blob: 211b87df05634cdd5cf6134017dfc048ddbf5419 [file] [log] [blame]
// Copyright 2011 Google Inc. All Rights Reserved.
#include "class_linker.h"
#include <string>
#include <utility>
#include <vector>
#include "UniquePtr.h"
#include "casts.h"
#include "class_loader.h"
#include "dex_cache.h"
#include "dex_file.h"
#include "dex_verifier.h"
#include "heap.h"
#include "intern_table.h"
#include "logging.h"
#include "monitor.h"
#include "object.h"
#include "runtime.h"
#include "space.h"
#include "thread.h"
#include "utils.h"
namespace art {
const char* ClassLinker::class_roots_descriptors_[kClassRootsMax] = {
"Ljava/lang/Class;",
"Ljava/lang/Object;",
"[Ljava/lang/Object;",
"Ljava/lang/String;",
"Ljava/lang/reflect/Field;",
"Ljava/lang/reflect/Method;",
"Ljava/lang/ClassLoader;",
"Ldalvik/system/BaseDexClassLoader;",
"Ldalvik/system/PathClassLoader;",
"Ljava/lang/StackTraceElement;",
"Z",
"B",
"C",
"D",
"F",
"I",
"J",
"S",
"V",
"[Z",
"[B",
"[C",
"[D",
"[F",
"[I",
"[J",
"[S",
"[Ljava/lang/StackTraceElement;",
};
ClassLinker* ClassLinker::Create(const std::vector<const DexFile*>& boot_class_path,
const std::vector<const DexFile*>& class_path,
InternTable* intern_table, Space* space) {
CHECK_NE(boot_class_path.size(), 0U);
UniquePtr<ClassLinker> class_linker(new ClassLinker(intern_table));
if (space == NULL) {
class_linker->Init(boot_class_path, class_path);
} else {
class_linker->Init(boot_class_path, class_path, space);
}
// TODO: check for failure during initialization
return class_linker.release();
}
ClassLinker::ClassLinker(InternTable* intern_table)
: classes_lock_(Mutex::Create("ClassLinker::Lock")),
class_roots_(NULL),
array_interfaces_(NULL),
array_iftable_(NULL),
init_done_(false),
intern_table_(intern_table) {
}
void ClassLinker::Init(const std::vector<const DexFile*>& boot_class_path,
const std::vector<const DexFile*>& class_path) {
CHECK(!init_done_);
// java_lang_Class comes first, its needed for AllocClass
Class* java_lang_Class = down_cast<Class*>(
Heap::AllocObject(NULL, sizeof(ClassClass)));
CHECK(java_lang_Class != NULL);
java_lang_Class->SetClass(java_lang_Class);
java_lang_Class->SetClassSize(sizeof(ClassClass));
// AllocClass(Class*) can now be used
// java_lang_Object comes next so that object_array_class can be created
Class* java_lang_Object = AllocClass(java_lang_Class, sizeof(Class));
CHECK(java_lang_Object != NULL);
// backfill Object as the super class of Class
java_lang_Class->SetSuperClass(java_lang_Object);
java_lang_Object->SetStatus(Class::kStatusLoaded);
// Object[] next to hold class roots
Class* object_array_class = AllocClass(java_lang_Class, sizeof(Class));
object_array_class->SetArrayRank(1);
object_array_class->SetComponentType(java_lang_Object);
// Setup the char[] class to be used for String
Class* char_array_class = AllocClass(java_lang_Class, sizeof(Class));
char_array_class->SetArrayRank(1);
CharArray::SetArrayClass(char_array_class);
// Setup String
Class* java_lang_String = AllocClass(java_lang_Class, sizeof(StringClass));
String::SetClass(java_lang_String);
java_lang_String->SetObjectSize(sizeof(String));
java_lang_String->SetStatus(Class::kStatusResolved);
// Backfill Class descriptors missing until this point
// TODO: intern these strings
java_lang_Class->SetDescriptor(
String::AllocFromModifiedUtf8("Ljava/lang/Class;"));
java_lang_Object->SetDescriptor(
String::AllocFromModifiedUtf8("Ljava/lang/Object;"));
object_array_class->SetDescriptor(
String::AllocFromModifiedUtf8("[Ljava/lang/Object;"));
java_lang_String->SetDescriptor(
String::AllocFromModifiedUtf8("Ljava/lang/String;"));
char_array_class->SetDescriptor(String::AllocFromModifiedUtf8("[C"));
// Create storage for root classes, save away our work so far (requires
// descriptors)
class_roots_ = ObjectArray<Class>::Alloc(object_array_class, kClassRootsMax);
SetClassRoot(kJavaLangClass, java_lang_Class);
SetClassRoot(kJavaLangObject, java_lang_Object);
SetClassRoot(kObjectArrayClass, object_array_class);
SetClassRoot(kCharArrayClass, char_array_class);
SetClassRoot(kJavaLangString, java_lang_String);
// Setup the primitive type classes.
SetClassRoot(kPrimitiveBoolean, CreatePrimitiveClass("Z", Class::kPrimBoolean));
SetClassRoot(kPrimitiveByte, CreatePrimitiveClass("B", Class::kPrimByte));
SetClassRoot(kPrimitiveChar, CreatePrimitiveClass("C", Class::kPrimChar));
SetClassRoot(kPrimitiveShort, CreatePrimitiveClass("S", Class::kPrimShort));
SetClassRoot(kPrimitiveInt, CreatePrimitiveClass("I", Class::kPrimInt));
SetClassRoot(kPrimitiveLong, CreatePrimitiveClass("J", Class::kPrimLong));
SetClassRoot(kPrimitiveFloat, CreatePrimitiveClass("F", Class::kPrimFloat));
SetClassRoot(kPrimitiveDouble, CreatePrimitiveClass("D", Class::kPrimDouble));
SetClassRoot(kPrimitiveVoid, CreatePrimitiveClass("V", Class::kPrimVoid));
// Backfill component type of char[]
char_array_class->SetComponentType(GetClassRoot(kPrimitiveChar));
// Create array interface entries to populate once we can load system classes
array_interfaces_ = AllocObjectArray<Class>(2);
array_iftable_ = new InterfaceEntry[2];
// Create int array type for AllocDexCache (done in AppendToBootClassPath)
Class* int_array_class = AllocClass(java_lang_Class, sizeof(Class));
int_array_class->SetArrayRank(1);
int_array_class->SetDescriptor(String::AllocFromModifiedUtf8("[I"));
int_array_class->SetComponentType(GetClassRoot(kPrimitiveInt));
IntArray::SetArrayClass(int_array_class);
SetClassRoot(kIntArrayClass, int_array_class);
// now that these are registered, we can use AllocClass() and AllocObjectArray
// setup boot_class_path_ and register class_path now that we can
// use AllocObjectArray to create DexCache instances
for (size_t i = 0; i != boot_class_path.size(); ++i) {
const DexFile* dex_file = boot_class_path[i];
CHECK(dex_file != NULL);
AppendToBootClassPath(*dex_file);
}
for (size_t i = 0; i != class_path.size(); ++i) {
const DexFile* dex_file = class_path[i];
CHECK(dex_file != NULL);
RegisterDexFile(*dex_file);
}
// Field and Method are necessary so that FindClass can link members
Class* java_lang_reflect_Field = AllocClass(java_lang_Class, sizeof(FieldClass));
CHECK(java_lang_reflect_Field != NULL);
java_lang_reflect_Field->SetDescriptor(String::AllocFromModifiedUtf8("Ljava/lang/reflect/Field;"));
java_lang_reflect_Field->SetObjectSize(sizeof(Field));
SetClassRoot(kJavaLangReflectField, java_lang_reflect_Field);
java_lang_reflect_Field->SetStatus(Class::kStatusResolved);
Field::SetClass(java_lang_reflect_Field);
Class* java_lang_reflect_Method = AllocClass(java_lang_Class, sizeof(MethodClass));
java_lang_reflect_Method->SetDescriptor(String::AllocFromModifiedUtf8("Ljava/lang/reflect/Method;"));
CHECK(java_lang_reflect_Method != NULL);
java_lang_reflect_Method->SetObjectSize(sizeof(Method));
SetClassRoot(kJavaLangReflectMethod, java_lang_reflect_Method);
java_lang_reflect_Method->SetStatus(Class::kStatusResolved);
Method::SetClass(java_lang_reflect_Method);
// now we can use FindSystemClass
// Object and String just need more minimal setup, since they do not have
// extra C++ fields.
java_lang_Object->SetStatus(Class::kStatusNotReady);
Class* Object_class = FindSystemClass("Ljava/lang/Object;");
CHECK_EQ(java_lang_Object, Object_class);
CHECK_EQ(java_lang_Object->GetObjectSize(), sizeof(Object));
java_lang_String->SetStatus(Class::kStatusNotReady);
Class* String_class = FindSystemClass("Ljava/lang/String;");
CHECK_EQ(java_lang_String, String_class);
CHECK_EQ(java_lang_String->GetObjectSize(), sizeof(String));
// Setup the primitive array type classes - can't be done until Object has
// a vtable
SetClassRoot(kBooleanArrayClass, FindSystemClass("[Z"));
BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass));
SetClassRoot(kByteArrayClass, FindSystemClass("[B"));
ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass));
Class* found_char_array_class = FindSystemClass("[C");
CHECK_EQ(char_array_class, found_char_array_class);
SetClassRoot(kShortArrayClass, FindSystemClass("[S"));
ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass));
Class* found_int_array_class = FindSystemClass("[I");
CHECK_EQ(int_array_class, found_int_array_class);
SetClassRoot(kLongArrayClass, FindSystemClass("[J"));
LongArray::SetArrayClass(GetClassRoot(kLongArrayClass));
SetClassRoot(kFloatArrayClass, FindSystemClass("[F"));
FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass));
SetClassRoot(kDoubleArrayClass, FindSystemClass("[D"));
DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass));
Class* found_object_array_class = FindSystemClass("[Ljava/lang/Object;");
CHECK_EQ(object_array_class, found_object_array_class);
// Setup the single, global copies of "interfaces" and "iftable"
Class* java_lang_Cloneable = FindSystemClass("Ljava/lang/Cloneable;");
CHECK(java_lang_Cloneable != NULL);
Class* java_io_Serializable = FindSystemClass("Ljava/io/Serializable;");
CHECK(java_io_Serializable != NULL);
CHECK(array_interfaces_ != NULL);
array_interfaces_->Set(0, java_lang_Cloneable);
array_interfaces_->Set(1, java_io_Serializable);
// We assume that Cloneable/Serializable don't have superinterfaces --
// normally we'd have to crawl up and explicitly list all of the
// supers as well. These interfaces don't have any methods, so we
// don't have to worry about the ifviPool either.
array_iftable_[0].SetInterface(array_interfaces_->Get(0));
array_iftable_[1].SetInterface(array_interfaces_->Get(1));
// Sanity check Object[]'s interfaces
CHECK_EQ(java_lang_Cloneable, object_array_class->GetInterface(0));
CHECK_EQ(java_io_Serializable, object_array_class->GetInterface(1));
// run Class, Field, and Method through FindSystemClass.
