterLocation(RA)); |
| } |
| |
| #undef __ |
| // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. |
| #define __ down_cast<Mips64Assembler*>(GetAssembler())-> // NOLINT |
| #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMips64PointerSize, x).Int32Value() |
| |
| void CodeGeneratorMIPS64::Finalize(CodeAllocator* allocator) { |
| // Ensure that we fix up branches. |
| __ FinalizeCode(); |
| |
| // Adjust native pc offsets in stack maps. |
| StackMapStream* stack_map_stream = GetStackMapStream(); |
| for (size_t i = 0, num = stack_map_stream->GetNumberOfStackMaps(); i != num; ++i) { |
| uint32_t old_position = stack_map_stream->GetStackMapNativePcOffset(i); |
| uint32_t new_position = __ GetAdjustedPosition(old_position); |
| DCHECK_GE(new_position, old_position); |
| stack_map_stream->SetStackMapNativePcOffset(i, new_position); |
| } |
| |
| // Adjust pc offsets for the disassembly information. |
| if (disasm_info_ != nullptr) { |
| GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval(); |
| frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start); |
| frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end); |
| for (auto& it : *disasm_info_->GetInstructionIntervals()) { |
| it.second.start = __ GetAdjustedPosition(it.second.start); |
| it.second.end = __ GetAdjustedPosition(it.second.end); |
| } |
| for (auto& it : *disasm_info_->GetSlowPathIntervals()) { |
| it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start); |
| it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end); |
| } |
| } |
| |
| CodeGenerator::Finalize(allocator); |
| } |
| |
| Mips64Assembler* ParallelMoveResolverMIPS64::GetAssembler() const { |
| return codegen_->GetAssembler(); |
| } |
| |
| void ParallelMoveResolverMIPS64::EmitMove(size_t index) { |
| MoveOperands* move = moves_[index]; |
| codegen_->MoveLocation(move->GetDestination(), move->GetSource(), move->GetType()); |
| } |
| |
| void ParallelMoveResolverMIPS64::EmitSwap(size_t index) { |
| MoveOperands* move = moves_[index]; |
| codegen_->SwapLocations(move->GetDestination(), move->GetSource(), move->GetType()); |
| } |
| |
| void ParallelMoveResolverMIPS64::RestoreScratch(int reg) { |
| // Pop reg |
| __ Ld(GpuRegister(reg), SP, 0); |
| __ DecreaseFrameSize(kMips64DoublewordSize); |
| } |
| |
| void ParallelMoveResolverMIPS64::SpillScratch(int reg) { |
| // Push reg |
| __ IncreaseFrameSize(kMips64DoublewordSize); |
| __ Sd(GpuRegister(reg), SP, 0); |
| } |
| |
| void ParallelMoveResolverMIPS64::Exchange(int index1, int index2, bool double_slot) { |
| LoadOperandType load_type = double_slot ? kLoadDoubleword : kLoadWord; |
| StoreOperandType store_type = double_slot ? kStoreDoubleword : kStoreWord; |
| // Allocate a scratch register other than TMP, if available. |
| // Else, spill V0 (arbitrary choice) and use it as a scratch register (it will be |
| // automatically unspilled when the scratch scope object is destroyed). |
| ScratchRegisterScope ensure_scratch(this, TMP, V0, codegen_->GetNumberOfCoreRegisters()); |
| // If V0 spills onto the stack, SP-relative offsets need to be adjusted. |
| int stack_offset = ensure_scratch.IsSpilled() ? kMips64DoublewordSize : 0; |
| __ LoadFromOffset(load_type, |
| GpuRegister(ensure_scratch.GetRegister()), |
| SP, |
| index1 + stack_offset); |
| __ LoadFromOffset(load_type, |
| TMP, |
| SP, |
| index2 + stack_offset); |
| __ StoreToOffset(store_type, |
| GpuRegister(ensure_scratch.GetRegister()), |
| SP, |
| index2 + stack_offset); |
| __ StoreToOffset(store_type, TMP, SP, index1 + stack_offset); |
| } |
| |
| void ParallelMoveResolverMIPS64::ExchangeQuadSlots(int index1, int index2) { |
| __ LoadFpuFromOffset(kLoadQuadword, FTMP, SP, index1); |
| __ LoadFpuFromOffset(kLoadQuadword, FTMP2, SP, index2); |
| __ StoreFpuToOffset(kStoreQuadword, FTMP, SP, index2); |
| __ StoreFpuToOffset(kStoreQuadword, FTMP2, SP, index1); |
| } |
| |
| static dwarf::Reg DWARFReg(GpuRegister reg) { |
| return dwarf::Reg::Mips64Core(static_cast<int>(reg)); |
| } |
| |
| static dwarf::Reg DWARFReg(FpuRegister reg) { |
| return dwarf::Reg::Mips64Fp(static_cast<int>(reg)); |
| } |
| |
| void CodeGeneratorMIPS64::GenerateFrameEntry() { |
| __ Bind(&frame_entry_label_); |
| |
| if (GetCompilerOptions().CountHotnessInCompiledCode()) { |
| __ Lhu(TMP, kMethodRegisterArgument, ArtMethod::HotnessCountOffset().Int32Value()); |
| __ Addiu(TMP, TMP, 1); |
| __ Sh(TMP, kMethodRegisterArgument, ArtMethod::HotnessCountOffset().Int32Value()); |
| } |
| |
| bool do_overflow_check = |
| FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kMips64) || !IsLeafMethod(); |
| |
| if (do_overflow_check) { |
| __ LoadFromOffset( |
| kLoadWord, |
| ZERO, |
| SP, |
| -static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kMips64))); |
| RecordPcInfo(nullptr, 0); |
| } |
| |
| if (HasEmptyFrame()) { |
| return; |
| } |
| |
| // Make sure the frame size isn't unreasonably large. |
| if (GetFrameSize() > GetStackOverflowReservedBytes(InstructionSet::kMips64)) { |
| LOG(FATAL) << "Stack frame larger than " |
| << GetStackOverflowReservedBytes(InstructionSet::kMips64) << " bytes"; |
| } |
| |
| // Spill callee-saved registers. |
| |
| uint32_t ofs = GetFrameSize(); |
| __ IncreaseFrameSize(ofs); |
| |
| for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) { |
| GpuRegister reg = kCoreCalleeSaves[i]; |
| if (allocated_registers_.ContainsCoreRegister(reg)) { |
| ofs -= kMips64DoublewordSize; |
| __ StoreToOffset(kStoreDoubleword, reg, SP, ofs); |
| __ cfi().RelOffset(DWARFReg(reg), ofs); |
| } |
| } |
| |
| for (int i = arraysize(kFpuCalleeSaves) - 1; i >= 0; --i) { |
| FpuRegister reg = kFpuCalleeSaves[i]; |
| if (allocated_registers_.ContainsFloatingPointRegister(reg)) { |
| ofs -= kMips64DoublewordSize; |
| __ StoreFpuToOffset(kStoreDoubleword, reg, SP, ofs); |
| __ cfi().RelOffset(DWARFReg(reg), ofs); |
| } |
| } |
| |
| // Save the current method if we need it. Note that we do not |
| // do this in HCurrentMethod, as the instruction might have been removed |
| // in the SSA graph. |
| if (RequiresCurrentMethod()) { |
| __ StoreToOffset(kStoreDoubleword, kMethodRegisterArgument, SP, kCurrentMethodStackOffset); |
| } |
| |
| if (GetGraph()->HasShouldDeoptimizeFlag()) { |
| // Initialize should_deoptimize flag to 0. |
| __ StoreToOffset(kStoreWord, ZERO, SP, GetStackOffsetOfShouldDeoptimizeFlag()); |
| } |
| } |
| |
| void CodeGeneratorMIPS64::GenerateFrameExit() { |
| __ cfi().RememberState(); |
| |
| if (!HasEmptyFrame()) { |
| // Restore callee-saved registers. |
| |
| // For better instruction scheduling restore RA before other registers. |
| uint32_t ofs = GetFrameSize(); |
| for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) { |
| GpuRegister reg = kCoreCalleeSaves[i]; |
| if (allocated_registers_.ContainsCoreRegister(reg)) { |
| ofs -= kMips64DoublewordSize; |
| __ LoadFromOffset(kLoadDoubleword, reg, SP, ofs); |
| __ cfi().Restore(DWARFReg(reg)); |
| } |
| } |
| |
| for (int i = arraysize(kFpuCalleeSaves) - 1; i >= 0; --i) { |
| FpuRegister reg = kFpuCalleeSaves[i]; |
| if (allocated_registers_.ContainsFloatingPointRegister(reg)) { |
| ofs -= kMips64DoublewordSize; |
| __ LoadFpuFromOffset(kLoadDoubleword, reg, SP, ofs); |
| __ cfi().Restore(DWARFReg(reg)); |
| } |
| } |
| |
| __ DecreaseFrameSize(GetFrameSize()); |
| } |
| |
| __ Jic(RA, 0); |
| |
| __ cfi().RestoreState(); |
| __ cfi().DefCFAOffset(GetFrameSize()); |
| } |
| |
| void CodeGeneratorMIPS64::Bind(HBasicBlock* block) { |
| __ Bind(GetLabelOf(block)); |
| } |
| |
| void CodeGeneratorMIPS64::MoveLocation(Location destination, |
| Location source, |
| DataType::Type dst_type) { |
| if (source.Equals(destination)) { |
| return; |
| } |
| |
| // A valid move can always be inferred from the destination and source |
| // locations. When moving from and to a register, the argument type can be |
| // used to generate 32bit instead of 64bit moves. |
| bool unspecified_type = (dst_type == DataType::Type::kVoid); |
| DCHECK_EQ(unspecified_type, false); |
| |
| if (destination.IsRegister() || destination.IsFpuRegister()) { |
| if (unspecified_type) { |
| HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr; |
| if (source.IsStackSlot() || |
| (src_cst != nullptr && (src_cst->IsIntConstant() |
| || src_cst->IsFloatConstant() |
| || src_cst->IsNullConstant()))) { |
| // For stack slots and 32bit constants, a 64bit type is appropriate. |
| dst_type = destination.IsRegister() ? DataType::Type::kInt32 : DataType::Type::kFloat32; |
| } else { |
| // If the source is a double stack slot or a 64bit constant, a 64bit |
| // type is appropriate. Else the source is a register, and since the |
| // type has not been specified, we chose a 64bit type to force a 64bit |
| // move. |
| dst_type = destination.IsRegister() ? DataType::Type::kInt64 : DataType::Type::kFloat64; |
| } |
| } |
| DCHECK((destination.IsFpuRegister() && DataType::IsFloatingPointType(dst_type)) || |
| (destination.IsRegister() && !DataType::IsFloatingPointType(dst_type))); |
| if (source.IsStackSlot() || source.IsDoubleStackSlot()) { |
| // Move to GPR/FPR from stack |
| LoadOperandType load_type = source.IsStackSlot() ? kLoadWord : kLoadDoubleword; |
| if (DataType::IsFloatingPointType(dst_type)) { |
| __ LoadFpuFromOffset(load_type, |
| destination.AsFpuRegister<FpuRegister>(), |
| SP, |
| source.GetStackIndex()); |
| } else { |
| // TODO: use load_type = kLoadUnsignedWord when type == DataType::Type::kReference. |
| __ LoadFromOffset(load_type, |
| destination.AsRegister<GpuRegister>(), |
| SP, |
| source.GetStackIndex()); |
| } |
| } else if (source.IsSIMDStackSlot()) { |
| __ LoadFpuFromOffset(kLoadQuadword, |
| destination.AsFpuRegister<FpuRegister>(), |
| SP, |
| source.GetStackIndex()); |
| } else if (source.IsConstant()) { |
| // Move to GPR/FPR from constant |
| GpuRegister gpr = AT; |
| if (!DataType::IsFloatingPointType(dst_type)) { |
| gpr = destination.AsRegister<GpuRegister>(); |
| } |
| if (dst_type == DataType::Type::kInt32 || dst_type == DataType::Type::kFloat32) { |
| int32_t value = GetInt32ValueOf(source.GetConstant()->AsConstant()); |
| if (DataType::IsFloatingPointType(dst_type) && value == 0) { |
| gpr = ZERO; |
| } else { |
| __ LoadConst32(gpr, value); |
| } |
| } else { |
| int64_t value = GetInt64ValueOf(source.GetConstant()->AsConstant()); |
| if (DataType::IsFloatingPointType(dst_type) && value == 0) { |
| gpr = ZERO; |
| } else { |
| __ LoadConst64(gpr, value); |
| } |
| } |
| if (dst_type == DataType::Type::kFloat32) { |
| __ Mtc1(gpr, destination.AsFpuRegister<FpuRegister>()); |
| } else if (dst_type == DataType::Type::kFloat64) { |
| __ Dmtc1(gpr, destination.AsFpuRegister<FpuRegister>()); |
| } |
| } else if (source.IsRegister()) { |
| if (destination.IsRegister()) { |
| // Move to GPR from GPR |
| __ Move(destination.AsRegister<GpuRegister>(), source.AsRegister<GpuRegister>()); |
| } else { |
| DCHECK(destination.IsFpuRegister()); |
| if (DataType::Is64BitType(dst_type)) { |
| __ Dmtc1(source.AsRegister<GpuRegister>(), destination.AsFpuRegister<FpuRegister>()); |
| } else { |
| __ Mtc1(source.AsRegister<GpuRegister>(), destination.AsFpuRegister<FpuRegister>()); |
| } |
| } |
| } else if (source.IsFpuRegister()) { |
| if (destination.IsFpuRegister()) { |
| if (GetGraph()->HasSIMD()) { |
| __ MoveV(VectorRegisterFrom(destination), |
| VectorRegisterFrom(source)); |
| } else { |
| // Move to FPR from FPR |
| if (dst_type == DataType::Type::kFloat32) { |
| __ MovS(destination.AsFpuRegister<FpuRegister>(), source.AsFpuRegister<FpuRegister>()); |
| } else { |
| DCHECK_EQ(dst_type, DataType::Type::kFloat64); |
| __ MovD(destination.AsFpuRegister<FpuRegister>(), source.AsFpuRegister<FpuRegister>()); |
| } |
| } |
| } else { |
| DCHECK(destination.IsRegister()); |
| if (DataType::Is64BitType(dst_type)) { |
| __ Dmfc1(destination.AsRegister<GpuRegister>(), source.AsFpuRegister<FpuRegister>()); |
| } else { |
| __ Mfc1(destination.AsRegister<GpuRegister>(), source.AsFpuRegister<FpuRegister>()); |
| } |
| } |
| } |
| } else if (destination.IsSIMDStackSlot()) { |
| if (source.IsFpuRegister()) { |
| __ StoreFpuToOffset(kStoreQuadword, |
| source.AsFpuRegister<FpuRegister>(), |
| SP, |
| destination.GetStackIndex()); |
| } else { |
| DCHECK(source.IsSIMDStackSlot()); |
| __ LoadFpuFromOffset(kLoadQuadword, |
| FTMP, |
| SP, |
| source.GetStackIndex()); |
| __ StoreFpuToOffset(kStoreQuadword, |
| FTMP, |
| SP, |
| destination.GetStackIndex()); |
| } |
| } else { // The destination is not a register. It must be a stack slot. |
| DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot()); |
| if (source.IsRegister() || source.IsFpuRegister()) { |
| if (unspecified_type) { |
| if (source.IsRegister()) { |
| dst_type = destination.IsStackSlot() ? DataType::Type::kInt32 : DataType::Type::kInt64; |
| } else { |
| dst_type = |
| destination.IsStackSlot() ? DataType::Type::kFloat32 : DataType::Type::kFloat64; |
| } |
| } |
| DCHECK((destination.IsDoubleStackSlot() == DataType::Is64BitType(dst_type)) && |
| (source.IsFpuRegister() == DataType::IsFloatingPointType(dst_type))); |
| // Move to stack from GPR/FPR |
| StoreOperandType store_type = destination.IsStackSlot() ? kStoreWord : kStoreDoubleword; |
| if (source.IsRegister()) { |
| __ StoreToOffset(store_type, |
| source.AsRegister<GpuRegister>(), |
| SP, |
| destination.GetStackIndex()); |
| } else { |
| __ StoreFpuToOffset(store_type, |
| source.AsFpuRegister<FpuRegister>(), |
| SP, |
| destination.GetStackIndex()); |
| } |
| } else if (source.IsConstant()) { |
| // Move to stack from constant |
| HConstant* src_cst = source.GetConstant(); |
| StoreOperandType store_type = destination.IsStackSlot() ? kStoreWord : kStoreDoubleword; |
| GpuRegister gpr = ZERO; |
| if (destination.IsStackSlot()) { |
| int32_t value = GetInt32ValueOf(src_cst->AsConstant()); |
| if (value != 0) { |
| gpr = TMP; |
| __ LoadConst32(gpr, value); |
| } |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()); |
| int64_t value = GetInt64ValueOf(src_cst->AsConstant()); |
| if (value != 0) { |
| gpr = TMP; |
| __ LoadConst64(gpr, value); |
| } |
| } |
| __ StoreToOffset(store_type, gpr, SP, destination.GetStackIndex()); |
| } else { |
| DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot()); |
| DCHECK_EQ(source.IsDoubleStackSlot(), destination.IsDoubleStackSlot()); |
| // Move to stack from stack |
| if (destination.IsStackSlot()) { |
| __ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex()); |
| __ StoreToOffset(kStoreWord, TMP, SP, destination.GetStackIndex()); |
| } else { |
| __ LoadFromOffset(kLoadDoubleword, TMP, SP, source.GetStackIndex()); |
| __ StoreToOffset(kStoreDoubleword, TMP, SP, destination.GetStackIndex()); |
| } |
| } |
| } |
| } |
| |
| void CodeGeneratorMIPS64::SwapLocations(Location loc1, Location loc2, DataType::Type type) { |
| DCHECK(!loc1.IsConstant()); |
| DCHECK(!loc2.IsConstant()); |
| |
| if (loc1.Equals(loc2)) { |
| return; |
| } |
| |
| bool is_slot1 = loc1.IsStackSlot() || loc1.IsDoubleStackSlot(); |
| bool is_slot2 = loc2.IsStackSlot() || loc2.IsDoubleStackSlot(); |
| bool is_simd1 = loc1.IsSIMDStackSlot(); |
| bool is_simd2 = loc2.IsSIMDStackSlot(); |
| bool is_fp_reg1 = loc1.IsFpuRegister(); |
| bool is_fp_reg2 = loc2.IsFpuRegister(); |
| |
| if (loc2.IsRegister() && loc1.IsRegister()) { |
| // Swap 2 GPRs |
| GpuRegister r1 = loc1.AsRegister<GpuRegister>(); |
| GpuRegister r2 = loc2.AsRegister<GpuRegister>(); |
| __ Move(TMP, r2); |
| __ Move(r2, r1); |
| __ Move(r1, TMP); |
| } else if (is_fp_reg2 && is_fp_reg1) { |
| // Swap 2 FPRs |
| if (GetGraph()->HasSIMD()) { |
| __ MoveV(static_cast<VectorRegister>(FTMP), VectorRegisterFrom(loc1)); |
| __ MoveV(VectorRegisterFrom(loc1), VectorRegisterFrom(loc2)); |
| __ MoveV(VectorRegisterFrom(loc2), static_cast<VectorRegister>(FTMP)); |
| } else { |
| FpuRegister r1 = loc1.AsFpuRegister<FpuRegister>(); |
| FpuRegister r2 = loc2.AsFpuRegister<FpuRegister>(); |
| if (type == DataType::Type::kFloat32) { |
| __ MovS(FTMP, r1); |
| __ MovS(r1, r2); |
| __ MovS(r2, FTMP); |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat64); |
| __ MovD(FTMP, r1); |
| __ MovD(r1, r2); |
| __ MovD(r2, FTMP); |
| } |
| } |
| } else if (is_slot1 != is_slot2) { |
| // Swap GPR/FPR and stack slot |
| Location reg_loc = is_slot1 ? loc2 : loc1; |
| Location mem_loc = is_slot1 ? loc1 : loc2; |
| LoadOperandType load_type = mem_loc.IsStackSlot() ? kLoadWord : kLoadDoubleword; |
| StoreOperandType store_type = mem_loc.IsStackSlot() ? kStoreWord : kStoreDoubleword; |
| // TODO: use load_type = kLoadUnsignedWord when type == DataType::Type::kReference. |
| __ LoadFromOffset(load_type, TMP, SP, mem_loc.GetStackIndex()); |
| if (reg_loc.IsFpuRegister()) { |
| __ StoreFpuToOffset(store_type, |
| reg_loc.AsFpuRegister<FpuRegister>(), |
| SP, |
| mem_loc.GetStackIndex()); |
| if (mem_loc.IsStackSlot()) { |
| __ Mtc1(TMP, reg_loc.AsFpuRegister<FpuRegister>()); |
| } else { |
| DCHECK(mem_loc.IsDoubleStackSlot()); |
| __ Dmtc1(TMP, reg_loc.AsFpuRegister<FpuRegister>()); |
| } |
| } else { |
| __ StoreToOffset(store_type, reg_loc.AsRegister<GpuRegister>(), SP, mem_loc.GetStackIndex()); |
| __ Move(reg_loc.AsRegister<GpuRegister>(), TMP); |
| } |
| } else if (is_slot1 && is_slot2) { |
| move_resolver_.Exchange(loc1.GetStackIndex(), |
| loc2.GetStackIndex(), |
| loc1.IsDoubleStackSlot()); |
| } else if (is_simd1 && is_simd2) { |
| move_resolver_.ExchangeQuadSlots(loc1.GetStackIndex(), loc2.GetStackIndex()); |
| } else if ((is_fp_reg1 && is_simd2) || (is_fp_reg2 && is_simd1)) { |
| Location fp_reg_loc = is_fp_reg1 ? loc1 : loc2; |
| Location mem_loc = is_fp_reg1 ? loc2 : loc1; |
| __ LoadFpuFromOffset(kLoadQuadword, FTMP, SP, mem_loc.GetStackIndex()); |
| __ StoreFpuToOffset(kStoreQuadword, |
| fp_reg_loc.AsFpuRegister<FpuRegister>(), |
| SP, |
| mem_loc.GetStackIndex()); |
| __ MoveV(VectorRegisterFrom(fp_reg_loc), static_cast<VectorRegister>(FTMP)); |
| } else { |
| LOG(FATAL) << "Unimplemented swap between locations " << loc1 << " and " << loc2; |
| } |
| } |
| |
| void CodeGeneratorMIPS64::MoveConstant(Location location, int32_t value) { |
| DCHECK(location.IsRegister()); |
| __ LoadConst32(location.AsRegister<GpuRegister>(), value); |
| } |
| |
| void CodeGeneratorMIPS64::AddLocationAsTemp(Location location, LocationSummary* locations) { |
| if (location.IsRegister()) { |
| locations->AddTemp(location); |
| } else { |
| UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; |
| } |
| } |
| |
| void CodeGeneratorMIPS64::MarkGCCard(GpuRegister object, |
| GpuRegister value, |
| bool value_can_be_null) { |
| Mips64Label done; |
| GpuRegister card = AT; |
| GpuRegister temp = TMP; |
| if (value_can_be_null) { |
| __ Beqzc(value, &done); |
| } |
| // Load the address of the card table into `card`. |
| __ LoadFromOffset(kLoadDoubleword, |
| card, |
| TR, |
| Thread::CardTableOffset<kMips64PointerSize>().Int32Value()); |
| // Calculate the address of the card corresponding to `object`. |
| __ Dsrl(temp, object, gc::accounting::CardTable::kCardShift); |
| __ Daddu(temp, card, temp); |
| // Write the `art::gc::accounting::CardTable::kCardDirty` value into the |
| // `object`'s card. |
| // |
| // Register `card` contains the address of the card table. Note that the card |
| // table's base is biased during its creation so that it always starts at an |
| // address whose least-significant byte is equal to `kCardDirty` (see |
| // art::gc::accounting::CardTable::Create). Therefore the SB instruction |
| // below writes the `kCardDirty` (byte) value into the `object`'s card |
| // (located at `card + object >> kCardShift`). |
| // |
| // This dual use of the value in register `card` (1. to calculate the location |
| // of the card to mark; and 2. to load the `kCardDirty` value) saves a load |
| // (no need to explicitly load `kCardDirty` as an immediate value). |
| __ Sb(card, temp, 0); |
| if (value_can_be_null) { |
| __ Bind(&done); |
| } |
| } |
| |
| template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)> |
| inline void CodeGeneratorMIPS64::EmitPcRelativeLinkerPatches( |
| const ArenaDeque<PcRelativePatchInfo>& infos, |
| ArenaVector<linker::LinkerPatch>* linker_patches) { |
| for (const PcRelativePatchInfo& info : infos) { |
| const DexFile* dex_file = info.target_dex_file; |
| size_t offset_or_index = info.offset_or_index; |
| DCHECK(info.label.IsBound()); |
| uint32_t literal_offset = __ GetLabelLocation(&info.label); |
| const PcRelativePatchInfo& info_high = info.patch_info_high ? *info.patch_info_high : info; |
| uint32_t pc_rel_offset = __ GetLabelLocation(&info_high.label); |
| linker_patches->push_back(Factory(literal_offset, dex_file, pc_rel_offset, offset_or_index)); |
| } |
| } |
| |
| template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)> |
| linker::LinkerPatch NoDexFileAdapter(size_t literal_offset, |
| const DexFile* target_dex_file, |
| uint32_t pc_insn_offset, |
| uint32_t boot_image_offset) { |
| DCHECK(target_dex_file == nullptr); // Unused for these patches, should be null. |
| return Factory(literal_offset, pc_insn_offset, boot_image_offset); |
| } |
| |
| void CodeGeneratorMIPS64::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) { |
| DCHECK(linker_patches->empty()); |
| size_t size = |
| boot_image_method_patches_.size() + |
| method_bss_entry_patches_.size() + |
| boot_image_type_patches_.size() + |
| type_bss_entry_patches_.size() + |
| boot_image_string_patches_.size() + |
| string_bss_entry_patches_.size() + |
| boot_image_intrinsic_patches_.size(); |
| linker_patches->reserve(size); |
| if (GetCompilerOptions().IsBootImage()) { |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>( |
| boot_image_method_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>( |
| boot_image_type_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>( |
| boot_image_string_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>( |
| boot_image_intrinsic_patches_, linker_patches); |
| } else { |
| EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>( |
| boot_image_method_patches_, linker_patches); |
| DCHECK(boot_image_type_patches_.empty()); |
| DCHECK(boot_image_string_patches_.empty()); |
| DCHECK(boot_image_intrinsic_patches_.empty()); |
| } |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>( |
| method_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>( |
| type_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>( |
| string_bss_entry_patches_, linker_patches); |
| DCHECK_EQ(size, linker_patches->size()); |
| } |
| |
| CodeGeneratorMIPS64::PcRelativePatchInfo* CodeGeneratorMIPS64::NewBootImageIntrinsicPatch( |
| uint32_t intrinsic_data, |
| const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch( |
| /* dex_file */ nullptr, intrinsic_data, info_high, &boot_image_intrinsic_patches_); |
| } |
| |
| CodeGeneratorMIPS64::PcRelativePatchInfo* CodeGeneratorMIPS64::NewBootImageRelRoPatch( |
| uint32_t boot_image_offset, |
| const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch( |
| /* dex_file */ nullptr, boot_image_offset, info_high, &boot_image_method_patches_); |
| } |
| |
| CodeGeneratorMIPS64::PcRelativePatchInfo* CodeGeneratorMIPS64::NewBootImageMethodPatch( |
| MethodReference target_method, |
| const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch( |
| target_method.dex_file, target_method.index, info_high, &boot_image_method_patches_); |
| } |
| |
| CodeGeneratorMIPS64::PcRelativePatchInfo* CodeGeneratorMIPS64::NewMethodBssEntryPatch( |
| MethodReference target_method, |
| const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch( |
| target_method.dex_file, target_method.index, info_high, &method_bss_entry_patches_); |
| } |
| |
| CodeGeneratorMIPS64::PcRelativePatchInfo* CodeGeneratorMIPS64::NewBootImageTypePatch( |
| const DexFile& dex_file, |
| dex::TypeIndex type_index, |
| const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch(&dex_file, type_index.index_, info_high, &boot_image_type_patches_); |
| } |
| |
| CodeGeneratorMIPS64::PcRelativePatchInfo* CodeGeneratorMIPS64::NewTypeBssEntryPatch( |
| const DexFile& dex_file, |
| dex::TypeIndex type_index, |
| const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch(&dex_file, type_index.index_, info_high, &type_bss_entry_patches_); |
| } |
| |
| CodeGeneratorMIPS64::PcRelativePatchInfo* CodeGeneratorMIPS64::NewBootImageStringPatch( |
| const DexFile& dex_file, |
| dex::StringIndex string_index, |
| const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch( |
| &dex_file, string_index.index_, info_high, &boot_image_string_patches_); |
| } |
| |
| CodeGeneratorMIPS64::PcRelativePatchInfo* CodeGeneratorMIPS64::NewStringBssEntryPatch( |
| const DexFile& dex_file, |
| dex::StringIndex string_index, |
| const PcRelativePatchInfo* info_high) { |
| return NewPcRelativePatch(&dex_file, string_index.index_, info_high, &string_bss_entry_patches_); |
| } |
| |
| CodeGeneratorMIPS64::PcRelativePatchInfo* CodeGeneratorMIPS64::NewPcRelativePatch( |
| const DexFile* dex_file, |
| uint32_t offset_or_index, |
| const PcRelativePatchInfo* info_high, |
| ArenaDeque<PcRelativePatchInfo>* patches) { |
| patches->emplace_back(dex_file, offset_or_index, info_high); |
| return &patches->back(); |
| } |
| |
| Literal* CodeGeneratorMIPS64::DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map) { |
| return map->GetOrCreate( |
| value, |
| [this, value]() { return __ NewLiteral<uint32_t>(value); }); |
| } |
| |
| Literal* CodeGeneratorMIPS64::DeduplicateUint64Literal(uint64_t value) { |
| return uint64_literals_.GetOrCreate( |
