blob: cfc798a34e2e9f068545705c39ca8d9bdd56d006 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator_arm.h"
#include "arch/arm/instruction_set_features_arm.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "gc/accounting/card_table.h"
#include "intrinsics.h"
#include "intrinsics_arm.h"
#include "mirror/array-inl.h"
#include "mirror/art_method.h"
#include "mirror/class.h"
#include "thread.h"
#include "utils/arm/assembler_arm.h"
#include "utils/arm/managed_register_arm.h"
#include "utils/assembler.h"
#include "utils/stack_checks.h"
namespace art {
namespace arm {
static bool ExpectedPairLayout(Location location) {
// We expected this for both core and fpu register pairs.
return ((location.low() & 1) == 0) && (location.low() + 1 == location.high());
}
static constexpr int kCurrentMethodStackOffset = 0;
// We unconditionally allocate R5 to ensure we can do long operations
// with baseline.
static constexpr Register kCoreSavedRegisterForBaseline = R5;
static constexpr Register kCoreCalleeSaves[] =
{ R5, R6, R7, R8, R10, R11, PC };
static constexpr SRegister kFpuCalleeSaves[] =
{ S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31 };
// D31 cannot be split into two S registers, and the register allocator only works on
// S registers. Therefore there is no need to block it.
static constexpr DRegister DTMP = D31;
#define __ reinterpret_cast<ArmAssembler*>(codegen->GetAssembler())->
#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmWordSize, x).Int32Value()
class NullCheckSlowPathARM : public SlowPathCodeARM {
public:
explicit NullCheckSlowPathARM(HNullCheck* instruction) : instruction_(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
__ Bind(GetEntryLabel());
arm_codegen->InvokeRuntime(
QUICK_ENTRY_POINT(pThrowNullPointer), instruction_, instruction_->GetDexPc(), this);
}
private:
HNullCheck* const instruction_;
DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM);
};
class DivZeroCheckSlowPathARM : public SlowPathCodeARM {
public:
explicit DivZeroCheckSlowPathARM(HDivZeroCheck* instruction) : instruction_(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
__ Bind(GetEntryLabel());
arm_codegen->InvokeRuntime(
QUICK_ENTRY_POINT(pThrowDivZero), instruction_, instruction_->GetDexPc(), this);
}
private:
HDivZeroCheck* const instruction_;
DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM);
};
class SuspendCheckSlowPathARM : public SlowPathCodeARM {
public:
SuspendCheckSlowPathARM(HSuspendCheck* instruction, HBasicBlock* successor)
: instruction_(instruction), successor_(successor) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, instruction_->GetLocations());
arm_codegen->InvokeRuntime(
QUICK_ENTRY_POINT(pTestSuspend), instruction_, instruction_->GetDexPc(), this);
RestoreLiveRegisters(codegen, instruction_->GetLocations());
if (successor_ == nullptr) {
__ b(GetReturnLabel());
} else {
__ b(arm_codegen->GetLabelOf(successor_));
}
}
Label* GetReturnLabel() {
DCHECK(successor_ == nullptr);
return &return_label_;
}
private:
HSuspendCheck* const instruction_;
// If not null, the block to branch to after the suspend check.
HBasicBlock* const successor_;
// If `successor_` is null, the label to branch to after the suspend check.
Label return_label_;
DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM);
};
class BoundsCheckSlowPathARM : public SlowPathCodeARM {
public:
BoundsCheckSlowPathARM(HBoundsCheck* instruction,
Location index_location,
Location length_location)
: instruction_(instruction),
index_location_(index_location),
length_location_(length_location) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
__ Bind(GetEntryLabel());
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
codegen->EmitParallelMoves(
index_location_,
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
length_location_,
Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
arm_codegen->InvokeRuntime(
QUICK_ENTRY_POINT(pThrowArrayBounds), instruction_, instruction_->GetDexPc(), this);
}
private:
HBoundsCheck* const instruction_;
const Location index_location_;
const Location length_location_;
DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM);
};
class LoadClassSlowPathARM : public SlowPathCodeARM {
public:
LoadClassSlowPathARM(HLoadClass* cls,
HInstruction* at,
uint32_t dex_pc,
bool do_clinit)
: cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
DCHECK(at->IsLoadClass() || at->IsClinitCheck());
}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = at_->GetLocations();
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
__ LoadImmediate(calling_convention.GetRegisterAt(0), cls_->GetTypeIndex());
arm_codegen->LoadCurrentMethod(calling_convention.GetRegisterAt(1));
int32_t entry_point_offset = do_clinit_
? QUICK_ENTRY_POINT(pInitializeStaticStorage)
: QUICK_ENTRY_POINT(pInitializeType);
arm_codegen->InvokeRuntime(entry_point_offset, at_, dex_pc_, this);
// Move the class to the desired location.
Location out = locations->Out();
if (out.IsValid()) {
DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
}
RestoreLiveRegisters(codegen, locations);
__ b(GetExitLabel());
}
private:
// The class this slow path will load.
HLoadClass* const cls_;
// The instruction where this slow path is happening.
// (Might be the load class or an initialization check).
HInstruction* const at_;
// The dex PC of `at_`.
const uint32_t dex_pc_;
// Whether to initialize the class.
const bool do_clinit_;
DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM);
};
class LoadStringSlowPathARM : public SlowPathCodeARM {
public:
explicit LoadStringSlowPathARM(HLoadString* instruction) : instruction_(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
arm_codegen->LoadCurrentMethod(calling_convention.GetRegisterAt(1));
__ LoadImmediate(calling_convention.GetRegisterAt(0), instruction_->GetStringIndex());
arm_codegen->InvokeRuntime(
QUICK_ENTRY_POINT(pResolveString), instruction_, instruction_->GetDexPc(), this);
arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
RestoreLiveRegisters(codegen, locations);
__ b(GetExitLabel());
}
private:
HLoadString* const instruction_;
DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM);
};
class TypeCheckSlowPathARM : public SlowPathCodeARM {
public:
TypeCheckSlowPathARM(HInstruction* instruction,
Location class_to_check,
Location object_class,
uint32_t dex_pc)
: instruction_(instruction),
class_to_check_(class_to_check),
object_class_(object_class),
dex_pc_(dex_pc) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
DCHECK(instruction_->IsCheckCast()
|| !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
codegen->EmitParallelMoves(
class_to_check_,
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
object_class_,
Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
if (instruction_->IsInstanceOf()) {
arm_codegen->InvokeRuntime(
QUICK_ENTRY_POINT(pInstanceofNonTrivial), instruction_, dex_pc_, this);
arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
} else {
DCHECK(instruction_->IsCheckCast());
arm_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast), instruction_, dex_pc_, this);
}
RestoreLiveRegisters(codegen, locations);
__ b(GetExitLabel());
}
private:
HInstruction* const instruction_;
const Location class_to_check_;
const Location object_class_;
uint32_t dex_pc_;
DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM);
};
class DeoptimizationSlowPathARM : public SlowPathCodeARM {
public:
explicit DeoptimizationSlowPathARM(HInstruction* instruction)
: instruction_(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, instruction_->GetLocations());
DCHECK(instruction_->IsDeoptimize());
HDeoptimize* deoptimize = instruction_->AsDeoptimize();
uint32_t dex_pc = deoptimize->GetDexPc();
CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
arm_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize), instruction_, dex_pc, this);
}
private:
HInstruction* const instruction_;
DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM);
};
#undef __
#undef __
#define __ reinterpret_cast<ArmAssembler*>(GetAssembler())->
inline Condition ARMCondition(IfCondition cond) {
switch (cond) {
case kCondEQ: return EQ;
case kCondNE: return NE;
case kCondLT: return LT;
case kCondLE: return LE;
case kCondGT: return GT;
case kCondGE: return GE;
default:
LOG(FATAL) << "Unknown if condition";
}
return EQ; // Unreachable.
}
inline Condition ARMOppositeCondition(IfCondition cond) {
switch (cond) {
case kCondEQ: return NE;
case kCondNE: return EQ;
case kCondLT: return GE;
case kCondLE: return GT;
case kCondGT: return LE;
case kCondGE: return LT;
default:
LOG(FATAL) << "Unknown if condition";
}
return EQ; // Unreachable.
}
void CodeGeneratorARM::DumpCoreRegister(std::ostream& stream, int reg) const {
stream << ArmManagedRegister::FromCoreRegister(Register(reg));
}
void CodeGeneratorARM::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
stream << ArmManagedRegister::FromSRegister(SRegister(reg));
}
size_t CodeGeneratorARM::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
__ StoreToOffset(kStoreWord, static_cast<Register>(reg_id), SP, stack_index);
return kArmWordSize;
}
size_t CodeGeneratorARM::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
__ LoadFromOffset(kLoadWord, static_cast<Register>(reg_id), SP, stack_index);
return kArmWordSize;
}
size_t CodeGeneratorARM::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
__ StoreSToOffset(static_cast<SRegister>(reg_id), SP, stack_index);
return kArmWordSize;
}
size_t CodeGeneratorARM::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
__ LoadSFromOffset(static_cast<SRegister>(reg_id), SP, stack_index);
return kArmWordSize;
}
CodeGeneratorARM::CodeGeneratorARM(HGraph* graph,
const ArmInstructionSetFeatures& isa_features,
const CompilerOptions& compiler_options)
: CodeGenerator(graph,
kNumberOfCoreRegisters,
kNumberOfSRegisters,
kNumberOfRegisterPairs,
ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
arraysize(kCoreCalleeSaves)),
ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves),
arraysize(kFpuCalleeSaves)),
compiler_options),
block_labels_(graph->GetArena(), 0),
location_builder_(graph, this),
instruction_visitor_(graph, this),
move_resolver_(graph->GetArena(), this),
assembler_(true),
isa_features_(isa_features) {
// Save the PC register to mimic Quick.
AddAllocatedRegister(Location::RegisterLocation(PC));
}
Location CodeGeneratorARM::AllocateFreeRegister(Primitive::Type type) const {
switch (type) {
case Primitive::kPrimLong: {
size_t reg = FindFreeEntry(blocked_register_pairs_, kNumberOfRegisterPairs);
ArmManagedRegister pair =
ArmManagedRegister::FromRegisterPair(static_cast<RegisterPair>(reg));
DCHECK(!blocked_core_registers_[pair.AsRegisterPairLow()]);
DCHECK(!blocked_core_registers_[pair.AsRegisterPairHigh()]);
blocked_core_registers_[pair.AsRegisterPairLow()] = true;
blocked_core_registers_[pair.AsRegisterPairHigh()] = true;
UpdateBlockedPairRegisters();
return Location::RegisterPairLocation(pair.AsRegisterPairLow(), pair.AsRegisterPairHigh());
}
case Primitive::kPrimByte:
case Primitive::kPrimBoolean:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
int reg = FindFreeEntry(blocked_core_registers_, kNumberOfCoreRegisters);
// Block all register pairs that contain `reg`.
for (int i = 0; i < kNumberOfRegisterPairs; i++) {
ArmManagedRegister current =
ArmManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i));
if (current.AsRegisterPairLow() == reg || current.AsRegisterPairHigh() == reg) {
blocked_register_pairs_[i] = true;
}
}
return Location::RegisterLocation(reg);
}
case Primitive::kPrimFloat: {
int reg = FindFreeEntry(blocked_fpu_registers_, kNumberOfSRegisters);
return Location::FpuRegisterLocation(reg);
}
case Primitive::kPrimDouble: {
int reg = FindTwoFreeConsecutiveAlignedEntries(blocked_fpu_registers_, kNumberOfSRegisters);
DCHECK_EQ(reg % 2, 0);
return Location::FpuRegisterPairLocation(reg, reg + 1);
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << type;
}
return Location();
}
void CodeGeneratorARM::SetupBlockedRegisters(bool is_baseline) const {
// Don't allocate the dalvik style register pair passing.
blocked_register_pairs_[R1_R2] = true;
// Stack register, LR and PC are always reserved.
blocked_core_registers_[SP] = true;
blocked_core_registers_[LR] = true;
blocked_core_registers_[PC] = true;
// Reserve thread register.
blocked_core_registers_[TR] = true;
// Reserve temp register.
blocked_core_registers_[IP] = true;
if (is_baseline) {
for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) {
blocked_core_registers_[kCoreCalleeSaves[i]] = true;
}
blocked_core_registers_[kCoreSavedRegisterForBaseline] = false;
for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
blocked_fpu_registers_[kFpuCalleeSaves[i]] = true;
}
}
UpdateBlockedPairRegisters();
}
void CodeGeneratorARM::UpdateBlockedPairRegisters() const {
for (int i = 0; i < kNumberOfRegisterPairs; i++) {
ArmManagedRegister current =
ArmManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i));
if (blocked_core_registers_[current.AsRegisterPairLow()]
|| blocked_core_registers_[current.AsRegisterPairHigh()]) {
blocked_register_pairs_[i] = true;
}
}
}
InstructionCodeGeneratorARM::InstructionCodeGeneratorARM(HGraph* graph, CodeGeneratorARM* codegen)
: HGraphVisitor(graph),
assembler_(codegen->GetAssembler()),
codegen_(codegen) {}
static uint32_t LeastSignificantBit(uint32_t mask) {
// ffs starts at 1.
return ffs(mask) - 1;
}
void CodeGeneratorARM::ComputeSpillMask() {
core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
// Save one extra register for baseline. Note that on thumb2, there is no easy
// instruction to restore just the PC, so this actually helps both baseline
// and non-baseline to save and restore at least two registers at entry and exit.
core_spill_mask_ |= (1 << kCoreSavedRegisterForBaseline);
DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
// We use vpush and vpop for saving and restoring floating point registers, which take
// a SRegister and the number of registers to save/restore after that SRegister. We
// therefore update the `fpu_spill_mask_` to also contain those registers not allocated,
// but in the range.
if (fpu_spill_mask_ != 0) {
uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_);
uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_);
for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) {
fpu_spill_mask_ |= (1 << i);
}
}
}
void CodeGeneratorARM::GenerateFrameEntry() {
bool skip_overflow_check =
IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm);
DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
__ Bind(&frame_entry_label_);
if (HasEmptyFrame()) {
return;
}
if (!skip_overflow_check) {
__ AddConstant(IP, SP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kArm)));
__ LoadFromOffset(kLoadWord, IP, IP, 0);
RecordPcInfo(nullptr, 0);
}
// PC is in the list of callee-save to mimic Quick, but we need to push
// LR at entry instead.