// this initializes their dex_cache_ fields and register them in classes_.
// we also override their object_size_ values to accommodate the extra C++ fields.
Class* Class_class = FindSystemClass("Ljava/lang/Class;");
CHECK_EQ(java_lang_Class, Class_class);
// No sanity check on size as Class is variably sized
java_lang_reflect_Field->SetStatus(Class::kStatusNotReady);
Class* Field_class = FindSystemClass("Ljava/lang/reflect/Field;");
CHECK_EQ(java_lang_reflect_Field, Field_class);
CHECK_LT(java_lang_reflect_Field->GetObjectSize(), sizeof(Field));
java_lang_reflect_Field->SetObjectSize(sizeof(Field));
java_lang_reflect_Method->SetStatus(Class::kStatusNotReady);
Class* Method_class = FindSystemClass("Ljava/lang/reflect/Method;");
CHECK_EQ(java_lang_reflect_Method, Method_class);
CHECK_LT(java_lang_reflect_Method->GetObjectSize(), sizeof(Method));
java_lang_reflect_Method->SetObjectSize(sizeof(Method));
// java.lang.ref classes need to be specially flagged, but otherwise are normal classes
Class* java_lang_ref_FinalizerReference = FindSystemClass("Ljava/lang/ref/FinalizerReference;");
java_lang_ref_FinalizerReference->SetAccessFlags(
java_lang_ref_FinalizerReference->GetAccessFlags() |
kAccClassIsReference | kAccClassIsFinalizerReference);
Class* java_lang_ref_PhantomReference = FindSystemClass("Ljava/lang/ref/PhantomReference;");
java_lang_ref_PhantomReference->SetAccessFlags(
java_lang_ref_PhantomReference->GetAccessFlags() |
kAccClassIsReference | kAccClassIsPhantomReference);
Class* java_lang_ref_SoftReference = FindSystemClass("Ljava/lang/ref/SoftReference;");
java_lang_ref_SoftReference->SetAccessFlags(
java_lang_ref_SoftReference->GetAccessFlags() | kAccClassIsReference);
Class* java_lang_ref_WeakReference = FindSystemClass("Ljava/lang/ref/WeakReference;");
java_lang_ref_WeakReference->SetAccessFlags(
java_lang_ref_WeakReference->GetAccessFlags() |
kAccClassIsReference | kAccClassIsWeakReference);
// Let the heap know some key offsets into java.lang.ref instances
// NB we hard code the field indexes here rather than using FindInstanceField
// as the types of the field can't be resolved prior to the runtime being
// fully initialized
Class* java_lang_ref_Reference = FindSystemClass("Ljava/lang/ref/Reference;");
Field* pendingNext = java_lang_ref_Reference->GetInstanceField(0);
CHECK(pendingNext->GetName()->Equals("pendingNext"));
CHECK(ResolveType(pendingNext->GetTypeIdx(), pendingNext) ==
java_lang_ref_Reference);
Field* queue = java_lang_ref_Reference->GetInstanceField(1);
CHECK(queue->GetName()->Equals("queue"));
CHECK(ResolveType(queue->GetTypeIdx(), queue) ==
FindSystemClass("Ljava/lang/ref/ReferenceQueue;"));
Field* queueNext = java_lang_ref_Reference->GetInstanceField(2);
CHECK(queueNext->GetName()->Equals("queueNext"));
CHECK(ResolveType(queueNext->GetTypeIdx(), queueNext) ==
java_lang_ref_Reference);
Field* referent = java_lang_ref_Reference->GetInstanceField(3);
CHECK(referent->GetName()->Equals("referent"));
CHECK(ResolveType(referent->GetTypeIdx(), referent) ==
java_lang_Object);
Field* zombie = java_lang_ref_FinalizerReference->GetInstanceField(2);
CHECK(zombie->GetName()->Equals("zombie"));
CHECK(ResolveType(zombie->GetTypeIdx(), zombie) ==
java_lang_Object);
Heap::SetReferenceOffsets(referent->GetOffset(),
queue->GetOffset(),
queueNext->GetOffset(),
pendingNext->GetOffset(),
zombie->GetOffset());
// Setup the ClassLoaders, adjusting the object_size_ as necessary
Class* java_lang_ClassLoader = FindSystemClass("Ljava/lang/ClassLoader;");
CHECK_LT(java_lang_ClassLoader->GetObjectSize(), sizeof(ClassLoader));
java_lang_ClassLoader->SetObjectSize(sizeof(ClassLoader));
SetClassRoot(kJavaLangClassLoader, java_lang_ClassLoader);
Class* dalvik_system_BaseDexClassLoader = FindSystemClass("Ldalvik/system/BaseDexClassLoader;");
CHECK_EQ(dalvik_system_BaseDexClassLoader->GetObjectSize(), sizeof(BaseDexClassLoader));
SetClassRoot(kDalvikSystemBaseDexClassLoader, dalvik_system_BaseDexClassLoader);
Class* dalvik_system_PathClassLoader = FindSystemClass("Ldalvik/system/PathClassLoader;");
CHECK_EQ(dalvik_system_PathClassLoader->GetObjectSize(), sizeof(PathClassLoader));
SetClassRoot(kDalvikSystemPathClassLoader, dalvik_system_PathClassLoader);
PathClassLoader::SetClass(dalvik_system_PathClassLoader);
// Set up java.lang.StackTraceElement as a convenience
SetClassRoot(kJavaLangStackTraceElement, FindSystemClass("Ljava/lang/StackTraceElement;"));
SetClassRoot(kJavaLangStackTraceElementArrayClass, FindSystemClass("[Ljava/lang/StackTraceElement;"));
StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement));
FinishInit();
}
void ClassLinker::FinishInit() {
// ensure all class_roots_ are initialized
for (size_t i = 0; i < kClassRootsMax; i++) {
ClassRoot class_root = static_cast<ClassRoot>(i);
Class* klass = GetClassRoot(class_root);
CHECK(klass != NULL);
DCHECK(klass->IsArrayClass() || klass->IsPrimitive() || klass->GetDexCache() != NULL);
// note SetClassRoot does additional validation.
// if possible add new checks there to catch errors early
}
// disable the slow paths in FindClass and CreatePrimitiveClass now
// that Object, Class, and Object[] are setup
init_done_ = true;
}
struct ClassLinker::InitCallbackState {
ClassLinker* class_linker;
Class* class_roots[kClassRootsMax];
typedef std::tr1::unordered_map<std::string, ClassRoot> Table;
Table descriptor_to_class_root;
typedef std::tr1::unordered_set<DexCache*, DexCacheHash> Set;
Set dex_caches;
};
void ClassLinker::Init(const std::vector<const DexFile*>& boot_class_path,
const std::vector<const DexFile*>& class_path,
Space* space) {
CHECK(!init_done_);
HeapBitmap* heap_bitmap = Heap::GetLiveBits();
DCHECK(heap_bitmap != NULL);
InitCallbackState state;
state.class_linker = this;
for (size_t i = 0; i < kClassRootsMax; i++) {
ClassRoot class_root = static_cast<ClassRoot>(i);
state.descriptor_to_class_root[GetClassRootDescriptor(class_root)] = class_root;
}
// reinit clases_ table
heap_bitmap->Walk(InitCallback, &state);
// reinit class_roots_
Class* object_array_class = state.class_roots[kObjectArrayClass];
class_roots_ = ObjectArray<Class>::Alloc(object_array_class, kClassRootsMax);
for (size_t i = 0; i < kClassRootsMax; i++) {
ClassRoot class_root = static_cast<ClassRoot>(i);
SetClassRoot(class_root, state.class_roots[class_root]);
}
// reinit intern table
// TODO: remove interned_array, make all strings in image interned (and remove space argument)
ObjectArray<Object>* interned_array = space->GetImageHeader().GetInternedArray();
for (int32_t i = 0; i < interned_array->GetLength(); i++) {
String* string = interned_array->Get(i)->AsString();
intern_table_->RegisterStrong(string);
}
// reinit array_interfaces_ from any array class instance, they should all be ==
array_interfaces_ = GetClassRoot(kObjectArrayClass)->GetInterfaces();
DCHECK(array_interfaces_ == GetClassRoot(kBooleanArrayClass)->GetInterfaces());
// build a map from location to DexCache to match up with DexFile::GetLocation
std::tr1::unordered_map<std::string, DexCache*> location_to_dex_cache;
typedef InitCallbackState::Set::const_iterator It; // TODO: C++0x auto
for (It it = state.dex_caches.begin(), end = state.dex_caches.end(); it != end; ++it) {
DexCache* dex_cache = *it;
std::string location = dex_cache->GetLocation()->ToModifiedUtf8();
location_to_dex_cache[location] = dex_cache;
}
CHECK_EQ(boot_class_path.size() + class_path.size(),
location_to_dex_cache.size());
// reinit boot_class_path with DexFile arguments and found DexCaches
for (size_t i = 0; i != boot_class_path.size(); ++i) {
const DexFile* dex_file = boot_class_path[i];
CHECK(dex_file != NULL);
DexCache* dex_cache = location_to_dex_cache[dex_file->GetLocation()];
CHECK(dex_cache != NULL) << dex_file->GetLocation();
AppendToBootClassPath(*dex_file, dex_cache);
}
// register class_path with DexFile arguments and found DexCaches
for (size_t i = 0; i != class_path.size(); ++i) {
const DexFile* dex_file = class_path[i];
CHECK(dex_file != NULL);
DexCache* dex_cache = location_to_dex_cache[dex_file->GetLocation()];
CHECK(dex_cache != NULL) << dex_file->GetLocation();
RegisterDexFile(*dex_file, dex_cache);
}
String::SetClass(GetClassRoot(kJavaLangString));
Field::SetClass(GetClassRoot(kJavaLangReflectField));
Method::SetClass(GetClassRoot(kJavaLangReflectMethod));
BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass));
ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass));
CharArray::SetArrayClass(GetClassRoot(kCharArrayClass));
DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass));
FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass));
IntArray::SetArrayClass(GetClassRoot(kIntArrayClass));
LongArray::SetArrayClass(GetClassRoot(kLongArrayClass));
ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass));
PathClassLoader::SetClass(GetClassRoot(kDalvikSystemPathClassLoader));
StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement));
FinishInit();
}
void ClassLinker::InitCallback(Object* obj, void *arg) {
DCHECK(obj != NULL);
DCHECK(arg != NULL);
InitCallbackState* state = reinterpret_cast<InitCallbackState*>(arg);
if (!obj->IsClass()) {
return;
}
Class* klass = obj->AsClass();
// TODO: restore ClassLoader's list of DexFiles after image load
// CHECK(klass->GetClassLoader() == NULL);
const ClassLoader* class_loader = klass->GetClassLoader();
if (class_loader != NULL) {
// TODO: replace this hack with something based on command line arguments
Thread::Current()->SetClassLoaderOverride(class_loader);
}
std::string descriptor = klass->GetDescriptor()->ToModifiedUtf8();
// restore class to ClassLinker::classes_ table
state->class_linker->InsertClass(descriptor, klass);
// note DexCache to match with DexFile later
DexCache* dex_cache = klass->GetDexCache();
if (dex_cache != NULL) {
state->dex_caches.insert(dex_cache);
} else {
DCHECK(klass->IsArrayClass() || klass->IsPrimitive());
}
// check if this is a root, if so, register it
typedef InitCallbackState::Table::const_iterator It; // TODO: C++0x auto
It it = state->descriptor_to_class_root.find(descriptor);
if (it != state->descriptor_to_class_root.end()) {
ClassRoot class_root = it->second;
state->class_roots[class_root] = klass;
}
}
// Keep in sync with InitCallback. Anything we visit, we need to
// reinit references to when reinitializing a ClassLinker from a
// mapped image.