| value, |
| [this, value]() { return __ NewLiteral<uint64_t>(value); }); |
| } |
| |
| Literal* CodeGeneratorMIPS64::DeduplicateBootImageAddressLiteral(uint64_t address) { |
| return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), &uint32_literals_); |
| } |
| |
| void CodeGeneratorMIPS64::EmitPcRelativeAddressPlaceholderHigh(PcRelativePatchInfo* info_high, |
| GpuRegister out, |
| PcRelativePatchInfo* info_low) { |
| DCHECK(!info_high->patch_info_high); |
| __ Bind(&info_high->label); |
| // Add the high half of a 32-bit offset to PC. |
| __ Auipc(out, /* placeholder */ 0x1234); |
| // A following instruction will add the sign-extended low half of the 32-bit |
| // offset to `out` (e.g. ld, jialc, daddiu). |
| if (info_low != nullptr) { |
| DCHECK_EQ(info_low->patch_info_high, info_high); |
| __ Bind(&info_low->label); |
| } |
| } |
| |
| void CodeGeneratorMIPS64::LoadBootImageAddress(GpuRegister reg, uint32_t boot_image_reference) { |
| if (GetCompilerOptions().IsBootImage()) { |
| PcRelativePatchInfo* info_high = NewBootImageIntrinsicPatch(boot_image_reference); |
| PcRelativePatchInfo* info_low = NewBootImageIntrinsicPatch(boot_image_reference, info_high); |
| EmitPcRelativeAddressPlaceholderHigh(info_high, AT, info_low); |
| __ Daddiu(reg, AT, /* placeholder */ 0x5678); |
| } else if (GetCompilerOptions().GetCompilePic()) { |
| PcRelativePatchInfo* info_high = NewBootImageRelRoPatch(boot_image_reference); |
| PcRelativePatchInfo* info_low = NewBootImageRelRoPatch(boot_image_reference, info_high); |
| EmitPcRelativeAddressPlaceholderHigh(info_high, AT, info_low); |
| // Note: Boot image is in the low 4GiB and the entry is 32-bit, so emit a 32-bit load. |
| __ Lwu(reg, AT, /* placeholder */ 0x5678); |
| } else { |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| DCHECK(!heap->GetBootImageSpaces().empty()); |
| uintptr_t address = |
| reinterpret_cast<uintptr_t>(heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference); |
| __ LoadLiteral(reg, kLoadDoubleword, DeduplicateBootImageAddressLiteral(address)); |
| } |
| } |
| |
| void CodeGeneratorMIPS64::AllocateInstanceForIntrinsic(HInvokeStaticOrDirect* invoke, |
| uint32_t boot_image_offset) { |
| DCHECK(invoke->IsStatic()); |
| InvokeRuntimeCallingConvention calling_convention; |
| GpuRegister argument = calling_convention.GetRegisterAt(0); |
| if (GetCompilerOptions().IsBootImage()) { |
| DCHECK_EQ(boot_image_offset, IntrinsicVisitor::IntegerValueOfInfo::kInvalidReference); |
| // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative. |
| MethodReference target_method = invoke->GetTargetMethod(); |
| dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_; |
| PcRelativePatchInfo* info_high = NewBootImageTypePatch(*target_method.dex_file, type_idx); |
| PcRelativePatchInfo* info_low = |
| NewBootImageTypePatch(*target_method.dex_file, type_idx, info_high); |
| EmitPcRelativeAddressPlaceholderHigh(info_high, AT, info_low); |
| __ Daddiu(argument, AT, /* placeholder */ 0x5678); |
| } else { |
| LoadBootImageAddress(argument, boot_image_offset); |
| } |
| InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); |
| } |
| |
| Literal* CodeGeneratorMIPS64::DeduplicateJitStringLiteral(const DexFile& dex_file, |
| dex::StringIndex string_index, |
| Handle<mirror::String> handle) { |
| ReserveJitStringRoot(StringReference(&dex_file, string_index), handle); |
| return jit_string_patches_.GetOrCreate( |
| StringReference(&dex_file, string_index), |
| [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); }); |
| } |
| |
| Literal* CodeGeneratorMIPS64::DeduplicateJitClassLiteral(const DexFile& dex_file, |
| dex::TypeIndex type_index, |
| Handle<mirror::Class> handle) { |
| ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle); |
| return jit_class_patches_.GetOrCreate( |
| TypeReference(&dex_file, type_index), |
| [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); }); |
| } |
| |
| void CodeGeneratorMIPS64::PatchJitRootUse(uint8_t* code, |
| const uint8_t* roots_data, |
| const Literal* literal, |
| uint64_t index_in_table) const { |
| uint32_t literal_offset = GetAssembler().GetLabelLocation(literal->GetLabel()); |
| uintptr_t address = |
| reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>); |
| reinterpret_cast<uint32_t*>(code + literal_offset)[0] = dchecked_integral_cast<uint32_t>(address); |
| } |
| |
| void CodeGeneratorMIPS64::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) { |
| for (const auto& entry : jit_string_patches_) { |
| const StringReference& string_reference = entry.first; |
| Literal* table_entry_literal = entry.second; |
| uint64_t index_in_table = GetJitStringRootIndex(string_reference); |
| PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table); |
| } |
| for (const auto& entry : jit_class_patches_) { |
| const TypeReference& type_reference = entry.first; |
| Literal* table_entry_literal = entry.second; |
| uint64_t index_in_table = GetJitClassRootIndex(type_reference); |
| PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table); |
| } |
| } |
| |
| void CodeGeneratorMIPS64::SetupBlockedRegisters() const { |
| // ZERO, K0, K1, GP, SP, RA are always reserved and can't be allocated. |
| blocked_core_registers_[ZERO] = true; |
| blocked_core_registers_[K0] = true; |
| blocked_core_registers_[K1] = true; |
| blocked_core_registers_[GP] = true; |
| blocked_core_registers_[SP] = true; |
| blocked_core_registers_[RA] = true; |
| |
| // AT, TMP(T8) and TMP2(T3) are used as temporary/scratch |
| // registers (similar to how AT is used by MIPS assemblers). |
| blocked_core_registers_[AT] = true; |
| blocked_core_registers_[TMP] = true; |
| blocked_core_registers_[TMP2] = true; |
| blocked_fpu_registers_[FTMP] = true; |
| |
| if (GetInstructionSetFeatures().HasMsa()) { |
| // To be used just for MSA instructions. |
| blocked_fpu_registers_[FTMP2] = true; |
| } |
| |
| // Reserve suspend and thread registers. |
| blocked_core_registers_[S0] = true; |
| blocked_core_registers_[TR] = true; |
| |
| // Reserve T9 for function calls |
| blocked_core_registers_[T9] = true; |
| |
| if (GetGraph()->IsDebuggable()) { |
| // Stubs do not save callee-save floating point registers. If the graph |
| // is debuggable, we need to deal with these registers differently. For |
| // now, just block them. |
| for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) { |
| blocked_fpu_registers_[kFpuCalleeSaves[i]] = true; |
| } |
| } |
| } |
| |
| size_t CodeGeneratorMIPS64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { |
| __ StoreToOffset(kStoreDoubleword, GpuRegister(reg_id), SP, stack_index); |
| return kMips64DoublewordSize; |
| } |
| |
| size_t CodeGeneratorMIPS64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { |
| __ LoadFromOffset(kLoadDoubleword, GpuRegister(reg_id), SP, stack_index); |
| return kMips64DoublewordSize; |
| } |
| |
| size_t CodeGeneratorMIPS64::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| __ StoreFpuToOffset(GetGraph()->HasSIMD() ? kStoreQuadword : kStoreDoubleword, |
| FpuRegister(reg_id), |
| SP, |
| stack_index); |
| return GetFloatingPointSpillSlotSize(); |
| } |
| |
| size_t CodeGeneratorMIPS64::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| __ LoadFpuFromOffset(GetGraph()->HasSIMD() ? kLoadQuadword : kLoadDoubleword, |
| FpuRegister(reg_id), |
| SP, |
| stack_index); |
| return GetFloatingPointSpillSlotSize(); |
| } |
| |
| void CodeGeneratorMIPS64::DumpCoreRegister(std::ostream& stream, int reg) const { |
| stream << GpuRegister(reg); |
| } |
| |
| void CodeGeneratorMIPS64::DumpFloatingPointRegister(std::ostream& stream, int reg) const { |
| stream << FpuRegister(reg); |
| } |
| |
| const Mips64InstructionSetFeatures& CodeGeneratorMIPS64::GetInstructionSetFeatures() const { |
| return *GetCompilerOptions().GetInstructionSetFeatures()->AsMips64InstructionSetFeatures(); |
| } |
| |
| void CodeGeneratorMIPS64::InvokeRuntime(QuickEntrypointEnum entrypoint, |
| HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntime(entrypoint, instruction, slow_path); |
| GenerateInvokeRuntime(GetThreadOffset<kMips64PointerSize>(entrypoint).Int32Value()); |
| if (EntrypointRequiresStackMap(entrypoint)) { |
| RecordPcInfo(instruction, dex_pc, slow_path); |
| } |
| } |
| |
| void CodeGeneratorMIPS64::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, |
| HInstruction* instruction, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); |
| GenerateInvokeRuntime(entry_point_offset); |
| } |
| |
| void CodeGeneratorMIPS64::GenerateInvokeRuntime(int32_t entry_point_offset) { |
| __ LoadFromOffset(kLoadDoubleword, T9, TR, entry_point_offset); |
| __ Jalr(T9); |
| __ Nop(); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenerateClassInitializationCheck(SlowPathCodeMIPS64* slow_path, |
| GpuRegister class_reg) { |
| constexpr size_t status_lsb_position = SubtypeCheckBits::BitStructSizeOf(); |
| const size_t status_byte_offset = |
| mirror::Class::StatusOffset().SizeValue() + (status_lsb_position / kBitsPerByte); |
| constexpr uint32_t shifted_initialized_value = |
| enum_cast<uint32_t>(ClassStatus::kInitialized) << (status_lsb_position % kBitsPerByte); |
| |
| __ LoadFromOffset(kLoadUnsignedByte, TMP, class_reg, status_byte_offset); |
| __ Sltiu(TMP, TMP, shifted_initialized_value); |
| __ Bnezc(TMP, slow_path->GetEntryLabel()); |
| // Even if the initialized flag is set, we need to ensure consistent memory ordering. |
| __ Sync(0); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenerateBitstringTypeCheckCompare(HTypeCheckInstruction* check, |
| GpuRegister temp) { |
| uint32_t path_to_root = check->GetBitstringPathToRoot(); |
| uint32_t mask = check->GetBitstringMask(); |
| DCHECK(IsPowerOfTwo(mask + 1)); |
| size_t mask_bits = WhichPowerOf2(mask + 1); |
| |
| if (mask_bits == 16u) { |
| // Load only the bitstring part of the status word. |
| __ LoadFromOffset( |
| kLoadUnsignedHalfword, temp, temp, mirror::Class::StatusOffset().Int32Value()); |
| // Compare the bitstring bits using XOR. |
| __ Xori(temp, temp, dchecked_integral_cast<uint16_t>(path_to_root)); |
| } else { |
| // /* uint32_t */ temp = temp->status_ |
| __ LoadFromOffset(kLoadWord, temp, temp, mirror::Class::StatusOffset().Int32Value()); |
| // Compare the bitstring bits using XOR. |
| if (IsUint<16>(path_to_root)) { |
| __ Xori(temp, temp, dchecked_integral_cast<uint16_t>(path_to_root)); |
| } else { |
| __ LoadConst32(TMP, path_to_root); |
| __ Xor(temp, temp, TMP); |
| } |
| // Shift out bits that do not contribute to the comparison. |
| __ Sll(temp, temp, 32 - mask_bits); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenerateMemoryBarrier(MemBarrierKind kind ATTRIBUTE_UNUSED) { |
| __ Sync(0); // only stype 0 is supported |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenerateSuspendCheck(HSuspendCheck* instruction, |
| HBasicBlock* successor) { |
| SuspendCheckSlowPathMIPS64* slow_path = |
| down_cast<SuspendCheckSlowPathMIPS64*>(instruction->GetSlowPath()); |
| |
| if (slow_path == nullptr) { |
| slow_path = |
| new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathMIPS64(instruction, successor); |
| instruction->SetSlowPath(slow_path); |
| codegen_->AddSlowPath(slow_path); |
| if (successor != nullptr) { |
| DCHECK(successor->IsLoopHeader()); |
| } |
| } else { |
| DCHECK_EQ(slow_path->GetSuccessor(), successor); |
| } |
| |
| __ LoadFromOffset(kLoadUnsignedHalfword, |
| TMP, |
| TR, |
| Thread::ThreadFlagsOffset<kMips64PointerSize>().Int32Value()); |
| if (successor == nullptr) { |
| __ Bnezc(TMP, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetReturnLabel()); |
| } else { |
| __ Beqzc(TMP, codegen_->GetLabelOf(successor)); |
| __ Bc(slow_path->GetEntryLabel()); |
| // slow_path will return to GetLabelOf(successor). |
| } |
| } |
| |
| InstructionCodeGeneratorMIPS64::InstructionCodeGeneratorMIPS64(HGraph* graph, |
| CodeGeneratorMIPS64* codegen) |
| : InstructionCodeGenerator(graph, codegen), |
| assembler_(codegen->GetAssembler()), |
| codegen_(codegen) {} |
| |
| void LocationsBuilderMIPS64::HandleBinaryOp(HBinaryOperation* instruction) { |
| DCHECK_EQ(instruction->InputCount(), 2U); |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| DataType::Type type = instruction->GetResultType(); |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| HInstruction* right = instruction->InputAt(1); |
| bool can_use_imm = false; |
| if (right->IsConstant()) { |
| int64_t imm = CodeGenerator::GetInt64ValueOf(right->AsConstant()); |
| if (instruction->IsAnd() || instruction->IsOr() || instruction->IsXor()) { |
| can_use_imm = IsUint<16>(imm); |
| } else { |
| DCHECK(instruction->IsAdd() || instruction->IsSub()); |
| bool single_use = right->GetUses().HasExactlyOneElement(); |
| if (instruction->IsSub()) { |
| if (!(type == DataType::Type::kInt32 && imm == INT32_MIN)) { |
| imm = -imm; |
| } |
| } |
| if (type == DataType::Type::kInt32) { |
| can_use_imm = IsInt<16>(imm) || (Low16Bits(imm) == 0) || single_use; |
| } else { |
| can_use_imm = IsInt<16>(imm) || (IsInt<32>(imm) && (Low16Bits(imm) == 0)) || single_use; |
| } |
| } |
| } |
| if (can_use_imm) |
| locations->SetInAt(1, Location::ConstantLocation(right->AsConstant())); |
| else |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected " << instruction->DebugName() << " type " << type; |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::HandleBinaryOp(HBinaryOperation* instruction) { |
| DataType::Type type = instruction->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| GpuRegister dst = locations->Out().AsRegister<GpuRegister>(); |
| GpuRegister lhs = locations->InAt(0).AsRegister<GpuRegister>(); |
| Location rhs_location = locations->InAt(1); |
| |
| GpuRegister rhs_reg = ZERO; |
| int64_t rhs_imm = 0; |
| bool use_imm = rhs_location.IsConstant(); |
| if (use_imm) { |
| rhs_imm = CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()); |
| } else { |
| rhs_reg = rhs_location.AsRegister<GpuRegister>(); |
| } |
| |
| if (instruction->IsAnd()) { |
| if (use_imm) |
| __ Andi(dst, lhs, rhs_imm); |
| else |
| __ And(dst, lhs, rhs_reg); |
| } else if (instruction->IsOr()) { |
| if (use_imm) |
| __ Ori(dst, lhs, rhs_imm); |
| else |
| __ Or(dst, lhs, rhs_reg); |
| } else if (instruction->IsXor()) { |
| if (use_imm) |
| __ Xori(dst, lhs, rhs_imm); |
| else |
| __ Xor(dst, lhs, rhs_reg); |
| } else if (instruction->IsAdd() || instruction->IsSub()) { |
| if (instruction->IsSub()) { |
| rhs_imm = -rhs_imm; |
| } |
| if (type == DataType::Type::kInt32) { |
| if (use_imm) { |
| if (IsInt<16>(rhs_imm)) { |
| __ Addiu(dst, lhs, rhs_imm); |
| } else { |
| int16_t rhs_imm_high = High16Bits(rhs_imm); |
| int16_t rhs_imm_low = Low16Bits(rhs_imm); |
| if (rhs_imm_low < 0) { |
| rhs_imm_high += 1; |
| } |
| __ Aui(dst, lhs, rhs_imm_high); |
| if (rhs_imm_low != 0) { |
| __ Addiu(dst, dst, rhs_imm_low); |
| } |
| } |
| } else { |
| if (instruction->IsAdd()) { |
| __ Addu(dst, lhs, rhs_reg); |
| } else { |
| DCHECK(instruction->IsSub()); |
| __ Subu(dst, lhs, rhs_reg); |
| } |
| } |
| } else { |
| if (use_imm) { |
| if (IsInt<16>(rhs_imm)) { |
| __ Daddiu(dst, lhs, rhs_imm); |
| } else if (IsInt<32>(rhs_imm)) { |
| int16_t rhs_imm_high = High16Bits(rhs_imm); |
| int16_t rhs_imm_low = Low16Bits(rhs_imm); |
| bool overflow_hi16 = false; |
| if (rhs_imm_low < 0) { |
| rhs_imm_high += 1; |
| overflow_hi16 = (rhs_imm_high == -32768); |
| } |
| __ Daui(dst, lhs, rhs_imm_high); |
| if (rhs_imm_low != 0) { |
| __ Daddiu(dst, dst, rhs_imm_low); |
| } |
| if (overflow_hi16) { |
| __ Dahi(dst, 1); |
| } |
| } else { |
| int16_t rhs_imm_low = Low16Bits(Low32Bits(rhs_imm)); |
| if (rhs_imm_low < 0) { |
| rhs_imm += (INT64_C(1) << 16); |
| } |
| int16_t rhs_imm_upper = High16Bits(Low32Bits(rhs_imm)); |
| if (rhs_imm_upper < 0) { |
| rhs_imm += (INT64_C(1) << 32); |
| } |
| int16_t rhs_imm_high = Low16Bits(High32Bits(rhs_imm)); |
| if (rhs_imm_high < 0) { |
| rhs_imm += (INT64_C(1) << 48); |
| } |
| int16_t rhs_imm_top = High16Bits(High32Bits(rhs_imm)); |
| GpuRegister tmp = lhs; |
| if (rhs_imm_low != 0) { |
| __ Daddiu(dst, tmp, rhs_imm_low); |
| tmp = dst; |
| } |
| // Dahi and Dati must use the same input and output register, so we have to initialize |
| // the dst register using Daddiu or Daui, even when the intermediate value is zero: |
| // Daui(dst, lhs, 0). |
| if ((rhs_imm_upper != 0) || (rhs_imm_low == 0)) { |
| __ Daui(dst, tmp, rhs_imm_upper); |
| } |
| if (rhs_imm_high != 0) { |
| __ Dahi(dst, rhs_imm_high); |
| } |
| if (rhs_imm_top != 0) { |
| __ Dati(dst, rhs_imm_top); |
| } |
| } |
| } else if (instruction->IsAdd()) { |
| __ Daddu(dst, lhs, rhs_reg); |
| } else { |
| DCHECK(instruction->IsSub()); |
| __ Dsubu(dst, lhs, rhs_reg); |
| } |
| } |
| } |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| FpuRegister dst = locations->Out().AsFpuRegister<FpuRegister>(); |
| FpuRegister lhs = locations->InAt(0).AsFpuRegister<FpuRegister>(); |
| FpuRegister rhs = locations->InAt(1).AsFpuRegister<FpuRegister>(); |
| if (instruction->IsAdd()) { |
| if (type == DataType::Type::kFloat32) |
| __ AddS(dst, lhs, rhs); |
| else |
| __ AddD(dst, lhs, rhs); |
| } else if (instruction->IsSub()) { |
| if (type == DataType::Type::kFloat32) |
| __ SubS(dst, lhs, rhs); |
| else |
| __ SubD(dst, lhs, rhs); |
| } else { |
| LOG(FATAL) << "Unexpected floating-point binary operation"; |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected binary operation type " << type; |
| } |
| } |
| |
| void LocationsBuilderMIPS64::HandleShift(HBinaryOperation* instr) { |
| DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor()); |
| |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr); |
| DataType::Type type = instr->GetResultType(); |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected shift type " << type; |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::HandleShift(HBinaryOperation* instr) { |
| DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor()); |
| LocationSummary* locations = instr->GetLocations(); |
| DataType::Type type = instr->GetType(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| GpuRegister dst = locations->Out().AsRegister<GpuRegister>(); |
| GpuRegister lhs = locations->InAt(0).AsRegister<GpuRegister>(); |
| Location rhs_location = locations->InAt(1); |
| |
| GpuRegister rhs_reg = ZERO; |
| int64_t rhs_imm = 0; |
| bool use_imm = rhs_location.IsConstant(); |
| if (use_imm) { |
| rhs_imm = CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()); |
| } else { |
| rhs_reg = rhs_location.AsRegister<GpuRegister>(); |
| } |
| |
| if (use_imm) { |
| uint32_t shift_value = rhs_imm & |
| (type == DataType::Type::kInt32 ? kMaxIntShiftDistance : kMaxLongShiftDistance); |
| |
| if (shift_value == 0) { |
| if (dst != lhs) { |
| __ Move(dst, lhs); |
| } |
| } else if (type == DataType::Type::kInt32) { |
| if (instr->IsShl()) { |
| __ Sll(dst, lhs, shift_value); |
| } else if (instr->IsShr()) { |
| __ Sra(dst, lhs, shift_value); |
| } else if (instr->IsUShr()) { |
| __ Srl(dst, lhs, shift_value); |
| } else { |
| __ Rotr(dst, lhs, shift_value); |
| } |
| } else { |
| if (shift_value < 32) { |
| if (instr->IsShl()) { |
| __ Dsll(dst, lhs, shift_value); |
| } else if (instr->IsShr()) { |
| __ Dsra(dst, lhs, shift_value); |
| } else if (instr->IsUShr()) { |
| __ Dsrl(dst, lhs, shift_value); |
| } else { |
| __ Drotr(dst, lhs, shift_value); |
| } |
| } else { |
| shift_value -= 32; |
| if (instr->IsShl()) { |
| __ Dsll32(dst, lhs, shift_value); |
| } else if (instr->IsShr()) { |
| __ Dsra32(dst, lhs, shift_value); |
| } else if (instr->IsUShr()) { |
| __ Dsrl32(dst, lhs, shift_value); |
| } else { |
| __ Drotr32(dst, lhs, shift_value); |
| } |
| } |
| } |
| } else { |
| if (type == DataType::Type::kInt32) { |
| if (instr->IsShl()) { |
| __ Sllv(dst, lhs, rhs_reg); |
| } else if (instr->IsShr()) { |
| __ Srav(dst, lhs, rhs_reg); |
| } else if (instr->IsUShr()) { |
| __ Srlv(dst, lhs, rhs_reg); |
| } else { |
| __ Rotrv(dst, lhs, rhs_reg); |
| } |
| } else { |
| if (instr->IsShl()) { |
| __ Dsllv(dst, lhs, rhs_reg); |
| } else if (instr->IsShr()) { |
| __ Dsrav(dst, lhs, rhs_reg); |
| } else if (instr->IsUShr()) { |
| __ Dsrlv(dst, lhs, rhs_reg); |
| } else { |
| __ Drotrv(dst, lhs, rhs_reg); |
| } |
| } |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected shift operation type " << type; |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitAdd(HAdd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitAdd(HAdd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderMIPS64::VisitAnd(HAnd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitAnd(HAnd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderMIPS64::VisitArrayGet(HArrayGet* instruction) { |
| DataType::Type type = instruction->GetType(); |
| bool object_array_get_with_read_barrier = |
| kEmitCompilerReadBarrier && (type == DataType::Type::kReference); |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, |
| object_array_get_with_read_barrier |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall); |
| if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (DataType::IsFloatingPointType(type)) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| // The output overlaps in the case of an object array get with |
| // read barriers enabled: we do not want the move to overwrite the |
| // array's location, as we need it to emit the read barrier. |
| locations->SetOut(Location::RequiresRegister(), |
| object_array_get_with_read_barrier |
| ? Location::kOutputOverlap |
| : Location::kNoOutputOverlap); |
| } |
| // We need a temporary register for the read barrier marking slow |
| // path in CodeGeneratorMIPS64::GenerateArrayLoadWithBakerReadBarrier. |
| if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { |
| bool temp_needed = instruction->GetIndex()->IsConstant() |
| ? !kBakerReadBarrierThunksEnableForFields |
| : !kBakerReadBarrierThunksEnableForArrays; |
| if (temp_needed) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| } |
| |
| static auto GetImplicitNullChecker(HInstruction* instruction, CodeGeneratorMIPS64* codegen) { |
| auto null_checker = [codegen, instruction]() { |
| codegen->MaybeRecordImplicitNullCheck(instruction); |
| }; |
| return null_checker; |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitArrayGet(HArrayGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| GpuRegister obj = obj_loc.AsRegister<GpuRegister>(); |
| Location out_loc = locations->Out(); |
| Location index = locations->InAt(1); |
| uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction); |
| auto null_checker = GetImplicitNullChecker(instruction, codegen_); |
| |
| DataType::Type type = instruction->GetType(); |
| const bool maybe_compressed_char_at = mirror::kUseStringCompression && |
| instruction->IsStringCharAt(); |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: { |
| GpuRegister out = out_loc.AsRegister<GpuRegister>(); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset; |
| __ LoadFromOffset(kLoadUnsignedByte, out, obj, offset, null_checker); |
| } else { |
| __ Daddu(TMP, obj, index.AsRegister<GpuRegister>()); |
| __ LoadFromOffset(kLoadUnsignedByte, out, TMP, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt8: { |
| GpuRegister out = out_loc.AsRegister<GpuRegister>(); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset; |
| __ LoadFromOffset(kLoadSignedByte, out, obj, offset, null_checker); |
| } else { |
| __ Daddu(TMP, obj, index.AsRegister<GpuRegister>()); |
| __ LoadFromOffset(kLoadSignedByte, out, TMP, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kUint16: { |
| GpuRegister out = out_loc.AsRegister<GpuRegister>(); |
| if (maybe_compressed_char_at) { |
| uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| __ LoadFromOffset(kLoadWord, TMP, obj, count_offset, null_checker); |
| __ Dext(TMP, TMP, 0, 1); |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| } |
| if (index.IsConstant()) { |
| int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue(); |
| if (maybe_compressed_char_at) { |
| Mips64Label uncompressed_load, done; |
| __ Bnezc(TMP, &uncompressed_load); |
| __ LoadFromOffset(kLoadUnsignedByte, |
| out, |
| obj, |
| data_offset + (const_index << TIMES_1)); |
| __ Bc(&done); |
| __ Bind(&uncompressed_load); |
| __ LoadFromOffset(kLoadUnsignedHalfword, |
| out, |
| obj, |
| data_offset + (const_index << TIMES_2)); |
| __ Bind(&done); |
| } else { |
| __ LoadFromOffset(kLoadUnsignedHalfword, |
| out, |
| obj, |
| data_offset + (const_index << TIMES_2), |
| null_checker); |
| } |
| } else { |
| GpuRegister index_reg = index.AsRegister<GpuRegister>(); |
| if (maybe_compressed_char_at) { |
| Mips64Label uncompressed_load, done; |
| __ Bnezc(TMP, &uncompressed_load); |
| __ Daddu(TMP, obj, index_reg); |
| __ LoadFromOffset(kLoadUnsignedByte, out, TMP, data_offset); |
| __ Bc(&done); |
| __ Bind(&uncompressed_load); |
| __ Dlsa(TMP, index_reg, obj, TIMES_2); |
| __ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset); |
| __ Bind(&done); |
| } else { |
| __ Dlsa(TMP, index_reg, obj, TIMES_2); |
| __ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset, null_checker); |
| } |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt16: { |
| GpuRegister out = out_loc.AsRegister<GpuRegister>(); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset; |
| __ LoadFromOffset(kLoadSignedHalfword, out, obj, offset, null_checker); |
| } else { |
| __ Dlsa(TMP, index.AsRegister<GpuRegister>(), obj, TIMES_2); |
| __ LoadFromOffset(kLoadSignedHalfword, out, TMP, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt32: { |
| DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Object>), sizeof(int32_t)); |
| GpuRegister out = out_loc.AsRegister<GpuRegister>(); |
| LoadOperandType load_type = |
| (type == DataType::Type::kReference) ? kLoadUnsignedWord : kLoadWord; |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| __ LoadFromOffset(load_type, out, obj, offset, null_checker); |
| } else { |
| __ Dlsa(TMP, index.AsRegister<GpuRegister>(), obj, TIMES_4); |
| __ LoadFromOffset(load_type, out, TMP, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kReference: { |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| // /* HeapReference<Object> */ out = |
| // *(obj + data_offset + index * sizeof(HeapReference<Object>)) |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| bool temp_needed = index.IsConstant() |
| ? !kBakerReadBarrierThunksEnableForFields |
| : !kBakerReadBarrierThunksEnableForArrays; |
| Location temp = temp_needed ? locations->GetTemp(0) : Location::NoLocation(); |
| // Note that a potential implicit null check is handled in this |
| // CodeGeneratorMIPS64::GenerateArrayLoadWithBakerReadBarrier call. |
| DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0))); |
| if (index.IsConstant()) { |
| // Array load with a constant index can be treated as a field load. |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| out_loc, |
| obj, |
| offset, |
| temp, |
| /* needs_null_check */ false); |
| } else { |
| codegen_->GenerateArrayLoadWithBakerReadBarrier(instruction, |
| out_loc, |
| obj, |
| data_offset, |
| index, |
| temp, |
| /* needs_null_check */ false); |
| } |
| } else { |
| GpuRegister out = out_loc.AsRegister<GpuRegister>(); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| __ LoadFromOffset(kLoadUnsignedWord, out, obj, offset, null_checker); |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset); |
| } else { |
| __ Dlsa(TMP, index.AsRegister<GpuRegister>(), obj, TIMES_4); |
| __ LoadFromOffset(kLoadUnsignedWord, out, TMP, data_offset, null_checker); |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, |
| out_loc, |
| out_loc, |
| obj_loc, |
| data_offset, |
| index); |
| } |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt64: { |
| GpuRegister out = out_loc.AsRegister<GpuRegister>(); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; |
| __ LoadFromOffset(kLoadDoubleword, out, obj, offset, null_checker); |
| } else { |
| __ Dlsa(TMP, index.AsRegister<GpuRegister>(), obj, TIMES_8); |
| __ LoadFromOffset(kLoadDoubleword, out, TMP, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat32: { |
| FpuRegister out = out_loc.AsFpuRegister<FpuRegister>(); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| __ LoadFpuFromOffset(kLoadWord, out, obj, offset, null_checker); |
| } else { |
| __ Dlsa(TMP, index.AsRegister<GpuRegister>(), obj, TIMES_4); |
| __ LoadFpuFromOffset(kLoadWord, out, TMP, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat64: { |
| FpuRegister out = out_loc.AsFpuRegister<FpuRegister>(); |
| if (index.IsConstant()) { |
| size_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset; |
| __ LoadFpuFromOffset(kLoadDoubleword, out, obj, offset, null_checker); |
| } else { |
| __ Dlsa(TMP, index.AsRegister<GpuRegister>(), obj, TIMES_8); |
| __ LoadFpuFromOffset(kLoadDoubleword, out, TMP, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unreachable type " << instruction->GetType(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitArrayLength(HArrayLength* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitArrayLength(HArrayLength* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); |
| GpuRegister obj = locations->InAt(0).AsRegister<GpuRegister>(); |
| GpuRegister out = locations->Out().AsRegister<GpuRegister>(); |
| __ LoadFromOffset(kLoadWord, out, obj, offset); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| // Mask out compression flag from String's array length. |
| if (mirror::kUseStringCompression && instruction->IsStringLength()) { |
| __ Srl(out, out, 1u); |
| } |
| } |
| |
| Location LocationsBuilderMIPS64::RegisterOrZeroConstant(HInstruction* instruction) { |
| return (instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern()) |
| ? Location::ConstantLocation(instruction->AsConstant()) |
| : Location::RequiresRegister(); |
| } |
| |
| Location LocationsBuilderMIPS64::FpuRegisterOrConstantForStore(HInstruction* instruction) { |
| // We can store 0.0 directly (from the ZERO register) without loading it into an FPU register. |
| // We can store a non-zero float or double constant without first loading it into the FPU, |
| // but we should only prefer this if the constant has a single use. |
| if (instruction->IsConstant() && |
| (instruction->AsConstant()->IsZeroBitPattern() || |
| instruction->GetUses().HasExactlyOneElement())) { |
| return Location::ConstantLocation(instruction->AsConstant()); |
| // Otherwise fall through and require an FPU register for the constant. |
| } |
| return Location::RequiresFpuRegister(); |
| } |
| |
| void LocationsBuilderMIPS64::VisitArraySet(HArraySet* instruction) { |
| DataType::Type value_type = instruction->GetComponentType(); |
| |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); |
| |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, |
| may_need_runtime_call_for_type_check ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (DataType::IsFloatingPointType(instruction->InputAt(2)->GetType())) { |
| locations->SetInAt(2, FpuRegisterOrConstantForStore(instruction->InputAt(2))); |
| } else { |
| locations->SetInAt(2, RegisterOrZeroConstant(instruction->InputAt(2))); |
| } |
| if (needs_write_barrier) { |
| // Temporary register for the write barrier. |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too. |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitArraySet(HArraySet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| GpuRegister obj = locations->InAt(0).AsRegister<GpuRegister>(); |
| Location index = locations->InAt(1); |
| Location value_location = locations->InAt(2); |
| DataType::Type value_type = instruction->GetComponentType(); |
| bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| auto null_checker = GetImplicitNullChecker(instruction, codegen_); |
| GpuRegister base_reg = index.IsConstant() ? obj : TMP; |
| |
| switch (value_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1; |
| } else { |
| __ Daddu(base_reg, obj, index.AsRegister<GpuRegister>()); |
| } |
| if (value_location.IsConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant()); |
| __ StoreConstToOffset(kStoreByte, value, base_reg, data_offset, TMP, null_checker); |
| } else { |
| GpuRegister value = value_location.AsRegister<GpuRegister>(); |
| __ StoreToOffset(kStoreByte, value, base_reg, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2; |
| } else { |
| __ Dlsa(base_reg, index.AsRegister<GpuRegister>(), obj, TIMES_2); |
| } |
| if (value_location.IsConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant()); |
| __ StoreConstToOffset(kStoreHalfword, value, base_reg, data_offset, TMP, null_checker); |
| } else { |
| GpuRegister value = value_location.AsRegister<GpuRegister>(); |
| __ StoreToOffset(kStoreHalfword, value, base_reg, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt32: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4; |
| } else { |
| __ Dlsa(base_reg, index.AsRegister<GpuRegister>(), obj, TIMES_4); |
| } |
| if (value_location.IsConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant()); |
| __ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker); |
| } else { |
| GpuRegister value = value_location.AsRegister<GpuRegister>(); |
| __ StoreToOffset(kStoreWord, value, base_reg, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kReference: { |
| if (value_location.IsConstant()) { |
| // Just setting null. |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4; |
| } else { |
| __ Dlsa(base_reg, index.AsRegister<GpuRegister>(), obj, TIMES_4); |
| } |
| int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant()); |
| DCHECK_EQ(value, 0); |
| __ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker); |
| DCHECK(!needs_write_barrier); |
| DCHECK(!may_need_runtime_call_for_type_check); |
| break; |
| } |
| |
| DCHECK(needs_write_barrier); |
| GpuRegister value = value_location.AsRegister<GpuRegister>(); |
| GpuRegister temp1 = locations->GetTemp(0).AsRegister<GpuRegister>(); |
| GpuRegister temp2 = TMP; // Doesn't need to survive slow path. |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| Mips64Label done; |
| SlowPathCodeMIPS64* slow_path = nullptr; |
| |
| if (may_need_runtime_call_for_type_check) { |
| slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathMIPS64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| if (instruction->GetValueCanBeNull()) { |
| Mips64Label non_zero; |
| __ Bnezc(value, &non_zero); |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4; |
| } else { |
| __ Dlsa(base_reg, index.AsRegister<GpuRegister>(), obj, TIMES_4); |
| } |
| __ StoreToOffset(kStoreWord, value, base_reg, data_offset, null_checker); |
| __ Bc(&done); |
| __ Bind(&non_zero); |
| } |
| |
| // Note that when read barriers are enabled, the type checks |
| // are performed without read barriers. This is fine, even in |
| // the case where a class object is in the from-space after |
| // the flip, as a comparison involving such a type would not |
| // produce a false positive; it may of course produce a false |
| // negative, in which case we would take the ArraySet slow |
| // path. |
| |
| // /* HeapReference<Class> */ temp1 = obj->klass_ |
| __ LoadFromOffset(kLoadUnsignedWord, temp1, obj, class_offset, null_checker); |
| __ MaybeUnpoisonHeapReference(temp1); |
| |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| __ LoadFromOffset(kLoadUnsignedWord, temp1, temp1, component_offset); |
| // /* HeapReference<Class> */ temp2 = value->klass_ |
| __ LoadFromOffset(kLoadUnsignedWord, temp2, value, class_offset); |
| // If heap poisoning is enabled, no need to unpoison `temp1` |
| // nor `temp2`, as we are comparing two poisoned references. |
| |
| if (instruction->StaticTypeOfArrayIsObjectArray()) { |
| Mips64Label do_put; |
| __ Beqc(temp1, temp2, &do_put); |
| // If heap poisoning is enabled, the `temp1` reference has |
| // not been unpoisoned yet; unpoison it now. |
| __ MaybeUnpoisonHeapReference(temp1); |
| |
| // /* HeapReference<Class> */ temp1 = temp1->super_class_ |
| __ LoadFromOffset(kLoadUnsignedWord, temp1, temp1, super_offset); |
| // If heap poisoning is enabled, no need to unpoison |
| // `temp1`, as we are comparing against null below. |
| __ Bnezc(temp1, slow_path->GetEntryLabel()); |
| __ Bind(&do_put); |
| } else { |
| __ Bnec(temp1, temp2, slow_path->GetEntryLabel()); |
| } |
| } |
| |
| GpuRegister source = value; |
| if (kPoisonHeapReferences) { |
| // Note that in the case where `value` is a null reference, |
| // we do not enter this block, as a null reference does not |
| // need poisoning. |
| __ Move(temp1, value); |
| __ PoisonHeapReference(temp1); |
| source = temp1; |
| } |
| |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4; |
| } else { |
| __ Dlsa(base_reg, index.AsRegister<GpuRegister>(), obj, TIMES_4); |
| } |
| __ StoreToOffset(kStoreWord, source, base_reg, data_offset); |
| |
| if (!may_need_runtime_call_for_type_check) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| codegen_->MarkGCCard(obj, value, instruction->GetValueCanBeNull()); |
| |
| if (done.IsLinked()) { |
| __ Bind(&done); |
| } |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt64: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); |
| if (index.IsConstant()) { |
| data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8; |
| } else { |
| __ Dlsa(base_reg, index.AsRegister<GpuRegister>(), obj, TIMES_8); |
| } |
| if (value_location.IsConstant()) { |
| int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant()); |
| __ StoreConstToOffset(kStoreDoubleword, value, base_reg, data_offset, TMP, null_checker); |
| } else { |
| GpuRegister value = value_location.AsRegister<GpuRegister>(); |
| __ StoreToOffset(kStoreDoubleword, value, base_reg, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat32: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); |
| if (index.IsConstant()) { |
| data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4; |
| } else { |
| __ Dlsa(base_reg, index.AsRegister<GpuRegister>(), obj, TIMES_4); |
| } |
| if (value_location.IsConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant()); |
| __ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker); |
| } else { |
| FpuRegister value = value_location.AsFpuRegister<FpuRegister>(); |
| __ StoreFpuToOffset(kStoreWord, value, base_reg, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kFloat64: { |
| uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); |
| if (index.IsConstant()) { |
| data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8; |
| } else { |
| __ Dlsa(base_reg, index.AsRegister<GpuRegister>(), obj, TIMES_8); |
| } |
| if (value_location.IsConstant()) { |
| int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant()); |
| __ StoreConstToOffset(kStoreDoubleword, value, base_reg, data_offset, TMP, null_checker); |
| } else { |
| FpuRegister value = value_location.AsFpuRegister<FpuRegister>(); |
| __ StoreFpuToOffset(kStoreDoubleword, value, base_reg, data_offset, null_checker); |
| } |
| break; |
| } |
| |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unreachable type " << instruction->GetType(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitBoundsCheck(HBoundsCheck* instruction) { |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| InvokeRuntimeCallingConvention calling_convention; |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves); |
| |
| HInstruction* index = instruction->InputAt(0); |
| HInstruction* length = instruction->InputAt(1); |
| |
| bool const_index = false; |
| bool const_length = false; |
| |
| if (index->IsConstant()) { |
| if (length->IsConstant()) { |
| const_index = true; |
| const_length = true; |
| } else { |
| int32_t index_value = index->AsIntConstant()->GetValue(); |
| if (index_value < 0 || IsInt<16>(index_value + 1)) { |
| const_index = true; |
| } |
| } |
| } else if (length->IsConstant()) { |
| int32_t length_value = length->AsIntConstant()->GetValue(); |
| if (IsUint<15>(length_value)) { |
| const_length = true; |
| } |
| } |
| |
| locations->SetInAt(0, const_index |
| ? Location::ConstantLocation(index->AsConstant()) |
| : Location::RequiresRegister()); |
| locations->SetInAt(1, const_length |
| ? Location::ConstantLocation(length->AsConstant()) |
| : Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitBoundsCheck(HBoundsCheck* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location index_loc = locations->InAt(0); |
| Location length_loc = locations->InAt(1); |
| |
| if (length_loc.IsConstant()) { |
| int32_t length = length_loc.GetConstant()->AsIntConstant()->GetValue(); |
| if (index_loc.IsConstant()) { |
| int32_t index = index_loc.GetConstant()->AsIntConstant()->GetValue(); |
| if (index < 0 || index >= length) { |
| BoundsCheckSlowPathMIPS64* slow_path = |
| new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathMIPS64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| __ Bc(slow_path->GetEntryLabel()); |
| } else { |
| // Nothing to be done. |
| } |
| return; |
| } |
| |
| BoundsCheckSlowPathMIPS64* slow_path = |
| new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathMIPS64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| GpuRegister index = index_loc.AsRegister<GpuRegister>(); |
| if (length == 0) { |
| __ Bc(slow_path->GetEntryLabel()); |
| } else if (length == 1) { |
| __ Bnezc(index, slow_path->GetEntryLabel()); |
| } else { |
| DCHECK(IsUint<15>(length)) << length; |
| __ Sltiu(TMP, index, length); |
| __ Beqzc(TMP, slow_path->GetEntryLabel()); |
| } |
| } else { |
| GpuRegister length = length_loc.AsRegister<GpuRegister>(); |
| BoundsCheckSlowPathMIPS64* slow_path = |
| new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathMIPS64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| if (index_loc.IsConstant()) { |
| int32_t index = index_loc.GetConstant()->AsIntConstant()->GetValue(); |
| if (index < 0) { |
| __ Bc(slow_path->GetEntryLabel()); |
| } else if (index == 0) { |
| __ Blezc(length, slow_path->GetEntryLabel()); |
| } else { |
| DCHECK(IsInt<16>(index + 1)) << index; |
| __ Sltiu(TMP, length, index + 1); |
| __ Bnezc(TMP, slow_path->GetEntryLabel()); |
| } |
| } else { |
| GpuRegister index = index_loc.AsRegister<GpuRegister>(); |
| __ Bgeuc(index, length, slow_path->GetEntryLabel()); |
| } |
| } |
| } |
| |
| // Temp is used for read barrier. |
| static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) { |
| if (kEmitCompilerReadBarrier && |
| !(kUseBakerReadBarrier && kBakerReadBarrierThunksEnableForFields) && |
| (kUseBakerReadBarrier || |
| type_check_kind == TypeCheckKind::kAbstractClassCheck || |
| type_check_kind == TypeCheckKind::kClassHierarchyCheck || |
| type_check_kind == TypeCheckKind::kArrayObjectCheck)) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| // Extra temp is used for read barrier. |
| static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) { |
| return 1 + NumberOfInstanceOfTemps(type_check_kind); |
| } |
| |
| void LocationsBuilderMIPS64::VisitCheckCast(HCheckCast* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction); |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (type_check_kind == TypeCheckKind::kBitstringCheck) { |
| locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); |
| locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); |
| locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant())); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind)); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitCheckCast(HCheckCast* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| GpuRegister obj = obj_loc.AsRegister<GpuRegister>(); |
| Location cls = locations->InAt(1); |
| Location temp_loc = locations->GetTemp(0); |
| GpuRegister temp = temp_loc.AsRegister<GpuRegister>(); |
| const size_t num_temps = NumberOfCheckCastTemps(type_check_kind); |
| DCHECK_LE(num_temps, 2u); |
| Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation(); |
| const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value(); |
| const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value(); |
| const uint32_t object_array_data_offset = |
| mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); |
| Mips64Label done; |
| |
| bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction); |
| SlowPathCodeMIPS64* slow_path = |
| new (codegen_->GetScopedAllocator()) TypeCheckSlowPathMIPS64( |
| instruction, is_type_check_slow_path_fatal); |
| codegen_->AddSlowPath(slow_path); |
| |
| // Avoid this check if we know `obj` is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ Beqzc(obj, &done); |
| } |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kArrayCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // Jump to slow path for throwing the exception or doing a |
| // more involved array check. |
| __ Bnec(temp, cls.AsRegister<GpuRegister>(), slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| Mips64Label loop; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| super_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // If the class reference currently in `temp` is null, jump to the slow path to throw the |
| // exception. |
| __ Beqzc(temp, slow_path->GetEntryLabel()); |
| // Otherwise, compare the classes. |
| __ Bnec(temp, cls.AsRegister<GpuRegister>(), &loop); |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // Walk over the class hierarchy to find a match. |
| Mips64Label loop; |
| __ Bind(&loop); |
| __ Beqc(temp, cls.AsRegister<GpuRegister>(), &done); |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| super_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // If the class reference currently in `temp` is null, jump to the slow path to throw the |
| // exception. Otherwise, jump to the beginning of the loop. |
| __ Bnezc(temp, &loop); |
| __ Bc(slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // Do an exact check. |
| __ Beqc(temp, cls.AsRegister<GpuRegister>(), &done); |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ temp = temp->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| component_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // If the component type is null, jump to the slow path to throw the exception. |
| __ Beqzc(temp, slow_path->GetEntryLabel()); |
| // Otherwise, the object is indeed an array, further check that this component |
| // type is not a primitive type. |
| __ LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Bnezc(temp, slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| // We always go into the type check slow path for the unresolved check case. |
| // We cannot directly call the CheckCast runtime entry point |
| // without resorting to a type checking slow path here (i.e. by |
| // calling InvokeRuntime directly), as it would require to |
| // assign fixed registers for the inputs of this HInstanceOf |
| // instruction (following the runtime calling convention), which |
| // might be cluttered by the potential first read barrier |
| // emission at the beginning of this method. |
| __ Bc(slow_path->GetEntryLabel()); |
| break; |
| |
| case TypeCheckKind::kInterfaceCheck: { |
| // Avoid read barriers to improve performance of the fast path. We can not get false |
| // positives by doing this. |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // /* HeapReference<Class> */ temp = temp->iftable_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| temp_loc, |
| iftable_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // Iftable is never null. |
| __ Lw(TMP, temp, array_length_offset); |
| // Loop through the iftable and check if any class matches. |
| Mips64Label loop; |
| __ Bind(&loop); |
| __ Beqzc(TMP, slow_path->GetEntryLabel()); |
| __ Lwu(AT, temp, object_array_data_offset); |
| __ MaybeUnpoisonHeapReference(AT); |
| // Go to next interface. |
| __ Daddiu(temp, temp, 2 * kHeapReferenceSize); |
| __ Addiu(TMP, TMP, -2); |
| // Compare the classes and continue the loop if they do not match. |
| __ Bnec(AT, cls.AsRegister<GpuRegister>(), &loop); |
| break; |
| } |
| |
| case TypeCheckKind::kBitstringCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| GenerateBitstringTypeCheckCompare(instruction, temp); |
| __ Bnezc(temp, slow_path->GetEntryLabel()); |
| break; |
| } |
| } |
| |
| __ Bind(&done); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderMIPS64::VisitClinitCheck(HClinitCheck* check) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (check->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| // Rely on the type initialization to save everything we need. |
| locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitClinitCheck(HClinitCheck* check) { |
| // We assume the class is not null. |
| SlowPathCodeMIPS64* slow_path = |
| new (codegen_->GetScopedAllocator()) LoadClassSlowPathMIPS64(check->GetLoadClass(), check); |
| codegen_->AddSlowPath(slow_path); |
| GenerateClassInitializationCheck(slow_path, |
| check->GetLocations()->InAt(0).AsRegister<GpuRegister>()); |
| } |
| |
| void LocationsBuilderMIPS64::VisitCompare(HCompare* compare) { |
| DataType::Type in_type = compare->InputAt(0)->GetType(); |
| |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(compare); |
| |
| switch (in_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(compare->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type for compare operation " << in_type; |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitCompare(HCompare* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| GpuRegister res = locations->Out().AsRegister<GpuRegister>(); |
| DataType::Type in_type = instruction->InputAt(0)->GetType(); |
| |
| // 0 if: left == right |
| // 1 if: left > right |
| // -1 if: left < right |
| switch (in_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| GpuRegister lhs = locations->InAt(0).AsRegister<GpuRegister>(); |
| Location rhs_location = locations->InAt(1); |
| bool use_imm = rhs_location.IsConstant(); |
| GpuRegister rhs = ZERO; |
| if (use_imm) { |
| if (in_type == DataType::Type::kInt64) { |
| int64_t value = CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()->AsConstant()); |
| if (value != 0) { |
| rhs = AT; |
| __ LoadConst64(rhs, value); |
| } |
| } else { |
| int32_t value = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant()->AsConstant()); |
| if (value != 0) { |
| rhs = AT; |
| __ LoadConst32(rhs, value); |
| } |
| } |
| } else { |
| rhs = rhs_location.AsRegister<GpuRegister>(); |
| } |
| __ Slt(TMP, lhs, rhs); |
| __ Slt(res, rhs, lhs); |
| __ Subu(res, res, TMP); |
| break; |
| } |
| |
| case DataType::Type::kFloat32: { |
| FpuRegister lhs = locations->InAt(0).AsFpuRegister<FpuRegister>(); |
| FpuRegister rhs = locations->InAt(1).AsFpuRegister<FpuRegister>(); |
| Mips64Label done; |
| __ CmpEqS(FTMP, lhs, rhs); |
| __ LoadConst32(res, 0); |
| __ Bc1nez(FTMP, &done); |
| if (instruction->IsGtBias()) { |
| __ CmpLtS(FTMP, lhs, rhs); |
| __ LoadConst32(res, -1); |
| __ Bc1nez(FTMP, &done); |
| __ LoadConst32(res, 1); |
| } else { |
| __ CmpLtS(FTMP, rhs, lhs); |
| __ LoadConst32(res, 1); |
| __ Bc1nez(FTMP, &done); |
| __ LoadConst32(res, -1); |
| } |
| __ Bind(&done); |
| break; |
| } |
| |
| case DataType::Type::kFloat64: { |