__ PushList((core_spill_mask_ & (~(1 << PC))) | 1 << LR);
if (fpu_spill_mask_ != 0) {
SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_));
__ vpushs(start_register, POPCOUNT(fpu_spill_mask_));
}
__ AddConstant(SP, -(GetFrameSize() - FrameEntrySpillSize()));
__ StoreToOffset(kStoreWord, R0, SP, 0);
}
void CodeGeneratorARM::GenerateFrameExit() {
if (HasEmptyFrame()) {
__ bx(LR);
return;
}
__ AddConstant(SP, GetFrameSize() - FrameEntrySpillSize());
if (fpu_spill_mask_ != 0) {
SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_));
__ vpops(start_register, POPCOUNT(fpu_spill_mask_));
}
__ PopList(core_spill_mask_);
}
void CodeGeneratorARM::Bind(HBasicBlock* block) {
__ Bind(GetLabelOf(block));
}
Location CodeGeneratorARM::GetStackLocation(HLoadLocal* load) const {
switch (load->GetType()) {
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
return Location::DoubleStackSlot(GetStackSlot(load->GetLocal()));
case Primitive::kPrimInt:
case Primitive::kPrimNot:
case Primitive::kPrimFloat:
return Location::StackSlot(GetStackSlot(load->GetLocal()));
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimVoid:
LOG(FATAL) << "Unexpected type " << load->GetType();
UNREACHABLE();
}
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
Location InvokeDexCallingConventionVisitor::GetNextLocation(Primitive::Type type) {
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
uint32_t index = gp_index_++;
uint32_t stack_index = stack_index_++;
if (index < calling_convention.GetNumberOfRegisters()) {
return Location::RegisterLocation(calling_convention.GetRegisterAt(index));
} else {
return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
}
}
case Primitive::kPrimLong: {
uint32_t index = gp_index_;
uint32_t stack_index = stack_index_;
gp_index_ += 2;
stack_index_ += 2;
if (index + 1 < calling_convention.GetNumberOfRegisters()) {
if (calling_convention.GetRegisterAt(index) == R1) {
// Skip R1, and use R2_R3 instead.
gp_index_++;
index++;
}
}
if (index + 1 < calling_convention.GetNumberOfRegisters()) {
DCHECK_EQ(calling_convention.GetRegisterAt(index) + 1,
calling_convention.GetRegisterAt(index + 1));
return Location::RegisterPairLocation(calling_convention.GetRegisterAt(index),
calling_convention.GetRegisterAt(index + 1));
} else {
return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
}
}
case Primitive::kPrimFloat: {
uint32_t stack_index = stack_index_++;
if (float_index_ % 2 == 0) {
float_index_ = std::max(double_index_, float_index_);
}
if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) {
return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(float_index_++));
} else {
return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
}
}
case Primitive::kPrimDouble: {
double_index_ = std::max(double_index_, RoundUp(float_index_, 2));
uint32_t stack_index = stack_index_;
stack_index_ += 2;
if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) {
uint32_t index = double_index_;
double_index_ += 2;
Location result = Location::FpuRegisterPairLocation(
calling_convention.GetFpuRegisterAt(index),
calling_convention.GetFpuRegisterAt(index + 1));
DCHECK(ExpectedPairLayout(result));
return result;
} else {
return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
}
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unexpected parameter type " << type;
break;
}
return Location();
}
Location InvokeDexCallingConventionVisitor::GetReturnLocation(Primitive::Type type) {
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
return Location::RegisterLocation(R0);
}
case Primitive::kPrimFloat: {
return Location::FpuRegisterLocation(S0);
}
case Primitive::kPrimLong: {
return Location::RegisterPairLocation(R0, R1);
}
case Primitive::kPrimDouble: {
return Location::FpuRegisterPairLocation(S0, S1);
}
case Primitive::kPrimVoid:
return Location();
}
UNREACHABLE();
}
void CodeGeneratorARM::Move32(Location destination, Location source) {
if (source.Equals(destination)) {
return;
}
if (destination.IsRegister()) {
if (source.IsRegister()) {
__ Mov(destination.AsRegister<Register>(), source.AsRegister<Register>());
} else if (source.IsFpuRegister()) {
__ vmovrs(destination.AsRegister<Register>(), source.AsFpuRegister<SRegister>());
} else {
__ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex());
}
} else if (destination.IsFpuRegister()) {
if (source.IsRegister()) {
__ vmovsr(destination.AsFpuRegister<SRegister>(), source.AsRegister<Register>());
} else if (source.IsFpuRegister()) {
__ vmovs(destination.AsFpuRegister<SRegister>(), source.AsFpuRegister<SRegister>());
} else {
__ LoadSFromOffset(destination.AsFpuRegister<SRegister>(), SP, source.GetStackIndex());
}
} else {
DCHECK(destination.IsStackSlot()) << destination;
if (source.IsRegister()) {
__ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, destination.GetStackIndex());
} else if (source.IsFpuRegister()) {
__ StoreSToOffset(source.AsFpuRegister<SRegister>(), SP, destination.GetStackIndex());
} else {
DCHECK(source.IsStackSlot()) << source;
__ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex());
__ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
}
}
}
void CodeGeneratorARM::Move64(Location destination, Location source) {
if (source.Equals(destination)) {
return;
}
if (destination.IsRegisterPair()) {
if (source.IsRegisterPair()) {
EmitParallelMoves(
Location::RegisterLocation(source.AsRegisterPairHigh<Register>()),
Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()),
Location::RegisterLocation(source.AsRegisterPairLow<Register>()),
Location::RegisterLocation(destination.AsRegisterPairLow<Register>()));
} else if (source.IsFpuRegister()) {
UNIMPLEMENTED(FATAL);
} else {
DCHECK(source.IsDoubleStackSlot());
DCHECK(ExpectedPairLayout(destination));
__ LoadFromOffset(kLoadWordPair, destination.AsRegisterPairLow<Register>(),
SP, source.GetStackIndex());
}
} else if (destination.IsFpuRegisterPair()) {
if (source.IsDoubleStackSlot()) {
__ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
SP,
source.GetStackIndex());
} else {
UNIMPLEMENTED(FATAL);
}
} else {
DCHECK(destination.IsDoubleStackSlot());
if (source.IsRegisterPair()) {
// No conflict possible, so just do the moves.
if (source.AsRegisterPairLow<Register>() == R1) {
DCHECK_EQ(source.AsRegisterPairHigh<Register>(), R2);
__ StoreToOffset(kStoreWord, R1, SP, destination.GetStackIndex());
__ StoreToOffset(kStoreWord, R2, SP, destination.GetHighStackIndex(kArmWordSize));
} else {
__ StoreToOffset(kStoreWordPair, source.AsRegisterPairLow<Register>(),
SP, destination.GetStackIndex());
}
} else if (source.IsFpuRegisterPair()) {
__ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()),
SP,
destination.GetStackIndex());
} else {
DCHECK(source.IsDoubleStackSlot());
EmitParallelMoves(
Location::StackSlot(source.GetStackIndex()),
Location::StackSlot(destination.GetStackIndex()),
Location::StackSlot(source.GetHighStackIndex(kArmWordSize)),
Location::StackSlot(destination.GetHighStackIndex(kArmWordSize)));
}
}
}
void CodeGeneratorARM::Move(HInstruction* instruction, Location location, HInstruction* move_for) {
LocationSummary* locations = instruction->GetLocations();
if (locations != nullptr && locations->Out().Equals(location)) {
return;
}
if (locations != nullptr && locations->Out().IsConstant()) {
HConstant* const_to_move = locations->Out().GetConstant();
if (const_to_move->IsIntConstant() || const_to_move->IsNullConstant()) {
int32_t value = GetInt32ValueOf(const_to_move);
if (location.IsRegister()) {
__ LoadImmediate(location.AsRegister<Register>(), value);
} else {
DCHECK(location.IsStackSlot());
__ LoadImmediate(IP, value);
__ StoreToOffset(kStoreWord, IP, SP, location.GetStackIndex());
}
} else {
DCHECK(const_to_move->IsLongConstant()) << const_to_move->DebugName();
int64_t value = const_to_move->AsLongConstant()->GetValue();
if (location.IsRegisterPair()) {
__ LoadImmediate(location.AsRegisterPairLow<Register>(), Low32Bits(value));
__ LoadImmediate(location.AsRegisterPairHigh<Register>(), High32Bits(value));
} else {
DCHECK(location.IsDoubleStackSlot());
__ LoadImmediate(IP, Low32Bits(value));
__ StoreToOffset(kStoreWord, IP, SP, location.GetStackIndex());
__ LoadImmediate(IP, High32Bits(value));
__ StoreToOffset(kStoreWord, IP, SP, location.GetHighStackIndex(kArmWordSize));
}
}
} else if (instruction->IsLoadLocal()) {
uint32_t stack_slot = GetStackSlot(instruction->AsLoadLocal()->GetLocal());
switch (instruction->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
case Primitive::kPrimFloat:
Move32(location, Location::StackSlot(stack_slot));
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
Move64(location, Location::DoubleStackSlot(stack_slot));
break;
default:
LOG(FATAL) << "Unexpected type " << instruction->GetType();
}
} else if (instruction->IsTemporary()) {
Location temp_location = GetTemporaryLocation(instruction->AsTemporary());
if (temp_location.IsStackSlot()) {
Move32(location, temp_location);
} else {
DCHECK(temp_location.IsDoubleStackSlot());
Move64(location, temp_location);
}
} else {
DCHECK((instruction->GetNext() == move_for) || instruction->GetNext()->IsTemporary());
switch (instruction->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimNot:
case Primitive::kPrimInt:
case Primitive::kPrimFloat:
Move32(location, locations->Out());
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
Move64(location, locations->Out());
break;
default:
LOG(FATAL) << "Unexpected type " << instruction->GetType();
}
}
}
void CodeGeneratorARM::InvokeRuntime(int32_t entry_point_offset,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path) {
__ LoadFromOffset(kLoadWord, LR, TR, entry_point_offset);
__ blx(LR);
RecordPcInfo(instruction, dex_pc, slow_path);
DCHECK(instruction->IsSuspendCheck()
|| instruction->IsBoundsCheck()
|| instruction->IsNullCheck()
|| instruction->IsDivZeroCheck()
|| instruction->GetLocations()->CanCall()
|| !IsLeafMethod());
}
void LocationsBuilderARM::VisitGoto(HGoto* got) {
got->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM::VisitGoto(HGoto* got) {
HBasicBlock* successor = got->GetSuccessor();
DCHECK(!successor->IsExitBlock());
HBasicBlock* block = got->GetBlock();
HInstruction* previous = got->GetPrevious();
HLoopInformation* info = block->GetLoopInformation();
if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
GenerateSuspendCheck(info->GetSuspendCheck(), successor);
return;
}
if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
}
if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) {
__ b(codegen_->GetLabelOf(successor));
}
}
void LocationsBuilderARM::VisitExit(HExit* exit) {
exit->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM::VisitExit(HExit* exit) {
UNUSED(exit);
}
void InstructionCodeGeneratorARM::GenerateTestAndBranch(HInstruction* instruction,
Label* true_target,
Label* false_target,
Label* always_true_target) {
HInstruction* cond = instruction->InputAt(0);
if (cond->IsIntConstant()) {
// Constant condition, statically compared against 1.
int32_t cond_value = cond->AsIntConstant()->GetValue();
if (cond_value == 1) {
if (always_true_target != nullptr) {
__ b(always_true_target);
}
return;
} else {
DCHECK_EQ(cond_value, 0);
}
} else {
if (!cond->IsCondition() || cond->AsCondition()->NeedsMaterialization()) {
// Condition has been materialized, compare the output to 0
DCHECK(instruction->GetLocations()->InAt(0).IsRegister());
__ cmp(instruction->GetLocations()->InAt(0).AsRegister<Register>(),
ShifterOperand(0));
__ b(true_target, NE);
} else {
// Condition has not been materialized, use its inputs as the
// comparison and its condition as the branch condition.