void ClassLinker::VisitRoots(Heap::RootVisitor* visitor, void* arg) const {
visitor(class_roots_, arg);
for (size_t i = 0; i < dex_caches_.size(); i++) {
visitor(dex_caches_[i], arg);
}
{
MutexLock mu(classes_lock_);
typedef Table::const_iterator It; // TODO: C++0x auto
for (It it = classes_.begin(), end = classes_.end(); it != end; ++it) {
visitor(it->second, arg);
}
}
visitor(array_interfaces_, arg);
}
ClassLinker::~ClassLinker() {
delete classes_lock_;
String::ResetClass();
Field::ResetClass();
Method::ResetClass();
BooleanArray::ResetArrayClass();
ByteArray::ResetArrayClass();
CharArray::ResetArrayClass();
DoubleArray::ResetArrayClass();
FloatArray::ResetArrayClass();
IntArray::ResetArrayClass();
LongArray::ResetArrayClass();
ShortArray::ResetArrayClass();
PathClassLoader::ResetClass();
StackTraceElement::ResetClass();
}
DexCache* ClassLinker::AllocDexCache(const DexFile& dex_file) {
DexCache* dex_cache = down_cast<DexCache*>(AllocObjectArray<Object>(DexCache::LengthAsArray()));
dex_cache->Init(String::AllocFromModifiedUtf8(dex_file.GetLocation().c_str()),
AllocObjectArray<String>(dex_file.NumStringIds()),
AllocObjectArray<Class>(dex_file.NumTypeIds()),
AllocObjectArray<Method>(dex_file.NumMethodIds()),
AllocObjectArray<Field>(dex_file.NumFieldIds()),
AllocCodeAndDirectMethods(dex_file.NumMethodIds()),
AllocObjectArray<StaticStorageBase>(dex_file.NumTypeIds()));
return dex_cache;
}
CodeAndDirectMethods* ClassLinker::AllocCodeAndDirectMethods(size_t length) {
return down_cast<CodeAndDirectMethods*>(IntArray::Alloc(CodeAndDirectMethods::LengthAsArray(length)));
}
Class* ClassLinker::AllocClass(Class* java_lang_Class, size_t class_size) {
DCHECK_GE(class_size, sizeof(Class));
Class* klass = Heap::AllocObject(java_lang_Class, class_size)->AsClass();
klass->SetPrimitiveType(Class::kPrimNot); // default to not being primitive
klass->SetClassSize(class_size);
return klass;
}
Class* ClassLinker::AllocClass(size_t class_size) {
return AllocClass(GetClassRoot(kJavaLangClass), class_size);
}
Field* ClassLinker::AllocField() {
return down_cast<Field*>(GetClassRoot(kJavaLangReflectField)->AllocObject());
}
Method* ClassLinker::AllocMethod() {
return down_cast<Method*>(GetClassRoot(kJavaLangReflectMethod)->AllocObject());
}
ObjectArray<StackTraceElement>* ClassLinker::AllocStackTraceElementArray(size_t length) {
return ObjectArray<StackTraceElement>::Alloc(
GetClassRoot(kJavaLangStackTraceElementArrayClass),
length);
}
Class* ClassLinker::FindClass(const StringPiece& descriptor,
const ClassLoader* class_loader) {
// TODO: remove this contrived parent class loader check when we have a real ClassLoader.
if (class_loader != NULL) {
Class* klass = FindClass(descriptor, NULL);
if (klass != NULL) {
return klass;
}
Thread::Current()->ClearException();
}
Thread* self = Thread::Current();
DCHECK(self != NULL);
CHECK(!self->IsExceptionPending());
// Find the class in the loaded classes table.
Class* klass = LookupClass(descriptor, class_loader);
if (klass == NULL) {
// Class is not yet loaded.
if (descriptor[0] == '[') {
return CreateArrayClass(descriptor, class_loader);
}
const DexFile::ClassPath& class_path = ((class_loader != NULL)
? ClassLoader::GetClassPath(class_loader)
: boot_class_path_);
DexFile::ClassPathEntry pair = DexFile::FindInClassPath(descriptor, class_path);
if (pair.second == NULL) {
std::string name(PrintableString(descriptor));
self->ThrowNewException("Ljava/lang/NoClassDefFoundError;",
"Class %s not found in class loader %p", name.c_str(), class_loader);
return NULL;
}
const DexFile& dex_file = *pair.first;
const DexFile::ClassDef& dex_class_def = *pair.second;
DexCache* dex_cache = FindDexCache(dex_file);
// Load the class from the dex file.
if (!init_done_) {
// finish up init of hand crafted class_roots_
if (descriptor == "Ljava/lang/Object;") {
klass = GetClassRoot(kJavaLangObject);
} else if (descriptor == "Ljava/lang/Class;") {
klass = GetClassRoot(kJavaLangClass);
} else if (descriptor == "Ljava/lang/String;") {
klass = GetClassRoot(kJavaLangString);
} else if (descriptor == "Ljava/lang/reflect/Field;") {
klass = GetClassRoot(kJavaLangReflectField);
} else if (descriptor == "Ljava/lang/reflect/Method;") {
klass = GetClassRoot(kJavaLangReflectMethod);
} else {
klass = AllocClass(SizeOfClass(dex_file, dex_class_def));
}
} else {
klass = AllocClass(SizeOfClass(dex_file, dex_class_def));
}
if (!klass->IsLinked()) {
klass->SetDexCache(dex_cache);
LoadClass(dex_file, dex_class_def, klass, class_loader);
// Check for a pending exception during load
if (self->IsExceptionPending()) {
// TODO: free native allocations in klass
return NULL;
}
ObjectLock lock(klass);
klass->SetClinitThreadId(self->GetId());
// Add the newly loaded class to the loaded classes table.
bool success = InsertClass(descriptor, klass); // TODO: just return collision
if (!success) {
// We may fail to insert if we raced with another thread.
klass->SetClinitThreadId(0);
// TODO: free native allocations in klass
klass = LookupClass(descriptor, class_loader);
CHECK(klass != NULL);
return klass;
} else {
// Finish loading (if necessary) by finding parents
CHECK(!klass->IsLoaded());
if (!LoadSuperAndInterfaces(klass, dex_file)) {
// Loading failed.
// TODO: CHECK(self->IsExceptionPending());
lock.NotifyAll();
return NULL;
}
CHECK(klass->IsLoaded());
// Link the class (if necessary)
CHECK(!klass->IsLinked());
if (!LinkClass(klass)) {
// Linking failed.
// TODO: CHECK(self->IsExceptionPending());
lock.NotifyAll();
return NULL;
}
CHECK(klass->IsLinked());
}
}
}
// Link the class if it has not already been linked.
if (!klass->IsLinked() && !klass->IsErroneous()) {
ObjectLock lock(klass);
// Check for circular dependencies between classes.
if (!klass->IsLinked() && klass->GetClinitThreadId() == self->GetId()) {
self->ThrowNewException("Ljava/lang/ClassCircularityError;", NULL); // TODO: detail
return NULL;
}
// Wait for the pending initialization to complete.
while (!klass->IsLinked() && !klass->IsErroneous()) {
lock.Wait();
}
}
if (klass->IsErroneous()) {
LG << "EarlierClassFailure"; // TODO: EarlierClassFailure
return NULL;
}
// Return the loaded class. No exceptions should be pending.