| FpuRegister lhs = locations->InAt(0).AsFpuRegister<FpuRegister>(); |
| FpuRegister rhs = locations->InAt(1).AsFpuRegister<FpuRegister>(); |
| Mips64Label done; |
| __ CmpEqD(FTMP, lhs, rhs); |
| __ LoadConst32(res, 0); |
| __ Bc1nez(FTMP, &done); |
| if (instruction->IsGtBias()) { |
| __ CmpLtD(FTMP, lhs, rhs); |
| __ LoadConst32(res, -1); |
| __ Bc1nez(FTMP, &done); |
| __ LoadConst32(res, 1); |
| } else { |
| __ CmpLtD(FTMP, rhs, lhs); |
| __ LoadConst32(res, 1); |
| __ Bc1nez(FTMP, &done); |
| __ LoadConst32(res, -1); |
| } |
| __ Bind(&done); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unimplemented compare type " << in_type; |
| } |
| } |
| |
| void LocationsBuilderMIPS64::HandleCondition(HCondition* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| switch (instruction->InputAt(0)->GetType()) { |
| default: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| break; |
| } |
| if (!instruction->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::HandleCondition(HCondition* instruction) { |
| if (instruction->IsEmittedAtUseSite()) { |
| return; |
| } |
| |
| DataType::Type type = instruction->InputAt(0)->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| switch (type) { |
| default: |
| // Integer case. |
| GenerateIntLongCompare(instruction->GetCondition(), /* is64bit */ false, locations); |
| return; |
| case DataType::Type::kInt64: |
| GenerateIntLongCompare(instruction->GetCondition(), /* is64bit */ true, locations); |
| return; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| GenerateFpCompare(instruction->GetCondition(), instruction->IsGtBias(), type, locations); |
| return; |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::DivRemOneOrMinusOne(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DataType::Type type = instruction->GetResultType(); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| GpuRegister out = locations->Out().AsRegister<GpuRegister>(); |
| GpuRegister dividend = locations->InAt(0).AsRegister<GpuRegister>(); |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| DCHECK(imm == 1 || imm == -1); |
| |
| if (instruction->IsRem()) { |
| __ Move(out, ZERO); |
| } else { |
| if (imm == -1) { |
| if (type == DataType::Type::kInt32) { |
| __ Subu(out, ZERO, dividend); |
| } else { |
| DCHECK_EQ(type, DataType::Type::kInt64); |
| __ Dsubu(out, ZERO, dividend); |
| } |
| } else if (out != dividend) { |
| __ Move(out, dividend); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::DivRemByPowerOfTwo(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DataType::Type type = instruction->GetResultType(); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| GpuRegister out = locations->Out().AsRegister<GpuRegister>(); |
| GpuRegister dividend = locations->InAt(0).AsRegister<GpuRegister>(); |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm)); |
| int ctz_imm = CTZ(abs_imm); |
| |
| if (instruction->IsDiv()) { |
| if (type == DataType::Type::kInt32) { |
| if (ctz_imm == 1) { |
| // Fast path for division by +/-2, which is very common. |
| __ Srl(TMP, dividend, 31); |
| } else { |
| __ Sra(TMP, dividend, 31); |
| __ Srl(TMP, TMP, 32 - ctz_imm); |
| } |
| __ Addu(out, dividend, TMP); |
| __ Sra(out, out, ctz_imm); |
| if (imm < 0) { |
| __ Subu(out, ZERO, out); |
| } |
| } else { |
| DCHECK_EQ(type, DataType::Type::kInt64); |
| if (ctz_imm == 1) { |
| // Fast path for division by +/-2, which is very common. |
| __ Dsrl32(TMP, dividend, 31); |
| } else { |
| __ Dsra32(TMP, dividend, 31); |
| if (ctz_imm > 32) { |
| __ Dsrl(TMP, TMP, 64 - ctz_imm); |
| } else { |
| __ Dsrl32(TMP, TMP, 32 - ctz_imm); |
| } |
| } |
| __ Daddu(out, dividend, TMP); |
| if (ctz_imm < 32) { |
| __ Dsra(out, out, ctz_imm); |
| } else { |
| __ Dsra32(out, out, ctz_imm - 32); |
| } |
| if (imm < 0) { |
| __ Dsubu(out, ZERO, out); |
| } |
| } |
| } else { |
| if (type == DataType::Type::kInt32) { |
| if (ctz_imm == 1) { |
| // Fast path for modulo +/-2, which is very common. |
| __ Sra(TMP, dividend, 31); |
| __ Subu(out, dividend, TMP); |
| __ Andi(out, out, 1); |
| __ Addu(out, out, TMP); |
| } else { |
| __ Sra(TMP, dividend, 31); |
| __ Srl(TMP, TMP, 32 - ctz_imm); |
| __ Addu(out, dividend, TMP); |
| __ Ins(out, ZERO, ctz_imm, 32 - ctz_imm); |
| __ Subu(out, out, TMP); |
| } |
| } else { |
| DCHECK_EQ(type, DataType::Type::kInt64); |
| if (ctz_imm == 1) { |
| // Fast path for modulo +/-2, which is very common. |
| __ Dsra32(TMP, dividend, 31); |
| __ Dsubu(out, dividend, TMP); |
| __ Andi(out, out, 1); |
| __ Daddu(out, out, TMP); |
| } else { |
| __ Dsra32(TMP, dividend, 31); |
| if (ctz_imm > 32) { |
| __ Dsrl(TMP, TMP, 64 - ctz_imm); |
| } else { |
| __ Dsrl32(TMP, TMP, 32 - ctz_imm); |
| } |
| __ Daddu(out, dividend, TMP); |
| __ DblIns(out, ZERO, ctz_imm, 64 - ctz_imm); |
| __ Dsubu(out, out, TMP); |
| } |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| GpuRegister out = locations->Out().AsRegister<GpuRegister>(); |
| GpuRegister dividend = locations->InAt(0).AsRegister<GpuRegister>(); |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| |
| DataType::Type type = instruction->GetResultType(); |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64) << type; |
| |
| int64_t magic; |
| int shift; |
| CalculateMagicAndShiftForDivRem(imm, |
| (type == DataType::Type::kInt64), |
| &magic, |
| &shift); |
| |
| if (type == DataType::Type::kInt32) { |
| __ LoadConst32(TMP, magic); |
| __ MuhR6(TMP, dividend, TMP); |
| |
| if (imm > 0 && magic < 0) { |
| __ Addu(TMP, TMP, dividend); |
| } else if (imm < 0 && magic > 0) { |
| __ Subu(TMP, TMP, dividend); |
| } |
| |
| if (shift != 0) { |
| __ Sra(TMP, TMP, shift); |
| } |
| |
| if (instruction->IsDiv()) { |
| __ Sra(out, TMP, 31); |
| __ Subu(out, TMP, out); |
| } else { |
| __ Sra(AT, TMP, 31); |
| __ Subu(AT, TMP, AT); |
| __ LoadConst32(TMP, imm); |
| __ MulR6(TMP, AT, TMP); |
| __ Subu(out, dividend, TMP); |
| } |
| } else { |
| __ LoadConst64(TMP, magic); |
| __ Dmuh(TMP, dividend, TMP); |
| |
| if (imm > 0 && magic < 0) { |
| __ Daddu(TMP, TMP, dividend); |
| } else if (imm < 0 && magic > 0) { |
| __ Dsubu(TMP, TMP, dividend); |
| } |
| |
| if (shift >= 32) { |
| __ Dsra32(TMP, TMP, shift - 32); |
| } else if (shift > 0) { |
| __ Dsra(TMP, TMP, shift); |
| } |
| |
| if (instruction->IsDiv()) { |
| __ Dsra32(out, TMP, 31); |
| __ Dsubu(out, TMP, out); |
| } else { |
| __ Dsra32(AT, TMP, 31); |
| __ Dsubu(AT, TMP, AT); |
| __ LoadConst64(TMP, imm); |
| __ Dmul(TMP, AT, TMP); |
| __ Dsubu(out, dividend, TMP); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenerateDivRemIntegral(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DataType::Type type = instruction->GetResultType(); |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64) << type; |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| GpuRegister out = locations->Out().AsRegister<GpuRegister>(); |
| Location second = locations->InAt(1); |
| |
| if (second.IsConstant()) { |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| if (imm == 0) { |
| // Do not generate anything. DivZeroCheck would prevent any code to be executed. |
| } else if (imm == 1 || imm == -1) { |
| DivRemOneOrMinusOne(instruction); |
| } else if (IsPowerOfTwo(AbsOrMin(imm))) { |
| DivRemByPowerOfTwo(instruction); |
| } else { |
| DCHECK(imm <= -2 || imm >= 2); |
| GenerateDivRemWithAnyConstant(instruction); |
| } |
| } else { |
| GpuRegister dividend = locations->InAt(0).AsRegister<GpuRegister>(); |
| GpuRegister divisor = second.AsRegister<GpuRegister>(); |
| if (instruction->IsDiv()) { |
| if (type == DataType::Type::kInt32) |
| __ DivR6(out, dividend, divisor); |
| else |
| __ Ddiv(out, dividend, divisor); |
| } else { |
| if (type == DataType::Type::kInt32) |
| __ ModR6(out, dividend, divisor); |
| else |
| __ Dmod(out, dividend, divisor); |
| } |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitDiv(HDiv* div) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(div, LocationSummary::kNoCall); |
| switch (div->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << div->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitDiv(HDiv* instruction) { |
| DataType::Type type = instruction->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| GenerateDivRemIntegral(instruction); |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| FpuRegister dst = locations->Out().AsFpuRegister<FpuRegister>(); |
| FpuRegister lhs = locations->InAt(0).AsFpuRegister<FpuRegister>(); |
| FpuRegister rhs = locations->InAt(1).AsFpuRegister<FpuRegister>(); |
| if (type == DataType::Type::kFloat32) |
| __ DivS(dst, lhs, rhs); |
| else |
| __ DivD(dst, lhs, rhs); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected div type " << type; |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); |
| locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| SlowPathCodeMIPS64* slow_path = |
| new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathMIPS64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| Location value = instruction->GetLocations()->InAt(0); |
| |
| DataType::Type type = instruction->GetType(); |
| |
| if (!DataType::IsIntegralType(type)) { |
| LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck."; |
| return; |
| } |
| |
| if (value.IsConstant()) { |
| int64_t divisor = codegen_->GetInt64ValueOf(value.GetConstant()->AsConstant()); |
| if (divisor == 0) { |
| __ Bc(slow_path->GetEntryLabel()); |
| } else { |
| // A division by a non-null constant is valid. We don't need to perform |
| // any check, so simply fall through. |
| } |
| } else { |
| __ Beqzc(value.AsRegister<GpuRegister>(), slow_path->GetEntryLabel()); |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitDoubleConstant(HDoubleConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitDoubleConstant(HDoubleConstant* cst ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderMIPS64::VisitExit(HExit* exit) { |
| exit->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { |
| } |
| |
| void LocationsBuilderMIPS64::VisitFloatConstant(HFloatConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void InstructionCodeGeneratorMIPS64::HandleGoto(HInstruction* got, HBasicBlock* successor) { |
| if (successor->IsExitBlock()) { |
| DCHECK(got->GetPrevious()->AlwaysThrows()); |
| return; // no code needed |
| } |
| |
| HBasicBlock* block = got->GetBlock(); |
| HInstruction* previous = got->GetPrevious(); |
| HLoopInformation* info = block->GetLoopInformation(); |
| |
| if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { |
| if (codegen_->GetCompilerOptions().CountHotnessInCompiledCode()) { |
| __ Ld(AT, SP, kCurrentMethodStackOffset); |
| __ Lhu(TMP, AT, ArtMethod::HotnessCountOffset().Int32Value()); |
| __ Addiu(TMP, TMP, 1); |
| __ Sh(TMP, AT, ArtMethod::HotnessCountOffset().Int32Value()); |
| } |
| GenerateSuspendCheck(info->GetSuspendCheck(), successor); |
| return; |
| } |
| if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { |
| GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); |
| } |
| if (!codegen_->GoesToNextBlock(block, successor)) { |
| __ Bc(codegen_->GetLabelOf(successor)); |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitGoto(HGoto* got) { |
| got->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitGoto(HGoto* got) { |
| HandleGoto(got, got->GetSuccessor()); |
| } |
| |
| void LocationsBuilderMIPS64::VisitTryBoundary(HTryBoundary* try_boundary) { |
| try_boundary->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitTryBoundary(HTryBoundary* try_boundary) { |
| HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); |
| if (!successor->IsExitBlock()) { |
| HandleGoto(try_boundary, successor); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenerateIntLongCompare(IfCondition cond, |
| bool is64bit, |
| LocationSummary* locations) { |
| GpuRegister dst = locations->Out().AsRegister<GpuRegister>(); |
| GpuRegister lhs = locations->InAt(0).AsRegister<GpuRegister>(); |
| Location rhs_location = locations->InAt(1); |
| GpuRegister rhs_reg = ZERO; |
| int64_t rhs_imm = 0; |
| bool use_imm = rhs_location.IsConstant(); |
| if (use_imm) { |
| if (is64bit) { |
| rhs_imm = CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()); |
| } else { |
| rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant()); |
| } |
| } else { |
| rhs_reg = rhs_location.AsRegister<GpuRegister>(); |
| } |
| int64_t rhs_imm_plus_one = rhs_imm + UINT64_C(1); |
| |
| switch (cond) { |
| case kCondEQ: |
| case kCondNE: |
| if (use_imm && IsInt<16>(-rhs_imm)) { |
| if (rhs_imm == 0) { |
| if (cond == kCondEQ) { |
| __ Sltiu(dst, lhs, 1); |
| } else { |
| __ Sltu(dst, ZERO, lhs); |
| } |
| } else { |
| if (is64bit) { |
| __ Daddiu(dst, lhs, -rhs_imm); |
| } else { |
| __ Addiu(dst, lhs, -rhs_imm); |
| } |
| if (cond == kCondEQ) { |
| __ Sltiu(dst, dst, 1); |
| } else { |
| __ Sltu(dst, ZERO, dst); |
| } |
| } |
| } else { |
| if (use_imm && IsUint<16>(rhs_imm)) { |
| __ Xori(dst, lhs, rhs_imm); |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst64(rhs_reg, rhs_imm); |
| } |
| __ Xor(dst, lhs, rhs_reg); |
| } |
| if (cond == kCondEQ) { |
| __ Sltiu(dst, dst, 1); |
| } else { |
| __ Sltu(dst, ZERO, dst); |
| } |
| } |
| break; |
| |
| case kCondLT: |
| case kCondGE: |
| if (use_imm && IsInt<16>(rhs_imm)) { |
| __ Slti(dst, lhs, rhs_imm); |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst64(rhs_reg, rhs_imm); |
| } |
| __ Slt(dst, lhs, rhs_reg); |
| } |
| if (cond == kCondGE) { |
| // Simulate lhs >= rhs via !(lhs < rhs) since there's |
| // only the slt instruction but no sge. |
| __ Xori(dst, dst, 1); |
| } |
| break; |
| |
| case kCondLE: |
| case kCondGT: |
| if (use_imm && IsInt<16>(rhs_imm_plus_one)) { |
| // Simulate lhs <= rhs via lhs < rhs + 1. |
| __ Slti(dst, lhs, rhs_imm_plus_one); |
| if (cond == kCondGT) { |
| // Simulate lhs > rhs via !(lhs <= rhs) since there's |
| // only the slti instruction but no sgti. |
| __ Xori(dst, dst, 1); |
| } |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst64(rhs_reg, rhs_imm); |
| } |
| __ Slt(dst, rhs_reg, lhs); |
| if (cond == kCondLE) { |
| // Simulate lhs <= rhs via !(rhs < lhs) since there's |
| // only the slt instruction but no sle. |
| __ Xori(dst, dst, 1); |
| } |
| } |
| break; |
| |
| case kCondB: |
| case kCondAE: |
| if (use_imm && IsInt<16>(rhs_imm)) { |
| // Sltiu sign-extends its 16-bit immediate operand before |
| // the comparison and thus lets us compare directly with |
| // unsigned values in the ranges [0, 0x7fff] and |
| // [0x[ffffffff]ffff8000, 0x[ffffffff]ffffffff]. |
| __ Sltiu(dst, lhs, rhs_imm); |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst64(rhs_reg, rhs_imm); |
| } |
| __ Sltu(dst, lhs, rhs_reg); |
| } |
| if (cond == kCondAE) { |
| // Simulate lhs >= rhs via !(lhs < rhs) since there's |
| // only the sltu instruction but no sgeu. |
| __ Xori(dst, dst, 1); |
| } |
| break; |
| |
| case kCondBE: |
| case kCondA: |
| if (use_imm && (rhs_imm_plus_one != 0) && IsInt<16>(rhs_imm_plus_one)) { |
| // Simulate lhs <= rhs via lhs < rhs + 1. |
| // Note that this only works if rhs + 1 does not overflow |
| // to 0, hence the check above. |
| // Sltiu sign-extends its 16-bit immediate operand before |
| // the comparison and thus lets us compare directly with |
| // unsigned values in the ranges [0, 0x7fff] and |
| // [0x[ffffffff]ffff8000, 0x[ffffffff]ffffffff]. |
| __ Sltiu(dst, lhs, rhs_imm_plus_one); |
| if (cond == kCondA) { |
| // Simulate lhs > rhs via !(lhs <= rhs) since there's |
| // only the sltiu instruction but no sgtiu. |
| __ Xori(dst, dst, 1); |
| } |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst64(rhs_reg, rhs_imm); |
| } |
| __ Sltu(dst, rhs_reg, lhs); |
| if (cond == kCondBE) { |
| // Simulate lhs <= rhs via !(rhs < lhs) since there's |
| // only the sltu instruction but no sleu. |
| __ Xori(dst, dst, 1); |
| } |
| } |
| break; |
| } |
| } |
| |
| bool InstructionCodeGeneratorMIPS64::MaterializeIntLongCompare(IfCondition cond, |
| bool is64bit, |
| LocationSummary* input_locations, |
| GpuRegister dst) { |
| GpuRegister lhs = input_locations->InAt(0).AsRegister<GpuRegister>(); |
| Location rhs_location = input_locations->InAt(1); |
| GpuRegister rhs_reg = ZERO; |
| int64_t rhs_imm = 0; |
| bool use_imm = rhs_location.IsConstant(); |
| if (use_imm) { |
| if (is64bit) { |
| rhs_imm = CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()); |
| } else { |
| rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant()); |
| } |
| } else { |
| rhs_reg = rhs_location.AsRegister<GpuRegister>(); |
| } |
| int64_t rhs_imm_plus_one = rhs_imm + UINT64_C(1); |
| |
| switch (cond) { |
| case kCondEQ: |
| case kCondNE: |
| if (use_imm && IsInt<16>(-rhs_imm)) { |
| if (is64bit) { |
| __ Daddiu(dst, lhs, -rhs_imm); |
| } else { |
| __ Addiu(dst, lhs, -rhs_imm); |
| } |
| } else if (use_imm && IsUint<16>(rhs_imm)) { |
| __ Xori(dst, lhs, rhs_imm); |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst64(rhs_reg, rhs_imm); |
| } |
| __ Xor(dst, lhs, rhs_reg); |
| } |
| return (cond == kCondEQ); |
| |
| case kCondLT: |
| case kCondGE: |
| if (use_imm && IsInt<16>(rhs_imm)) { |
| __ Slti(dst, lhs, rhs_imm); |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst64(rhs_reg, rhs_imm); |
| } |
| __ Slt(dst, lhs, rhs_reg); |
| } |
| return (cond == kCondGE); |
| |
| case kCondLE: |
| case kCondGT: |
| if (use_imm && IsInt<16>(rhs_imm_plus_one)) { |
| // Simulate lhs <= rhs via lhs < rhs + 1. |
| __ Slti(dst, lhs, rhs_imm_plus_one); |
| return (cond == kCondGT); |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst64(rhs_reg, rhs_imm); |
| } |
| __ Slt(dst, rhs_reg, lhs); |
| return (cond == kCondLE); |
| } |
| |
| case kCondB: |
| case kCondAE: |
| if (use_imm && IsInt<16>(rhs_imm)) { |
| // Sltiu sign-extends its 16-bit immediate operand before |
| // the comparison and thus lets us compare directly with |
| // unsigned values in the ranges [0, 0x7fff] and |
| // [0x[ffffffff]ffff8000, 0x[ffffffff]ffffffff]. |
| __ Sltiu(dst, lhs, rhs_imm); |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst64(rhs_reg, rhs_imm); |
| } |
| __ Sltu(dst, lhs, rhs_reg); |
| } |
| return (cond == kCondAE); |
| |
| case kCondBE: |
| case kCondA: |
| if (use_imm && (rhs_imm_plus_one != 0) && IsInt<16>(rhs_imm_plus_one)) { |
| // Simulate lhs <= rhs via lhs < rhs + 1. |
| // Note that this only works if rhs + 1 does not overflow |
| // to 0, hence the check above. |
| // Sltiu sign-extends its 16-bit immediate operand before |
| // the comparison and thus lets us compare directly with |
| // unsigned values in the ranges [0, 0x7fff] and |
| // [0x[ffffffff]ffff8000, 0x[ffffffff]ffffffff]. |
| __ Sltiu(dst, lhs, rhs_imm_plus_one); |
| return (cond == kCondA); |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst64(rhs_reg, rhs_imm); |
| } |
| __ Sltu(dst, rhs_reg, lhs); |
| return (cond == kCondBE); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenerateIntLongCompareAndBranch(IfCondition cond, |
| bool is64bit, |
| LocationSummary* locations, |
| Mips64Label* label) { |
| GpuRegister lhs = locations->InAt(0).AsRegister<GpuRegister>(); |
| Location rhs_location = locations->InAt(1); |
| GpuRegister rhs_reg = ZERO; |
| int64_t rhs_imm = 0; |
| bool use_imm = rhs_location.IsConstant(); |
| if (use_imm) { |
| if (is64bit) { |
| rhs_imm = CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()); |
| } else { |
| rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant()); |
| } |
| } else { |
| rhs_reg = rhs_location.AsRegister<GpuRegister>(); |
| } |
| |
| if (use_imm && rhs_imm == 0) { |
| switch (cond) { |
| case kCondEQ: |
| case kCondBE: // <= 0 if zero |
| __ Beqzc(lhs, label); |
| break; |
| case kCondNE: |
| case kCondA: // > 0 if non-zero |
| __ Bnezc(lhs, label); |
| break; |
| case kCondLT: |
| __ Bltzc(lhs, label); |
| break; |
| case kCondGE: |
| __ Bgezc(lhs, label); |
| break; |
| case kCondLE: |
| __ Blezc(lhs, label); |
| break; |
| case kCondGT: |
| __ Bgtzc(lhs, label); |
| break; |
| case kCondB: // always false |
| break; |
| case kCondAE: // always true |
| __ Bc(label); |
| break; |
| } |
| } else { |
| if (use_imm) { |
| rhs_reg = TMP; |
| __ LoadConst64(rhs_reg, rhs_imm); |
| } |
| switch (cond) { |
| case kCondEQ: |
| __ Beqc(lhs, rhs_reg, label); |
| break; |
| case kCondNE: |
| __ Bnec(lhs, rhs_reg, label); |
| break; |
| case kCondLT: |
| __ Bltc(lhs, rhs_reg, label); |
| break; |
| case kCondGE: |
| __ Bgec(lhs, rhs_reg, label); |
| break; |
| case kCondLE: |
| __ Bgec(rhs_reg, lhs, label); |
| break; |
| case kCondGT: |
| __ Bltc(rhs_reg, lhs, label); |
| break; |
| case kCondB: |
| __ Bltuc(lhs, rhs_reg, label); |
| break; |
| case kCondAE: |
| __ Bgeuc(lhs, rhs_reg, label); |
| break; |
| case kCondBE: |
| __ Bgeuc(rhs_reg, lhs, label); |
| break; |
| case kCondA: |
| __ Bltuc(rhs_reg, lhs, label); |
| break; |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenerateFpCompare(IfCondition cond, |
| bool gt_bias, |
| DataType::Type type, |
| LocationSummary* locations) { |
| GpuRegister dst = locations->Out().AsRegister<GpuRegister>(); |
| FpuRegister lhs = locations->InAt(0).AsFpuRegister<FpuRegister>(); |
| FpuRegister rhs = locations->InAt(1).AsFpuRegister<FpuRegister>(); |
| if (type == DataType::Type::kFloat32) { |
| switch (cond) { |
| case kCondEQ: |
| __ CmpEqS(FTMP, lhs, rhs); |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| case kCondNE: |
| __ CmpEqS(FTMP, lhs, rhs); |
| __ Mfc1(dst, FTMP); |
| __ Addiu(dst, dst, 1); |
| break; |
| case kCondLT: |
| if (gt_bias) { |
| __ CmpLtS(FTMP, lhs, rhs); |
| } else { |
| __ CmpUltS(FTMP, lhs, rhs); |
| } |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| case kCondLE: |
| if (gt_bias) { |
| __ CmpLeS(FTMP, lhs, rhs); |
| } else { |
| __ CmpUleS(FTMP, lhs, rhs); |
| } |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| case kCondGT: |
| if (gt_bias) { |
| __ CmpUltS(FTMP, rhs, lhs); |
| } else { |
| __ CmpLtS(FTMP, rhs, lhs); |
| } |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| case kCondGE: |
| if (gt_bias) { |
| __ CmpUleS(FTMP, rhs, lhs); |
| } else { |
| __ CmpLeS(FTMP, rhs, lhs); |
| } |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected non-floating-point condition " << cond; |
| UNREACHABLE(); |
| } |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat64); |
| switch (cond) { |
| case kCondEQ: |
| __ CmpEqD(FTMP, lhs, rhs); |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| case kCondNE: |
| __ CmpEqD(FTMP, lhs, rhs); |
| __ Mfc1(dst, FTMP); |
| __ Addiu(dst, dst, 1); |
| break; |
| case kCondLT: |
| if (gt_bias) { |
| __ CmpLtD(FTMP, lhs, rhs); |
| } else { |
| __ CmpUltD(FTMP, lhs, rhs); |
| } |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| case kCondLE: |
| if (gt_bias) { |
| __ CmpLeD(FTMP, lhs, rhs); |
| } else { |
| __ CmpUleD(FTMP, lhs, rhs); |
| } |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| case kCondGT: |
| if (gt_bias) { |
| __ CmpUltD(FTMP, rhs, lhs); |
| } else { |
| __ CmpLtD(FTMP, rhs, lhs); |
| } |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| case kCondGE: |
| if (gt_bias) { |
| __ CmpUleD(FTMP, rhs, lhs); |
| } else { |
| __ CmpLeD(FTMP, rhs, lhs); |
| } |
| __ Mfc1(dst, FTMP); |
| __ Andi(dst, dst, 1); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected non-floating-point condition " << cond; |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| bool InstructionCodeGeneratorMIPS64::MaterializeFpCompare(IfCondition cond, |
| bool gt_bias, |
| DataType::Type type, |
| LocationSummary* input_locations, |
| FpuRegister dst) { |
| FpuRegister lhs = input_locations->InAt(0).AsFpuRegister<FpuRegister>(); |
| FpuRegister rhs = input_locations->InAt(1).AsFpuRegister<FpuRegister>(); |
| if (type == DataType::Type::kFloat32) { |
| switch (cond) { |
| case kCondEQ: |
| __ CmpEqS(dst, lhs, rhs); |
| return false; |
| case kCondNE: |
| __ CmpEqS(dst, lhs, rhs); |
| return true; |
| case kCondLT: |
| if (gt_bias) { |
| __ CmpLtS(dst, lhs, rhs); |
| } else { |
| __ CmpUltS(dst, lhs, rhs); |
| } |
| return false; |
| case kCondLE: |
| if (gt_bias) { |
| __ CmpLeS(dst, lhs, rhs); |
| } else { |
| __ CmpUleS(dst, lhs, rhs); |
| } |
| return false; |
| case kCondGT: |
| if (gt_bias) { |
| __ CmpUltS(dst, rhs, lhs); |
| } else { |
| __ CmpLtS(dst, rhs, lhs); |
| } |
| return false; |
| case kCondGE: |
| if (gt_bias) { |
| __ CmpUleS(dst, rhs, lhs); |
| } else { |
| __ CmpLeS(dst, rhs, lhs); |
| } |
| return false; |
| default: |
| LOG(FATAL) << "Unexpected non-floating-point condition " << cond; |
| UNREACHABLE(); |
| } |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat64); |
| switch (cond) { |
| case kCondEQ: |
| __ CmpEqD(dst, lhs, rhs); |
| return false; |
| case kCondNE: |
| __ CmpEqD(dst, lhs, rhs); |
| return true; |
| case kCondLT: |
| if (gt_bias) { |
| __ CmpLtD(dst, lhs, rhs); |
| } else { |
| __ CmpUltD(dst, lhs, rhs); |
| } |
| return false; |
| case kCondLE: |
| if (gt_bias) { |
| __ CmpLeD(dst, lhs, rhs); |
| } else { |
| __ CmpUleD(dst, lhs, rhs); |
| } |
| return false; |
| case kCondGT: |
| if (gt_bias) { |
| __ CmpUltD(dst, rhs, lhs); |
| } else { |
| __ CmpLtD(dst, rhs, lhs); |
| } |
| return false; |
| case kCondGE: |
| if (gt_bias) { |
| __ CmpUleD(dst, rhs, lhs); |
| } else { |
| __ CmpLeD(dst, rhs, lhs); |
| } |
| return false; |
| default: |
| LOG(FATAL) << "Unexpected non-floating-point condition " << cond; |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenerateFpCompareAndBranch(IfCondition cond, |
| bool gt_bias, |
| DataType::Type type, |
| LocationSummary* locations, |
| Mips64Label* label) { |