LocationSummary* locations = cond->GetLocations();
DCHECK(locations->InAt(0).IsRegister()) << locations->InAt(0);
Register left = locations->InAt(0).AsRegister<Register>();
if (locations->InAt(1).IsRegister()) {
__ cmp(left, ShifterOperand(locations->InAt(1).AsRegister<Register>()));
} else {
DCHECK(locations->InAt(1).IsConstant());
HConstant* constant = locations->InAt(1).GetConstant();
int32_t value = CodeGenerator::GetInt32ValueOf(constant);
ShifterOperand operand;
if (GetAssembler()->ShifterOperandCanHold(R0, left, CMP, value, &operand)) {
__ cmp(left, operand);
} else {
Register temp = IP;
__ LoadImmediate(temp, value);
__ cmp(left, ShifterOperand(temp));
}
}
__ b(true_target, ARMCondition(cond->AsCondition()->GetCondition()));
}
}
if (false_target != nullptr) {
__ b(false_target);
}
}
void LocationsBuilderARM::VisitIf(HIf* if_instr) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(if_instr, LocationSummary::kNoCall);
HInstruction* cond = if_instr->InputAt(0);
if (!cond->IsCondition() || cond->AsCondition()->NeedsMaterialization()) {
locations->SetInAt(0, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorARM::VisitIf(HIf* if_instr) {
Label* true_target = codegen_->GetLabelOf(if_instr->IfTrueSuccessor());
Label* false_target = codegen_->GetLabelOf(if_instr->IfFalseSuccessor());
Label* always_true_target = true_target;
if (codegen_->GoesToNextBlock(if_instr->GetBlock(),
if_instr->IfTrueSuccessor())) {
always_true_target = nullptr;
}
if (codegen_->GoesToNextBlock(if_instr->GetBlock(),
if_instr->IfFalseSuccessor())) {
false_target = nullptr;
}
GenerateTestAndBranch(if_instr, true_target, false_target, always_true_target);
}
void LocationsBuilderARM::VisitDeoptimize(HDeoptimize* deoptimize) {
LocationSummary* locations = new (GetGraph()->GetArena())
LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
HInstruction* cond = deoptimize->InputAt(0);
DCHECK(cond->IsCondition());
if (cond->AsCondition()->NeedsMaterialization()) {
locations->SetInAt(0, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorARM::VisitDeoptimize(HDeoptimize* deoptimize) {
SlowPathCodeARM* slow_path = new (GetGraph()->GetArena())
DeoptimizationSlowPathARM(deoptimize);
codegen_->AddSlowPath(slow_path);
Label* slow_path_entry = slow_path->GetEntryLabel();
GenerateTestAndBranch(deoptimize, slow_path_entry, nullptr, slow_path_entry);
}
void LocationsBuilderARM::VisitCondition(HCondition* comp) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(comp, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(comp->InputAt(1)));
if (comp->NeedsMaterialization()) {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
}
void InstructionCodeGeneratorARM::VisitCondition(HCondition* comp) {
if (!comp->NeedsMaterialization()) return;
LocationSummary* locations = comp->GetLocations();
Register left = locations->InAt(0).AsRegister<Register>();
if (locations->InAt(1).IsRegister()) {
__ cmp(left, ShifterOperand(locations->InAt(1).AsRegister<Register>()));
} else {
DCHECK(locations->InAt(1).IsConstant());
int32_t value = CodeGenerator::GetInt32ValueOf(locations->InAt(1).GetConstant());
ShifterOperand operand;
if (GetAssembler()->ShifterOperandCanHold(R0, left, CMP, value, &operand)) {
__ cmp(left, operand);
} else {
Register temp = IP;
__ LoadImmediate(temp, value);
__ cmp(left, ShifterOperand(temp));
}
}
__ it(ARMCondition(comp->GetCondition()), kItElse);
__ mov(locations->Out().AsRegister<Register>(), ShifterOperand(1),
ARMCondition(comp->GetCondition()));
__ mov(locations->Out().AsRegister<Register>(), ShifterOperand(0),
ARMOppositeCondition(comp->GetCondition()));
}
void LocationsBuilderARM::VisitEqual(HEqual* comp) {
VisitCondition(comp);
}
void InstructionCodeGeneratorARM::VisitEqual(HEqual* comp) {
VisitCondition(comp);
}
void LocationsBuilderARM::VisitNotEqual(HNotEqual* comp) {
VisitCondition(comp);
}
void InstructionCodeGeneratorARM::VisitNotEqual(HNotEqual* comp) {
VisitCondition(comp);
}
void LocationsBuilderARM::VisitLessThan(HLessThan* comp) {
VisitCondition(comp);
}
void InstructionCodeGeneratorARM::VisitLessThan(HLessThan* comp) {
VisitCondition(comp);
}
void LocationsBuilderARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
VisitCondition(comp);
}
void InstructionCodeGeneratorARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
VisitCondition(comp);
}
void LocationsBuilderARM::VisitGreaterThan(HGreaterThan* comp) {
VisitCondition(comp);
}
void InstructionCodeGeneratorARM::VisitGreaterThan(HGreaterThan* comp) {
VisitCondition(comp);
}
void LocationsBuilderARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
VisitCondition(comp);
}
void InstructionCodeGeneratorARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
VisitCondition(comp);
}
void LocationsBuilderARM::VisitLocal(HLocal* local) {
local->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM::VisitLocal(HLocal* local) {
DCHECK_EQ(local->GetBlock(), GetGraph()->GetEntryBlock());
}
void LocationsBuilderARM::VisitLoadLocal(HLoadLocal* load) {
load->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM::VisitLoadLocal(HLoadLocal* load) {
// Nothing to do, this is driven by the code generator.
UNUSED(load);
}
void LocationsBuilderARM::VisitStoreLocal(HStoreLocal* store) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(store, LocationSummary::kNoCall);
switch (store->InputAt(1)->GetType()) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
case Primitive::kPrimFloat:
locations->SetInAt(1, Location::StackSlot(codegen_->GetStackSlot(store->GetLocal())));
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
locations->SetInAt(1, Location::DoubleStackSlot(codegen_->GetStackSlot(store->GetLocal())));
break;
default:
LOG(FATAL) << "Unexpected local type " << store->InputAt(1)->GetType();
}
}
void InstructionCodeGeneratorARM::VisitStoreLocal(HStoreLocal* store) {
UNUSED(store);
}
void LocationsBuilderARM::VisitIntConstant(HIntConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM::VisitIntConstant(HIntConstant* constant) {
// Will be generated at use site.
UNUSED(constant);
}
void LocationsBuilderARM::VisitNullConstant(HNullConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM::VisitNullConstant(HNullConstant* constant) {
// Will be generated at use site.
UNUSED(constant);
}
void LocationsBuilderARM::VisitLongConstant(HLongConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM::VisitLongConstant(HLongConstant* constant) {
// Will be generated at use site.
UNUSED(constant);
}
void LocationsBuilderARM::VisitFloatConstant(HFloatConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM::VisitFloatConstant(HFloatConstant* constant) {
// Will be generated at use site.
UNUSED(constant);
}
void LocationsBuilderARM::VisitDoubleConstant(HDoubleConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorARM::VisitDoubleConstant(HDoubleConstant* constant) {
// Will be generated at use site.
UNUSED(constant);
}
void LocationsBuilderARM::VisitReturnVoid(HReturnVoid* ret) {
ret->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM::VisitReturnVoid(HReturnVoid* ret) {
UNUSED(ret);
codegen_->GenerateFrameExit();
}
void LocationsBuilderARM::VisitReturn(HReturn* ret) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall);
locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType()));
}
void InstructionCodeGeneratorARM::VisitReturn(HReturn* ret) {
UNUSED(ret);
codegen_->GenerateFrameExit();
}
void LocationsBuilderARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
IntrinsicLocationsBuilderARM intrinsic(GetGraph()->GetArena(),
codegen_->GetInstructionSetFeatures());
if (intrinsic.TryDispatch(invoke)) {
return;
}
HandleInvoke(invoke);
}
void CodeGeneratorARM::LoadCurrentMethod(Register reg) {
DCHECK(RequiresCurrentMethod());
__ LoadFromOffset(kLoadWord, reg, SP, kCurrentMethodStackOffset);
}
static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM* codegen) {
if (invoke->GetLocations()->Intrinsified()) {
IntrinsicCodeGeneratorARM intrinsic(codegen);
intrinsic.Dispatch(invoke);
return true;
}
return false;
}
void InstructionCodeGeneratorARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
return;
}
Register temp = invoke->GetLocations()->GetTemp(0).AsRegister<Register>();
codegen_->GenerateStaticOrDirectCall(invoke, temp);
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderARM::HandleInvoke(HInvoke* invoke) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(invoke, LocationSummary::kCall);
locations->AddTemp(Location::RegisterLocation(R0));
InvokeDexCallingConventionVisitor calling_convention_visitor;
for (size_t i = 0; i < invoke->InputCount(); i++) {
HInstruction* input = invoke->InputAt(i);
locations->SetInAt(i, calling_convention_visitor.GetNextLocation(input->GetType()));
}
locations->SetOut(calling_convention_visitor.GetReturnLocation(invoke->GetType()));
}
void LocationsBuilderARM::VisitInvokeVirtual(HInvokeVirtual* invoke) {
IntrinsicLocationsBuilderARM intrinsic(GetGraph()->GetArena(),
codegen_->GetInstructionSetFeatures());
if (intrinsic.TryDispatch(invoke)) {
return;
}
HandleInvoke(invoke);
}
void InstructionCodeGeneratorARM::VisitInvokeVirtual(HInvokeVirtual* invoke) {
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
return;
}
Register temp = invoke->GetLocations()->GetTemp(0).AsRegister<Register>();
uint32_t method_offset = mirror::Class::EmbeddedVTableOffset().Uint32Value() +
invoke->GetVTableIndex() * sizeof(mirror::Class::VTableEntry);
LocationSummary* locations = invoke->GetLocations();
Location receiver = locations->InAt(0);
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
// temp = object->GetClass();
if (receiver.IsStackSlot()) {
__ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex());
__ LoadFromOffset(kLoadWord, temp, temp, class_offset);
} else {
__ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset);
}
codegen_->MaybeRecordImplicitNullCheck(invoke);
// temp = temp->GetMethodAt(method_offset);
uint32_t entry_point = mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(
kArmWordSize).Int32Value();
__ LoadFromOffset(kLoadWord, temp, temp, method_offset);
// LR = temp->GetEntryPoint();
__ LoadFromOffset(kLoadWord, LR, temp, entry_point);
// LR();
__ blx(LR);
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderARM::VisitInvokeInterface(HInvokeInterface* invoke) {
HandleInvoke(invoke);
// Add the hidden argument.
invoke->GetLocations()->AddTemp(Location::RegisterLocation(R12));
}
void InstructionCodeGeneratorARM::VisitInvokeInterface(HInvokeInterface* invoke) {
// TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
Register temp = invoke->GetLocations()->GetTemp(0).AsRegister<Register>();
uint32_t method_offset = mirror::Class::EmbeddedImTableOffset().Uint32Value() +
(invoke->GetImtIndex() % mirror::Class::kImtSize) * sizeof(mirror::Class::ImTableEntry);
LocationSummary* locations = invoke->GetLocations();
Location receiver = locations->InAt(0);
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
// Set the hidden argument.
__ LoadImmediate(invoke->GetLocations()->GetTemp(1).AsRegister<Register>(),
invoke->GetDexMethodIndex());
// temp = object->GetClass();
if (receiver.IsStackSlot()) {
__ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex());
__ LoadFromOffset(kLoadWord, temp, temp, class_offset);
} else {
__ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset);
}
codegen_->MaybeRecordImplicitNullCheck(invoke);
// temp = temp->GetImtEntryAt(method_offset);
uint32_t entry_point = mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(
kArmWordSize).Int32Value();
__ LoadFromOffset(kLoadWord, temp, temp, method_offset);
// LR = temp->GetEntryPoint();
__ LoadFromOffset(kLoadWord, LR, temp, entry_point);
// LR();
__ blx(LR);
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderARM::VisitNeg(HNeg* neg) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
switch (neg->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
}
}
void InstructionCodeGeneratorARM::VisitNeg(HNeg* neg) {
LocationSummary* locations = neg->GetLocations();
Location out = locations->Out();
Location in = locations->InAt(0);
switch (neg->GetResultType()) {
case Primitive::kPrimInt:
DCHECK(in.IsRegister());
__ rsb(out.AsRegister<Register>(), in.AsRegister<Register>(), ShifterOperand(0));
break;
case Primitive::kPrimLong:
DCHECK(in.IsRegisterPair());
// out.lo = 0 - in.lo (and update the carry/borrow (C) flag)
__ rsbs(out.AsRegisterPairLow<Register>(),
in.AsRegisterPairLow<Register>(),
ShifterOperand(0));
// We cannot emit an RSC (Reverse Subtract with Carry)
// instruction here, as it does not exist in the Thumb-2
// instruction set. We use the following approach
// using SBC and SUB instead.