CHECK(klass->IsLinked());
CHECK(!self->IsExceptionPending());
return klass;
}
// Precomputes size that will be needed for Class, matching LinkStaticFields
size_t ClassLinker::SizeOfClass(const DexFile& dex_file,
const DexFile::ClassDef& dex_class_def) {
const byte* class_data = dex_file.GetClassData(dex_class_def);
DexFile::ClassDataHeader header = dex_file.ReadClassDataHeader(&class_data);
size_t num_static_fields = header.static_fields_size_;
size_t num_ref = 0;
size_t num_32 = 0;
size_t num_64 = 0;
if (num_static_fields != 0) {
uint32_t last_idx = 0;
for (size_t i = 0; i < num_static_fields; ++i) {
DexFile::Field dex_field;
dex_file.dexReadClassDataField(&class_data, &dex_field, &last_idx);
const DexFile::FieldId& field_id = dex_file.GetFieldId(dex_field.field_idx_);
const char* descriptor = dex_file.dexStringByTypeIdx(field_id.type_idx_);
char c = descriptor[0];
if (c == 'L' || c == '[') {
num_ref++;
} else if (c == 'J' || c == 'D') {
num_64++;
} else {
num_32++;
}
}
}
// start with generic class data
size_t size = sizeof(Class);
// follow with reference fields which must be contiguous at start
size += (num_ref * sizeof(uint32_t));
// if there are 64-bit fields to add, make sure they are aligned
if (num_64 != 0 && size != RoundUp(size, 8)) { // for 64-bit alignment
if (num_32 != 0) {
// use an available 32-bit field for padding
num_32--;
}
size += sizeof(uint32_t); // either way, we are adding a word
DCHECK_EQ(size, RoundUp(size, 8));
}
// tack on any 64-bit fields now that alignment is assured
size += (num_64 * sizeof(uint64_t));
// tack on any remaining 32-bit fields
size += (num_32 * sizeof(uint32_t));
return size;
}
void ClassLinker::LoadClass(const DexFile& dex_file,
const DexFile::ClassDef& dex_class_def,
Class* klass,
const ClassLoader* class_loader) {
CHECK(klass != NULL);
CHECK(klass->GetDexCache() != NULL);
CHECK_EQ(Class::kStatusNotReady, klass->GetStatus());
const byte* class_data = dex_file.GetClassData(dex_class_def);
DexFile::ClassDataHeader header = dex_file.ReadClassDataHeader(&class_data);
const char* descriptor = dex_file.GetClassDescriptor(dex_class_def);
CHECK(descriptor != NULL);
klass->SetClass(GetClassRoot(kJavaLangClass));
if (klass->GetDescriptor() != NULL) {
DCHECK(klass->GetDescriptor()->Equals(descriptor));
} else {
klass->SetDescriptor(String::AllocFromModifiedUtf8(descriptor));
}
uint32_t access_flags = dex_class_def.access_flags_;
// Make sure there aren't any "bonus" flags set, since we use them for runtime
// state.
CHECK_EQ(access_flags & ~kAccClassFlagsMask, 0U);
klass->SetAccessFlags(access_flags);
klass->SetClassLoader(class_loader);
DCHECK(klass->GetPrimitiveType() == Class::kPrimNot);
klass->SetStatus(Class::kStatusIdx);
klass->SetSuperClassTypeIdx(dex_class_def.superclass_idx_);
size_t num_static_fields = header.static_fields_size_;
size_t num_instance_fields = header.instance_fields_size_;
size_t num_direct_methods = header.direct_methods_size_;
size_t num_virtual_methods = header.virtual_methods_size_;
klass->SetSourceFile(dex_file.dexGetSourceFile(dex_class_def));
// Load class interfaces.
LoadInterfaces(dex_file, dex_class_def, klass);
// Load static fields.
if (num_static_fields != 0) {
klass->SetSFields(AllocObjectArray<Field>(num_static_fields));
uint32_t last_idx = 0;
for (size_t i = 0; i < num_static_fields; ++i) {
DexFile::Field dex_field;
dex_file.dexReadClassDataField(&class_data, &dex_field, &last_idx);
Field* sfield = AllocField();
klass->SetStaticField(i, sfield);
LoadField(dex_file, dex_field, klass, sfield);
}
}
// Load instance fields.
if (num_instance_fields != 0) {
klass->SetIFields(AllocObjectArray<Field>(num_instance_fields));
uint32_t last_idx = 0;
for (size_t i = 0; i < num_instance_fields; ++i) {
DexFile::Field dex_field;
dex_file.dexReadClassDataField(&class_data, &dex_field, &last_idx);
Field* ifield = AllocField();
klass->SetInstanceField(i, ifield);
LoadField(dex_file, dex_field, klass, ifield);
}
}
// Load direct methods.
if (num_direct_methods != 0) {
// TODO: append direct methods to class object
klass->SetDirectMethods(AllocObjectArray<Method>(num_direct_methods));
uint32_t last_idx = 0;
for (size_t i = 0; i < num_direct_methods; ++i) {
DexFile::Method dex_method;
dex_file.dexReadClassDataMethod(&class_data, &dex_method, &last_idx);
Method* meth = AllocMethod();
klass->SetDirectMethod(i, meth);
LoadMethod(dex_file, dex_method, klass, meth);
// TODO: register maps
}
}
// Load virtual methods.
if (num_virtual_methods != 0) {
// TODO: append virtual methods to class object
klass->SetVirtualMethods(AllocObjectArray<Method>(num_virtual_methods));
uint32_t last_idx = 0;
for (size_t i = 0; i < num_virtual_methods; ++i) {
DexFile::Method dex_method;
dex_file.dexReadClassDataMethod(&class_data, &dex_method, &last_idx);
Method* meth = AllocMethod();
klass->SetVirtualMethod(i, meth);
LoadMethod(dex_file, dex_method, klass, meth);
// TODO: register maps
}
}
}
void ClassLinker::LoadInterfaces(const DexFile& dex_file,
const DexFile::ClassDef& dex_class_def,
Class* klass) {
const DexFile::TypeList* list = dex_file.GetInterfacesList(dex_class_def);
if (list != NULL) {
klass->SetInterfaces(AllocObjectArray<Class>(list->Size()));
IntArray* interfaces_idx = IntArray::Alloc(list->Size());
klass->SetInterfacesTypeIdx(interfaces_idx);
for (size_t i = 0; i < list->Size(); ++i) {
const DexFile::TypeItem& type_item = list->GetTypeItem(i);
interfaces_idx->Set(i, type_item.type_idx_);
}
}
}
void ClassLinker::LoadField(const DexFile& dex_file,
const DexFile::Field& src,
Class* klass,
Field* dst) {
const DexFile::FieldId& field_id = dex_file.GetFieldId(src.field_idx_);
dst->SetDeclaringClass(klass);
dst->SetName(ResolveString(dex_file, field_id.name_idx_, klass->GetDexCache()));
dst->SetTypeIdx(field_id.type_idx_);
dst->SetAccessFlags(src.access_flags_);
// In order to access primitive types using GetTypeDuringLinking we need to
// ensure they are resolved into the dex cache
const char* descriptor = dex_file.dexStringByTypeIdx(field_id.type_idx_);
if (descriptor[1] == '\0') {
// only the descriptors of primitive types should be 1 character long
Class* resolved = ResolveType(dex_file, field_id.type_idx_, klass);
DCHECK(resolved->IsPrimitive());
}
}
void ClassLinker::LoadMethod(const DexFile& dex_file,
const DexFile::Method& src,
Class* klass,
Method* dst) {
const DexFile::MethodId& method_id = dex_file.GetMethodId(src.method_idx_);
dst->SetDeclaringClass(klass);
dst->SetName(ResolveString(dex_file, method_id.name_idx_, klass->GetDexCache()));
{
int32_t utf16_length;
std::string utf8(dex_file.CreateMethodDescriptor(method_id.proto_idx_, &utf16_length));
dst->SetSignature(String::AllocFromModifiedUtf8(utf16_length, utf8.c_str()));
}
dst->SetProtoIdx(method_id.proto_idx_);
dst->SetCodeItemOffset(src.code_off_);
const char* shorty = dex_file.GetShorty(method_id.proto_idx_);
dst->SetShorty(shorty);
dst->SetAccessFlags(src.access_flags_);
dst->SetReturnTypeIdx(dex_file.GetProtoId(method_id.proto_idx_).return_type_idx_);
dst->SetDexCacheStrings(klass->GetDexCache()->GetStrings());
dst->SetDexCacheResolvedTypes(klass->GetDexCache()->GetResolvedTypes());
dst->SetDexCacheResolvedMethods(klass->GetDexCache()->GetResolvedMethods());
dst->SetDexCacheResolvedFields(klass->GetDexCache()->GetResolvedFields());
dst->SetDexCacheCodeAndDirectMethods(klass->GetDexCache()->GetCodeAndDirectMethods());
dst->SetDexCacheInitializedStaticStorage(klass->GetDexCache()->GetInitializedStaticStorage());
// TODO: check for finalize method
const DexFile::CodeItem* code_item = dex_file.GetCodeItem(src);
if (code_item != NULL) {
dst->SetNumRegisters(code_item->registers_size_);
dst->SetNumIns(code_item->ins_size_);
dst->SetNumOuts(code_item->outs_size_);
} else {
uint16_t num_args = Method::NumArgRegisters(shorty);
if ((src.access_flags_ & kAccStatic) != 0) {
++num_args;
}
dst->SetNumRegisters(num_args);
// TODO: native methods
}
}
void ClassLinker::AppendToBootClassPath(const DexFile& dex_file) {
AppendToBootClassPath(dex_file, AllocDexCache(dex_file));
}
void ClassLinker::AppendToBootClassPath(const DexFile& dex_file, DexCache* dex_cache) {
CHECK(dex_cache != NULL) << dex_file.GetLocation();
boot_class_path_.push_back(&dex_file);
RegisterDexFile(dex_file, dex_cache);
}
void ClassLinker::RegisterDexFile(const DexFile& dex_file) {
RegisterDexFile(dex_file, AllocDexCache(dex_file));
}
void ClassLinker::RegisterDexFile(const DexFile& dex_file, DexCache* dex_cache) {
CHECK(dex_cache != NULL) << dex_file.GetLocation();
CHECK(dex_cache->GetLocation()->Equals(dex_file.GetLocation()));
dex_files_.push_back(&dex_file);
dex_caches_.push_back(dex_cache);
}
const DexFile& ClassLinker::FindDexFile(const DexCache* dex_cache) const {
for (size_t i = 0; i != dex_caches_.size(); ++i) {
if (dex_caches_[i] == dex_cache) {
return *dex_files_[i];
}
}
CHECK(false) << "Failed to find DexFile for DexCache " << dex_cache->GetLocation()->ToModifiedUtf8();
return *dex_files_[-1];
}
DexCache* ClassLinker::FindDexCache(const DexFile& dex_file) const {
for (size_t i = 0; i != dex_files_.size(); ++i) {
if (dex_files_[i] == &dex_file) {
return dex_caches_[i];
}
}
CHECK(false) << "Failed to find DexCache for DexFile " << dex_file.GetLocation();
return NULL;
}
Class* ClassLinker::CreatePrimitiveClass(const char* descriptor,
Class::PrimitiveType type) {
// TODO: deduce one argument from the other
Class* klass = AllocClass(sizeof(Class));
CHECK(klass != NULL);
klass->SetAccessFlags(kAccPublic | kAccFinal | kAccAbstract);
klass->SetDescriptor(String::AllocFromModifiedUtf8(descriptor));
klass->SetPrimitiveType(type);
klass->SetStatus(Class::kStatusInitialized);
bool success = InsertClass(descriptor, klass);
CHECK(success) << "CreatePrimitiveClass(" << descriptor << ") failed";
return klass;
}
// Create an array class (i.e. the class object for the array, not the
// array itself). "descriptor" looks like "[C" or "[[[[B" or
// "[Ljava/lang/String;".