| FpuRegister lhs = locations->InAt(0).AsFpuRegister<FpuRegister>(); |
| FpuRegister rhs = locations->InAt(1).AsFpuRegister<FpuRegister>(); |
| if (type == DataType::Type::kFloat32) { |
| switch (cond) { |
| case kCondEQ: |
| __ CmpEqS(FTMP, lhs, rhs); |
| __ Bc1nez(FTMP, label); |
| break; |
| case kCondNE: |
| __ CmpEqS(FTMP, lhs, rhs); |
| __ Bc1eqz(FTMP, label); |
| break; |
| case kCondLT: |
| if (gt_bias) { |
| __ CmpLtS(FTMP, lhs, rhs); |
| } else { |
| __ CmpUltS(FTMP, lhs, rhs); |
| } |
| __ Bc1nez(FTMP, label); |
| break; |
| case kCondLE: |
| if (gt_bias) { |
| __ CmpLeS(FTMP, lhs, rhs); |
| } else { |
| __ CmpUleS(FTMP, lhs, rhs); |
| } |
| __ Bc1nez(FTMP, label); |
| break; |
| case kCondGT: |
| if (gt_bias) { |
| __ CmpUltS(FTMP, rhs, lhs); |
| } else { |
| __ CmpLtS(FTMP, rhs, lhs); |
| } |
| __ Bc1nez(FTMP, label); |
| break; |
| case kCondGE: |
| if (gt_bias) { |
| __ CmpUleS(FTMP, rhs, lhs); |
| } else { |
| __ CmpLeS(FTMP, rhs, lhs); |
| } |
| __ Bc1nez(FTMP, label); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected non-floating-point condition"; |
| UNREACHABLE(); |
| } |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat64); |
| switch (cond) { |
| case kCondEQ: |
| __ CmpEqD(FTMP, lhs, rhs); |
| __ Bc1nez(FTMP, label); |
| break; |
| case kCondNE: |
| __ CmpEqD(FTMP, lhs, rhs); |
| __ Bc1eqz(FTMP, label); |
| break; |
| case kCondLT: |
| if (gt_bias) { |
| __ CmpLtD(FTMP, lhs, rhs); |
| } else { |
| __ CmpUltD(FTMP, lhs, rhs); |
| } |
| __ Bc1nez(FTMP, label); |
| break; |
| case kCondLE: |
| if (gt_bias) { |
| __ CmpLeD(FTMP, lhs, rhs); |
| } else { |
| __ CmpUleD(FTMP, lhs, rhs); |
| } |
| __ Bc1nez(FTMP, label); |
| break; |
| case kCondGT: |
| if (gt_bias) { |
| __ CmpUltD(FTMP, rhs, lhs); |
| } else { |
| __ CmpLtD(FTMP, rhs, lhs); |
| } |
| __ Bc1nez(FTMP, label); |
| break; |
| case kCondGE: |
| if (gt_bias) { |
| __ CmpUleD(FTMP, rhs, lhs); |
| } else { |
| __ CmpLeD(FTMP, rhs, lhs); |
| } |
| __ Bc1nez(FTMP, label); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected non-floating-point condition"; |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenerateTestAndBranch(HInstruction* instruction, |
| size_t condition_input_index, |
| Mips64Label* true_target, |
| Mips64Label* false_target) { |
| HInstruction* cond = instruction->InputAt(condition_input_index); |
| |
| if (true_target == nullptr && false_target == nullptr) { |
| // Nothing to do. The code always falls through. |
| return; |
| } else if (cond->IsIntConstant()) { |
| // Constant condition, statically compared against "true" (integer value 1). |
| if (cond->AsIntConstant()->IsTrue()) { |
| if (true_target != nullptr) { |
| __ Bc(true_target); |
| } |
| } else { |
| DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); |
| if (false_target != nullptr) { |
| __ Bc(false_target); |
| } |
| } |
| return; |
| } |
| |
| // The following code generates these patterns: |
| // (1) true_target == nullptr && false_target != nullptr |
| // - opposite condition true => branch to false_target |
| // (2) true_target != nullptr && false_target == nullptr |
| // - condition true => branch to true_target |
| // (3) true_target != nullptr && false_target != nullptr |
| // - condition true => branch to true_target |
| // - branch to false_target |
| if (IsBooleanValueOrMaterializedCondition(cond)) { |
| // The condition instruction has been materialized, compare the output to 0. |
| Location cond_val = instruction->GetLocations()->InAt(condition_input_index); |
| DCHECK(cond_val.IsRegister()); |
| if (true_target == nullptr) { |
| __ Beqzc(cond_val.AsRegister<GpuRegister>(), false_target); |
| } else { |
| __ Bnezc(cond_val.AsRegister<GpuRegister>(), true_target); |
| } |
| } else { |
| // The condition instruction has not been materialized, use its inputs as |
| // the comparison and its condition as the branch condition. |
| HCondition* condition = cond->AsCondition(); |
| DataType::Type type = condition->InputAt(0)->GetType(); |
| LocationSummary* locations = cond->GetLocations(); |
| IfCondition if_cond = condition->GetCondition(); |
| Mips64Label* branch_target = true_target; |
| |
| if (true_target == nullptr) { |
| if_cond = condition->GetOppositeCondition(); |
| branch_target = false_target; |
| } |
| |
| switch (type) { |
| default: |
| GenerateIntLongCompareAndBranch(if_cond, /* is64bit */ false, locations, branch_target); |
| break; |
| case DataType::Type::kInt64: |
| GenerateIntLongCompareAndBranch(if_cond, /* is64bit */ true, locations, branch_target); |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| GenerateFpCompareAndBranch(if_cond, condition->IsGtBias(), type, locations, branch_target); |
| break; |
| } |
| } |
| |
| // If neither branch falls through (case 3), the conditional branch to `true_target` |
| // was already emitted (case 2) and we need to emit a jump to `false_target`. |
| if (true_target != nullptr && false_target != nullptr) { |
| __ Bc(false_target); |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitIf(HIf* if_instr) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr); |
| if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitIf(HIf* if_instr) { |
| HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); |
| HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); |
| Mips64Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ? |
| nullptr : codegen_->GetLabelOf(true_successor); |
| Mips64Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ? |
| nullptr : codegen_->GetLabelOf(false_successor); |
| GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target); |
| } |
| |
| void LocationsBuilderMIPS64::VisitDeoptimize(HDeoptimize* deoptimize) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) |
| LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); |
| InvokeRuntimeCallingConvention calling_convention; |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetCustomSlowPathCallerSaves(caller_saves); |
| if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitDeoptimize(HDeoptimize* deoptimize) { |
| SlowPathCodeMIPS64* slow_path = |
| deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathMIPS64>(deoptimize); |
| GenerateTestAndBranch(deoptimize, |
| /* condition_input_index */ 0, |
| slow_path->GetEntryLabel(), |
| /* false_target */ nullptr); |
| } |
| |
| // This function returns true if a conditional move can be generated for HSelect. |
| // Otherwise it returns false and HSelect must be implemented in terms of conditonal |
| // branches and regular moves. |
| // |
| // If `locations_to_set` isn't nullptr, its inputs and outputs are set for HSelect. |
| // |
| // While determining feasibility of a conditional move and setting inputs/outputs |
| // are two distinct tasks, this function does both because they share quite a bit |
| // of common logic. |
| static bool CanMoveConditionally(HSelect* select, LocationSummary* locations_to_set) { |
| bool materialized = IsBooleanValueOrMaterializedCondition(select->GetCondition()); |
| HInstruction* cond = select->InputAt(/* condition_input_index */ 2); |
| HCondition* condition = cond->AsCondition(); |
| |
| DataType::Type cond_type = |
| materialized ? DataType::Type::kInt32 : condition->InputAt(0)->GetType(); |
| DataType::Type dst_type = select->GetType(); |
| |
| HConstant* cst_true_value = select->GetTrueValue()->AsConstant(); |
| HConstant* cst_false_value = select->GetFalseValue()->AsConstant(); |
| bool is_true_value_zero_constant = |
| (cst_true_value != nullptr && cst_true_value->IsZeroBitPattern()); |
| bool is_false_value_zero_constant = |
| (cst_false_value != nullptr && cst_false_value->IsZeroBitPattern()); |
| |
| bool can_move_conditionally = false; |
| bool use_const_for_false_in = false; |
| bool use_const_for_true_in = false; |
| |
| if (!cond->IsConstant()) { |
| if (!DataType::IsFloatingPointType(cond_type)) { |
| if (!DataType::IsFloatingPointType(dst_type)) { |
| // Moving int/long on int/long condition. |
| if (is_true_value_zero_constant) { |
| // seleqz out_reg, false_reg, cond_reg |
| can_move_conditionally = true; |
| use_const_for_true_in = true; |
| } else if (is_false_value_zero_constant) { |
| // selnez out_reg, true_reg, cond_reg |
| can_move_conditionally = true; |
| use_const_for_false_in = true; |
| } else if (materialized) { |
| // Not materializing unmaterialized int conditions |
| // to keep the instruction count low. |
| // selnez AT, true_reg, cond_reg |
| // seleqz TMP, false_reg, cond_reg |
| // or out_reg, AT, TMP |
| can_move_conditionally = true; |
| } |
| } else { |
| // Moving float/double on int/long condition. |
| if (materialized) { |
| // Not materializing unmaterialized int conditions |
| // to keep the instruction count low. |
| can_move_conditionally = true; |
| if (is_true_value_zero_constant) { |
| // sltu TMP, ZERO, cond_reg |
| // mtc1 TMP, temp_cond_reg |
| // seleqz.fmt out_reg, false_reg, temp_cond_reg |
| use_const_for_true_in = true; |
| } else if (is_false_value_zero_constant) { |
| // sltu TMP, ZERO, cond_reg |
| // mtc1 TMP, temp_cond_reg |
| // selnez.fmt out_reg, true_reg, temp_cond_reg |
| use_const_for_false_in = true; |
| } else { |
| // sltu TMP, ZERO, cond_reg |
| // mtc1 TMP, temp_cond_reg |
| // sel.fmt temp_cond_reg, false_reg, true_reg |
| // mov.fmt out_reg, temp_cond_reg |
| } |
| } |
| } |
| } else { |
| if (!DataType::IsFloatingPointType(dst_type)) { |
| // Moving int/long on float/double condition. |
| can_move_conditionally = true; |
| if (is_true_value_zero_constant) { |
| // mfc1 TMP, temp_cond_reg |
| // seleqz out_reg, false_reg, TMP |
| use_const_for_true_in = true; |
| } else if (is_false_value_zero_constant) { |
| // mfc1 TMP, temp_cond_reg |
| // selnez out_reg, true_reg, TMP |
| use_const_for_false_in = true; |
| } else { |
| // mfc1 TMP, temp_cond_reg |
| // selnez AT, true_reg, TMP |
| // seleqz TMP, false_reg, TMP |
| // or out_reg, AT, TMP |
| } |
| } else { |
| // Moving float/double on float/double condition. |
| can_move_conditionally = true; |
| if (is_true_value_zero_constant) { |
| // seleqz.fmt out_reg, false_reg, temp_cond_reg |
| use_const_for_true_in = true; |
| } else if (is_false_value_zero_constant) { |
| // selnez.fmt out_reg, true_reg, temp_cond_reg |
| use_const_for_false_in = true; |
| } else { |
| // sel.fmt temp_cond_reg, false_reg, true_reg |
| // mov.fmt out_reg, temp_cond_reg |
| } |
| } |
| } |
| } |
| |
| if (can_move_conditionally) { |
| DCHECK(!use_const_for_false_in || !use_const_for_true_in); |
| } else { |
| DCHECK(!use_const_for_false_in); |
| DCHECK(!use_const_for_true_in); |
| } |
| |
| if (locations_to_set != nullptr) { |
| if (use_const_for_false_in) { |
| locations_to_set->SetInAt(0, Location::ConstantLocation(cst_false_value)); |
| } else { |
| locations_to_set->SetInAt(0, |
| DataType::IsFloatingPointType(dst_type) |
| ? Location::RequiresFpuRegister() |
| : Location::RequiresRegister()); |
| } |
| if (use_const_for_true_in) { |
| locations_to_set->SetInAt(1, Location::ConstantLocation(cst_true_value)); |
| } else { |
| locations_to_set->SetInAt(1, |
| DataType::IsFloatingPointType(dst_type) |
| ? Location::RequiresFpuRegister() |
| : Location::RequiresRegister()); |
| } |
| if (materialized) { |
| locations_to_set->SetInAt(2, Location::RequiresRegister()); |
| } |
| |
| if (can_move_conditionally) { |
| locations_to_set->SetOut(DataType::IsFloatingPointType(dst_type) |
| ? Location::RequiresFpuRegister() |
| : Location::RequiresRegister()); |
| } else { |
| locations_to_set->SetOut(Location::SameAsFirstInput()); |
| } |
| } |
| |
| return can_move_conditionally; |
| } |
| |
| |
| void InstructionCodeGeneratorMIPS64::GenConditionalMove(HSelect* select) { |
| LocationSummary* locations = select->GetLocations(); |
| Location dst = locations->Out(); |
| Location false_src = locations->InAt(0); |
| Location true_src = locations->InAt(1); |
| HInstruction* cond = select->InputAt(/* condition_input_index */ 2); |
| GpuRegister cond_reg = TMP; |
| FpuRegister fcond_reg = FTMP; |
| DataType::Type cond_type = DataType::Type::kInt32; |
| bool cond_inverted = false; |
| DataType::Type dst_type = select->GetType(); |
| |
| if (IsBooleanValueOrMaterializedCondition(cond)) { |
| cond_reg = locations->InAt(/* condition_input_index */ 2).AsRegister<GpuRegister>(); |
| } else { |
| HCondition* condition = cond->AsCondition(); |
| LocationSummary* cond_locations = cond->GetLocations(); |
| IfCondition if_cond = condition->GetCondition(); |
| cond_type = condition->InputAt(0)->GetType(); |
| switch (cond_type) { |
| default: |
| cond_inverted = MaterializeIntLongCompare(if_cond, |
| /* is64bit */ false, |
| cond_locations, |
| cond_reg); |
| break; |
| case DataType::Type::kInt64: |
| cond_inverted = MaterializeIntLongCompare(if_cond, |
| /* is64bit */ true, |
| cond_locations, |
| cond_reg); |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| cond_inverted = MaterializeFpCompare(if_cond, |
| condition->IsGtBias(), |
| cond_type, |
| cond_locations, |
| fcond_reg); |
| break; |
| } |
| } |
| |
| if (true_src.IsConstant()) { |
| DCHECK(true_src.GetConstant()->IsZeroBitPattern()); |
| } |
| if (false_src.IsConstant()) { |
| DCHECK(false_src.GetConstant()->IsZeroBitPattern()); |
| } |
| |
| switch (dst_type) { |
| default: |
| if (DataType::IsFloatingPointType(cond_type)) { |
| __ Mfc1(cond_reg, fcond_reg); |
| } |
| if (true_src.IsConstant()) { |
| if (cond_inverted) { |
| __ Selnez(dst.AsRegister<GpuRegister>(), false_src.AsRegister<GpuRegister>(), cond_reg); |
| } else { |
| __ Seleqz(dst.AsRegister<GpuRegister>(), false_src.AsRegister<GpuRegister>(), cond_reg); |
| } |
| } else if (false_src.IsConstant()) { |
| if (cond_inverted) { |
| __ Seleqz(dst.AsRegister<GpuRegister>(), true_src.AsRegister<GpuRegister>(), cond_reg); |
| } else { |
| __ Selnez(dst.AsRegister<GpuRegister>(), true_src.AsRegister<GpuRegister>(), cond_reg); |
| } |
| } else { |
| DCHECK_NE(cond_reg, AT); |
| if (cond_inverted) { |
| __ Seleqz(AT, true_src.AsRegister<GpuRegister>(), cond_reg); |
| __ Selnez(TMP, false_src.AsRegister<GpuRegister>(), cond_reg); |
| } else { |
| __ Selnez(AT, true_src.AsRegister<GpuRegister>(), cond_reg); |
| __ Seleqz(TMP, false_src.AsRegister<GpuRegister>(), cond_reg); |
| } |
| __ Or(dst.AsRegister<GpuRegister>(), AT, TMP); |
| } |
| break; |
| case DataType::Type::kFloat32: { |
| if (!DataType::IsFloatingPointType(cond_type)) { |
| // sel*.fmt tests bit 0 of the condition register, account for that. |
| __ Sltu(TMP, ZERO, cond_reg); |
| __ Mtc1(TMP, fcond_reg); |
| } |
| FpuRegister dst_reg = dst.AsFpuRegister<FpuRegister>(); |
| if (true_src.IsConstant()) { |
| FpuRegister src_reg = false_src.AsFpuRegister<FpuRegister>(); |
| if (cond_inverted) { |
| __ SelnezS(dst_reg, src_reg, fcond_reg); |
| } else { |
| __ SeleqzS(dst_reg, src_reg, fcond_reg); |
| } |
| } else if (false_src.IsConstant()) { |
| FpuRegister src_reg = true_src.AsFpuRegister<FpuRegister>(); |
| if (cond_inverted) { |
| __ SeleqzS(dst_reg, src_reg, fcond_reg); |
| } else { |
| __ SelnezS(dst_reg, src_reg, fcond_reg); |
| } |
| } else { |
| if (cond_inverted) { |
| __ SelS(fcond_reg, |
| true_src.AsFpuRegister<FpuRegister>(), |
| false_src.AsFpuRegister<FpuRegister>()); |
| } else { |
| __ SelS(fcond_reg, |
| false_src.AsFpuRegister<FpuRegister>(), |
| true_src.AsFpuRegister<FpuRegister>()); |
| } |
| __ MovS(dst_reg, fcond_reg); |
| } |
| break; |
| } |
| case DataType::Type::kFloat64: { |
| if (!DataType::IsFloatingPointType(cond_type)) { |
| // sel*.fmt tests bit 0 of the condition register, account for that. |
| __ Sltu(TMP, ZERO, cond_reg); |
| __ Mtc1(TMP, fcond_reg); |
| } |
| FpuRegister dst_reg = dst.AsFpuRegister<FpuRegister>(); |
| if (true_src.IsConstant()) { |
| FpuRegister src_reg = false_src.AsFpuRegister<FpuRegister>(); |
| if (cond_inverted) { |
| __ SelnezD(dst_reg, src_reg, fcond_reg); |
| } else { |
| __ SeleqzD(dst_reg, src_reg, fcond_reg); |
| } |
| } else if (false_src.IsConstant()) { |
| FpuRegister src_reg = true_src.AsFpuRegister<FpuRegister>(); |
| if (cond_inverted) { |
| __ SeleqzD(dst_reg, src_reg, fcond_reg); |
| } else { |
| __ SelnezD(dst_reg, src_reg, fcond_reg); |
| } |
| } else { |
| if (cond_inverted) { |
| __ SelD(fcond_reg, |
| true_src.AsFpuRegister<FpuRegister>(), |
| false_src.AsFpuRegister<FpuRegister>()); |
| } else { |
| __ SelD(fcond_reg, |
| false_src.AsFpuRegister<FpuRegister>(), |
| true_src.AsFpuRegister<FpuRegister>()); |
| } |
| __ MovD(dst_reg, fcond_reg); |
| } |
| break; |
| } |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) |
| LocationSummary(flag, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { |
| __ LoadFromOffset(kLoadWord, |
| flag->GetLocations()->Out().AsRegister<GpuRegister>(), |
| SP, |
| codegen_->GetStackOffsetOfShouldDeoptimizeFlag()); |
| } |
| |
| void LocationsBuilderMIPS64::VisitSelect(HSelect* select) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select); |
| CanMoveConditionally(select, locations); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitSelect(HSelect* select) { |
| if (CanMoveConditionally(select, /* locations_to_set */ nullptr)) { |
| GenConditionalMove(select); |
| } else { |
| LocationSummary* locations = select->GetLocations(); |
| Mips64Label false_target; |
| GenerateTestAndBranch(select, |
| /* condition_input_index */ 2, |
| /* true_target */ nullptr, |
| &false_target); |
| codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType()); |
| __ Bind(&false_target); |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitNativeDebugInfo(HNativeDebugInfo* info) { |
| new (GetGraph()->GetAllocator()) LocationSummary(info); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitNativeDebugInfo(HNativeDebugInfo*) { |
| // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. |
| } |
| |
| void CodeGeneratorMIPS64::GenerateNop() { |
| __ Nop(); |
| } |
| |
| void LocationsBuilderMIPS64::HandleFieldGet(HInstruction* instruction, |
| const FieldInfo& field_info) { |
| DataType::Type field_type = field_info.GetFieldType(); |
| bool object_field_get_with_read_barrier = |
| kEmitCompilerReadBarrier && (field_type == DataType::Type::kReference); |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, |
| object_field_get_with_read_barrier |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall); |
| if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (DataType::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } else { |
| // The output overlaps in the case of an object field get with |
| // read barriers enabled: we do not want the move to overwrite the |
| // object's location, as we need it to emit the read barrier. |
| locations->SetOut(Location::RequiresRegister(), |
| object_field_get_with_read_barrier |
| ? Location::kOutputOverlap |
| : Location::kNoOutputOverlap); |
| } |
| if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { |
| // We need a temporary register for the read barrier marking slow |
| // path in CodeGeneratorMIPS64::GenerateFieldLoadWithBakerReadBarrier. |
| if (!kBakerReadBarrierThunksEnableForFields) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::HandleFieldGet(HInstruction* instruction, |
| const FieldInfo& field_info) { |
| DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType())); |
| DataType::Type type = instruction->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| GpuRegister obj = obj_loc.AsRegister<GpuRegister>(); |
| Location dst_loc = locations->Out(); |
| LoadOperandType load_type = kLoadUnsignedByte; |
| bool is_volatile = field_info.IsVolatile(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| auto null_checker = GetImplicitNullChecker(instruction, codegen_); |
| |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| load_type = kLoadUnsignedByte; |
| break; |
| case DataType::Type::kInt8: |
| load_type = kLoadSignedByte; |
| break; |
| case DataType::Type::kUint16: |
| load_type = kLoadUnsignedHalfword; |
| break; |
| case DataType::Type::kInt16: |
| load_type = kLoadSignedHalfword; |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kFloat32: |
| load_type = kLoadWord; |
| break; |
| case DataType::Type::kInt64: |
| case DataType::Type::kFloat64: |
| load_type = kLoadDoubleword; |
| break; |
| case DataType::Type::kReference: |
| load_type = kLoadUnsignedWord; |
| break; |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| if (!DataType::IsFloatingPointType(type)) { |
| DCHECK(dst_loc.IsRegister()); |
| GpuRegister dst = dst_loc.AsRegister<GpuRegister>(); |
| if (type == DataType::Type::kReference) { |
| // /* HeapReference<Object> */ dst = *(obj + offset) |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| Location temp_loc = |
| kBakerReadBarrierThunksEnableForFields ? Location::NoLocation() : locations->GetTemp(0); |
| // Note that a potential implicit null check is handled in this |
| // CodeGeneratorMIPS64::GenerateFieldLoadWithBakerReadBarrier call. |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| dst_loc, |
| obj, |
| offset, |
| temp_loc, |
| /* needs_null_check */ true); |
| if (is_volatile) { |
| GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| } else { |
| __ LoadFromOffset(kLoadUnsignedWord, dst, obj, offset, null_checker); |
| if (is_volatile) { |
| GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, dst_loc, dst_loc, obj_loc, offset); |
| } |
| } else { |
| __ LoadFromOffset(load_type, dst, obj, offset, null_checker); |
| } |
| } else { |
| DCHECK(dst_loc.IsFpuRegister()); |
| FpuRegister dst = dst_loc.AsFpuRegister<FpuRegister>(); |
| __ LoadFpuFromOffset(load_type, dst, obj, offset, null_checker); |
| } |
| |
| // Memory barriers, in the case of references, are handled in the |
| // previous switch statement. |
| if (is_volatile && (type != DataType::Type::kReference)) { |
| GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| } |
| |
| void LocationsBuilderMIPS64::HandleFieldSet(HInstruction* instruction, |
| const FieldInfo& field_info ATTRIBUTE_UNUSED) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (DataType::IsFloatingPointType(instruction->InputAt(1)->GetType())) { |
| locations->SetInAt(1, FpuRegisterOrConstantForStore(instruction->InputAt(1))); |
| } else { |
| locations->SetInAt(1, RegisterOrZeroConstant(instruction->InputAt(1))); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::HandleFieldSet(HInstruction* instruction, |
| const FieldInfo& field_info, |
| bool value_can_be_null) { |
| DataType::Type type = field_info.GetFieldType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| GpuRegister obj = locations->InAt(0).AsRegister<GpuRegister>(); |
| Location value_location = locations->InAt(1); |
| StoreOperandType store_type = kStoreByte; |
| bool is_volatile = field_info.IsVolatile(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(type, instruction->InputAt(1)); |
| auto null_checker = GetImplicitNullChecker(instruction, codegen_); |
| |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| store_type = kStoreByte; |
| break; |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| store_type = kStoreHalfword; |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kFloat32: |
| case DataType::Type::kReference: |
| store_type = kStoreWord; |
| break; |
| case DataType::Type::kInt64: |
| case DataType::Type::kFloat64: |
| store_type = kStoreDoubleword; |
| break; |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| |
| if (is_volatile) { |
| GenerateMemoryBarrier(MemBarrierKind::kAnyStore); |
| } |
| |
| if (value_location.IsConstant()) { |
| int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant()); |
| __ StoreConstToOffset(store_type, value, obj, offset, TMP, null_checker); |
| } else { |
| if (!DataType::IsFloatingPointType(type)) { |
| DCHECK(value_location.IsRegister()); |
| GpuRegister src = value_location.AsRegister<GpuRegister>(); |
| if (kPoisonHeapReferences && needs_write_barrier) { |
| // Note that in the case where `value` is a null reference, |
| // we do not enter this block, as a null reference does not |
| // need poisoning. |
| DCHECK_EQ(type, DataType::Type::kReference); |
| __ PoisonHeapReference(TMP, src); |
| __ StoreToOffset(store_type, TMP, obj, offset, null_checker); |
| } else { |
| __ StoreToOffset(store_type, src, obj, offset, null_checker); |
| } |
| } else { |
| DCHECK(value_location.IsFpuRegister()); |
| FpuRegister src = value_location.AsFpuRegister<FpuRegister>(); |
| __ StoreFpuToOffset(store_type, src, obj, offset, null_checker); |
| } |
| } |
| |
| if (needs_write_barrier) { |
| DCHECK(value_location.IsRegister()); |
| GpuRegister src = value_location.AsRegister<GpuRegister>(); |
| codegen_->MarkGCCard(obj, src, value_can_be_null); |
| } |
| |
| if (is_volatile) { |
| GenerateMemoryBarrier(MemBarrierKind::kAnyAny); |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderMIPS64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenerateReferenceLoadOneRegister( |
| HInstruction* instruction, |
| Location out, |
| uint32_t offset, |
| Location maybe_temp, |
| ReadBarrierOption read_barrier_option) { |
| GpuRegister out_reg = out.AsRegister<GpuRegister>(); |
| if (read_barrier_option == kWithReadBarrier) { |
| CHECK(kEmitCompilerReadBarrier); |
| if (!kUseBakerReadBarrier || !kBakerReadBarrierThunksEnableForFields) { |
| DCHECK(maybe_temp.IsRegister()) << maybe_temp; |
| } |
| if (kUseBakerReadBarrier) { |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| out, |
| out_reg, |
| offset, |
| maybe_temp, |
| /* needs_null_check */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // Save the value of `out` into `maybe_temp` before overwriting it |