//
// out.hi = -C
__ sbc(out.AsRegisterPairHigh<Register>(),
out.AsRegisterPairHigh<Register>(),
ShifterOperand(out.AsRegisterPairHigh<Register>()));
// out.hi = out.hi - in.hi
__ sub(out.AsRegisterPairHigh<Register>(),
out.AsRegisterPairHigh<Register>(),
ShifterOperand(in.AsRegisterPairHigh<Register>()));
break;
case Primitive::kPrimFloat:
DCHECK(in.IsFpuRegister());
__ vnegs(out.AsFpuRegister<SRegister>(), in.AsFpuRegister<SRegister>());
break;
case Primitive::kPrimDouble:
DCHECK(in.IsFpuRegisterPair());
__ vnegd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
break;
default:
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
}
}
void LocationsBuilderARM::VisitTypeConversion(HTypeConversion* conversion) {
Primitive::Type result_type = conversion->GetResultType();
Primitive::Type input_type = conversion->GetInputType();
DCHECK_NE(result_type, input_type);
// The float-to-long and double-to-long type conversions rely on a
// call to the runtime.
LocationSummary::CallKind call_kind =
((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble)
&& result_type == Primitive::kPrimLong)
? LocationSummary::kCall
: LocationSummary::kNoCall;
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
// The Java language does not allow treating boolean as an integral type but
// our bit representation makes it safe.
switch (result_type) {
case Primitive::kPrimByte:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-byte' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimShort:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-short' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimInt:
switch (input_type) {
case Primitive::kPrimLong:
// Processing a Dex `long-to-int' instruction.
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-int' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-int' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimLong:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-long' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimFloat: {
// Processing a Dex `float-to-long' instruction.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(
calling_convention.GetFpuRegisterAt(0)));
locations->SetOut(Location::RegisterPairLocation(R0, R1));
break;
}
case Primitive::kPrimDouble: {
// Processing a Dex `double-to-long' instruction.
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterPairLocation(
calling_convention.GetFpuRegisterAt(0),
calling_convention.GetFpuRegisterAt(1)));
locations->SetOut(Location::RegisterPairLocation(R0, R1));
break;
}
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimChar:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
// Processing a Dex `int-to-char' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimFloat:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-float' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case Primitive::kPrimLong:
// Processing a Dex `long-to-float' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-float' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
case Primitive::kPrimDouble:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-double' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case Primitive::kPrimLong:
// Processing a Dex `long-to-double' instruction.
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-double' instruction.
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
}
void InstructionCodeGeneratorARM::VisitTypeConversion(HTypeConversion* conversion) {
LocationSummary* locations = conversion->GetLocations();
Location out = locations->Out();
Location in = locations->InAt(0);
Primitive::Type result_type = conversion->GetResultType();
Primitive::Type input_type = conversion->GetInputType();
DCHECK_NE(result_type, input_type);
switch (result_type) {
case Primitive::kPrimByte:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-byte' instruction.
__ sbfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 8);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimShort:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-short' instruction.
__ sbfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 16);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimInt:
switch (input_type) {
case Primitive::kPrimLong:
// Processing a Dex `long-to-int' instruction.
DCHECK(out.IsRegister());
if (in.IsRegisterPair()) {
__ Mov(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
} else if (in.IsDoubleStackSlot()) {
__ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), SP, in.GetStackIndex());
} else {
DCHECK(in.IsConstant());
DCHECK(in.GetConstant()->IsLongConstant());
int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
__ LoadImmediate(out.AsRegister<Register>(), static_cast<int32_t>(value));
}
break;
case Primitive::kPrimFloat: {
// Processing a Dex `float-to-int' instruction.
SRegister temp = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
__ vmovs(temp, in.AsFpuRegister<SRegister>());
__ vcvtis(temp, temp);
__ vmovrs(out.AsRegister<Register>(), temp);
break;
}
case Primitive::kPrimDouble: {
// Processing a Dex `double-to-int' instruction.
SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
DRegister temp_d = FromLowSToD(temp_s);
__ vmovd(temp_d, FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
__ vcvtid(temp_s, temp_d);
__ vmovrs(out.AsRegister<Register>(), temp_s);
break;
}
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimLong:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar:
// Processing a Dex `int-to-long' instruction.
DCHECK(out.IsRegisterPair());
DCHECK(in.IsRegister());
__ Mov(out.AsRegisterPairLow<Register>(), in.AsRegister<Register>());
// Sign extension.
__ Asr(out.AsRegisterPairHigh<Register>(),
out.AsRegisterPairLow<Register>(),
31);
break;
case Primitive::kPrimFloat:
// Processing a Dex `float-to-long' instruction.
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pF2l),
conversion,
conversion->GetDexPc(),
nullptr);
break;
case Primitive::kPrimDouble:
// Processing a Dex `double-to-long' instruction.
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pD2l),
conversion,
conversion->GetDexPc(),
nullptr);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimChar:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
// Processing a Dex `int-to-char' instruction.
__ ubfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 16);
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
break;
case Primitive::kPrimFloat:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar: {
// Processing a Dex `int-to-float' instruction.
__ vmovsr(out.AsFpuRegister<SRegister>(), in.AsRegister<Register>());
__ vcvtsi(out.AsFpuRegister<SRegister>(), out.AsFpuRegister<SRegister>());
break;
}
case Primitive::kPrimLong: {
// Processing a Dex `long-to-float' instruction.
Register low = in.AsRegisterPairLow<Register>();
Register high = in.AsRegisterPairHigh<Register>();
SRegister output = out.AsFpuRegister<SRegister>();
Register constant_low = locations->GetTemp(0).AsRegister<Register>();
Register constant_high = locations->GetTemp(1).AsRegister<Register>();
SRegister temp1_s = locations->GetTemp(2).AsFpuRegisterPairLow<SRegister>();
DRegister temp1_d = FromLowSToD(temp1_s);
SRegister temp2_s = locations->GetTemp(3).AsFpuRegisterPairLow<SRegister>();
DRegister temp2_d = FromLowSToD(temp2_s);
// Operations use doubles for precision reasons (each 32-bit
// half of a long fits in the 53-bit mantissa of a double,
// but not in the 24-bit mantissa of a float). This is
// especially important for the low bits. The result is
// eventually converted to float.
// temp1_d = int-to-double(high)
__ vmovsr(temp1_s, high);
__ vcvtdi(temp1_d, temp1_s);
// Using vmovd to load the `k2Pow32EncodingForDouble` constant
// as an immediate value into `temp2_d` does not work, as
// this instruction only transfers 8 significant bits of its
// immediate operand. Instead, use two 32-bit core
// registers to load `k2Pow32EncodingForDouble` into
// `temp2_d`.
__ LoadImmediate(constant_low, Low32Bits(k2Pow32EncodingForDouble));
__ LoadImmediate(constant_high, High32Bits(k2Pow32EncodingForDouble));
__ vmovdrr(temp2_d, constant_low, constant_high);
// temp1_d = temp1_d * 2^32
__ vmuld(temp1_d, temp1_d, temp2_d);
// temp2_d = unsigned-to-double(low)
__ vmovsr(temp2_s, low);
__ vcvtdu(temp2_d, temp2_s);
// temp1_d = temp1_d + temp2_d
__ vaddd(temp1_d, temp1_d, temp2_d);
// output = double-to-float(temp1_d);
__ vcvtsd(output, temp1_d);
break;
}
case Primitive::kPrimDouble:
// Processing a Dex `double-to-float' instruction.
__ vcvtsd(out.AsFpuRegister<SRegister>(),
FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
case Primitive::kPrimDouble:
switch (input_type) {
case Primitive::kPrimBoolean:
// Boolean input is a result of code transformations.
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimChar: {
// Processing a Dex `int-to-double' instruction.
__ vmovsr(out.AsFpuRegisterPairLow<SRegister>(), in.AsRegister<Register>());
__ vcvtdi(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
out.AsFpuRegisterPairLow<SRegister>());
break;
}
case Primitive::kPrimLong: {
// Processing a Dex `long-to-double' instruction.
Register low = in.AsRegisterPairLow<Register>();
Register high = in.AsRegisterPairHigh<Register>();
SRegister out_s = out.AsFpuRegisterPairLow<SRegister>();
DRegister out_d = FromLowSToD(out_s);
Register constant_low = locations->GetTemp(0).AsRegister<Register>();
Register constant_high = locations->GetTemp(1).AsRegister<Register>();
SRegister temp_s = locations->GetTemp(2).AsFpuRegisterPairLow<SRegister>();
DRegister temp_d = FromLowSToD(temp_s);
// out_d = int-to-double(high)
__ vmovsr(out_s, high);
__ vcvtdi(out_d, out_s);
// Using vmovd to load the `k2Pow32EncodingForDouble` constant
// as an immediate value into `temp_d` does not work, as
// this instruction only transfers 8 significant bits of its
// immediate operand. Instead, use two 32-bit core
// registers to load `k2Pow32EncodingForDouble` into `temp_d`.
__ LoadImmediate(constant_low, Low32Bits(k2Pow32EncodingForDouble));
__ LoadImmediate(constant_high, High32Bits(k2Pow32EncodingForDouble));
__ vmovdrr(temp_d, constant_low, constant_high);
// out_d = out_d * 2^32
__ vmuld(out_d, out_d, temp_d);
// temp_d = unsigned-to-double(low)
__ vmovsr(temp_s, low);
__ vcvtdu(temp_d, temp_s);
// out_d = out_d + temp_d
__ vaddd(out_d, out_d, temp_d);
break;
}
case Primitive::kPrimFloat:
// Processing a Dex `float-to-double' instruction.
__ vcvtds(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
in.AsFpuRegister<SRegister>());
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
};
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
}
void LocationsBuilderARM::VisitAdd(HAdd* add) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall);
switch (add->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
}
default:
LOG(FATAL) << "Unexpected add type " << add->GetResultType();
}
}
void InstructionCodeGeneratorARM::VisitAdd(HAdd* add) {
LocationSummary* locations = add->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
switch (add->GetResultType()) {
case Primitive::kPrimInt:
if (second.IsRegister()) {
__ add(out.AsRegister<Register>(),
first.AsRegister<Register>(),
ShifterOperand(second.AsRegister<Register>()));
} else {
__ AddConstant(out.AsRegister<Register>(),
first.AsRegister<Register>(),
second.GetConstant()->AsIntConstant()->GetValue());
}
break;
case Primitive::kPrimLong: {
DCHECK(second.IsRegisterPair());
__ adds(out.AsRegisterPairLow<Register>(),
first.AsRegisterPairLow<Register>(),
ShifterOperand(second.AsRegisterPairLow<Register>()));
__ adc(out.AsRegisterPairHigh<Register>(),
first.AsRegisterPairHigh<Register>(),
ShifterOperand(second.AsRegisterPairHigh<Register>()));
break;
}
case Primitive::kPrimFloat:
__ vadds(out.AsFpuRegister<SRegister>(),
first.AsFpuRegister<SRegister>(),
second.AsFpuRegister<SRegister>());
break;
case Primitive::kPrimDouble:
__ vaddd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
break;
default:
LOG(FATAL) << "Unexpected add type " << add->GetResultType();
}
}
void LocationsBuilderARM::VisitSub(HSub* sub) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall);
switch (sub->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
}
default:
LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
}
}
void InstructionCodeGeneratorARM::VisitSub(HSub* sub) {
LocationSummary* locations = sub->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
switch (sub->GetResultType()) {
case Primitive::kPrimInt: {
if (second.IsRegister()) {
__ sub(out.AsRegister<Register>(),
first.AsRegister<Register>(),
ShifterOperand(second.AsRegister<Register>()));
} else {
__ AddConstant(out.AsRegister<Register>(),
first.AsRegister<Register>(),
-second.GetConstant()->AsIntConstant()->GetValue());
}
break;
}
case Primitive::kPrimLong: {
DCHECK(second.IsRegisterPair());
__ subs(out.AsRegisterPairLow<Register>(),
first.AsRegisterPairLow<Register>(),
ShifterOperand(second.AsRegisterPairLow<Register>()));
__ sbc(out.AsRegisterPairHigh<Register>(),
first.AsRegisterPairHigh<Register>(),
ShifterOperand(second.AsRegisterPairHigh<Register>()));
break;
}
case Primitive::kPrimFloat: {
__ vsubs(out.AsFpuRegister<SRegister>(),
first.AsFpuRegister<SRegister>(),
second.AsFpuRegister<SRegister>());
break;
}
case Primitive::kPrimDouble: {
__ vsubd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
break;
}
default:
LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
}
}
void LocationsBuilderARM::VisitMul(HMul* mul) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
switch (mul->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
}
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void InstructionCodeGeneratorARM::VisitMul(HMul* mul) {
LocationSummary* locations = mul->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
switch (mul->GetResultType()) {
case Primitive::kPrimInt: {
__ mul(out.AsRegister<Register>(),
first.AsRegister<Register>(),
second.AsRegister<Register>());
break;
}
case Primitive::kPrimLong: {
Register out_hi = out.AsRegisterPairHigh<Register>();
Register out_lo = out.AsRegisterPairLow<Register>();
Register in1_hi = first.AsRegisterPairHigh<Register>();
Register in1_lo = first.AsRegisterPairLow<Register>();
Register in2_hi = second.AsRegisterPairHigh<Register>();
Register in2_lo = second.AsRegisterPairLow<Register>();
// Extra checks to protect caused by the existence of R1_R2.