//
// If "descriptor" refers to an array of primitives, look up the
// primitive type's internally-generated class object.
//
// "loader" is the class loader of the class that's referring to us. It's
// used to ensure that we're looking for the element type in the right
// context. It does NOT become the class loader for the array class; that
// always comes from the base element class.
//
// Returns NULL with an exception raised on failure.
Class* ClassLinker::CreateArrayClass(const StringPiece& descriptor,
const ClassLoader* class_loader) {
CHECK_EQ('[', descriptor[0]);
// Identify the underlying element class and the array dimension depth.
Class* component_type = NULL;
int array_rank;
if (descriptor[1] == '[') {
// array of arrays; keep descriptor and grab stuff from parent
Class* outer = FindClass(descriptor.substr(1), class_loader);
if (outer != NULL) {
// want the base class, not "outer", in our component_type
component_type = outer->GetComponentType();
array_rank = outer->GetArrayRank() + 1;
} else {
DCHECK(component_type == NULL); // make sure we fail
}
} else {
array_rank = 1;
if (descriptor[1] == 'L') {
// array of objects; strip off "[" and look up descriptor.
const StringPiece subDescriptor = descriptor.substr(1);
component_type = FindClass(subDescriptor, class_loader);
} else {
// array of a primitive type
component_type = FindPrimitiveClass(descriptor[1]);
}
}
if (component_type == NULL) {
// failed
// DCHECK(Thread::Current()->IsExceptionPending()); // TODO
return NULL;
}
// See if the component type is already loaded. Array classes are
// always associated with the class loader of their underlying
// element type -- an array of Strings goes with the loader for
// java/lang/String -- so we need to look for it there. (The
// caller should have checked for the existence of the class
// before calling here, but they did so with *their* class loader,
// not the component type's loader.)
//
// If we find it, the caller adds "loader" to the class' initiating
// loader list, which should prevent us from going through this again.
//
// This call is unnecessary if "loader" and "component_type->GetClassLoader()"
// are the same, because our caller (FindClass) just did the
// lookup. (Even if we get this wrong we still have correct behavior,
// because we effectively do this lookup again when we add the new
// class to the hash table --- necessary because of possible races with
// other threads.)
if (class_loader != component_type->GetClassLoader()) {
Class* new_class = LookupClass(descriptor, component_type->GetClassLoader());
if (new_class != NULL) {
return new_class;
}
}
// Fill out the fields in the Class.
//
// It is possible to execute some methods against arrays, because
// all arrays are subclasses of java_lang_Object_, so we need to set
// up a vtable. We can just point at the one in java_lang_Object_.
//
// Array classes are simple enough that we don't need to do a full
// link step.
Class* new_class = NULL;
if (!init_done_) {
// Classes that were hand created, ie not by FindSystemClass
if (descriptor == "[Ljava/lang/Object;") {
new_class = GetClassRoot(kObjectArrayClass);
} else if (descriptor == "[C") {
new_class = GetClassRoot(kCharArrayClass);
} else if (descriptor == "[I") {
new_class = GetClassRoot(kIntArrayClass);
}
}
if (new_class == NULL) {
new_class = AllocClass(sizeof(Class));
if (new_class == NULL) {
return NULL;
}
new_class->SetArrayRank(array_rank);
new_class->SetComponentType(component_type);
}
DCHECK_LE(1, new_class->GetArrayRank());
DCHECK(new_class->GetComponentType() != NULL);
new_class->SetDescriptor(String::AllocFromModifiedUtf8(descriptor.ToString().c_str()));
Class* java_lang_Object = GetClassRoot(kJavaLangObject);
new_class->SetSuperClass(java_lang_Object);
new_class->SetVTable(java_lang_Object->GetVTable());
new_class->SetPrimitiveType(Class::kPrimNot);
new_class->SetClassLoader(component_type->GetClassLoader());
new_class->SetStatus(Class::kStatusInitialized);
// don't need to set new_class->SetObjectSize(..)
// because Object::SizeOf delegates to Array::SizeOf
// All arrays have java/lang/Cloneable and java/io/Serializable as
// interfaces. We need to set that up here, so that stuff like
// "instanceof" works right.
//
// Note: The GC could run during the call to FindSystemClass,
// so we need to make sure the class object is GC-valid while we're in
// there. Do this by clearing the interface list so the GC will just
// think that the entries are null.
// Use the single, global copies of "interfaces" and "iftable"
// (remember not to free them for arrays).
new_class->SetInterfaces(array_interfaces_);
new_class->SetIFTableCount(2);
new_class->SetIFTable(array_iftable_);
// Inherit access flags from the component type. Arrays can't be
// used as a superclass or interface, so we want to add "final"
// and remove "interface".
//
// Don't inherit any non-standard flags (e.g., kAccFinal)
// from component_type. We assume that the array class does not
// override finalize().
new_class->SetAccessFlags(((new_class->GetComponentType()->GetAccessFlags() &
~kAccInterface) | kAccFinal) & kAccJavaFlagsMask);
if (InsertClass(descriptor, new_class)) {
return new_class;
}
// Another thread must have loaded the class after we
// started but before we finished. Abandon what we've
// done.
//
// (Yes, this happens.)
// Grab the winning class.
Class* other_class = LookupClass(descriptor, component_type->GetClassLoader());
DCHECK(other_class != NULL);
return other_class;
}
Class* ClassLinker::FindPrimitiveClass(char type) {
switch (type) {
case 'B':
return GetClassRoot(kPrimitiveByte);
case 'C':
return GetClassRoot(kPrimitiveChar);
case 'D':
return GetClassRoot(kPrimitiveDouble);
case 'F':
return GetClassRoot(kPrimitiveFloat);
case 'I':
return GetClassRoot(kPrimitiveInt);
case 'J':
return GetClassRoot(kPrimitiveLong);
case 'S':
return GetClassRoot(kPrimitiveShort);
case 'Z':
return GetClassRoot(kPrimitiveBoolean);
case 'V':
return GetClassRoot(kPrimitiveVoid);
}
std::string printable_type(PrintableChar(type));
Thread::Current()->ThrowNewException("Ljava/lang/NoClassDefFoundError;",
"Not a primitive type: %s", printable_type.c_str());
return NULL;
}
bool ClassLinker::InsertClass(const StringPiece& descriptor, Class* klass) {
size_t hash = StringPieceHash()(descriptor);
MutexLock mu(classes_lock_);
Table::iterator it = classes_.insert(std::make_pair(hash, klass));
return ((*it).second == klass);
}
Class* ClassLinker::LookupClass(const StringPiece& descriptor, const ClassLoader* class_loader) {
size_t hash = StringPieceHash()(descriptor);
MutexLock mu(classes_lock_);
typedef Table::const_iterator It; // TODO: C++0x auto
for (It it = classes_.find(hash), end = classes_.end(); it != end; ++it) {
Class* klass = it->second;
if (klass->GetDescriptor()->Equals(descriptor) && klass->GetClassLoader() == class_loader) {
return klass;
}
}
return NULL;
}
bool ClassLinker::InitializeClass(Class* klass) {
CHECK(klass->GetStatus() == Class::kStatusResolved ||
klass->GetStatus() == Class::kStatusError);
Thread* self = Thread::Current();
{
ObjectLock lock(klass);
if (klass->GetStatus() < Class::kStatusVerified) {
if (klass->IsErroneous()) {
LG << "re-initializing failed class"; // TODO: throw
return false;
}
CHECK(klass->GetStatus() == Class::kStatusResolved);
klass->SetStatus(Class::kStatusVerifying);
if (!DexVerify::VerifyClass(klass)) {
LG << "Verification failed"; // TODO: ThrowVerifyError
Object* exception = self->GetException();
klass->SetVerifyErrorClass(exception->GetClass());
klass->SetStatus(Class::kStatusError);
return false;
}
klass->SetStatus(Class::kStatusVerified);
}
if (klass->GetStatus() == Class::kStatusInitialized) {
return true;
}
while (klass->GetStatus() == Class::kStatusInitializing) {
// we caught somebody else in the act; was it us?
if (klass->GetClinitThreadId() == self->GetId()) {
LG << "recursive <clinit>";
return true;
}
CHECK(!self->IsExceptionPending());
lock.Wait(); // TODO: check for interruption
// When we wake up, repeat the test for init-in-progress. If
// there's an exception pending (only possible if
// "interruptShouldThrow" was set), bail out.
if (self->IsExceptionPending()) {
CHECK(false);
LG << "Exception in initialization."; // TODO: ExceptionInInitializerError
klass->SetStatus(Class::kStatusError);
return false;
}
if (klass->GetStatus() == Class::kStatusInitializing) {
continue;
}
DCHECK(klass->GetStatus() == Class::kStatusInitialized ||
klass->GetStatus() == Class::kStatusError);
if (klass->IsErroneous()) {
// The caller wants an exception, but it was thrown in a
// different thread. Synthesize one here.