| // in the following move operation, as we will need it for the |
| // read barrier below. |
| __ Move(maybe_temp.AsRegister<GpuRegister>(), out_reg); |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ LoadFromOffset(kLoadUnsignedWord, out_reg, out_reg, offset); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ LoadFromOffset(kLoadUnsignedWord, out_reg, out_reg, offset); |
| __ MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenerateReferenceLoadTwoRegisters( |
| HInstruction* instruction, |
| Location out, |
| Location obj, |
| uint32_t offset, |
| Location maybe_temp, |
| ReadBarrierOption read_barrier_option) { |
| GpuRegister out_reg = out.AsRegister<GpuRegister>(); |
| GpuRegister obj_reg = obj.AsRegister<GpuRegister>(); |
| if (read_barrier_option == kWithReadBarrier) { |
| CHECK(kEmitCompilerReadBarrier); |
| if (kUseBakerReadBarrier) { |
| if (!kBakerReadBarrierThunksEnableForFields) { |
| DCHECK(maybe_temp.IsRegister()) << maybe_temp; |
| } |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| out, |
| obj_reg, |
| offset, |
| maybe_temp, |
| /* needs_null_check */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ LoadFromOffset(kLoadUnsignedWord, out_reg, obj_reg, offset); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ LoadFromOffset(kLoadUnsignedWord, out_reg, obj_reg, offset); |
| __ MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| static inline int GetBakerMarkThunkNumber(GpuRegister reg) { |
| static_assert(BAKER_MARK_INTROSPECTION_REGISTER_COUNT == 20, "Expecting equal"); |
| if (reg >= V0 && reg <= T2) { // 13 consequtive regs. |
| return reg - V0; |
| } else if (reg >= S2 && reg <= S7) { // 6 consequtive regs. |
| return 13 + (reg - S2); |
| } else if (reg == S8) { // One more. |
| return 19; |
| } |
| LOG(FATAL) << "Unexpected register " << reg; |
| UNREACHABLE(); |
| } |
| |
| static inline int GetBakerMarkFieldArrayThunkDisplacement(GpuRegister reg, bool short_offset) { |
| int num = GetBakerMarkThunkNumber(reg) + |
| (short_offset ? BAKER_MARK_INTROSPECTION_REGISTER_COUNT : 0); |
| return num * BAKER_MARK_INTROSPECTION_FIELD_ARRAY_ENTRY_SIZE; |
| } |
| |
| static inline int GetBakerMarkGcRootThunkDisplacement(GpuRegister reg) { |
| return GetBakerMarkThunkNumber(reg) * BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRY_SIZE + |
| BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRIES_OFFSET; |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenerateGcRootFieldLoad(HInstruction* instruction, |
| Location root, |
| GpuRegister obj, |
| uint32_t offset, |
| ReadBarrierOption read_barrier_option, |
| Mips64Label* label_low) { |
| if (label_low != nullptr) { |
| DCHECK_EQ(offset, 0x5678u); |
| } |
| GpuRegister root_reg = root.AsRegister<GpuRegister>(); |
| if (read_barrier_option == kWithReadBarrier) { |
| DCHECK(kEmitCompilerReadBarrier); |
| if (kUseBakerReadBarrier) { |
| // Fast path implementation of art::ReadBarrier::BarrierForRoot when |
| // Baker's read barrier are used: |
| if (kBakerReadBarrierThunksEnableForGcRoots) { |
| // Note that we do not actually check the value of `GetIsGcMarking()` |
| // to decide whether to mark the loaded GC root or not. Instead, we |
| // load into `temp` (T9) the read barrier mark introspection entrypoint. |
| // If `temp` is null, it means that `GetIsGcMarking()` is false, and |
| // vice versa. |
| // |
| // We use thunks for the slow path. That thunk checks the reference |
| // and jumps to the entrypoint if needed. |
| // |
| // temp = Thread::Current()->pReadBarrierMarkReg00 |
| // // AKA &art_quick_read_barrier_mark_introspection. |
| // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load. |
| // if (temp != nullptr) { |
| // temp = &gc_root_thunk<root_reg> |
| // root = temp(root) |
| // } |
| |
| const int32_t entry_point_offset = |
| Thread::ReadBarrierMarkEntryPointsOffset<kMips64PointerSize>(0); |
| const int thunk_disp = GetBakerMarkGcRootThunkDisplacement(root_reg); |
| int16_t offset_low = Low16Bits(offset); |
| int16_t offset_high = High16Bits(offset - offset_low); // Accounts for sign |
| // extension in lwu. |
| bool short_offset = IsInt<16>(static_cast<int32_t>(offset)); |
| GpuRegister base = short_offset ? obj : TMP; |
| // Loading the entrypoint does not require a load acquire since it is only changed when |
| // threads are suspended or running a checkpoint. |
| __ LoadFromOffset(kLoadDoubleword, T9, TR, entry_point_offset); |
| if (!short_offset) { |
| DCHECK(!label_low); |
| __ Daui(base, obj, offset_high); |
| } |
| Mips64Label skip_call; |
| __ Beqz(T9, &skip_call, /* is_bare */ true); |
| if (label_low != nullptr) { |
| DCHECK(short_offset); |
| __ Bind(label_low); |
| } |
| // /* GcRoot<mirror::Object> */ root = *(obj + offset) |
| __ LoadFromOffset(kLoadUnsignedWord, root_reg, base, offset_low); // Single instruction |
| // in delay slot. |
| __ Jialc(T9, thunk_disp); |
| __ Bind(&skip_call); |
| } else { |
| // Note that we do not actually check the value of `GetIsGcMarking()` |
| // to decide whether to mark the loaded GC root or not. Instead, we |
| // load into `temp` (T9) the read barrier mark entry point corresponding |
| // to register `root`. If `temp` is null, it means that `GetIsGcMarking()` |
| // is false, and vice versa. |
| // |
| // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load. |
| // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg() |
| // if (temp != null) { |
| // root = temp(root) |
| // } |
| |
| if (label_low != nullptr) { |
| __ Bind(label_low); |
| } |
| // /* GcRoot<mirror::Object> */ root = *(obj + offset) |
| __ LoadFromOffset(kLoadUnsignedWord, root_reg, obj, offset); |
| static_assert( |
| sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>), |
| "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> " |
| "have different sizes."); |
| static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::CompressedReference<mirror::Object> and int32_t " |
| "have different sizes."); |
| |
| // Slow path marking the GC root `root`. |
| Location temp = Location::RegisterLocation(T9); |
| SlowPathCodeMIPS64* slow_path = |
| new (codegen_->GetScopedAllocator()) ReadBarrierMarkSlowPathMIPS64( |
| instruction, |
| root, |
| /*entrypoint*/ temp); |
| codegen_->AddSlowPath(slow_path); |
| |
| const int32_t entry_point_offset = |
| Thread::ReadBarrierMarkEntryPointsOffset<kMips64PointerSize>(root.reg() - 1); |
| // Loading the entrypoint does not require a load acquire since it is only changed when |
| // threads are suspended or running a checkpoint. |
| __ LoadFromOffset(kLoadDoubleword, temp.AsRegister<GpuRegister>(), TR, entry_point_offset); |
| __ Bnezc(temp.AsRegister<GpuRegister>(), slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } else { |
| if (label_low != nullptr) { |
| __ Bind(label_low); |
| } |
| // GC root loaded through a slow path for read barriers other |
| // than Baker's. |
| // /* GcRoot<mirror::Object>* */ root = obj + offset |
| __ Daddiu64(root_reg, obj, static_cast<int32_t>(offset)); |
| // /* mirror::Object* */ root = root->Read() |
| codegen_->GenerateReadBarrierForRootSlow(instruction, root, root); |
| } |
| } else { |
| if (label_low != nullptr) { |
| __ Bind(label_low); |
| } |
| // Plain GC root load with no read barrier. |
| // /* GcRoot<mirror::Object> */ root = *(obj + offset) |
| __ LoadFromOffset(kLoadUnsignedWord, root_reg, obj, offset); |
| // Note that GC roots are not affected by heap poisoning, thus we |
| // do not have to unpoison `root_reg` here. |
| } |
| } |
| |
| void CodeGeneratorMIPS64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| GpuRegister obj, |
| uint32_t offset, |
| Location temp, |
| bool needs_null_check) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| if (kBakerReadBarrierThunksEnableForFields) { |
| // Note that we do not actually check the value of `GetIsGcMarking()` |
| // to decide whether to mark the loaded reference or not. Instead, we |
| // load into `temp` (T9) the read barrier mark introspection entrypoint. |
| // If `temp` is null, it means that `GetIsGcMarking()` is false, and |
| // vice versa. |
| // |
| // We use thunks for the slow path. That thunk checks the reference |
| // and jumps to the entrypoint if needed. If the holder is not gray, |
| // it issues a load-load memory barrier and returns to the original |
| // reference load. |
| // |
| // temp = Thread::Current()->pReadBarrierMarkReg00 |
| // // AKA &art_quick_read_barrier_mark_introspection. |
| // if (temp != nullptr) { |
| // temp = &field_array_thunk<holder_reg> |
| // temp() |
| // } |
| // not_gray_return_address: |
| // // If the offset is too large to fit into the lw instruction, we |
| // // use an adjusted base register (TMP) here. This register |
| // // receives bits 16 ... 31 of the offset before the thunk invocation |
| // // and the thunk benefits from it. |
| // HeapReference<mirror::Object> reference = *(obj+offset); // Original reference load. |
| // gray_return_address: |
| |
| DCHECK(temp.IsInvalid()); |
| bool short_offset = IsInt<16>(static_cast<int32_t>(offset)); |
| const int32_t entry_point_offset = |
| Thread::ReadBarrierMarkEntryPointsOffset<kMips64PointerSize>(0); |
| // There may have or may have not been a null check if the field offset is smaller than |
| // the page size. |
| // There must've been a null check in case it's actually a load from an array. |
| // We will, however, perform an explicit null check in the thunk as it's easier to |
| // do it than not. |
| if (instruction->IsArrayGet()) { |
| DCHECK(!needs_null_check); |
| } |
| const int thunk_disp = GetBakerMarkFieldArrayThunkDisplacement(obj, short_offset); |
| // Loading the entrypoint does not require a load acquire since it is only changed when |
| // threads are suspended or running a checkpoint. |
| __ LoadFromOffset(kLoadDoubleword, T9, TR, entry_point_offset); |
| GpuRegister ref_reg = ref.AsRegister<GpuRegister>(); |
| Mips64Label skip_call; |
| if (short_offset) { |
| __ Beqzc(T9, &skip_call, /* is_bare */ true); |
| __ Nop(); // In forbidden slot. |
| __ Jialc(T9, thunk_disp); |
| __ Bind(&skip_call); |
| // /* HeapReference<Object> */ ref = *(obj + offset) |
| __ LoadFromOffset(kLoadUnsignedWord, ref_reg, obj, offset); // Single instruction. |
| } else { |
| int16_t offset_low = Low16Bits(offset); |
| int16_t offset_high = High16Bits(offset - offset_low); // Accounts for sign extension in lwu. |
| __ Beqz(T9, &skip_call, /* is_bare */ true); |
| __ Daui(TMP, obj, offset_high); // In delay slot. |
| __ Jialc(T9, thunk_disp); |
| __ Bind(&skip_call); |
| // /* HeapReference<Object> */ ref = *(obj + offset) |
| __ LoadFromOffset(kLoadUnsignedWord, ref_reg, TMP, offset_low); // Single instruction. |
| } |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| __ MaybeUnpoisonHeapReference(ref_reg); |
| return; |
| } |
| |
| // /* HeapReference<Object> */ ref = *(obj + offset) |
| Location no_index = Location::NoLocation(); |
| ScaleFactor no_scale_factor = TIMES_1; |
| GenerateReferenceLoadWithBakerReadBarrier(instruction, |
| ref, |
| obj, |
| offset, |
| no_index, |
| no_scale_factor, |
| temp, |
| needs_null_check); |
| } |
| |
| void CodeGeneratorMIPS64::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| GpuRegister obj, |
| uint32_t data_offset, |
| Location index, |
| Location temp, |
| bool needs_null_check) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| ScaleFactor scale_factor = TIMES_4; |
| |
| if (kBakerReadBarrierThunksEnableForArrays) { |
| // Note that we do not actually check the value of `GetIsGcMarking()` |
| // to decide whether to mark the loaded reference or not. Instead, we |
| // load into `temp` (T9) the read barrier mark introspection entrypoint. |
| // If `temp` is null, it means that `GetIsGcMarking()` is false, and |
| // vice versa. |
| // |
| // We use thunks for the slow path. That thunk checks the reference |
| // and jumps to the entrypoint if needed. If the holder is not gray, |
| // it issues a load-load memory barrier and returns to the original |
| // reference load. |
| // |
| // temp = Thread::Current()->pReadBarrierMarkReg00 |
| // // AKA &art_quick_read_barrier_mark_introspection. |
| // if (temp != nullptr) { |
| // temp = &field_array_thunk<holder_reg> |
| // temp() |
| // } |
| // not_gray_return_address: |
| // // The element address is pre-calculated in the TMP register before the |
| // // thunk invocation and the thunk benefits from it. |
| // HeapReference<mirror::Object> reference = data[index]; // Original reference load. |
| // gray_return_address: |
| |
| DCHECK(temp.IsInvalid()); |
| DCHECK(index.IsValid()); |
| const int32_t entry_point_offset = |
| Thread::ReadBarrierMarkEntryPointsOffset<kMips64PointerSize>(0); |
| // We will not do the explicit null check in the thunk as some form of a null check |
| // must've been done earlier. |
| DCHECK(!needs_null_check); |
| const int thunk_disp = GetBakerMarkFieldArrayThunkDisplacement(obj, /* short_offset */ false); |
| // Loading the entrypoint does not require a load acquire since it is only changed when |
| // threads are suspended or running a checkpoint. |
| __ LoadFromOffset(kLoadDoubleword, T9, TR, entry_point_offset); |
| Mips64Label skip_call; |
| __ Beqz(T9, &skip_call, /* is_bare */ true); |
| GpuRegister ref_reg = ref.AsRegister<GpuRegister>(); |
| GpuRegister index_reg = index.AsRegister<GpuRegister>(); |
| __ Dlsa(TMP, index_reg, obj, scale_factor); // In delay slot. |
| __ Jialc(T9, thunk_disp); |
| __ Bind(&skip_call); |
| // /* HeapReference<Object> */ ref = *(obj + data_offset + (index << scale_factor)) |
| DCHECK(IsInt<16>(static_cast<int32_t>(data_offset))) << data_offset; |
| __ LoadFromOffset(kLoadUnsignedWord, ref_reg, TMP, data_offset); // Single instruction. |
| __ MaybeUnpoisonHeapReference(ref_reg); |
| return; |
| } |
| |
| // /* HeapReference<Object> */ ref = |
| // *(obj + data_offset + index * sizeof(HeapReference<Object>)) |
| GenerateReferenceLoadWithBakerReadBarrier(instruction, |
| ref, |
| obj, |
| data_offset, |
| index, |
| scale_factor, |
| temp, |
| needs_null_check); |
| } |
| |
| void CodeGeneratorMIPS64::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| GpuRegister obj, |
| uint32_t offset, |
| Location index, |
| ScaleFactor scale_factor, |
| Location temp, |
| bool needs_null_check, |
| bool always_update_field) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| // In slow path based read barriers, the read barrier call is |
| // inserted after the original load. However, in fast path based |
| // Baker's read barriers, we need to perform the load of |
| // mirror::Object::monitor_ *before* the original reference load. |
| // This load-load ordering is required by the read barrier. |
| // The fast path/slow path (for Baker's algorithm) should look like: |
| // |
| // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // HeapReference<Object> ref = *src; // Original reference load. |
| // bool is_gray = (rb_state == ReadBarrier::GrayState()); |
| // if (is_gray) { |
| // ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path. |
| // } |
| // |
| // Note: the original implementation in ReadBarrier::Barrier is |
| // slightly more complex as it performs additional checks that we do |
| // not do here for performance reasons. |
| |
| GpuRegister ref_reg = ref.AsRegister<GpuRegister>(); |
| GpuRegister temp_reg = temp.AsRegister<GpuRegister>(); |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| |
| // /* int32_t */ monitor = obj->monitor_ |
| __ LoadFromOffset(kLoadWord, temp_reg, obj, monitor_offset); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| // /* LockWord */ lock_word = LockWord(monitor) |
| static_assert(sizeof(LockWord) == sizeof(int32_t), |
| "art::LockWord and int32_t have different sizes."); |
| |
| __ Sync(0); // Barrier to prevent load-load reordering. |
| |
| // The actual reference load. |
| if (index.IsValid()) { |
| // Load types involving an "index": ArrayGet, |
| // UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject |
| // intrinsics. |
| // /* HeapReference<Object> */ ref = *(obj + offset + (index << scale_factor)) |
| if (index.IsConstant()) { |
| size_t computed_offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << scale_factor) + offset; |
| __ LoadFromOffset(kLoadUnsignedWord, ref_reg, obj, computed_offset); |
| } else { |
| GpuRegister index_reg = index.AsRegister<GpuRegister>(); |
| if (scale_factor == TIMES_1) { |
| __ Daddu(TMP, index_reg, obj); |
| } else { |
| __ Dlsa(TMP, index_reg, obj, scale_factor); |
| } |
| __ LoadFromOffset(kLoadUnsignedWord, ref_reg, TMP, offset); |
| } |
| } else { |
| // /* HeapReference<Object> */ ref = *(obj + offset) |
| __ LoadFromOffset(kLoadUnsignedWord, ref_reg, obj, offset); |
| } |
| |
| // Object* ref = ref_addr->AsMirrorPtr() |
| __ MaybeUnpoisonHeapReference(ref_reg); |
| |
| // Slow path marking the object `ref` when it is gray. |
| SlowPathCodeMIPS64* slow_path; |
| if (always_update_field) { |
| // ReadBarrierMarkAndUpdateFieldSlowPathMIPS64 only supports address |
| // of the form `obj + field_offset`, where `obj` is a register and |
| // `field_offset` is a register. Thus `offset` and `scale_factor` |
| // above are expected to be null in this code path. |
| DCHECK_EQ(offset, 0u); |
| DCHECK_EQ(scale_factor, ScaleFactor::TIMES_1); |
| slow_path = new (GetScopedAllocator()) |
| ReadBarrierMarkAndUpdateFieldSlowPathMIPS64(instruction, |
| ref, |
| obj, |
| /* field_offset */ index, |
| temp_reg); |
| } else { |
| slow_path = new (GetScopedAllocator()) ReadBarrierMarkSlowPathMIPS64(instruction, ref); |
| } |
| AddSlowPath(slow_path); |
| |
| // if (rb_state == ReadBarrier::GrayState()) |
| // ref = ReadBarrier::Mark(ref); |
| // Given the numeric representation, it's enough to check the low bit of the |
| // rb_state. We do that by shifting the bit into the sign bit (31) and |
| // performing a branch on less than zero. |
| static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0"); |
| static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); |
| static_assert(LockWord::kReadBarrierStateSize == 1, "Expecting 1-bit read barrier state size"); |
| __ Sll(temp_reg, temp_reg, 31 - LockWord::kReadBarrierStateShift); |
| __ Bltzc(temp_reg, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorMIPS64::GenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| DCHECK(kEmitCompilerReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the reference load. |
| // |
| // If heap poisoning is enabled, the unpoisoning of the loaded |
| // reference will be carried out by the runtime within the slow |
| // path. |
| // |
| // Note that `ref` currently does not get unpoisoned (when heap |
| // poisoning is enabled), which is alright as the `ref` argument is |
| // not used by the artReadBarrierSlow entry point. |
| // |
| // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. |
| SlowPathCodeMIPS64* slow_path = new (GetScopedAllocator()) |
| ReadBarrierForHeapReferenceSlowPathMIPS64(instruction, out, ref, obj, offset, index); |
| AddSlowPath(slow_path); |
| |
| __ Bc(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorMIPS64::MaybeGenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| if (kEmitCompilerReadBarrier) { |
| // Baker's read barriers shall be handled by the fast path |
| // (CodeGeneratorMIPS64::GenerateReferenceLoadWithBakerReadBarrier). |
| DCHECK(!kUseBakerReadBarrier); |
| // If heap poisoning is enabled, unpoisoning will be taken care of |
| // by the runtime within the slow path. |
| GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); |
| } else if (kPoisonHeapReferences) { |
| __ UnpoisonHeapReference(out.AsRegister<GpuRegister>()); |
| } |
| } |
| |
| void CodeGeneratorMIPS64::GenerateReadBarrierForRootSlow(HInstruction* instruction, |
| Location out, |
| Location root) { |
| DCHECK(kEmitCompilerReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the GC root load. |
| // |
| // Note that GC roots are not affected by heap poisoning, so we do |
| // not need to do anything special for this here. |
| SlowPathCodeMIPS64* slow_path = |
| new (GetScopedAllocator()) ReadBarrierForRootSlowPathMIPS64(instruction, out, root); |
| AddSlowPath(slow_path); |
| |
| __ Bc(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderMIPS64::VisitInstanceOf(HInstanceOf* instruction) { |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| bool baker_read_barrier_slow_path = false; |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kAbstractClassCheck: |
| case TypeCheckKind::kClassHierarchyCheck: |
| case TypeCheckKind::kArrayObjectCheck: { |
| bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction); |
| call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; |
| baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier; |
| break; |
| } |
| case TypeCheckKind::kArrayCheck: |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: |
| call_kind = LocationSummary::kCallOnSlowPath; |
| break; |
| case TypeCheckKind::kBitstringCheck: |
| break; |
| } |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); |
| if (baker_read_barrier_slow_path) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (type_check_kind == TypeCheckKind::kBitstringCheck) { |
| locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); |
| locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); |
| locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant())); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| // The output does overlap inputs. |
| // Note that TypeCheckSlowPathMIPS64 uses this register too. |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind)); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitInstanceOf(HInstanceOf* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| GpuRegister obj = obj_loc.AsRegister<GpuRegister>(); |
| Location cls = locations->InAt(1); |
| Location out_loc = locations->Out(); |
| GpuRegister out = out_loc.AsRegister<GpuRegister>(); |
| const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind); |
| DCHECK_LE(num_temps, 1u); |
| Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation(); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| Mips64Label done; |
| SlowPathCodeMIPS64* slow_path = nullptr; |
| |
| // Return 0 if `obj` is null. |
| // Avoid this check if we know `obj` is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ Move(out, ZERO); |
| __ Beqzc(obj, &done); |
| } |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: { |
| ReadBarrierOption read_barrier_option = |
| CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| // Classes must be equal for the instanceof to succeed. |
| __ Xor(out, out, cls.AsRegister<GpuRegister>()); |
| __ Sltiu(out, out, 1); |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| ReadBarrierOption read_barrier_option = |
| CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| Mips64Label loop; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| super_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ Beqzc(out, &done); |
| __ Bnec(out, cls.AsRegister<GpuRegister>(), &loop); |
| __ LoadConst32(out, 1); |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| ReadBarrierOption read_barrier_option = |
| CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| // Walk over the class hierarchy to find a match. |
| Mips64Label loop, success; |
| __ Bind(&loop); |
| __ Beqc(out, cls.AsRegister<GpuRegister>(), &success); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| super_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| __ Bnezc(out, &loop); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ Bc(&done); |
| __ Bind(&success); |
| __ LoadConst32(out, 1); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| ReadBarrierOption read_barrier_option = |
| CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| // Do an exact check. |
| Mips64Label success; |
| __ Beqc(out, cls.AsRegister<GpuRegister>(), &success); |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ out = out->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| component_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ Beqzc(out, &done); |
| __ LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Sltiu(out, out, 1); |
| __ Bc(&done); |
| __ Bind(&success); |
| __ LoadConst32(out, 1); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayCheck: { |
| // No read barrier since the slow path will retry upon failure. |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kWithoutReadBarrier); |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathMIPS64( |
| instruction, /* is_fatal */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ Bnec(out, cls.AsRegister<GpuRegister>(), slow_path->GetEntryLabel()); |
| __ LoadConst32(out, 1); |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: { |
| // Note that we indeed only call on slow path, but we always go |
| // into the slow path for the unresolved and interface check |
| // cases. |
| // |
| // We cannot directly call the InstanceofNonTrivial runtime |
| // entry point without resorting to a type checking slow path |
| // here (i.e. by calling InvokeRuntime directly), as it would |
| // require to assign fixed registers for the inputs of this |
| // HInstanceOf instruction (following the runtime calling |
| // convention), which might be cluttered by the potential first |
| // read barrier emission at the beginning of this method. |
| // |
| // TODO: Introduce a new runtime entry point taking the object |
| // to test (instead of its class) as argument, and let it deal |