// The algorithm is wrong if out.hi is either in1.lo or in2.lo:
// (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2);
DCHECK_NE(out_hi, in1_lo);
DCHECK_NE(out_hi, in2_lo);
// input: in1 - 64 bits, in2 - 64 bits
// output: out
// formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
// parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
// parts: out.lo = (in1.lo * in2.lo)[31:0]
// IP <- in1.lo * in2.hi
__ mul(IP, in1_lo, in2_hi);
// out.hi <- in1.lo * in2.hi + in1.hi * in2.lo
__ mla(out_hi, in1_hi, in2_lo, IP);
// out.lo <- (in1.lo * in2.lo)[31:0];
__ umull(out_lo, IP, in1_lo, in2_lo);
// out.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
__ add(out_hi, out_hi, ShifterOperand(IP));
break;
}
case Primitive::kPrimFloat: {
__ vmuls(out.AsFpuRegister<SRegister>(),
first.AsFpuRegister<SRegister>(),
second.AsFpuRegister<SRegister>());
break;
}
case Primitive::kPrimDouble: {
__ vmuld(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
break;
}
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void LocationsBuilderARM::VisitDiv(HDiv* div) {
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
if (div->GetResultType() == Primitive::kPrimLong) {
// pLdiv runtime call.
call_kind = LocationSummary::kCall;
} else if (div->GetResultType() == Primitive::kPrimInt &&
!codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
// pIdivmod runtime call.
call_kind = LocationSummary::kCall;
}
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
switch (div->GetResultType()) {
case Primitive::kPrimInt: {
if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
} else {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
// Note: divrem will compute both the quotient and the remainder as the pair R0 and R1, but
// we only need the former.
locations->SetOut(Location::RegisterLocation(R0));
}
break;
}
case Primitive::kPrimLong: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
locations->SetInAt(1, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
locations->SetOut(Location::RegisterPairLocation(R0, R1));
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
}
default:
LOG(FATAL) << "Unexpected div type " << div->GetResultType();
}
}
void InstructionCodeGeneratorARM::VisitDiv(HDiv* div) {
LocationSummary* locations = div->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
switch (div->GetResultType()) {
case Primitive::kPrimInt: {
if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
__ sdiv(out.AsRegister<Register>(),
first.AsRegister<Register>(),
second.AsRegister<Register>());
} else {
InvokeRuntimeCallingConvention calling_convention;
DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister<Register>());
DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister<Register>());
DCHECK_EQ(R0, out.AsRegister<Register>());
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pIdivmod), div, div->GetDexPc(), nullptr);
}
break;
}
case Primitive::kPrimLong: {
InvokeRuntimeCallingConvention calling_convention;
DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>());
DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>());
DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>());
DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>());
DCHECK_EQ(R0, out.AsRegisterPairLow<Register>());
DCHECK_EQ(R1, out.AsRegisterPairHigh<Register>());
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLdiv), div, div->GetDexPc(), nullptr);
break;
}
case Primitive::kPrimFloat: {
__ vdivs(out.AsFpuRegister<SRegister>(),
first.AsFpuRegister<SRegister>(),
second.AsFpuRegister<SRegister>());
break;
}
case Primitive::kPrimDouble: {
__ vdivd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
break;
}
default:
LOG(FATAL) << "Unexpected div type " << div->GetResultType();
}
}
void LocationsBuilderARM::VisitRem(HRem* rem) {
Primitive::Type type = rem->GetResultType();
// Most remainders are implemented in the runtime.
LocationSummary::CallKind call_kind = LocationSummary::kCall;
if (rem->GetResultType() == Primitive::kPrimInt &&
codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
// Have hardware divide instruction for int, do it with three instructions.
call_kind = LocationSummary::kNoCall;
}
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
switch (type) {
case Primitive::kPrimInt: {
if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
locations->AddTemp(Location::RequiresRegister());
} else {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
// Note: divrem will compute both the quotient and the remainder as the pair R0 and R1, but
// we only need the latter.
locations->SetOut(Location::RegisterLocation(R1));
}
break;
}
case Primitive::kPrimLong: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
locations->SetInAt(1, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
// The runtime helper puts the output in R2,R3.
locations->SetOut(Location::RegisterPairLocation(R2, R3));
break;
}
case Primitive::kPrimFloat: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
locations->SetOut(Location::FpuRegisterLocation(S0));
break;
}
case Primitive::kPrimDouble: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterPairLocation(
calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1)));
locations->SetInAt(1, Location::FpuRegisterPairLocation(
calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3)));
locations->SetOut(Location::Location::FpuRegisterPairLocation(S0, S1));
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
}
}
void InstructionCodeGeneratorARM::VisitRem(HRem* rem) {
LocationSummary* locations = rem->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
Primitive::Type type = rem->GetResultType();
switch (type) {
case Primitive::kPrimInt: {
if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
Register reg1 = first.AsRegister<Register>();
Register reg2 = second.AsRegister<Register>();
Register temp = locations->GetTemp(0).AsRegister<Register>();
// temp = reg1 / reg2 (integer division)
// temp = temp * reg2
// dest = reg1 - temp
__ sdiv(temp, reg1, reg2);
__ mul(temp, temp, reg2);
__ sub(out.AsRegister<Register>(), reg1, ShifterOperand(temp));
} else {
InvokeRuntimeCallingConvention calling_convention;
DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister<Register>());
DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister<Register>());
DCHECK_EQ(R1, out.AsRegister<Register>());
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pIdivmod), rem, rem->GetDexPc(), nullptr);
}
break;
}
case Primitive::kPrimLong: {
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLmod), rem, rem->GetDexPc(), nullptr);
break;
}
case Primitive::kPrimFloat: {
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pFmodf), rem, rem->GetDexPc(), nullptr);
break;
}
case Primitive::kPrimDouble: {
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pFmod), rem, rem->GetDexPc(), nullptr);
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
}
}
void LocationsBuilderARM::VisitDivZeroCheck(HDivZeroCheck* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorARM::VisitDivZeroCheck(HDivZeroCheck* instruction) {
SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM(instruction);
codegen_->AddSlowPath(slow_path);
LocationSummary* locations = instruction->GetLocations();
Location value = locations->InAt(0);
switch (instruction->GetType()) {
case Primitive::kPrimInt: {
if (value.IsRegister()) {
__ cmp(value.AsRegister<Register>(), ShifterOperand(0));
__ b(slow_path->GetEntryLabel(), EQ);
} else {
DCHECK(value.IsConstant()) << value;
if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
__ b(slow_path->GetEntryLabel());
}
}
break;
}
case Primitive::kPrimLong: {
if (value.IsRegisterPair()) {
__ orrs(IP,
value.AsRegisterPairLow<Register>(),
ShifterOperand(value.AsRegisterPairHigh<Register>()));
__ b(slow_path->GetEntryLabel(), EQ);
} else {
DCHECK(value.IsConstant()) << value;
if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
__ b(slow_path->GetEntryLabel());
}
}
break;
default:
LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
}
}
}
void LocationsBuilderARM::HandleShift(HBinaryOperation* op) {
DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall);
switch (op->GetResultType()) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(op->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
break;
}
default:
LOG(FATAL) << "Unexpected operation type " << op->GetResultType();
}
}
void InstructionCodeGeneratorARM::HandleShift(HBinaryOperation* op) {
DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
LocationSummary* locations = op->GetLocations();
Location out = locations->Out();
Location first = locations->InAt(0);
Location second = locations->InAt(1);
Primitive::Type type = op->GetResultType();
switch (type) {
case Primitive::kPrimInt: {
Register out_reg = out.AsRegister<Register>();
Register first_reg = first.AsRegister<Register>();
// Arm doesn't mask the shift count so we need to do it ourselves.
if (second.IsRegister()) {
Register second_reg = second.AsRegister<Register>();
__ and_(second_reg, second_reg, ShifterOperand(kMaxIntShiftValue));
if (op->IsShl()) {
__ Lsl(out_reg, first_reg, second_reg);
} else if (op->IsShr()) {
__ Asr(out_reg, first_reg, second_reg);
} else {
__ Lsr(out_reg, first_reg, second_reg);
}
} else {
int32_t cst = second.GetConstant()->AsIntConstant()->GetValue();
uint32_t shift_value = static_cast<uint32_t>(cst & kMaxIntShiftValue);
if (shift_value == 0) { // arm does not support shifting with 0 immediate.
__ Mov(out_reg, first_reg);
} else if (op->IsShl()) {
__ Lsl(out_reg, first_reg, shift_value);
} else if (op->IsShr()) {
__ Asr(out_reg, first_reg, shift_value);
} else {
__ Lsr(out_reg, first_reg, shift_value);
}
}
break;
}
case Primitive::kPrimLong: {
Register o_h = out.AsRegisterPairHigh<Register>();
Register o_l = out.AsRegisterPairLow<Register>();
Register temp = locations->GetTemp(0).AsRegister<Register>();
Register high = first.AsRegisterPairHigh<Register>();
Register low = first.AsRegisterPairLow<Register>();
Register second_reg = second.AsRegister<Register>();
if (op->IsShl()) {
// Shift the high part
__ and_(second_reg, second_reg, ShifterOperand(63));
__ Lsl(o_h, high, second_reg);
// Shift the low part and `or` what overflew on the high part
__ rsb(temp, second_reg, ShifterOperand(32));
__ Lsr(temp, low, temp);
__ orr(o_h, o_h, ShifterOperand(temp));
// If the shift is > 32 bits, override the high part
__ subs(temp, second_reg, ShifterOperand(32));
__ it(PL);
__ Lsl(o_h, low, temp, false, PL);
// Shift the low part
__ Lsl(o_l, low, second_reg);
} else if (op->IsShr()) {
// Shift the low part
__ and_(second_reg, second_reg, ShifterOperand(63));
__ Lsr(o_l, low, second_reg);
// Shift the high part and `or` what underflew on the low part
__ rsb(temp, second_reg, ShifterOperand(32));
__ Lsl(temp, high, temp);
__ orr(o_l, o_l, ShifterOperand(temp));
// If the shift is > 32 bits, override the low part
__ subs(temp, second_reg, ShifterOperand(32));
__ it(PL);
__ Asr(o_l, high, temp, false, PL);
// Shift the high part
__ Asr(o_h, high, second_reg);
} else {
// same as Shr except we use `Lsr`s and not `Asr`s
__ and_(second_reg, second_reg, ShifterOperand(63));
__ Lsr(o_l, low, second_reg);
__ rsb(temp, second_reg, ShifterOperand(32));
__ Lsl(temp, high, temp);
__ orr(o_l, o_l, ShifterOperand(temp));
__ subs(temp, second_reg, ShifterOperand(32));
__ it(PL);
__ Lsr(o_l, high, temp, false, PL);
__ Lsr(o_h, high, second_reg);
}
break;
}
default:
LOG(FATAL) << "Unexpected operation type " << type;
}
}
void LocationsBuilderARM::VisitShl(HShl* shl) {
HandleShift(shl);
}
void InstructionCodeGeneratorARM::VisitShl(HShl* shl) {
HandleShift(shl);
}
void LocationsBuilderARM::VisitShr(HShr* shr) {
HandleShift(shr);
}
void InstructionCodeGeneratorARM::VisitShr(HShr* shr) {
HandleShift(shr);
}
void LocationsBuilderARM::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void InstructionCodeGeneratorARM::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void LocationsBuilderARM::VisitNewInstance(HNewInstance* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetOut(Location::RegisterLocation(R0));
}
void InstructionCodeGeneratorARM::VisitNewInstance(HNewInstance* instruction) {
InvokeRuntimeCallingConvention calling_convention;
codegen_->LoadCurrentMethod(calling_convention.GetRegisterAt(1));
__ LoadImmediate(calling_convention.GetRegisterAt(0), instruction->GetTypeIndex());
codegen_->InvokeRuntime(GetThreadOffset<kArmWordSize>(instruction->GetEntrypoint()).Int32Value(),
instruction,
instruction->GetDexPc(),
nullptr);
}
void LocationsBuilderARM::VisitNewArray(HNewArray* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetOut(Location::RegisterLocation(R0));
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
}
void InstructionCodeGeneratorARM::VisitNewArray(HNewArray* instruction) {
InvokeRuntimeCallingConvention calling_convention;
codegen_->LoadCurrentMethod(calling_convention.GetRegisterAt(2));
__ LoadImmediate(calling_convention.GetRegisterAt(0), instruction->GetTypeIndex());
codegen_->InvokeRuntime(GetThreadOffset<kArmWordSize>(instruction->GetEntrypoint()).Int32Value(),
instruction,
instruction->GetDexPc(),
nullptr);
}
void LocationsBuilderARM::VisitParameterValue(HParameterValue* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
if (location.IsStackSlot()) {
location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
} else if (location.IsDoubleStackSlot()) {
location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
}
locations->SetOut(location);
}
void InstructionCodeGeneratorARM::VisitParameterValue(HParameterValue* instruction) {
// Nothing to do, the parameter is already at its location.