LG << "<clinit> failed"; // TODO: throw UnsatisfiedLinkError
return false;
}
return true; // otherwise, initialized
}
// see if we failed previously
if (klass->IsErroneous()) {
// might be wise to unlock before throwing; depends on which class
// it is that we have locked
// TODO: throwEarlierClassFailure(klass);
return false;
}
if (!ValidateSuperClassDescriptors(klass)) {
klass->SetStatus(Class::kStatusError);
return false;
}
DCHECK(klass->GetStatus() < Class::kStatusInitializing);
klass->SetClinitThreadId(self->GetId());
klass->SetStatus(Class::kStatusInitializing);
}
if (!InitializeSuperClass(klass)) {
return false;
}
InitializeStaticFields(klass);
Method* clinit = klass->FindDeclaredDirectMethod("<clinit>", "()V");
if (clinit != NULL) {
// JValue unused;
// TODO: dvmCallMethod(self, method, NULL, &unused);
// UNIMPLEMENTED(FATAL);
}
{
ObjectLock lock(klass);
if (self->IsExceptionPending()) {
klass->SetStatus(Class::kStatusError);
} else {
klass->SetStatus(Class::kStatusInitialized);
}
lock.NotifyAll();
}
return true;
}
bool ClassLinker::ValidateSuperClassDescriptors(const Class* klass) {
if (klass->IsInterface()) {
return true;
}
// begin with the methods local to the superclass
if (klass->HasSuperClass() &&
klass->GetClassLoader() != klass->GetSuperClass()->GetClassLoader()) {
const Class* super = klass->GetSuperClass();
for (int i = super->NumVirtualMethods() - 1; i >= 0; --i) {
const Method* method = super->GetVirtualMethod(i);
if (method != super->GetVirtualMethod(i) &&
!HasSameMethodDescriptorClasses(method, super, klass)) {
LG << "Classes resolve differently in superclass";
return false;
}
}
}
for (size_t i = 0; i < klass->GetIFTableCount(); ++i) {
const InterfaceEntry* iftable = &klass->GetIFTable()[i];
Class* interface = iftable->GetInterface();
if (klass->GetClassLoader() != interface->GetClassLoader()) {
for (size_t j = 0; j < interface->NumVirtualMethods(); ++j) {
uint32_t vtable_index = iftable->GetMethodIndexArray()[j];
const Method* method = klass->GetVirtualMethod(vtable_index);
if (!HasSameMethodDescriptorClasses(method, interface,
method->GetClass())) {
LG << "Classes resolve differently in interface"; // TODO: LinkageError
return false;
}
}
}
}
return true;
}
bool ClassLinker::HasSameMethodDescriptorClasses(const Method* method,
const Class* klass1,
const Class* klass2) {
const DexFile& dex_file = FindDexFile(method->GetClass()->GetDexCache());
const DexFile::ProtoId& proto_id = dex_file.GetProtoId(method->GetProtoIdx());
DexFile::ParameterIterator *it;
for (it = dex_file.GetParameterIterator(proto_id); it->HasNext(); it->Next()) {
const char* descriptor = it->GetDescriptor();
if (descriptor == NULL) {
break;
}
if (descriptor[0] == 'L' || descriptor[0] == '[') {
// Found a non-primitive type.
if (!HasSameDescriptorClasses(descriptor, klass1, klass2)) {
return false;
}
}
}
// Check the return type
const char* descriptor = dex_file.GetReturnTypeDescriptor(proto_id);
if (descriptor[0] == 'L' || descriptor[0] == '[') {
if (HasSameDescriptorClasses(descriptor, klass1, klass2)) {
return false;
}
}
return true;
}
// Returns true if classes referenced by the descriptor are the
// same classes in klass1 as they are in klass2.
bool ClassLinker::HasSameDescriptorClasses(const char* descriptor,
const Class* klass1,
const Class* klass2) {
CHECK(descriptor != NULL);
CHECK(klass1 != NULL);
CHECK(klass2 != NULL);
Class* found1 = FindClass(descriptor, klass1->GetClassLoader());
// TODO: found1 == NULL
Class* found2 = FindClass(descriptor, klass2->GetClassLoader());
// TODO: found2 == NULL
// TODO: lookup found1 in initiating loader list
if (found1 == NULL || found2 == NULL) {
Thread::Current()->ClearException();
if (found1 == found2) {
return true;
} else {
return false;
}
}
return true;
}
bool ClassLinker::InitializeSuperClass(Class* klass) {
CHECK(klass != NULL);
if (!klass->IsInterface() && klass->HasSuperClass()) {
Class* super_class = klass->GetSuperClass();
if (super_class->GetStatus() != Class::kStatusInitialized) {
CHECK(!super_class->IsInterface());
klass->MonitorExit();
bool super_initialized = InitializeClass(super_class);
klass->MonitorEnter();
// TODO: check for a pending exception
if (!super_initialized) {
klass->SetStatus(Class::kStatusError);
klass->NotifyAll();
return false;
}
}
}
return true;
}
bool ClassLinker::EnsureInitialized(Class* c) {
CHECK(c != NULL);
if (c->IsInitialized()) {
return true;
}
c->MonitorExit();
InitializeClass(c);
c->MonitorEnter();
return !Thread::Current()->IsExceptionPending();
}
StaticStorageBase* ClassLinker::InitializeStaticStorageFromCode(uint32_t type_idx,
const Method* referrer) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
Class* klass = class_linker->ResolveType(type_idx, referrer);
if (klass == NULL) {
UNIMPLEMENTED(FATAL) << "throw exception due to unresolved class";
}
// If we are the <clinit> of this class, just return our storage.
//
// Do not set the DexCache InitializedStaticStorage, since that
// implies <clinit> has finished running.
if (klass == referrer->GetDeclaringClass() && referrer->GetName()->Equals("<clinit>")) {
return klass;
}
if (!class_linker->EnsureInitialized(klass)) {
CHECK(Thread::Current()->IsExceptionPending());
UNIMPLEMENTED(FATAL) << "throw exception due to class initialization problem";
}
referrer->GetDexCacheInitializedStaticStorage()->Set(type_idx, klass);
return klass;
}
void ClassLinker::InitializeStaticFields(Class* klass) {
size_t num_static_fields = klass->NumStaticFields();
if (num_static_fields == 0) {
return;
}
DexCache* dex_cache = klass->GetDexCache();
// TODO: this seems like the wrong check. do we really want !IsPrimitive && !IsArray?
if (dex_cache == NULL) {
return;
}
const std::string descriptor(klass->GetDescriptor()->ToModifiedUtf8());
const DexFile& dex_file = FindDexFile(dex_cache);
const DexFile::ClassDef* dex_class_def = dex_file.FindClassDef(descriptor);
CHECK(dex_class_def != NULL);
const byte* addr = dex_file.GetEncodedArray(*dex_class_def);
if (addr == NULL) {
// All this class' static fields have default values.
return;
}
size_t array_size = DecodeUnsignedLeb128(&addr);
for (size_t i = 0; i < array_size; ++i) {
Field* field = klass->GetStaticField(i);
JValue value;
DexFile::ValueType type = dex_file.ReadEncodedValue(&addr, &value);
switch (type) {
case DexFile::kByte:
field->SetByte(NULL, value.b);
break;
case DexFile::kShort:
field->SetShort(NULL, value.s);
break;
case DexFile::kChar:
field->SetChar(NULL, value.c);
break;
case DexFile::kInt:
field->SetInt(NULL, value.i);
break;
case DexFile::kLong:
field->SetLong(NULL, value.j);
break;
case DexFile::kFloat:
field->SetFloat(NULL, value.f);
break;
case DexFile::kDouble:
field->SetDouble(NULL, value.d);
break;
case DexFile::kString: {
uint32_t string_idx = value.i;
const String* resolved = ResolveString(dex_file, string_idx, klass->GetDexCache());
field->SetObject(NULL, resolved);
break;
}
case DexFile::kBoolean:
field->SetBoolean(NULL, value.z);
break;
case DexFile::kNull:
field->SetObject(NULL, value.l);
break;
default:
LOG(FATAL) << "Unknown type " << static_cast<int>(type);
}
}
}
bool ClassLinker::LinkClass(Class* klass) {
CHECK_EQ(Class::kStatusLoaded, klass->GetStatus());
if (!LinkSuperClass(klass)) {
return false;
}
if (!LinkMethods(klass)) {
return false;
}
if (!LinkInstanceFields(klass)) {
return false;
}
if (!LinkStaticFields(klass)) {
return false;
}
CreateReferenceInstanceOffsets(klass);
CreateReferenceStaticOffsets(klass);
CHECK_EQ(Class::kStatusLoaded, klass->GetStatus());
klass->SetStatus(Class::kStatusResolved);
return true;
}
bool ClassLinker::LoadSuperAndInterfaces(Class* klass, const DexFile& dex_file) {
CHECK_EQ(Class::kStatusIdx, klass->GetStatus());
if (klass->GetSuperClassTypeIdx() != DexFile::kDexNoIndex) {
Class* super_class = ResolveType(dex_file, klass->GetSuperClassTypeIdx(), klass);
if (super_class == NULL) {
LG << "Failed to resolve superclass";
return false;
}
klass->SetSuperClass(super_class);
}
for (size_t i = 0; i < klass->NumInterfaces(); ++i) {
uint32_t idx = klass->GetInterfacesTypeIdx()->Get(i);
Class *interface = ResolveType(dex_file, idx, klass);
klass->SetInterface(i, interface);
if (interface == NULL) {
LG << "Failed to resolve interface";
return false;
}
// Verify
if (!klass->CanAccess(interface)) {
LG << "Inaccessible interface";
return false;
}
}
// Mark the class as loaded.
klass->SetStatus(Class::kStatusLoaded);
return true;
}
bool ClassLinker::LinkSuperClass(Class* klass) {
CHECK(!klass->IsPrimitive());
Class* super = klass->GetSuperClass();
if (klass->GetDescriptor()->Equals("Ljava/lang/Object;")) {
if (super != NULL) {
LG << "Superclass must not be defined"; // TODO: ClassFormatError
return false;
}
// TODO: clear finalize attribute
return true;
}
if (super == NULL) {
LG << "No superclass defined"; // TODO: LinkageError
return false;
}
// Verify
if (super->IsFinal()) {
LG << "Superclass " << super->GetDescriptor()->ToModifiedUtf8() << " is declared final"; // TODO: IncompatibleClassChangeError
return false;
}
if (super->IsInterface()) {
LG << "Superclass " << super->GetDescriptor()->ToModifiedUtf8() << " is an interface"; // TODO: IncompatibleClassChangeError
return false;
}
if (!klass->CanAccess(super)) {
LG << "Superclass " << super->GetDescriptor()->ToModifiedUtf8() << " is inaccessible"; // TODO: IllegalAccessError
return false;
}
#ifndef NDEBUG
// Ensure super classes are fully resolved prior to resolving fields..
while (super != NULL) {
CHECK(super->IsLinked());
super = super->GetSuperClass();
}
#endif
return true;
}
// Populate the class vtable and itable. Compute return type indices.
bool ClassLinker::LinkMethods(Class* klass) {
if (klass->IsInterface()) {
// No vtable.
size_t count = klass->NumVirtualMethods();
if (!IsUint(16, count)) {
LG << "Too many methods on interface"; // TODO: VirtualMachineError
return false;
}
for (size_t i = 0; i < count; ++i) {
klass->GetVirtualMethodDuringLinking(i)->SetMethodIndex(i);
}
} else {
// Link virtual method tables
LinkVirtualMethods(klass);
// Link interface method tables
LinkInterfaceMethods(klass);
// Insert stubs.