| // with the read barrier issues. This will let us refactor this |
| // case of the `switch` code as it was previously (with a direct |
| // call to the runtime not using a type checking slow path). |
| // This should also be beneficial for the other cases above. |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathMIPS64( |
| instruction, /* is_fatal */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ Bc(slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kBitstringCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kWithoutReadBarrier); |
| |
| GenerateBitstringTypeCheckCompare(instruction, out); |
| __ Sltiu(out, out, 1); |
| break; |
| } |
| } |
| |
| __ Bind(&done); |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitIntConstant(HIntConstant* constant) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderMIPS64::VisitNullConstant(HNullConstant* constant) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderMIPS64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| // The trampoline uses the same calling convention as dex calling conventions, |
| // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain |
| // the method_idx. |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); |
| } |
| |
| void LocationsBuilderMIPS64::HandleInvoke(HInvoke* invoke) { |
| InvokeDexCallingConventionVisitorMIPS64 calling_convention_visitor; |
| CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); |
| } |
| |
| void LocationsBuilderMIPS64::VisitInvokeInterface(HInvokeInterface* invoke) { |
| HandleInvoke(invoke); |
| // The register T0 is required to be used for the hidden argument in |
| // art_quick_imt_conflict_trampoline, so add the hidden argument. |
| invoke->GetLocations()->AddTemp(Location::RegisterLocation(T0)); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitInvokeInterface(HInvokeInterface* invoke) { |
| // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. |
| GpuRegister temp = invoke->GetLocations()->GetTemp(0).AsRegister<GpuRegister>(); |
| Location receiver = invoke->GetLocations()->InAt(0); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMips64PointerSize); |
| |
| // Set the hidden argument. |
| __ LoadConst32(invoke->GetLocations()->GetTemp(1).AsRegister<GpuRegister>(), |
| invoke->GetDexMethodIndex()); |
| |
| // temp = object->GetClass(); |
| if (receiver.IsStackSlot()) { |
| __ LoadFromOffset(kLoadUnsignedWord, temp, SP, receiver.GetStackIndex()); |
| __ LoadFromOffset(kLoadUnsignedWord, temp, temp, class_offset); |
| } else { |
| __ LoadFromOffset(kLoadUnsignedWord, temp, receiver.AsRegister<GpuRegister>(), class_offset); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(invoke); |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| __ MaybeUnpoisonHeapReference(temp); |
| __ LoadFromOffset(kLoadDoubleword, temp, temp, |
| mirror::Class::ImtPtrOffset(kMips64PointerSize).Uint32Value()); |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| invoke->GetImtIndex(), kMips64PointerSize)); |
| // temp = temp->GetImtEntryAt(method_offset); |
| __ LoadFromOffset(kLoadDoubleword, temp, temp, method_offset); |
| // T9 = temp->GetEntryPoint(); |
| __ LoadFromOffset(kLoadDoubleword, T9, temp, entry_point.Int32Value()); |
| // T9(); |
| __ Jalr(T9); |
| __ Nop(); |
| DCHECK(!codegen_->IsLeafMethod()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void LocationsBuilderMIPS64::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| IntrinsicLocationsBuilderMIPS64 intrinsic(codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| } |
| |
| void LocationsBuilderMIPS64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| IntrinsicLocationsBuilderMIPS64 intrinsic(codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| } |
| |
| void LocationsBuilderMIPS64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { |
| codegen_->GenerateInvokePolymorphicCall(invoke); |
| } |
| |
| void LocationsBuilderMIPS64::VisitInvokeCustom(HInvokeCustom* invoke) { |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitInvokeCustom(HInvokeCustom* invoke) { |
| codegen_->GenerateInvokeCustomCall(invoke); |
| } |
| |
| static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorMIPS64* codegen) { |
| if (invoke->GetLocations()->Intrinsified()) { |
| IntrinsicCodeGeneratorMIPS64 intrinsic(codegen); |
| intrinsic.Dispatch(invoke); |
| return true; |
| } |
| return false; |
| } |
| |
| HLoadString::LoadKind CodeGeneratorMIPS64::GetSupportedLoadStringKind( |
| HLoadString::LoadKind desired_string_load_kind) { |
| bool fallback_load = false; |
| switch (desired_string_load_kind) { |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadString::LoadKind::kBootImageRelRo: |
| case HLoadString::LoadKind::kBssEntry: |
| DCHECK(!Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadString::LoadKind::kJitBootImageAddress: |
| case HLoadString::LoadKind::kJitTableAddress: |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadString::LoadKind::kRuntimeCall: |
| break; |
| } |
| if (fallback_load) { |
| desired_string_load_kind = HLoadString::LoadKind::kRuntimeCall; |
| } |
| return desired_string_load_kind; |
| } |
| |
| HLoadClass::LoadKind CodeGeneratorMIPS64::GetSupportedLoadClassKind( |
| HLoadClass::LoadKind desired_class_load_kind) { |
| bool fallback_load = false; |
| switch (desired_class_load_kind) { |
| case HLoadClass::LoadKind::kInvalid: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| case HLoadClass::LoadKind::kReferrersClass: |
| break; |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadClass::LoadKind::kBootImageRelRo: |
| case HLoadClass::LoadKind::kBssEntry: |
| DCHECK(!Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadClass::LoadKind::kJitBootImageAddress: |
| case HLoadClass::LoadKind::kJitTableAddress: |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadClass::LoadKind::kRuntimeCall: |
| break; |
| } |
| if (fallback_load) { |
| desired_class_load_kind = HLoadClass::LoadKind::kRuntimeCall; |
| } |
| return desired_class_load_kind; |
| } |
| |
| HInvokeStaticOrDirect::DispatchInfo CodeGeneratorMIPS64::GetSupportedInvokeStaticOrDirectDispatch( |
| const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, |
| ArtMethod* method ATTRIBUTE_UNUSED) { |
| // On MIPS64 we support all dispatch types. |
| return desired_dispatch_info; |
| } |
| |
| void CodeGeneratorMIPS64::GenerateStaticOrDirectCall( |
| HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) { |
| // All registers are assumed to be correctly set up per the calling convention. |
| Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. |
| HInvokeStaticOrDirect::MethodLoadKind method_load_kind = invoke->GetMethodLoadKind(); |
| HInvokeStaticOrDirect::CodePtrLocation code_ptr_location = invoke->GetCodePtrLocation(); |
| |
| switch (method_load_kind) { |
| case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: { |
| // temp = thread->string_init_entrypoint |
| uint32_t offset = |
| GetThreadOffset<kMips64PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value(); |
| __ LoadFromOffset(kLoadDoubleword, |
| temp.AsRegister<GpuRegister>(), |
| TR, |
| offset); |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: |
| callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(GetCompilerOptions().IsBootImage()); |
| CodeGeneratorMIPS64::PcRelativePatchInfo* info_high = |
| NewBootImageMethodPatch(invoke->GetTargetMethod()); |
| CodeGeneratorMIPS64::PcRelativePatchInfo* info_low = |
| NewBootImageMethodPatch(invoke->GetTargetMethod(), info_high); |
| EmitPcRelativeAddressPlaceholderHigh(info_high, AT, info_low); |
| __ Daddiu(temp.AsRegister<GpuRegister>(), AT, /* placeholder */ 0x5678); |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kBootImageRelRo: { |
| uint32_t boot_image_offset = GetBootImageOffset(invoke); |
| PcRelativePatchInfo* info_high = NewBootImageRelRoPatch(boot_image_offset); |
| PcRelativePatchInfo* info_low = NewBootImageRelRoPatch(boot_image_offset, info_high); |
| EmitPcRelativeAddressPlaceholderHigh(info_high, AT, info_low); |
| // Note: Boot image is in the low 4GiB and the entry is 32-bit, so emit a 32-bit load. |
| __ Lwu(temp.AsRegister<GpuRegister>(), AT, /* placeholder */ 0x5678); |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry: { |
| PcRelativePatchInfo* info_high = NewMethodBssEntryPatch( |
| MethodReference(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex())); |
| PcRelativePatchInfo* info_low = NewMethodBssEntryPatch( |
| MethodReference(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex()), info_high); |
| EmitPcRelativeAddressPlaceholderHigh(info_high, AT, info_low); |
| __ Ld(temp.AsRegister<GpuRegister>(), AT, /* placeholder */ 0x5678); |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kJitDirectAddress: |
| __ LoadLiteral(temp.AsRegister<GpuRegister>(), |
| kLoadDoubleword, |
| DeduplicateUint64Literal(invoke->GetMethodAddress())); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall: { |
| GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path); |
| return; // No code pointer retrieval; the runtime performs the call directly. |
| } |
| } |
| |
| switch (code_ptr_location) { |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf: |
| __ Balc(&frame_entry_label_); |
| break; |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod: |
| // T9 = callee_method->entry_point_from_quick_compiled_code_; |
| __ LoadFromOffset(kLoadDoubleword, |
| T9, |
| callee_method.AsRegister<GpuRegister>(), |
| ArtMethod::EntryPointFromQuickCompiledCodeOffset( |
| kMips64PointerSize).Int32Value()); |
| // T9() |
| __ Jalr(T9); |
| __ Nop(); |
| break; |
| } |
| RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); |
| |
| DCHECK(!IsLeafMethod()); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| LocationSummary* locations = invoke->GetLocations(); |
| codegen_->GenerateStaticOrDirectCall(invoke, |
| locations->HasTemps() |
| ? locations->GetTemp(0) |
| : Location::NoLocation()); |
| } |
| |
| void CodeGeneratorMIPS64::GenerateVirtualCall( |
| HInvokeVirtual* invoke, Location temp_location, SlowPathCode* slow_path) { |
| // Use the calling convention instead of the location of the receiver, as |
| // intrinsics may have put the receiver in a different register. In the intrinsics |
| // slow path, the arguments have been moved to the right place, so here we are |
| // guaranteed that the receiver is the first register of the calling convention. |
| InvokeDexCallingConvention calling_convention; |
| GpuRegister receiver = calling_convention.GetRegisterAt(0); |
| |
| GpuRegister temp = temp_location.AsRegister<GpuRegister>(); |
| size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| invoke->GetVTableIndex(), kMips64PointerSize).SizeValue(); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMips64PointerSize); |
| |
| // temp = object->GetClass(); |
| __ LoadFromOffset(kLoadUnsignedWord, temp, receiver, class_offset); |
| MaybeRecordImplicitNullCheck(invoke); |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| __ MaybeUnpoisonHeapReference(temp); |
| // temp = temp->GetMethodAt(method_offset); |
| __ LoadFromOffset(kLoadDoubleword, temp, temp, method_offset); |
| // T9 = temp->GetEntryPoint(); |
| __ LoadFromOffset(kLoadDoubleword, T9, temp, entry_point.Int32Value()); |
| // T9(); |
| __ Jalr(T9); |
| __ Nop(); |
| RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| |
| void LocationsBuilderMIPS64::VisitLoadClass(HLoadClass* cls) { |
| HLoadClass::LoadKind load_kind = cls->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { |
| InvokeRuntimeCallingConvention calling_convention; |
| Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0)); |
| CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(cls, loc, loc); |
| return; |
| } |
| DCHECK(!cls->NeedsAccessCheck()); |
| |
| const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage(); |
| LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier) |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind); |
| if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| if (load_kind == HLoadClass::LoadKind::kReferrersClass) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| if (load_kind == HLoadClass::LoadKind::kBssEntry) { |
| if (!kUseReadBarrier || kUseBakerReadBarrier) { |
| // Rely on the type resolution or initialization and marking to save everything we need. |
| locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); |
| } else { |
| // For non-Baker read barriers we have a temp-clobbering call. |
| } |
| } |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not |
| // move. |
| void InstructionCodeGeneratorMIPS64::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS { |
| HLoadClass::LoadKind load_kind = cls->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { |
| codegen_->GenerateLoadClassRuntimeCall(cls); |
| return; |
| } |
| DCHECK(!cls->NeedsAccessCheck()); |
| |
| LocationSummary* locations = cls->GetLocations(); |
| Location out_loc = locations->Out(); |
| GpuRegister out = out_loc.AsRegister<GpuRegister>(); |
| GpuRegister current_method_reg = ZERO; |
| if (load_kind == HLoadClass::LoadKind::kReferrersClass || |
| load_kind == HLoadClass::LoadKind::kRuntimeCall) { |
| current_method_reg = locations->InAt(0).AsRegister<GpuRegister>(); |
| } |
| |
| const ReadBarrierOption read_barrier_option = cls->IsInBootImage() |
| ? kWithoutReadBarrier |
| : kCompilerReadBarrierOption; |
| bool generate_null_check = false; |
| switch (load_kind) { |
| case HLoadClass::LoadKind::kReferrersClass: |
| DCHECK(!cls->CanCallRuntime()); |
| DCHECK(!cls->MustGenerateClinitCheck()); |
| // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ |
| GenerateGcRootFieldLoad(cls, |
| out_loc, |
| current_method_reg, |
| ArtMethod::DeclaringClassOffset().Int32Value(), |
| read_barrier_option); |
| break; |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage()); |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| CodeGeneratorMIPS64::PcRelativePatchInfo* info_high = |
| codegen_->NewBootImageTypePatch(cls->GetDexFile(), cls->GetTypeIndex()); |
| CodeGeneratorMIPS64::PcRelativePatchInfo* info_low = |
| codegen_->NewBootImageTypePatch(cls->GetDexFile(), cls->GetTypeIndex(), info_high); |
| codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high, AT, info_low); |
| __ Daddiu(out, AT, /* placeholder */ 0x5678); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageRelRo: { |
| DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); |
| uint32_t boot_image_offset = codegen_->GetBootImageOffset(cls); |
| CodeGeneratorMIPS64::PcRelativePatchInfo* info_high = |
| codegen_->NewBootImageRelRoPatch(boot_image_offset); |
| CodeGeneratorMIPS64::PcRelativePatchInfo* info_low = |
| codegen_->NewBootImageRelRoPatch(boot_image_offset, info_high); |
| codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high, AT, info_low); |
| __ Lwu(out, AT, /* placeholder */ 0x5678); |
| break; |
| } |
| case HLoadClass::LoadKind::kBssEntry: { |
| CodeGeneratorMIPS64::PcRelativePatchInfo* bss_info_high = |
| codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex()); |
| CodeGeneratorMIPS64::PcRelativePatchInfo* info_low = |
| codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex(), bss_info_high); |
| codegen_->EmitPcRelativeAddressPlaceholderHigh(bss_info_high, out); |
| GenerateGcRootFieldLoad(cls, |
| out_loc, |
| out, |
| /* placeholder */ 0x5678, |
| read_barrier_option, |
| &info_low->label); |
| generate_null_check = true; |
| break; |
| } |
| case HLoadClass::LoadKind::kJitBootImageAddress: { |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get()); |
| DCHECK_NE(address, 0u); |
| __ LoadLiteral(out, |
| kLoadUnsignedWord, |
| codegen_->DeduplicateBootImageAddressLiteral(address)); |
| break; |
| } |
| case HLoadClass::LoadKind::kJitTableAddress: |
| __ LoadLiteral(out, |
| kLoadUnsignedWord, |
| codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(), |
| cls->GetTypeIndex(), |
| cls->GetClass())); |
| GenerateGcRootFieldLoad(cls, out_loc, out, 0, read_barrier_option); |
| break; |
| case HLoadClass::LoadKind::kRuntimeCall: |
| case HLoadClass::LoadKind::kInvalid: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| |
| if (generate_null_check || cls->MustGenerateClinitCheck()) { |
| DCHECK(cls->CanCallRuntime()); |
| SlowPathCodeMIPS64* slow_path = |
| new (codegen_->GetScopedAllocator()) LoadClassSlowPathMIPS64(cls, cls); |
| codegen_->AddSlowPath(slow_path); |
| if (generate_null_check) { |
| __ Beqzc(out, slow_path->GetEntryLabel()); |
| } |
| if (cls->MustGenerateClinitCheck()) { |
| GenerateClassInitializationCheck(slow_path, out); |
| } else { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitLoadMethodHandle(HLoadMethodHandle* load) { |
| InvokeRuntimeCallingConvention calling_convention; |
| Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0)); |
| CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, loc, loc); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitLoadMethodHandle(HLoadMethodHandle* load) { |
| codegen_->GenerateLoadMethodHandleRuntimeCall(load); |
| } |
| |
| void LocationsBuilderMIPS64::VisitLoadMethodType(HLoadMethodType* load) { |
| InvokeRuntimeCallingConvention calling_convention; |
| Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0)); |
| CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, loc, loc); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitLoadMethodType(HLoadMethodType* load) { |
| codegen_->GenerateLoadMethodTypeRuntimeCall(load); |
| } |
| |
| static int32_t GetExceptionTlsOffset() { |
| return Thread::ExceptionOffset<kMips64PointerSize>().Int32Value(); |
| } |
| |
| void LocationsBuilderMIPS64::VisitLoadException(HLoadException* load) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitLoadException(HLoadException* load) { |
| GpuRegister out = load->GetLocations()->Out().AsRegister<GpuRegister>(); |
| __ LoadFromOffset(kLoadUnsignedWord, out, TR, GetExceptionTlsOffset()); |
| } |
| |
| void LocationsBuilderMIPS64::VisitClearException(HClearException* clear) { |
| new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { |
| __ StoreToOffset(kStoreWord, ZERO, TR, GetExceptionTlsOffset()); |
| } |
| |
| void LocationsBuilderMIPS64::VisitLoadString(HLoadString* load) { |
| HLoadString::LoadKind load_kind = load->GetLoadKind(); |
| LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load); |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind); |
| if (load_kind == HLoadString::LoadKind::kRuntimeCall) { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetOut(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } else { |
| locations->SetOut(Location::RequiresRegister()); |
| if (load_kind == HLoadString::LoadKind::kBssEntry) { |
| if (!kUseReadBarrier || kUseBakerReadBarrier) { |
| // Rely on the pResolveString and marking to save everything we need. |
| locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); |
| } else { |
| // For non-Baker read barriers we have a temp-clobbering call. |
| } |
| } |
| } |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not |
| // move. |
| void InstructionCodeGeneratorMIPS64::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS { |
| HLoadString::LoadKind load_kind = load->GetLoadKind(); |
| LocationSummary* locations = load->GetLocations(); |
| Location out_loc = locations->Out(); |
| GpuRegister out = out_loc.AsRegister<GpuRegister>(); |
| |
| switch (load_kind) { |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage()); |
| CodeGeneratorMIPS64::PcRelativePatchInfo* info_high = |
| codegen_->NewBootImageStringPatch(load->GetDexFile(), load->GetStringIndex()); |
| CodeGeneratorMIPS64::PcRelativePatchInfo* info_low = |
| codegen_->NewBootImageStringPatch(load->GetDexFile(), load->GetStringIndex(), info_high); |
| codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high, AT, info_low); |
| __ Daddiu(out, AT, /* placeholder */ 0x5678); |
| return; |
| } |
| case HLoadString::LoadKind::kBootImageRelRo: { |
| DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); |
| uint32_t boot_image_offset = codegen_->GetBootImageOffset(load); |
| CodeGeneratorMIPS64::PcRelativePatchInfo* info_high = |
| codegen_->NewBootImageRelRoPatch(boot_image_offset); |
| CodeGeneratorMIPS64::PcRelativePatchInfo* info_low = |
| codegen_->NewBootImageRelRoPatch(boot_image_offset, info_high); |
| codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high, AT, info_low); |
| __ Lwu(out, AT, /* placeholder */ 0x5678); |
| return; |
| } |
| case HLoadString::LoadKind::kBssEntry: { |
| DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); |
| CodeGeneratorMIPS64::PcRelativePatchInfo* info_high = |
| codegen_->NewStringBssEntryPatch(load->GetDexFile(), load->GetStringIndex()); |
| CodeGeneratorMIPS64::PcRelativePatchInfo* info_low = |
| codegen_->NewStringBssEntryPatch(load->GetDexFile(), load->GetStringIndex(), info_high); |
| codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high, out); |
| GenerateGcRootFieldLoad(load, |
| out_loc, |
| out, |
| /* placeholder */ 0x5678, |
| kCompilerReadBarrierOption, |
| &info_low->label); |
| SlowPathCodeMIPS64* slow_path = |
| new (codegen_->GetScopedAllocator()) LoadStringSlowPathMIPS64(load); |
| codegen_->AddSlowPath(slow_path); |
| __ Beqzc(out, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| return; |
| } |
| case HLoadString::LoadKind::kJitBootImageAddress: { |
| uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get()); |
| DCHECK_NE(address, 0u); |
| __ LoadLiteral(out, |
| kLoadUnsignedWord, |
| codegen_->DeduplicateBootImageAddressLiteral(address)); |
| return; |
| } |
| case HLoadString::LoadKind::kJitTableAddress: |
| __ LoadLiteral(out, |
| kLoadUnsignedWord, |
| codegen_->DeduplicateJitStringLiteral(load->GetDexFile(), |
| load->GetStringIndex(), |
| load->GetString())); |
| GenerateGcRootFieldLoad(load, out_loc, out, 0, kCompilerReadBarrierOption); |
| return; |
| default: |
| break; |
| } |
| |
| // TODO: Re-add the compiler code to do string dex cache lookup again. |
| DCHECK(load_kind == HLoadString::LoadKind::kRuntimeCall); |
| InvokeRuntimeCallingConvention calling_convention; |
| DCHECK_EQ(calling_convention.GetRegisterAt(0), out); |
| __ LoadConst32(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_); |
| codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc()); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| } |
| |
| void LocationsBuilderMIPS64::VisitLongConstant(HLongConstant* constant) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderMIPS64::VisitMonitorOperation(HMonitorOperation* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitMonitorOperation(HMonitorOperation* instruction) { |
| codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject, |
| instruction, |
| instruction->GetDexPc()); |
| if (instruction->IsEnter()) { |
| CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); |
| } else { |
| CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitMul(HMul* mul) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall); |
| switch (mul->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitMul(HMul* instruction) { |
| DataType::Type type = instruction->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| GpuRegister dst = locations->Out().AsRegister<GpuRegister>(); |
| GpuRegister lhs = locations->InAt(0).AsRegister<GpuRegister>(); |
| GpuRegister rhs = locations->InAt(1).AsRegister<GpuRegister>(); |
| if (type == DataType::Type::kInt32) |
| __ MulR6(dst, lhs, rhs); |
| else |
| __ Dmul(dst, lhs, rhs); |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| FpuRegister dst = locations->Out().AsFpuRegister<FpuRegister>(); |
| FpuRegister lhs = locations->InAt(0).AsFpuRegister<FpuRegister>(); |
| FpuRegister rhs = locations->InAt(1).AsFpuRegister<FpuRegister>(); |
| if (type == DataType::Type::kFloat32) |
| __ MulS(dst, lhs, rhs); |
| else |
| __ MulD(dst, lhs, rhs); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected mul type " << type; |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitNeg(HNeg* neg) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall); |
| switch (neg->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitNeg(HNeg* instruction) { |
| DataType::Type type = instruction->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| GpuRegister dst = locations->Out().AsRegister<GpuRegister>(); |
| GpuRegister src = locations->InAt(0).AsRegister<GpuRegister>(); |
| if (type == DataType::Type::kInt32) |
| __ Subu(dst, ZERO, src); |
| else |
| __ Dsubu(dst, ZERO, src); |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| FpuRegister dst = locations->Out().AsFpuRegister<FpuRegister>(); |
| FpuRegister src = locations->InAt(0).AsFpuRegister<FpuRegister>(); |
| if (type == DataType::Type::kFloat32) |
| __ NegS(dst, src); |
| else |
| __ NegD(dst, src); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected neg type " << type; |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitNewArray(HNewArray* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitNewArray(HNewArray* instruction) { |
| // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference. |
| QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction); |
| codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>(); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| |
| void LocationsBuilderMIPS64::VisitNewInstance(HNewInstance* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitNewInstance(HNewInstance* instruction) { |
| codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); |
| } |
| |
| void LocationsBuilderMIPS64::VisitNot(HNot* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitNot(HNot* instruction) { |