UNUSED(instruction);
}
void LocationsBuilderARM::VisitNot(HNot* not_) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM::VisitNot(HNot* not_) {
LocationSummary* locations = not_->GetLocations();
Location out = locations->Out();
Location in = locations->InAt(0);
switch (not_->GetResultType()) {
case Primitive::kPrimInt:
__ mvn(out.AsRegister<Register>(), ShifterOperand(in.AsRegister<Register>()));
break;
case Primitive::kPrimLong:
__ mvn(out.AsRegisterPairLow<Register>(),
ShifterOperand(in.AsRegisterPairLow<Register>()));
__ mvn(out.AsRegisterPairHigh<Register>(),
ShifterOperand(in.AsRegisterPairHigh<Register>()));
break;
default:
LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
}
}
void LocationsBuilderARM::VisitCompare(HCompare* compare) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
switch (compare->InputAt(0)->GetType()) {
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// Output overlaps because it is written before doing the low comparison.
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
break;
}
default:
LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
}
}
void InstructionCodeGeneratorARM::VisitCompare(HCompare* compare) {
LocationSummary* locations = compare->GetLocations();
Register out = locations->Out().AsRegister<Register>();
Location left = locations->InAt(0);
Location right = locations->InAt(1);
Label less, greater, done;
Primitive::Type type = compare->InputAt(0)->GetType();
switch (type) {
case Primitive::kPrimLong: {
__ cmp(left.AsRegisterPairHigh<Register>(),
ShifterOperand(right.AsRegisterPairHigh<Register>())); // Signed compare.
__ b(&less, LT);
__ b(&greater, GT);
// Do LoadImmediate before any `cmp`, as LoadImmediate might affect the status flags.
__ LoadImmediate(out, 0);
__ cmp(left.AsRegisterPairLow<Register>(),
ShifterOperand(right.AsRegisterPairLow<Register>())); // Unsigned compare.
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
__ LoadImmediate(out, 0);
if (type == Primitive::kPrimFloat) {
__ vcmps(left.AsFpuRegister<SRegister>(), right.AsFpuRegister<SRegister>());
} else {
__ vcmpd(FromLowSToD(left.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(right.AsFpuRegisterPairLow<SRegister>()));
}
__ vmstat(); // transfer FP status register to ARM APSR.
__ b(compare->IsGtBias() ? &greater : &less, VS); // VS for unordered.
break;
}
default:
LOG(FATAL) << "Unexpected compare type " << type;
}
__ b(&done, EQ);
__ b(&less, CC); // CC is for both: unsigned compare for longs and 'less than' for floats.
__ Bind(&greater);
__ LoadImmediate(out, 1);
__ b(&done);
__ Bind(&less);
__ LoadImmediate(out, -1);
__ Bind(&done);
}
void LocationsBuilderARM::VisitPhi(HPhi* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
locations->SetInAt(i, Location::Any());
}
locations->SetOut(Location::Any());
}
void InstructionCodeGeneratorARM::VisitPhi(HPhi* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorARM::GenerateMemoryBarrier(MemBarrierKind kind) {
// TODO (ported from quick): revisit Arm barrier kinds
DmbOptions flavour = DmbOptions::ISH; // quiet c++ warnings
switch (kind) {
case MemBarrierKind::kAnyStore:
case MemBarrierKind::kLoadAny:
case MemBarrierKind::kAnyAny: {
flavour = DmbOptions::ISH;
break;
}
case MemBarrierKind::kStoreStore: {
flavour = DmbOptions::ISHST;
break;
}
default:
LOG(FATAL) << "Unexpected memory barrier " << kind;
}
__ dmb(flavour);
}
void InstructionCodeGeneratorARM::GenerateWideAtomicLoad(Register addr,
uint32_t offset,
Register out_lo,
Register out_hi) {
if (offset != 0) {
__ LoadImmediate(out_lo, offset);
__ add(IP, addr, ShifterOperand(out_lo));
addr = IP;
}
__ ldrexd(out_lo, out_hi, addr);
}
void InstructionCodeGeneratorARM::GenerateWideAtomicStore(Register addr,
uint32_t offset,
Register value_lo,
Register value_hi,
Register temp1,
Register temp2,
HInstruction* instruction) {
Label fail;
if (offset != 0) {
__ LoadImmediate(temp1, offset);
__ add(IP, addr, ShifterOperand(temp1));
addr = IP;
}
__ Bind(&fail);
// We need a load followed by store. (The address used in a STREX instruction must
// be the same as the address in the most recently executed LDREX instruction.)
__ ldrexd(temp1, temp2, addr);
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ strexd(temp1, value_lo, value_hi, addr);
__ cmp(temp1, ShifterOperand(0));
__ b(&fail, NE);
}
void LocationsBuilderARM::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
Primitive::Type field_type = field_info.GetFieldType();
bool is_wide = field_type == Primitive::kPrimLong || field_type == Primitive::kPrimDouble;
bool generate_volatile = field_info.IsVolatile()
&& is_wide
&& !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
// Temporary registers for the write barrier.
// TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark.
if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
} else if (generate_volatile) {
// Arm encoding have some additional constraints for ldrexd/strexd:
// - registers need to be consecutive
// - the first register should be even but not R14.
// We don't test for Arm yet, and the assertion makes sure that we revisit this if we ever
// enable Arm encoding.
DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
if (field_type == Primitive::kPrimDouble) {
// For doubles we need two more registers to copy the value.
locations->AddTemp(Location::RegisterLocation(R2));
locations->AddTemp(Location::RegisterLocation(R3));
}
}
}
void InstructionCodeGeneratorARM::HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
LocationSummary* locations = instruction->GetLocations();
Register base = locations->InAt(0).AsRegister<Register>();
Location value = locations->InAt(1);
bool is_volatile = field_info.IsVolatile();
bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
Primitive::Type field_type = field_info.GetFieldType();
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
}
switch (field_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte: {
__ StoreToOffset(kStoreByte, value.AsRegister<Register>(), base, offset);
break;
}
case Primitive::kPrimShort:
case Primitive::kPrimChar: {
__ StoreToOffset(kStoreHalfword, value.AsRegister<Register>(), base, offset);
break;
}
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
__ StoreToOffset(kStoreWord, value.AsRegister<Register>(), base, offset);
break;
}
case Primitive::kPrimLong: {
if (is_volatile && !atomic_ldrd_strd) {
GenerateWideAtomicStore(base, offset,
value.AsRegisterPairLow<Register>(),
value.AsRegisterPairHigh<Register>(),
locations->GetTemp(0).AsRegister<Register>(),
locations->GetTemp(1).AsRegister<Register>(),
instruction);
} else {
__ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), base, offset);
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
break;
}
case Primitive::kPrimFloat: {
__ StoreSToOffset(value.AsFpuRegister<SRegister>(), base, offset);
break;
}
case Primitive::kPrimDouble: {
DRegister value_reg = FromLowSToD(value.AsFpuRegisterPairLow<SRegister>());
if (is_volatile && !atomic_ldrd_strd) {
Register value_reg_lo = locations->GetTemp(0).AsRegister<Register>();
Register value_reg_hi = locations->GetTemp(1).AsRegister<Register>();
__ vmovrrd(value_reg_lo, value_reg_hi, value_reg);
GenerateWideAtomicStore(base, offset,
value_reg_lo,
value_reg_hi,
locations->GetTemp(2).AsRegister<Register>(),
locations->GetTemp(3).AsRegister<Register>(),
instruction);
} else {
__ StoreDToOffset(value_reg, base, offset);
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << field_type;
UNREACHABLE();
}
// Longs and doubles are handled in the switch.
if (field_type != Primitive::kPrimLong && field_type != Primitive::kPrimDouble) {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
Register temp = locations->GetTemp(0).AsRegister<Register>();
Register card = locations->GetTemp(1).AsRegister<Register>();
codegen_->MarkGCCard(temp, card, base, value.AsRegister<Register>());
}
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
}
}
void LocationsBuilderARM::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
bool volatile_for_double = field_info.IsVolatile()
&& (field_info.GetFieldType() == Primitive::kPrimDouble)
&& !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
bool overlap = field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong);
locations->SetOut(Location::RequiresRegister(),
(overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap));
if (volatile_for_double) {
// Arm encoding have some additional constraints for ldrexd/strexd:
// - registers need to be consecutive
// - the first register should be even but not R14.
// We don't test for Arm yet, and the assertion makes sure that we revisit this if we ever
// enable Arm encoding.
DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
}
void InstructionCodeGeneratorARM::HandleFieldGet(HInstruction* instruction,
const FieldInfo& field_info) {
DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
LocationSummary* locations = instruction->GetLocations();
Register base = locations->InAt(0).AsRegister<Register>();
Location out = locations->Out();
bool is_volatile = field_info.IsVolatile();
bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
Primitive::Type field_type = field_info.GetFieldType();
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
switch (field_type) {
case Primitive::kPrimBoolean: {
__ LoadFromOffset(kLoadUnsignedByte, out.AsRegister<Register>(), base, offset);
break;
}
case Primitive::kPrimByte: {
__ LoadFromOffset(kLoadSignedByte, out.AsRegister<Register>(), base, offset);
break;
}
case Primitive::kPrimShort: {
__ LoadFromOffset(kLoadSignedHalfword, out.AsRegister<Register>(), base, offset);
break;
}
case Primitive::kPrimChar: {
__ LoadFromOffset(kLoadUnsignedHalfword, out.AsRegister<Register>(), base, offset);
break;
}
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
__ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), base, offset);
break;
}
case Primitive::kPrimLong: {
if (is_volatile && !atomic_ldrd_strd) {
GenerateWideAtomicLoad(base, offset,
out.AsRegisterPairLow<Register>(),
out.AsRegisterPairHigh<Register>());
} else {
__ LoadFromOffset(kLoadWordPair, out.AsRegisterPairLow<Register>(), base, offset);
}
break;
}
case Primitive::kPrimFloat: {
__ LoadSFromOffset(out.AsFpuRegister<SRegister>(), base, offset);
break;
}
case Primitive::kPrimDouble: {
DRegister out_reg = FromLowSToD(out.AsFpuRegisterPairLow<SRegister>());
if (is_volatile && !atomic_ldrd_strd) {
Register lo = locations->GetTemp(0).AsRegister<Register>();
Register hi = locations->GetTemp(1).AsRegister<Register>();
GenerateWideAtomicLoad(base, offset, lo, hi);
codegen_->MaybeRecordImplicitNullCheck(instruction);
__ vmovdrr(out_reg, lo, hi);
} else {
__ LoadDFromOffset(out_reg, base, offset);
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << field_type;
UNREACHABLE();
}
// Doubles are handled in the switch.
if (field_type != Primitive::kPrimDouble) {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
}
}
void LocationsBuilderARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void LocationsBuilderARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void LocationsBuilderARM::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorARM::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void LocationsBuilderARM::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorARM::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void LocationsBuilderARM::VisitNullCheck(HNullCheck* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorARM::GenerateImplicitNullCheck(HNullCheck* instruction) {
if (codegen_->CanMoveNullCheckToUser(instruction)) {
return;
}
Location obj = instruction->GetLocations()->InAt(0);
__ LoadFromOffset(kLoadWord, IP, obj.AsRegister<Register>(), 0);
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
}
void InstructionCodeGeneratorARM::GenerateExplicitNullCheck(HNullCheck* instruction) {
SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM(instruction);
codegen_->AddSlowPath(slow_path);
LocationSummary* locations = instruction->GetLocations();
Location obj = locations->InAt(0);
__ cmp(obj.AsRegister<Register>(), ShifterOperand(0));
__ b(slow_path->GetEntryLabel(), EQ);
}
void InstructionCodeGeneratorARM::VisitNullCheck(HNullCheck* instruction) {
if (codegen_->GetCompilerOptions().GetImplicitNullChecks()) {
GenerateImplicitNullCheck(instruction);
} else {
GenerateExplicitNullCheck(instruction);
}
}
void LocationsBuilderARM::VisitArrayGet(HArrayGet* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM::VisitArrayGet(HArrayGet* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
Location index = locations->InAt(1);
switch (instruction->GetType()) {
case Primitive::kPrimBoolean: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
__ LoadFromOffset(kLoadUnsignedByte, out, obj, offset);
} else {
__ add(IP, obj, ShifterOperand(index.AsRegister<Register>()));
__ LoadFromOffset(kLoadUnsignedByte, out, IP, data_offset);
}
break;
}
case Primitive::kPrimByte: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int8_t)).Uint32Value();
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
__ LoadFromOffset(kLoadSignedByte, out, obj, offset);
} else {
__ add(IP, obj, ShifterOperand(index.AsRegister<Register>()));
__ LoadFromOffset(kLoadSignedByte, out, IP, data_offset);
}
break;
}
case Primitive::kPrimShort: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int16_t)).Uint32Value();
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
__ LoadFromOffset(kLoadSignedHalfword, out, obj, offset);
} else {
__ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_2));
__ LoadFromOffset(kLoadSignedHalfword, out, IP, data_offset);
}
break;
}
case Primitive::kPrimChar: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
__ LoadFromOffset(kLoadUnsignedHalfword, out, obj, offset);
} else {
__ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_2));
__ LoadFromOffset(kLoadUnsignedHalfword, out, IP, data_offset);
}
break;
}
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Object>), sizeof(int32_t));
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ LoadFromOffset(kLoadWord, out, obj, offset);
} else {
__ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
__ LoadFromOffset(kLoadWord, out, IP, data_offset);
}
break;
}
case Primitive::kPrimLong: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
Location out = locations->Out();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ LoadFromOffset(kLoadWordPair, out.AsRegisterPairLow<Register>(), obj, offset);
} else {
__ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
__ LoadFromOffset(kLoadWordPair, out.AsRegisterPairLow<Register>(), IP, data_offset);
}
break;
}
case Primitive::kPrimFloat: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
Location out = locations->Out();
DCHECK(out.IsFpuRegister());
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ LoadSFromOffset(out.AsFpuRegister<SRegister>(), obj, offset);
} else {
__ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
__ LoadSFromOffset(out.AsFpuRegister<SRegister>(), IP, data_offset);
}
break;
}
case Primitive::kPrimDouble: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
Location out = locations->Out();
DCHECK(out.IsFpuRegisterPair());
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ LoadDFromOffset(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()), obj, offset);
} else {
__ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
__ LoadDFromOffset(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()), IP, data_offset);
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << instruction->GetType();
UNREACHABLE();
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
void LocationsBuilderARM::VisitArraySet(HArraySet* instruction) {
Primitive::Type value_type = instruction->GetComponentType();
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
bool needs_runtime_call = instruction->NeedsTypeCheck();
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
instruction, needs_runtime_call ? LocationSummary::kCall : LocationSummary::kNoCall);
if (needs_runtime_call) {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
} else {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
locations->SetInAt(2, Location::RequiresRegister());
if (needs_write_barrier) {
// Temporary registers for the write barrier.