LinkAbstractMethods(klass);
}
return true;
}
bool ClassLinker::LinkVirtualMethods(Class* klass) {
if (klass->HasSuperClass()) {
uint32_t max_count = klass->NumVirtualMethods() + klass->GetSuperClass()->GetVTable()->GetLength();
size_t actual_count = klass->GetSuperClass()->GetVTable()->GetLength();
CHECK_LE(actual_count, max_count);
// TODO: do not assign to the vtable field until it is fully constructed.
ObjectArray<Method>* vtable = klass->GetSuperClass()->GetVTable()->CopyOf(max_count);
// See if any of our virtual methods override the superclass.
for (size_t i = 0; i < klass->NumVirtualMethods(); ++i) {
Method* local_method = klass->GetVirtualMethodDuringLinking(i);
size_t j = 0;
for (; j < actual_count; ++j) {
Method* super_method = vtable->Get(j);
if (local_method->HasSameNameAndDescriptor(super_method)) {
// Verify
if (super_method->IsFinal()) {
LG << "Method overrides final method"; // TODO: VirtualMachineError
return false;
}
vtable->Set(j, local_method);
local_method->SetMethodIndex(j);
break;
}
}
if (j == actual_count) {
// Not overriding, append.
vtable->Set(actual_count, local_method);
local_method->SetMethodIndex(actual_count);
actual_count += 1;
}
}
if (!IsUint(16, actual_count)) {
LG << "Too many methods defined on class"; // TODO: VirtualMachineError
return false;
}
// Shrink vtable if possible
CHECK_LE(actual_count, max_count);
if (actual_count < max_count) {
vtable = vtable->CopyOf(actual_count);
}
klass->SetVTable(vtable);
} else {
CHECK(klass->GetDescriptor()->Equals("Ljava/lang/Object;"));
uint32_t num_virtual_methods = klass->NumVirtualMethods();
if (!IsUint(16, num_virtual_methods)) {
LG << "Too many methods"; // TODO: VirtualMachineError
return false;
}
ObjectArray<Method>* vtable = AllocObjectArray<Method>(num_virtual_methods);
for (size_t i = 0; i < num_virtual_methods; ++i) {
Method* virtual_method = klass->GetVirtualMethodDuringLinking(i);
vtable->Set(i, virtual_method);
virtual_method->SetMethodIndex(i & 0xFFFF);
}
klass->SetVTable(vtable);
}
return true;
}
bool ClassLinker::LinkInterfaceMethods(Class* klass) {
int pool_offset = 0;
int pool_size = 0;
int miranda_count = 0;
int miranda_alloc = 0;
size_t super_ifcount;
if (klass->HasSuperClass()) {
super_ifcount = klass->GetSuperClass()->GetIFTableCount();
} else {
super_ifcount = 0;
}
size_t ifcount = super_ifcount;
ifcount += klass->NumInterfaces();
for (size_t i = 0; i < klass->NumInterfaces(); i++) {
ifcount += klass->GetInterface(i)->GetIFTableCount();
}
if (ifcount == 0) {
// TODO: enable these asserts with klass status validation
// DCHECK(klass->GetIFTableCount() == 0);
// DCHECK(klass->GetIFTable() == NULL);
return true;
}
InterfaceEntry* iftable = new InterfaceEntry[ifcount];
memset(iftable, 0x00, sizeof(InterfaceEntry) * ifcount);
if (super_ifcount != 0) {
memcpy(iftable, klass->GetSuperClass()->GetIFTable(),
sizeof(InterfaceEntry) * super_ifcount);
}
// Flatten the interface inheritance hierarchy.
size_t idx = super_ifcount;
for (size_t i = 0; i < klass->NumInterfaces(); i++) {
Class* interf = klass->GetInterface(i);
DCHECK(interf != NULL);
if (!interf->IsInterface()) {
LG << "Class implements non-interface class"; // TODO: IncompatibleClassChangeError
return false;
}
iftable[idx++].SetInterface(interf);
for (size_t j = 0; j < interf->GetIFTableCount(); j++) {
iftable[idx++].SetInterface(interf->GetIFTable()[j].GetInterface());
}
}
klass->SetIFTable(iftable);
CHECK_EQ(idx, ifcount);
klass->SetIFTableCount(ifcount);
if (klass->IsInterface() || super_ifcount == ifcount) {
return true;
}
for (size_t i = super_ifcount; i < ifcount; i++) {
pool_size += iftable[i].GetInterface()->NumVirtualMethods();
}
if (pool_size == 0) {
return true;
}
klass->SetIfviPoolCount(pool_size);
uint32_t* ifvi_pool = new uint32_t[pool_size];
klass->SetIfviPool(ifvi_pool);
std::vector<Method*> miranda_list;
for (size_t i = super_ifcount; i < ifcount; ++i) {
iftable[i].SetMethodIndexArray(ifvi_pool + pool_offset);
Class* interface = iftable[i].GetInterface();
pool_offset += interface->NumVirtualMethods(); // end here
ObjectArray<Method>* vtable = klass->GetVTableDuringLinking();
for (size_t j = 0; j < interface->NumVirtualMethods(); ++j) {
Method* interface_method = interface->GetVirtualMethod(j);
int k; // must be signed
for (k = vtable->GetLength() - 1; k >= 0; --k) {
Method* vtable_method = vtable->Get(k);
if (interface_method->HasSameNameAndDescriptor(vtable_method)) {
if (!vtable_method->IsPublic()) {
LG << "Implementation not public";
return false;
}
iftable[i].GetMethodIndexArray()[j] = k;
break;
}
}
if (k < 0) {
if (miranda_count == miranda_alloc) {
miranda_alloc += 8;
if (miranda_list.empty()) {
miranda_list.resize(miranda_alloc);
} else {
miranda_list.resize(miranda_alloc);
}
}
int mir;
for (mir = 0; mir < miranda_count; mir++) {
Method* miranda_method = miranda_list[mir];
if (miranda_method->HasSameNameAndDescriptor(interface_method)) {
break;
}
}
// point the interface table at a phantom slot index
iftable[i].GetMethodIndexArray()[j] =
vtable->GetLength() + mir;
if (mir == miranda_count) {
miranda_list[miranda_count++] = interface_method;
}
}
}
}
if (miranda_count != 0) {
int old_method_count = klass->NumVirtualMethods();
int new_method_count = old_method_count + miranda_count;
klass->SetVirtualMethods(
klass->GetVirtualMethods()->CopyOf(new_method_count));
ObjectArray<Method>* vtable = klass->GetVTableDuringLinking();
CHECK(vtable != NULL);
int old_vtable_count = vtable->GetLength();
int new_vtable_count = old_vtable_count + miranda_count;
vtable = vtable->CopyOf(new_vtable_count);
for (int i = 0; i < miranda_count; i++) {
Method* meth = AllocMethod();
// TODO: this shouldn't be a memcpy
memcpy(meth, miranda_list[i], sizeof(Method));
meth->SetDeclaringClass(klass);
meth->SetAccessFlags(meth->GetAccessFlags() | kAccMiranda);
meth->SetMethodIndex(0xFFFF & (old_vtable_count + i));
klass->SetVirtualMethod(old_method_count + i, meth);
vtable->Set(old_vtable_count + i, meth);
}
// TODO: do not assign to the vtable field until it is fully constructed.
klass->SetVTable(vtable);
}
return true;
}
void ClassLinker::LinkAbstractMethods(Class* klass) {
for (size_t i = 0; i < klass->NumVirtualMethods(); ++i) {
Method* method = klass->GetVirtualMethodDuringLinking(i);
if (method->IsAbstract()) {
LG << "AbstractMethodError";
// TODO: throw AbstractMethodError
}
}
}
bool ClassLinker::LinkInstanceFields(Class* klass) {
CHECK(klass != NULL);
return LinkFields(klass, true);
}
bool ClassLinker::LinkStaticFields(Class* klass) {
CHECK(klass != NULL);
size_t allocated_class_size = klass->GetClassSize();
bool success = LinkFields(klass, false);
CHECK_EQ(allocated_class_size, klass->GetClassSize());
return success;
}
bool ClassLinker::LinkFields(Class *klass, bool instance) {
size_t num_fields =
instance ? klass->NumInstanceFields() : klass->NumStaticFields();
ObjectArray<Field>* fields =
instance ? klass->GetIFields() : klass->GetSFields();
// Fields updated at end of LinkFields
size_t num_reference_fields;
size_t size;
// Initialize size and field_offset
MemberOffset field_offset = Class::FieldsOffset();
if (instance) {
Class* super_class = klass->GetSuperClass();
if (super_class != NULL) {
CHECK(super_class->IsLinked());
field_offset = MemberOffset(super_class->GetObjectSize());
if (field_offset.Uint32Value() == 0u) {
field_offset = OFFSET_OF_OBJECT_MEMBER(DataObject, fields_);
}
} else {
field_offset = OFFSET_OF_OBJECT_MEMBER(DataObject, fields_);
}
size = field_offset.Uint32Value();
} else {
size = klass->GetClassSize();
}
DCHECK_LE(CLASS_SMALLEST_OFFSET, size);
CHECK((num_fields == 0) == (fields == NULL));
// Move references to the front.
size_t i = 0;
num_reference_fields = 0;
for (; i < num_fields; i++) {
Field* field = fields->Get(i);
const Class* field_type = field->GetTypeDuringLinking();
// if a field's type at this point is NULL it isn't primitive
if (field_type != NULL && field_type->IsPrimitive()) {
for (size_t j = num_fields - 1; j > i; j--) {
Field* ref_field = fields->Get(j);
const Class* ref_field_type = ref_field->GetTypeDuringLinking();
if (ref_field_type == NULL || !ref_field_type->IsPrimitive()) {
fields->Set(i, ref_field);
fields->Set(j, field);
field = ref_field;
field_type = ref_field_type;
num_reference_fields++;
break;
}
}
} else {
num_reference_fields++;
}
if (field_type != NULL && field_type->IsPrimitive()) {
break;
}
field->SetOffset(field_offset);
field_offset = MemberOffset(field_offset.Uint32Value() + sizeof(uint32_t));
}
// Now we want to pack all of the double-wide fields together. If
// we're not aligned, though, we want to shuffle one 32-bit field
// into place. If we can't find one, we'll have to pad it.
if (i != num_fields && !IsAligned(field_offset.Uint32Value(), 8)) {
Field* field = fields->Get(i);
const Class* c = field->GetTypeDuringLinking();
CHECK(c != NULL); // should only be working on primitive types
if (!c->IsPrimitiveLong() && !c->IsPrimitiveDouble()) {
// The field that comes next is 32-bit, so just advance past it.