| DataType::Type type = instruction->GetType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| GpuRegister dst = locations->Out().AsRegister<GpuRegister>(); |
| GpuRegister src = locations->InAt(0).AsRegister<GpuRegister>(); |
| __ Nor(dst, src, ZERO); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitBooleanNot(HBooleanNot* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitBooleanNot(HBooleanNot* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| __ Xori(locations->Out().AsRegister<GpuRegister>(), |
| locations->InAt(0).AsRegister<GpuRegister>(), |
| 1); |
| } |
| |
| void LocationsBuilderMIPS64::VisitNullCheck(HNullCheck* instruction) { |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| void CodeGeneratorMIPS64::GenerateImplicitNullCheck(HNullCheck* instruction) { |
| if (CanMoveNullCheckToUser(instruction)) { |
| return; |
| } |
| Location obj = instruction->GetLocations()->InAt(0); |
| |
| __ Lw(ZERO, obj.AsRegister<GpuRegister>(), 0); |
| RecordPcInfo(instruction, instruction->GetDexPc()); |
| } |
| |
| void CodeGeneratorMIPS64::GenerateExplicitNullCheck(HNullCheck* instruction) { |
| SlowPathCodeMIPS64* slow_path = |
| new (GetScopedAllocator()) NullCheckSlowPathMIPS64(instruction); |
| AddSlowPath(slow_path); |
| |
| Location obj = instruction->GetLocations()->InAt(0); |
| |
| __ Beqzc(obj.AsRegister<GpuRegister>(), slow_path->GetEntryLabel()); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitNullCheck(HNullCheck* instruction) { |
| codegen_->GenerateNullCheck(instruction); |
| } |
| |
| void LocationsBuilderMIPS64::VisitOr(HOr* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitOr(HOr* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderMIPS64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitParallelMove(HParallelMove* instruction) { |
| if (instruction->GetNext()->IsSuspendCheck() && |
| instruction->GetBlock()->GetLoopInformation() != nullptr) { |
| HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck(); |
| // The back edge will generate the suspend check. |
| codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction); |
| } |
| |
| codegen_->GetMoveResolver()->EmitNativeCode(instruction); |
| } |
| |
| void LocationsBuilderMIPS64::VisitParameterValue(HParameterValue* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); |
| if (location.IsStackSlot()) { |
| location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } else if (location.IsDoubleStackSlot()) { |
| location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } |
| locations->SetOut(location); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitParameterValue(HParameterValue* instruction |
| ATTRIBUTE_UNUSED) { |
| // Nothing to do, the parameter is already at its location. |
| } |
| |
| void LocationsBuilderMIPS64::VisitCurrentMethod(HCurrentMethod* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument)); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitCurrentMethod(HCurrentMethod* instruction |
| ATTRIBUTE_UNUSED) { |
| // Nothing to do, the method is already at its location. |
| } |
| |
| void LocationsBuilderMIPS64::VisitPhi(HPhi* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { |
| locations->SetInAt(i, Location::Any()); |
| } |
| locations->SetOut(Location::Any()); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void LocationsBuilderMIPS64::VisitRem(HRem* rem) { |
| DataType::Type type = rem->GetResultType(); |
| LocationSummary::CallKind call_kind = |
| DataType::IsFloatingPointType(type) ? LocationSummary::kCallOnMainOnly |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); |
| locations->SetOut(calling_convention.GetReturnLocation(type)); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitRem(HRem* instruction) { |
| DataType::Type type = instruction->GetType(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| GenerateDivRemIntegral(instruction); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| QuickEntrypointEnum entrypoint = |
| (type == DataType::Type::kFloat32) ? kQuickFmodf : kQuickFmod; |
| codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc()); |
| if (type == DataType::Type::kFloat32) { |
| CheckEntrypointTypes<kQuickFmodf, float, float, float>(); |
| } else { |
| CheckEntrypointTypes<kQuickFmod, double, double, double>(); |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| } |
| } |
| |
| static void CreateMinMaxLocations(ArenaAllocator* allocator, HBinaryOperation* minmax) { |
| LocationSummary* locations = new (allocator) LocationSummary(minmax); |
| switch (minmax->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected type for HMinMax " << minmax->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenerateMinMaxInt(LocationSummary* locations, bool is_min) { |
| GpuRegister lhs = locations->InAt(0).AsRegister<GpuRegister>(); |
| GpuRegister rhs = locations->InAt(1).AsRegister<GpuRegister>(); |
| GpuRegister out = locations->Out().AsRegister<GpuRegister>(); |
| |
| if (lhs == rhs) { |
| if (out != lhs) { |
| __ Move(out, lhs); |
| } |
| } else { |
| // Some architectures, such as ARM and MIPS (prior to r6), have a |
| // conditional move instruction which only changes the target |
| // (output) register if the condition is true (MIPS prior to r6 had |
| // MOVF, MOVT, and MOVZ). The SELEQZ and SELNEZ instructions always |
| // change the target (output) register. If the condition is true the |
| // output register gets the contents of the "rs" register; otherwise, |
| // the output register is set to zero. One consequence of this is |
| // that to implement something like "rd = c==0 ? rs : rt" MIPS64r6 |
| // needs to use a pair of SELEQZ/SELNEZ instructions. After |
| // executing this pair of instructions one of the output registers |
| // from the pair will necessarily contain zero. Then the code ORs the |
| // output registers from the SELEQZ/SELNEZ instructions to get the |
| // final result. |
| // |
| // The initial test to see if the output register is same as the |
| // first input register is needed to make sure that value in the |
| // first input register isn't clobbered before we've finished |
| // computing the output value. The logic in the corresponding else |
| // clause performs the same task but makes sure the second input |
| // register isn't clobbered in the event that it's the same register |
| // as the output register; the else clause also handles the case |
| // where the output register is distinct from both the first, and the |
| // second input registers. |
| if (out == lhs) { |
| __ Slt(AT, rhs, lhs); |
| if (is_min) { |
| __ Seleqz(out, lhs, AT); |
| __ Selnez(AT, rhs, AT); |
| } else { |
| __ Selnez(out, lhs, AT); |
| __ Seleqz(AT, rhs, AT); |
| } |
| } else { |
| __ Slt(AT, lhs, rhs); |
| if (is_min) { |
| __ Seleqz(out, rhs, AT); |
| __ Selnez(AT, lhs, AT); |
| } else { |
| __ Selnez(out, rhs, AT); |
| __ Seleqz(AT, lhs, AT); |
| } |
| } |
| __ Or(out, out, AT); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenerateMinMaxFP(LocationSummary* locations, |
| bool is_min, |
| DataType::Type type) { |
| FpuRegister a = locations->InAt(0).AsFpuRegister<FpuRegister>(); |
| FpuRegister b = locations->InAt(1).AsFpuRegister<FpuRegister>(); |
| FpuRegister out = locations->Out().AsFpuRegister<FpuRegister>(); |
| |
| Mips64Label noNaNs; |
| Mips64Label done; |
| FpuRegister ftmp = ((out != a) && (out != b)) ? out : FTMP; |
| |
| // When Java computes min/max it prefers a NaN to a number; the |
| // behavior of MIPSR6 is to prefer numbers to NaNs, i.e., if one of |
| // the inputs is a NaN and the other is a valid number, the MIPS |
| // instruction will return the number; Java wants the NaN value |
| // returned. This is why there is extra logic preceding the use of |
| // the MIPS min.fmt/max.fmt instructions. If either a, or b holds a |
| // NaN, return the NaN, otherwise return the min/max. |
| if (type == DataType::Type::kFloat64) { |
| __ CmpUnD(FTMP, a, b); |
| __ Bc1eqz(FTMP, &noNaNs); |
| |
| // One of the inputs is a NaN |
| __ CmpEqD(ftmp, a, a); |
| // If a == a then b is the NaN, otherwise a is the NaN. |
| __ SelD(ftmp, a, b); |
| |
| if (ftmp != out) { |
| __ MovD(out, ftmp); |
| } |
| |
| __ Bc(&done); |
| |
| __ Bind(&noNaNs); |
| |
| if (is_min) { |
| __ MinD(out, a, b); |
| } else { |
| __ MaxD(out, a, b); |
| } |
| } else { |
| DCHECK_EQ(type, DataType::Type::kFloat32); |
| __ CmpUnS(FTMP, a, b); |
| __ Bc1eqz(FTMP, &noNaNs); |
| |
| // One of the inputs is a NaN |
| __ CmpEqS(ftmp, a, a); |
| // If a == a then b is the NaN, otherwise a is the NaN. |
| __ SelS(ftmp, a, b); |
| |
| if (ftmp != out) { |
| __ MovS(out, ftmp); |
| } |
| |
| __ Bc(&done); |
| |
| __ Bind(&noNaNs); |
| |
| if (is_min) { |
| __ MinS(out, a, b); |
| } else { |
| __ MaxS(out, a, b); |
| } |
| } |
| |
| __ Bind(&done); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenerateMinMax(HBinaryOperation* minmax, bool is_min) { |
| DataType::Type type = minmax->GetResultType(); |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| GenerateMinMaxInt(minmax->GetLocations(), is_min); |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| GenerateMinMaxFP(minmax->GetLocations(), is_min, type); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected type for HMinMax " << type; |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitMin(HMin* min) { |
| CreateMinMaxLocations(GetGraph()->GetAllocator(), min); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitMin(HMin* min) { |
| GenerateMinMax(min, /*is_min*/ true); |
| } |
| |
| void LocationsBuilderMIPS64::VisitMax(HMax* max) { |
| CreateMinMaxLocations(GetGraph()->GetAllocator(), max); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitMax(HMax* max) { |
| GenerateMinMax(max, /*is_min*/ false); |
| } |
| |
| void LocationsBuilderMIPS64::VisitAbs(HAbs* abs) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs); |
| switch (abs->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected abs type " << abs->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitAbs(HAbs* abs) { |
| LocationSummary* locations = abs->GetLocations(); |
| switch (abs->GetResultType()) { |
| case DataType::Type::kInt32: { |
| GpuRegister in = locations->InAt(0).AsRegister<GpuRegister>(); |
| GpuRegister out = locations->Out().AsRegister<GpuRegister>(); |
| __ Sra(AT, in, 31); |
| __ Xor(out, in, AT); |
| __ Subu(out, out, AT); |
| break; |
| } |
| case DataType::Type::kInt64: { |
| GpuRegister in = locations->InAt(0).AsRegister<GpuRegister>(); |
| GpuRegister out = locations->Out().AsRegister<GpuRegister>(); |
| __ Dsra32(AT, in, 31); |
| __ Xor(out, in, AT); |
| __ Dsubu(out, out, AT); |
| break; |
| } |
| case DataType::Type::kFloat32: { |
| FpuRegister in = locations->InAt(0).AsFpuRegister<FpuRegister>(); |
| FpuRegister out = locations->Out().AsFpuRegister<FpuRegister>(); |
| __ AbsS(out, in); |
| break; |
| } |
| case DataType::Type::kFloat64: { |
| FpuRegister in = locations->InAt(0).AsFpuRegister<FpuRegister>(); |
| FpuRegister out = locations->Out().AsFpuRegister<FpuRegister>(); |
| __ AbsD(out, in); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected abs type " << abs->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitConstructorFence(HConstructorFence* constructor_fence) { |
| constructor_fence->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitConstructorFence( |
| HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) { |
| GenerateMemoryBarrier(MemBarrierKind::kStoreStore); |
| } |
| |
| void LocationsBuilderMIPS64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| memory_barrier->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); |
| } |
| |
| void LocationsBuilderMIPS64::VisitReturn(HReturn* ret) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(ret); |
| DataType::Type return_type = ret->InputAt(0)->GetType(); |
| locations->SetInAt(0, Mips64ReturnLocation(return_type)); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) { |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderMIPS64::VisitReturnVoid(HReturnVoid* ret) { |
| ret->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) { |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderMIPS64::VisitRor(HRor* ror) { |
| HandleShift(ror); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitRor(HRor* ror) { |
| HandleShift(ror); |
| } |
| |
| void LocationsBuilderMIPS64::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void LocationsBuilderMIPS64::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void LocationsBuilderMIPS64::VisitSub(HSub* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitSub(HSub* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderMIPS64::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderMIPS64::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); |
| } |
| |
| void LocationsBuilderMIPS64::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionMIPS64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionMIPS64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderMIPS64::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionMIPS64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionMIPS64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderMIPS64::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionMIPS64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionMIPS64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderMIPS64::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionMIPS64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionMIPS64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderMIPS64::VisitSuspendCheck(HSuspendCheck* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnSlowPath); |
| // In suspend check slow path, usually there are no caller-save registers at all. |
| // If SIMD instructions are present, however, we force spilling all live SIMD |
| // registers in full width (since the runtime only saves/restores lower part). |
| locations->SetCustomSlowPathCallerSaves( |
| GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty()); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitSuspendCheck(HSuspendCheck* instruction) { |
| HBasicBlock* block = instruction->GetBlock(); |
| if (block->GetLoopInformation() != nullptr) { |
| DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); |
| // The back edge will generate the suspend check. |
| return; |
| } |
| if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { |
| // The goto will generate the suspend check. |
| return; |
| } |
| GenerateSuspendCheck(instruction, nullptr); |
| } |
| |
| void LocationsBuilderMIPS64::VisitThrow(HThrow* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitThrow(HThrow* instruction) { |
| codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); |
| } |
| |
| void LocationsBuilderMIPS64::VisitTypeConversion(HTypeConversion* conversion) { |
| DataType::Type input_type = conversion->GetInputType(); |
| DataType::Type result_type = conversion->GetResultType(); |
| DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) |
| << input_type << " -> " << result_type; |
| |
| if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) || |
| (result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) { |
| LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; |
| } |
| |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(conversion); |
| |
| if (DataType::IsFloatingPointType(input_type)) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| if (DataType::IsFloatingPointType(result_type)) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitTypeConversion(HTypeConversion* conversion) { |
| LocationSummary* locations = conversion->GetLocations(); |
| DataType::Type result_type = conversion->GetResultType(); |
| DataType::Type input_type = conversion->GetInputType(); |
| |
| DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) |
| << input_type << " -> " << result_type; |
| |
| if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) { |
| GpuRegister dst = locations->Out().AsRegister<GpuRegister>(); |
| GpuRegister src = locations->InAt(0).AsRegister<GpuRegister>(); |
| |
| switch (result_type) { |
| case DataType::Type::kUint8: |
| __ Andi(dst, src, 0xFF); |
| break; |
| case DataType::Type::kInt8: |
| if (input_type == DataType::Type::kInt64) { |
| // Type conversion from long to types narrower than int is a result of code |
| // transformations. To avoid unpredictable results for SEB and SEH, we first |
| // need to sign-extend the low 32-bit value into bits 32 through 63. |
| __ Sll(dst, src, 0); |
| __ Seb(dst, dst); |
| } else { |
| __ Seb(dst, src); |
| } |
| break; |
| case DataType::Type::kUint16: |
| __ Andi(dst, src, 0xFFFF); |
| break; |
| case DataType::Type::kInt16: |
| if (input_type == DataType::Type::kInt64) { |
| // Type conversion from long to types narrower than int is a result of code |
| // transformations. To avoid unpredictable results for SEB and SEH, we first |
| // need to sign-extend the low 32-bit value into bits 32 through 63. |
| __ Sll(dst, src, 0); |
| __ Seh(dst, dst); |
| } else { |
| __ Seh(dst, src); |
| } |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| // Sign-extend 32-bit int into bits 32 through 63 for int-to-long and long-to-int |
| // conversions, except when the input and output registers are the same and we are not |
| // converting longs to shorter types. In these cases, do nothing. |
| if ((input_type == DataType::Type::kInt64) || (dst != src)) { |
| __ Sll(dst, src, 0); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) { |
| FpuRegister dst = locations->Out().AsFpuRegister<FpuRegister>(); |
| GpuRegister src = locations->InAt(0).AsRegister<GpuRegister>(); |
| if (input_type == DataType::Type::kInt64) { |
| __ Dmtc1(src, FTMP); |
| if (result_type == DataType::Type::kFloat32) { |
| __ Cvtsl(dst, FTMP); |
| } else { |
| __ Cvtdl(dst, FTMP); |
| } |
| } else { |
| __ Mtc1(src, FTMP); |
| if (result_type == DataType::Type::kFloat32) { |
| __ Cvtsw(dst, FTMP); |
| } else { |
| __ Cvtdw(dst, FTMP); |
| } |
| } |
| } else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) { |
| CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64); |
| GpuRegister dst = locations->Out().AsRegister<GpuRegister>(); |
| FpuRegister src = locations->InAt(0).AsFpuRegister<FpuRegister>(); |
| |
| if (result_type == DataType::Type::kInt64) { |
| if (input_type == DataType::Type::kFloat32) { |
| __ TruncLS(FTMP, src); |
| } else { |
| __ TruncLD(FTMP, src); |
| } |
| __ Dmfc1(dst, FTMP); |
| } else { |
| if (input_type == DataType::Type::kFloat32) { |
| __ TruncWS(FTMP, src); |
| } else { |
| __ TruncWD(FTMP, src); |
| } |
| __ Mfc1(dst, FTMP); |
| } |
| } else if (DataType::IsFloatingPointType(result_type) && |
| DataType::IsFloatingPointType(input_type)) { |
| FpuRegister dst = locations->Out().AsFpuRegister<FpuRegister>(); |
| FpuRegister src = locations->InAt(0).AsFpuRegister<FpuRegister>(); |
| if (result_type == DataType::Type::kFloat32) { |
| __ Cvtsd(dst, src); |
| } else { |
| __ Cvtds(dst, src); |
| } |
| } else { |
| LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void LocationsBuilderMIPS64::VisitXor(HXor* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitXor(HXor* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderMIPS64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void LocationsBuilderMIPS64::VisitEqual(HEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitEqual(HEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS64::VisitNotEqual(HNotEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitNotEqual(HNotEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS64::VisitLessThan(HLessThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitLessThan(HLessThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS64::VisitLessThanOrEqual(HLessThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitLessThanOrEqual(HLessThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS64::VisitGreaterThan(HGreaterThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitGreaterThan(HGreaterThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS64::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS64::VisitBelow(HBelow* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitBelow(HBelow* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS64::VisitBelowOrEqual(HBelowOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitBelowOrEqual(HBelowOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS64::VisitAbove(HAbove* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitAbove(HAbove* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderMIPS64::VisitAboveOrEqual(HAboveOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitAboveOrEqual(HAboveOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| // Simple implementation of packed switch - generate cascaded compare/jumps. |
| void LocationsBuilderMIPS64::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenPackedSwitchWithCompares(GpuRegister value_reg, |
| int32_t lower_bound, |
| uint32_t num_entries, |
| HBasicBlock* switch_block, |
| HBasicBlock* default_block) { |
| // Create a set of compare/jumps. |
| GpuRegister temp_reg = TMP; |
| __ Addiu32(temp_reg, value_reg, -lower_bound); |
| // Jump to default if index is negative |
| // Note: We don't check the case that index is positive while value < lower_bound, because in |
| // this case, index >= num_entries must be true. So that we can save one branch instruction. |
| __ Bltzc(temp_reg, codegen_->GetLabelOf(default_block)); |
| |
| const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors(); |
| // Jump to successors[0] if value == lower_bound. |
| __ Beqzc(temp_reg, codegen_->GetLabelOf(successors[0])); |
| int32_t last_index = 0; |
| for (; num_entries - last_index > 2; last_index += 2) { |
| __ Addiu(temp_reg, temp_reg, -2); |
| // Jump to successors[last_index + 1] if value < case_value[last_index + 2]. |
| __ Bltzc(temp_reg, codegen_->GetLabelOf(successors[last_index + 1])); |
| // Jump to successors[last_index + 2] if value == case_value[last_index + 2]. |
| __ Beqzc(temp_reg, codegen_->GetLabelOf(successors[last_index + 2])); |
| } |
| if (num_entries - last_index == 2) { |
| // The last missing case_value. |
| __ Addiu(temp_reg, temp_reg, -1); |
| __ Beqzc(temp_reg, codegen_->GetLabelOf(successors[last_index + 1])); |
| } |
| |
| // And the default for any other value. |
| if (!codegen_->GoesToNextBlock(switch_block, default_block)) { |
| __ Bc(codegen_->GetLabelOf(default_block)); |
| } |
| } |
| |
| void InstructionCodeGeneratorMIPS64::GenTableBasedPackedSwitch(GpuRegister value_reg, |
| int32_t lower_bound, |
| uint32_t num_entries, |
| HBasicBlock* switch_block, |
| HBasicBlock* default_block) { |
| // Create a jump table. |
| std::vector<Mips64Label*> labels(num_entries); |
| const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors(); |
| for (uint32_t i = 0; i < num_entries; i++) { |
| labels[i] = codegen_->GetLabelOf(successors[i]); |
| } |
| JumpTable* table = __ CreateJumpTable(std::move(labels)); |
| |
| // Is the value in range? |
| __ Addiu32(TMP, value_reg, -lower_bound); |
| __ LoadConst32(AT, num_entries); |
| __ Bgeuc(TMP, AT, codegen_->GetLabelOf(default_block)); |
| |
| // We are in the range of the table. |
| // Load the target address from the jump table, indexing by the value. |
| __ LoadLabelAddress(AT, table->GetLabel()); |
| __ Dlsa(TMP, TMP, AT, 2); |
| __ Lw(TMP, TMP, 0); |
| // Compute the absolute target address by adding the table start address |
| // (the table contains offsets to targets relative to its start). |
| __ Daddu(TMP, TMP, AT); |
| // And jump. |
| __ Jr(TMP); |
| __ Nop(); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| int32_t lower_bound = switch_instr->GetStartValue(); |
| uint32_t num_entries = switch_instr->GetNumEntries(); |
| LocationSummary* locations = switch_instr->GetLocations(); |
| GpuRegister value_reg = locations->InAt(0).AsRegister<GpuRegister>(); |
| HBasicBlock* switch_block = switch_instr->GetBlock(); |
| HBasicBlock* default_block = switch_instr->GetDefaultBlock(); |
| |
| if (num_entries > kPackedSwitchJumpTableThreshold) { |
| GenTableBasedPackedSwitch(value_reg, |
| lower_bound, |
| num_entries, |
| switch_block, |
| default_block); |
| } else { |
| GenPackedSwitchWithCompares(value_reg, |
| lower_bound, |
| num_entries, |
| switch_block, |
| default_block); |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { |
| uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| instruction->GetIndex(), kMips64PointerSize).SizeValue(); |
| __ LoadFromOffset(kLoadDoubleword, |
| locations->Out().AsRegister<GpuRegister>(), |
| locations->InAt(0).AsRegister<GpuRegister>(), |
| method_offset); |
| } else { |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| instruction->GetIndex(), kMips64PointerSize)); |
| __ LoadFromOffset(kLoadDoubleword, |
| locations->Out().AsRegister<GpuRegister>(), |
| locations->InAt(0).AsRegister<GpuRegister>(), |
| mirror::Class::ImtPtrOffset(kMips64PointerSize).Uint32Value()); |
| __ LoadFromOffset(kLoadDoubleword, |
| locations->Out().AsRegister<GpuRegister>(), |
| locations->Out().AsRegister<GpuRegister>(), |
| method_offset); |
| } |
| } |
| |
| void LocationsBuilderMIPS64::VisitIntermediateAddress(HIntermediateAddress* instruction |
| ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorMIPS64::VisitIntermediateAddress(HIntermediateAddress* instruction |
| ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| } // namespace mips64 |
| } // namespace art |