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
}
}
void InstructionCodeGeneratorARM::VisitArraySet(HArraySet* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
Location index = locations->InAt(1);
Primitive::Type value_type = instruction->GetComponentType();
bool needs_runtime_call = locations->WillCall();
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
switch (value_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
Register value = locations->InAt(2).AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
__ StoreToOffset(kStoreByte, value, obj, offset);
} else {
__ add(IP, obj, ShifterOperand(index.AsRegister<Register>()));
__ StoreToOffset(kStoreByte, value, IP, data_offset);
}
break;
}
case Primitive::kPrimShort:
case Primitive::kPrimChar: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
Register value = locations->InAt(2).AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
__ StoreToOffset(kStoreHalfword, value, obj, offset);
} else {
__ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_2));
__ StoreToOffset(kStoreHalfword, value, IP, data_offset);
}
break;
}
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
if (!needs_runtime_call) {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
Register value = locations->InAt(2).AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ StoreToOffset(kStoreWord, value, obj, offset);
} else {
DCHECK(index.IsRegister()) << index;
__ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
__ StoreToOffset(kStoreWord, value, IP, data_offset);
}
codegen_->MaybeRecordImplicitNullCheck(instruction);
if (needs_write_barrier) {
DCHECK_EQ(value_type, Primitive::kPrimNot);
Register temp = locations->GetTemp(0).AsRegister<Register>();
Register card = locations->GetTemp(1).AsRegister<Register>();
codegen_->MarkGCCard(temp, card, obj, value);
}
} else {
DCHECK_EQ(value_type, Primitive::kPrimNot);
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject),
instruction,
instruction->GetDexPc(),
nullptr);
}
break;
}
case Primitive::kPrimLong: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
Location value = locations->InAt(2);
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), obj, offset);
} else {
__ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
__ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), IP, data_offset);
}
break;
}
case Primitive::kPrimFloat: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
Location value = locations->InAt(2);
DCHECK(value.IsFpuRegister());
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ StoreSToOffset(value.AsFpuRegister<SRegister>(), obj, offset);
} else {
__ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
__ StoreSToOffset(value.AsFpuRegister<SRegister>(), IP, data_offset);
}
break;
}
case Primitive::kPrimDouble: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
Location value = locations->InAt(2);
DCHECK(value.IsFpuRegisterPair());
if (index.IsConstant()) {
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()), obj, offset);
} else {
__ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
__ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()), IP, data_offset);
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << value_type;
UNREACHABLE();
}
// Ints and objects are handled in the switch.
if (value_type != Primitive::kPrimInt && value_type != Primitive::kPrimNot) {
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
}
void LocationsBuilderARM::VisitArrayLength(HArrayLength* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM::VisitArrayLength(HArrayLength* instruction) {
LocationSummary* locations = instruction->GetLocations();
uint32_t offset = mirror::Array::LengthOffset().Uint32Value();
Register obj = locations->InAt(0).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
__ LoadFromOffset(kLoadWord, out, obj, offset);
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
void LocationsBuilderARM::VisitBoundsCheck(HBoundsCheck* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorARM::VisitBoundsCheck(HBoundsCheck* instruction) {
LocationSummary* locations = instruction->GetLocations();
SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) BoundsCheckSlowPathARM(
instruction, locations->InAt(0), locations->InAt(1));
codegen_->AddSlowPath(slow_path);
Register index = locations->InAt(0).AsRegister<Register>();
Register length = locations->InAt(1).AsRegister<Register>();
__ cmp(index, ShifterOperand(length));
__ b(slow_path->GetEntryLabel(), CS);
}
void CodeGeneratorARM::MarkGCCard(Register temp, Register card, Register object, Register value) {
Label is_null;
__ CompareAndBranchIfZero(value, &is_null);
__ LoadFromOffset(kLoadWord, card, TR, Thread::CardTableOffset<kArmWordSize>().Int32Value());
__ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
__ strb(card, Address(card, temp));
__ Bind(&is_null);
}
void LocationsBuilderARM::VisitTemporary(HTemporary* temp) {
temp->SetLocations(nullptr);
}
void InstructionCodeGeneratorARM::VisitTemporary(HTemporary* temp) {
// Nothing to do, this is driven by the code generator.
UNUSED(temp);
}
void LocationsBuilderARM::VisitParallelMove(HParallelMove* instruction) {
UNUSED(instruction);
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorARM::VisitParallelMove(HParallelMove* instruction) {
codegen_->GetMoveResolver()->EmitNativeCode(instruction);
}
void LocationsBuilderARM::VisitSuspendCheck(HSuspendCheck* instruction) {
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
}
void InstructionCodeGeneratorARM::VisitSuspendCheck(HSuspendCheck* instruction) {
HBasicBlock* block = instruction->GetBlock();
if (block->GetLoopInformation() != nullptr) {
DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
// The back edge will generate the suspend check.
return;
}
if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
// The goto will generate the suspend check.
return;
}
GenerateSuspendCheck(instruction, nullptr);
}
void InstructionCodeGeneratorARM::GenerateSuspendCheck(HSuspendCheck* instruction,
HBasicBlock* successor) {
SuspendCheckSlowPathARM* slow_path =
new (GetGraph()->GetArena()) SuspendCheckSlowPathARM(instruction, successor);
codegen_->AddSlowPath(slow_path);
__ LoadFromOffset(
kLoadUnsignedHalfword, IP, TR, Thread::ThreadFlagsOffset<kArmWordSize>().Int32Value());
__ cmp(IP, ShifterOperand(0));
// TODO: Figure out the branch offsets and use cbz/cbnz.
if (successor == nullptr) {
__ b(slow_path->GetEntryLabel(), NE);
__ Bind(slow_path->GetReturnLabel());
} else {
__ b(codegen_->GetLabelOf(successor), EQ);
__ b(slow_path->GetEntryLabel());
}
}
ArmAssembler* ParallelMoveResolverARM::GetAssembler() const {
return codegen_->GetAssembler();
}
void ParallelMoveResolverARM::EmitMove(size_t index) {
MoveOperands* move = moves_.Get(index);
Location source = move->GetSource();
Location destination = move->GetDestination();
if (source.IsRegister()) {
if (destination.IsRegister()) {
__ Mov(destination.AsRegister<Register>(), source.AsRegister<Register>());
} else {
DCHECK(destination.IsStackSlot());
__ StoreToOffset(kStoreWord, source.AsRegister<Register>(),
SP, destination.GetStackIndex());
}
} else if (source.IsStackSlot()) {
if (destination.IsRegister()) {
__ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(),
SP, source.GetStackIndex());
} else if (destination.IsFpuRegister()) {
__ LoadSFromOffset(destination.AsFpuRegister<SRegister>(), SP, source.GetStackIndex());
} else {
DCHECK(destination.IsStackSlot());
__ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex());
__ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
}
} else if (source.IsFpuRegister()) {
if (destination.IsFpuRegister()) {
__ vmovs(destination.AsFpuRegister<SRegister>(), source.AsFpuRegister<SRegister>());
} else {
DCHECK(destination.IsStackSlot());
__ StoreSToOffset(source.AsFpuRegister<SRegister>(), SP, destination.GetStackIndex());
}
} else if (source.IsDoubleStackSlot()) {
if (destination.IsDoubleStackSlot()) {
__ LoadDFromOffset(DTMP, SP, source.GetStackIndex());
__ StoreDToOffset(DTMP, SP, destination.GetStackIndex());
} else if (destination.IsRegisterPair()) {
DCHECK(ExpectedPairLayout(destination));
__ LoadFromOffset(
kLoadWordPair, destination.AsRegisterPairLow<Register>(), SP, source.GetStackIndex());
} else {
DCHECK(destination.IsFpuRegisterPair()) << destination;
__ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
SP,
source.GetStackIndex());
}
} else if (source.IsRegisterPair()) {
if (destination.IsRegisterPair()) {
__ Mov(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>());
__ Mov(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>());
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
DCHECK(ExpectedPairLayout(source));
__ StoreToOffset(
kStoreWordPair, source.AsRegisterPairLow<Register>(), SP, destination.GetStackIndex());
}
} else if (source.IsFpuRegisterPair()) {
if (destination.IsFpuRegisterPair()) {
__ vmovd(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
__ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()),
SP,
destination.GetStackIndex());
}
} else {
DCHECK(source.IsConstant()) << source;
HConstant* constant = source.GetConstant();
if (constant->IsIntConstant() || constant->IsNullConstant()) {
int32_t value = CodeGenerator::GetInt32ValueOf(constant);
if (destination.IsRegister()) {
__ LoadImmediate(destination.AsRegister<Register>(), value);
} else {
DCHECK(destination.IsStackSlot());
__ LoadImmediate(IP, value);
__ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
}
} else if (constant->IsLongConstant()) {
int64_t value = constant->AsLongConstant()->GetValue();
if (destination.IsRegisterPair()) {
__ LoadImmediate(destination.AsRegisterPairLow<Register>(), Low32Bits(value));
__ LoadImmediate(destination.AsRegisterPairHigh<Register>(), High32Bits(value));
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
__ LoadImmediate(IP, Low32Bits(value));
__ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
__ LoadImmediate(IP, High32Bits(value));
__ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize));
}
} else if (constant->IsDoubleConstant()) {
double value = constant->AsDoubleConstant()->GetValue();
if (destination.IsFpuRegisterPair()) {
__ LoadDImmediate(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), value);
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
uint64_t int_value = bit_cast<uint64_t, double>(value);
__ LoadImmediate(IP, Low32Bits(int_value));
__ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
__ LoadImmediate(IP, High32Bits(int_value));
__ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize));
}
} else {
DCHECK(constant->IsFloatConstant()) << constant->DebugName();
float value = constant->AsFloatConstant()->GetValue();
if (destination.IsFpuRegister()) {
__ LoadSImmediate(destination.AsFpuRegister<SRegister>(), value);
} else {
DCHECK(destination.IsStackSlot());
__ LoadImmediate(IP, bit_cast<int32_t, float>(value));
__ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
}
}
}
}
void ParallelMoveResolverARM::Exchange(Register reg, int mem) {
__ Mov(IP, reg);
__ LoadFromOffset(kLoadWord, reg, SP, mem);
__ StoreToOffset(kStoreWord, IP, SP, mem);
}
void ParallelMoveResolverARM::Exchange(int mem1, int mem2) {
ScratchRegisterScope ensure_scratch(this, IP, R0, codegen_->GetNumberOfCoreRegisters());
int stack_offset = ensure_scratch.IsSpilled() ? kArmWordSize : 0;
__ LoadFromOffset(kLoadWord, static_cast<Register>(ensure_scratch.GetRegister()),
SP, mem1 + stack_offset);
__ LoadFromOffset(kLoadWord, IP, SP, mem2 + stack_offset);
__ StoreToOffset(kStoreWord, static_cast<Register>(ensure_scratch.GetRegister()),
SP, mem2 + stack_offset);
__ StoreToOffset(kStoreWord, IP, SP, mem1 + stack_offset);
}
void ParallelMoveResolverARM::EmitSwap(size_t index) {
MoveOperands* move = moves_.Get(index);
Location source = move->GetSource();
Location destination = move->GetDestination();
if (source.IsRegister() && destination.IsRegister()) {
DCHECK_NE(source.AsRegister<Register>(), IP);
DCHECK_NE(destination.AsRegister<Register>(), IP);
__ Mov(IP, source.AsRegister<Register>());
__ Mov(source.AsRegister<Register>(), destination.AsRegister<Register>());
__ Mov(destination.AsRegister<Register>(), IP);
} else if (source.IsRegister() && destination.IsStackSlot()) {
Exchange(source.AsRegister<Register>(), destination.GetStackIndex());
} else if (source.IsStackSlot() && destination.IsRegister()) {
Exchange(destination.AsRegister<Register>(), source.GetStackIndex());
} else if (source.IsStackSlot() && destination.IsStackSlot()) {