DCHECK(c->IsPrimitive());
field->SetOffset(field_offset);
field_offset = MemberOffset(field_offset.Uint32Value() +
sizeof(uint32_t));
i++;
} else {
// Next field is 64-bit, so search for a 32-bit field we can
// swap into it.
bool found = false;
for (size_t j = num_fields - 1; j > i; j--) {
Field* single_field = fields->Get(j);
const Class* rc = single_field->GetTypeDuringLinking();
CHECK(rc != NULL); // should only be working on primitive types
if (!rc->IsPrimitiveLong() && !rc->IsPrimitiveDouble()) {
fields->Set(i, single_field);
fields->Set(j, field);
field = single_field;
field->SetOffset(field_offset);
field_offset = MemberOffset(field_offset.Uint32Value() +
sizeof(uint32_t));
found = true;
i++;
break;
}
}
if (!found) {
field_offset = MemberOffset(field_offset.Uint32Value() +
sizeof(uint32_t));
}
}
}
// Alignment is good, shuffle any double-wide fields forward, and
// finish assigning field offsets to all fields.
DCHECK(i == num_fields || IsAligned(field_offset.Uint32Value(), 4));
for ( ; i < num_fields; i++) {
Field* field = fields->Get(i);
const Class* c = field->GetTypeDuringLinking();
CHECK(c != NULL); // should only be working on primitive types
if (!c->IsPrimitiveDouble() && !c->IsPrimitiveLong()) {
for (size_t j = num_fields - 1; j > i; j--) {
Field* double_field = fields->Get(j);
const Class* rc = double_field->GetTypeDuringLinking();
CHECK(rc != NULL); // should only be working on primitive types
if (rc->IsPrimitiveDouble() || rc->IsPrimitiveLong()) {
fields->Set(i, double_field);
fields->Set(j, field);
field = double_field;
c = rc;
break;
}
}
} else {
// This is a double-wide field, leave it be.
}
field->SetOffset(field_offset);
if (c->IsPrimitiveLong() || c->IsPrimitiveDouble()) {
field_offset = MemberOffset(field_offset.Uint32Value() +
sizeof(uint64_t));
} else {
field_offset = MemberOffset(field_offset.Uint32Value() +
sizeof(uint32_t));
}
}
#ifndef NDEBUG
// Make sure that all reference fields appear before
// non-reference fields, and all double-wide fields are aligned.
bool seen_non_ref = false;
for (i = 0; i < num_fields; i++) {
Field* field = fields->Get(i);
const Class* c = field->GetTypeDuringLinking();
if (c != NULL && c->IsPrimitive()) {
if (!seen_non_ref) {
seen_non_ref = true;
DCHECK_EQ(num_reference_fields, i);
}
} else {
DCHECK(!seen_non_ref);
}
}
if (!seen_non_ref) {
DCHECK_EQ(num_fields, num_reference_fields);
}
#endif
size = field_offset.Uint32Value();
DCHECK_LE(CLASS_SMALLEST_OFFSET, size);
// Update klass
if(instance) {
klass->SetNumReferenceInstanceFields(num_reference_fields);
if(!klass->IsVariableSize()) {
klass->SetObjectSize(size);
}
} else {
klass->SetNumReferenceStaticFields(num_reference_fields);
klass->SetClassSize(size);
}
return true;
}
// Set the bitmap of reference offsets, refOffsets, from the ifields
// list.
void ClassLinker::CreateReferenceInstanceOffsets(Class* klass) {
uint32_t reference_offsets = 0;
Class* super_class = klass->GetSuperClass();
if (super_class != NULL) {
reference_offsets = super_class->GetReferenceInstanceOffsets();
// If our superclass overflowed, we don't stand a chance.
if (reference_offsets == CLASS_WALK_SUPER) {
klass->SetReferenceInstanceOffsets(reference_offsets);
return;
}
}
CreateReferenceOffsets(klass, true, reference_offsets);
}
void ClassLinker::CreateReferenceStaticOffsets(Class* klass) {
CreateReferenceOffsets(klass, false, 0);
}
void ClassLinker::CreateReferenceOffsets(Class* klass, bool instance,
uint32_t reference_offsets) {
size_t num_reference_fields =
instance ? klass->NumReferenceInstanceFieldsDuringLinking()
: klass->NumReferenceStaticFieldsDuringLinking();
const ObjectArray<Field>* fields =
instance ? klass->GetIFields() : klass->GetSFields();
// All of the fields that contain object references are guaranteed
// to be at the beginning of the fields list.
for (size_t i = 0; i < num_reference_fields; ++i) {
// Note that byte_offset is the offset from the beginning of
// object, not the offset into instance data
const Field* field = fields->Get(i);
MemberOffset byte_offset = field->GetOffsetDuringLinking();
CHECK_GE(byte_offset.Uint32Value(), CLASS_SMALLEST_OFFSET);
CHECK_EQ(byte_offset.Uint32Value() & (CLASS_OFFSET_ALIGNMENT - 1), 0U);
if (CLASS_CAN_ENCODE_OFFSET(byte_offset.Uint32Value())) {
uint32_t new_bit = CLASS_BIT_FROM_OFFSET(byte_offset.Uint32Value());
CHECK_NE(new_bit, 0U);
reference_offsets |= new_bit;
} else {
reference_offsets = CLASS_WALK_SUPER;
break;
}
}
// Update fields in klass
if (instance) {
klass->SetReferenceInstanceOffsets(reference_offsets);
} else {
klass->SetReferenceStaticOffsets(reference_offsets);
}
}
String* ClassLinker::ResolveString(const DexFile& dex_file,
uint32_t string_idx, DexCache* dex_cache) {
String* resolved = dex_cache->GetResolvedString(string_idx);
if (resolved != NULL) {
return resolved;
}
const DexFile::StringId& string_id = dex_file.GetStringId(string_idx);
int32_t utf16_length = dex_file.GetStringLength(string_id);
const char* utf8_data = dex_file.GetStringData(string_id);
// TODO: remote the const_cast below
String* string = const_cast<String*>(intern_table_->InternStrong(utf16_length, utf8_data));
dex_cache->SetResolvedString(string_idx, string);
return string;
}
Class* ClassLinker::ResolveType(const DexFile& dex_file,
uint32_t type_idx,
DexCache* dex_cache,
const ClassLoader* class_loader) {
Class* resolved = dex_cache->GetResolvedType(type_idx);
if (resolved == NULL) {
const char* descriptor = dex_file.dexStringByTypeIdx(type_idx);
if (descriptor[1] == '\0') {
// only the descriptors of primitive types should be 1 character long
resolved = FindPrimitiveClass(descriptor[0]);
} else {
resolved = FindClass(descriptor, class_loader);
}
if (resolved != NULL) {
Class* check = resolved->IsArrayClass() ? resolved->GetComponentType() : resolved;
if (dex_cache != check->GetDexCache()) {
if (check->GetClassLoader() != NULL) {
LG << "Class resolved by unexpected DEX"; // TODO: IllegalAccessError
resolved = NULL;
}
}
}
if (resolved != NULL) {
dex_cache->SetResolvedType(type_idx, resolved);
} else {
DCHECK(Thread::Current()->IsExceptionPending());
}
}
return resolved;
}
Method* ClassLinker::ResolveMethod(const DexFile& dex_file,
uint32_t method_idx,
DexCache* dex_cache,
const ClassLoader* class_loader,
bool is_direct) {
Method* resolved = dex_cache->GetResolvedMethod(method_idx);
if (resolved != NULL) {
return resolved;
}
const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
Class* klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader);
if (klass == NULL) {
return NULL;
}
const char* name = dex_file.dexStringById(method_id.name_idx_);
std::string signature(dex_file.CreateMethodDescriptor(method_id.proto_idx_, NULL));
if (is_direct) {
resolved = klass->FindDirectMethod(name, signature);
} else {
resolved = klass->FindVirtualMethod(name, signature);
}
if (resolved != NULL) {
dex_cache->SetResolvedMethod(method_idx, resolved);
} else {
// DCHECK(Thread::Current()->IsExceptionPending());
}
return resolved;
}
Field* ClassLinker::ResolveField(const DexFile& dex_file,
uint32_t field_idx,
DexCache* dex_cache,
const ClassLoader* class_loader,
bool is_static) {
Field* resolved = dex_cache->GetResolvedField(field_idx);
if (resolved != NULL) {
return resolved;
}
const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
Class* klass = ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader);
if (klass == NULL) {
return NULL;
}
const char* name = dex_file.dexStringById(field_id.name_idx_);
Class* field_type = ResolveType(dex_file, field_id.type_idx_, dex_cache, class_loader);
// TODO: LinkageError?
CHECK(field_type != NULL);
if (is_static) {
resolved = klass->FindStaticField(name, field_type);
} else {
resolved = klass->FindInstanceField(name, field_type);
}
if (resolved != NULL) {
dex_cache->SetResolvedfield(field_idx, resolved);
} else {
// TODO: DCHECK(Thread::Current()->IsExceptionPending());
}
return resolved;
}
size_t ClassLinker::NumLoadedClasses() const {
MutexLock mu(classes_lock_);
return classes_.size();
}
} // namespace art