Exchange(source.GetStackIndex(), destination.GetStackIndex());
} else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
__ vmovrs(IP, source.AsFpuRegister<SRegister>());
__ vmovs(source.AsFpuRegister<SRegister>(), destination.AsFpuRegister<SRegister>());
__ vmovsr(destination.AsFpuRegister<SRegister>(), IP);
} else if (source.IsRegisterPair() && destination.IsRegisterPair()) {
__ vmovdrr(DTMP, source.AsRegisterPairLow<Register>(), source.AsRegisterPairHigh<Register>());
__ Mov(source.AsRegisterPairLow<Register>(), destination.AsRegisterPairLow<Register>());
__ Mov(source.AsRegisterPairHigh<Register>(), destination.AsRegisterPairHigh<Register>());
__ vmovrrd(destination.AsRegisterPairLow<Register>(),
destination.AsRegisterPairHigh<Register>(),
DTMP);
} else if (source.IsRegisterPair() || destination.IsRegisterPair()) {
Register low_reg = source.IsRegisterPair()
? source.AsRegisterPairLow<Register>()
: destination.AsRegisterPairLow<Register>();
int mem = source.IsRegisterPair()
? destination.GetStackIndex()
: source.GetStackIndex();
DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination));
__ vmovdrr(DTMP, low_reg, static_cast<Register>(low_reg + 1));
__ LoadFromOffset(kLoadWordPair, low_reg, SP, mem);
__ StoreDToOffset(DTMP, SP, mem);
} else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) {
DRegister first = FromLowSToD(source.AsFpuRegisterPairLow<SRegister>());
DRegister second = FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>());
__ vmovd(DTMP, first);
__ vmovd(first, second);
__ vmovd(second, DTMP);
} else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) {
DRegister reg = source.IsFpuRegisterPair()
? FromLowSToD(source.AsFpuRegisterPairLow<SRegister>())
: FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>());
int mem = source.IsFpuRegisterPair()
? destination.GetStackIndex()
: source.GetStackIndex();
__ vmovd(DTMP, reg);
__ LoadDFromOffset(reg, SP, mem);
__ StoreDToOffset(DTMP, SP, mem);
} else if (source.IsFpuRegister() || destination.IsFpuRegister()) {
SRegister reg = source.IsFpuRegister() ? source.AsFpuRegister<SRegister>()
: destination.AsFpuRegister<SRegister>();
int mem = source.IsFpuRegister()
? destination.GetStackIndex()
: source.GetStackIndex();
__ vmovrs(IP, reg);
__ LoadSFromOffset(reg, SP, mem);
__ StoreToOffset(kStoreWord, IP, SP, mem);
} else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) {
Exchange(source.GetStackIndex(), destination.GetStackIndex());
Exchange(source.GetHighStackIndex(kArmWordSize), destination.GetHighStackIndex(kArmWordSize));
} else {
LOG(FATAL) << "Unimplemented" << source << " <-> " << destination;
}
}
void ParallelMoveResolverARM::SpillScratch(int reg) {
__ Push(static_cast<Register>(reg));
}
void ParallelMoveResolverARM::RestoreScratch(int reg) {
__ Pop(static_cast<Register>(reg));
}
void LocationsBuilderARM::VisitLoadClass(HLoadClass* cls) {
LocationSummary::CallKind call_kind = cls->CanCallRuntime()
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall;
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(cls, call_kind);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorARM::VisitLoadClass(HLoadClass* cls) {
Register out = cls->GetLocations()->Out().AsRegister<Register>();
if (cls->IsReferrersClass()) {
DCHECK(!cls->CanCallRuntime());
DCHECK(!cls->MustGenerateClinitCheck());
codegen_->LoadCurrentMethod(out);
__ LoadFromOffset(kLoadWord, out, out, mirror::ArtMethod::DeclaringClassOffset().Int32Value());
} else {
DCHECK(cls->CanCallRuntime());
codegen_->LoadCurrentMethod(out);
__ LoadFromOffset(
kLoadWord, out, out, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value());
__ LoadFromOffset(kLoadWord, out, out, CodeGenerator::GetCacheOffset(cls->GetTypeIndex()));
SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM(
cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
codegen_->AddSlowPath(slow_path);
__ cmp(out, ShifterOperand(0));
__ b(slow_path->GetEntryLabel(), EQ);
if (cls->MustGenerateClinitCheck()) {
GenerateClassInitializationCheck(slow_path, out);
} else {
__ Bind(slow_path->GetExitLabel());
}
}
}
void LocationsBuilderARM::VisitClinitCheck(HClinitCheck* check) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
locations->SetInAt(0, Location::RequiresRegister());
if (check->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorARM::VisitClinitCheck(HClinitCheck* check) {
// We assume the class is not null.
SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM(
check->GetLoadClass(), check, check->GetDexPc(), true);
codegen_->AddSlowPath(slow_path);
GenerateClassInitializationCheck(slow_path,
check->GetLocations()->InAt(0).AsRegister<Register>());
}
void InstructionCodeGeneratorARM::GenerateClassInitializationCheck(
SlowPathCodeARM* slow_path, Register class_reg) {
__ LoadFromOffset(kLoadWord, IP, class_reg, mirror::Class::StatusOffset().Int32Value());
__ cmp(IP, ShifterOperand(mirror::Class::kStatusInitialized));
__ b(slow_path->GetEntryLabel(), LT);
// Even if the initialized flag is set, we may be in a situation where caches are not synced
// properly. Therefore, we do a memory fence.
__ dmb(ISH);
__ Bind(slow_path->GetExitLabel());
}
void LocationsBuilderARM::VisitLoadString(HLoadString* load) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kCallOnSlowPath);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorARM::VisitLoadString(HLoadString* load) {
SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathARM(load);
codegen_->AddSlowPath(slow_path);
Register out = load->GetLocations()->Out().AsRegister<Register>();
codegen_->LoadCurrentMethod(out);
__ LoadFromOffset(kLoadWord, out, out, mirror::ArtMethod::DeclaringClassOffset().Int32Value());
__ LoadFromOffset(kLoadWord, out, out, mirror::Class::DexCacheStringsOffset().Int32Value());
__ LoadFromOffset(kLoadWord, out, out, CodeGenerator::GetCacheOffset(load->GetStringIndex()));
__ cmp(out, ShifterOperand(0));
__ b(slow_path->GetEntryLabel(), EQ);
__ Bind(slow_path->GetExitLabel());
}
void LocationsBuilderARM::VisitLoadException(HLoadException* load) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorARM::VisitLoadException(HLoadException* load) {
Register out = load->GetLocations()->Out().AsRegister<Register>();
int32_t offset = Thread::ExceptionOffset<kArmWordSize>().Int32Value();
__ LoadFromOffset(kLoadWord, out, TR, offset);
__ LoadImmediate(IP, 0);
__ StoreToOffset(kStoreWord, IP, TR, offset);
}
void LocationsBuilderARM::VisitThrow(HThrow* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorARM::VisitThrow(HThrow* instruction) {
codegen_->InvokeRuntime(
QUICK_ENTRY_POINT(pDeliverException), instruction, instruction->GetDexPc(), nullptr);
}
void LocationsBuilderARM::VisitInstanceOf(HInstanceOf* instruction) {
LocationSummary::CallKind call_kind = instruction->IsClassFinal()
? LocationSummary::kNoCall
: LocationSummary::kCallOnSlowPath;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// The out register is used as a temporary, so it overlaps with the inputs.
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
void InstructionCodeGeneratorARM::VisitInstanceOf(HInstanceOf* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
Register cls = locations->InAt(1).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
Label done, zero;
SlowPathCodeARM* slow_path = nullptr;
// Return 0 if `obj` is null.
// TODO: avoid this check if we know obj is not null.
__ cmp(obj, ShifterOperand(0));
__ b(&zero, EQ);
// Compare the class of `obj` with `cls`.
__ LoadFromOffset(kLoadWord, out, obj, class_offset);
__ cmp(out, ShifterOperand(cls));
if (instruction->IsClassFinal()) {
// Classes must be equal for the instanceof to succeed.
__ b(&zero, NE);
__ LoadImmediate(out, 1);
__ b(&done);
} else {
// If the classes are not equal, we go into a slow path.
DCHECK(locations->OnlyCallsOnSlowPath());
slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(
instruction, locations->InAt(1), locations->Out(), instruction->GetDexPc());
codegen_->AddSlowPath(slow_path);
__ b(slow_path->GetEntryLabel(), NE);
__ LoadImmediate(out, 1);
__ b(&done);
}
__ Bind(&zero);
__ LoadImmediate(out, 0);
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
__ Bind(&done);
}
void LocationsBuilderARM::VisitCheckCast(HCheckCast* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
instruction, LocationSummary::kCallOnSlowPath);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
void InstructionCodeGeneratorARM::VisitCheckCast(HCheckCast* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
Register cls = locations->InAt(1).AsRegister<Register>();
Register temp = locations->GetTemp(0).AsRegister<Register>();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
SlowPathCodeARM* slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(
instruction, locations->InAt(1), locations->GetTemp(0), instruction->GetDexPc());
codegen_->AddSlowPath(slow_path);
// TODO: avoid this check if we know obj is not null.
__ cmp(obj, ShifterOperand(0));
__ b(slow_path->GetExitLabel(), EQ);
// Compare the class of `obj` with `cls`.
__ LoadFromOffset(kLoadWord, temp, obj, class_offset);
__ cmp(temp, ShifterOperand(cls));
__ b(slow_path->GetEntryLabel(), NE);
__ Bind(slow_path->GetExitLabel());
}
void LocationsBuilderARM::VisitMonitorOperation(HMonitorOperation* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorARM::VisitMonitorOperation(HMonitorOperation* instruction) {
codegen_->InvokeRuntime(instruction->IsEnter()
? QUICK_ENTRY_POINT(pLockObject) : QUICK_ENTRY_POINT(pUnlockObject),
instruction,
instruction->GetDexPc(),
nullptr);
}
void LocationsBuilderARM::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); }
void LocationsBuilderARM::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); }
void LocationsBuilderARM::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); }
void LocationsBuilderARM::HandleBitwiseOperation(HBinaryOperation* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
DCHECK(instruction->GetResultType() == Primitive::kPrimInt
|| instruction->GetResultType() == Primitive::kPrimLong);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorARM::VisitAnd(HAnd* instruction) {
HandleBitwiseOperation(instruction);
}
void InstructionCodeGeneratorARM::VisitOr(HOr* instruction) {
HandleBitwiseOperation(instruction);
}
void InstructionCodeGeneratorARM::VisitXor(HXor* instruction) {
HandleBitwiseOperation(instruction);
}
void InstructionCodeGeneratorARM::HandleBitwiseOperation(HBinaryOperation* instruction) {
LocationSummary* locations = instruction->GetLocations();
if (instruction->GetResultType() == Primitive::kPrimInt) {
Register first = locations->InAt(0).AsRegister<Register>();
Register second = locations->InAt(1).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
if (instruction->IsAnd()) {
__ and_(out, first, ShifterOperand(second));
} else if (instruction->IsOr()) {
__ orr(out, first, ShifterOperand(second));
} else {
DCHECK(instruction->IsXor());
__ eor(out, first, ShifterOperand(second));
}
} else {
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
Location first = locations->InAt(0);
Location second = locations->InAt(1);
Location out = locations->Out();
if (instruction->IsAnd()) {
__ and_(out.AsRegisterPairLow<Register>(),
first.AsRegisterPairLow<Register>(),
ShifterOperand(second.AsRegisterPairLow<Register>()));
__ and_(out.AsRegisterPairHigh<Register>(),
first.AsRegisterPairHigh<Register>(),
ShifterOperand(second.AsRegisterPairHigh<Register>()));
} else if (instruction->IsOr()) {
__ orr(out.AsRegisterPairLow<Register>(),
first.AsRegisterPairLow<Register>(),
ShifterOperand(second.AsRegisterPairLow<Register>()));
__ orr(out.AsRegisterPairHigh<Register>(),
first.AsRegisterPairHigh<Register>(),
ShifterOperand(second.AsRegisterPairHigh<Register>()));
} else {
DCHECK(instruction->IsXor());
__ eor(out.AsRegisterPairLow<Register>(),
first.AsRegisterPairLow<Register>(),
ShifterOperand(second.AsRegisterPairLow<Register>()));
__ eor(out.AsRegisterPairHigh<Register>(),
first.AsRegisterPairHigh<Register>(),
ShifterOperand(second.AsRegisterPairHigh<Register>()));
}
}
}
void CodeGeneratorARM::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Register temp) {
DCHECK_EQ(temp, kArtMethodRegister);
// TODO: Implement all kinds of calls:
// 1) boot -> boot
// 2) app -> boot
// 3) app -> app
//
// Currently we implement the app -> app logic, which looks up in the resolve cache.
// temp = method;
LoadCurrentMethod(temp);
if (!invoke->IsRecursive()) {
// temp = temp->dex_cache_resolved_methods_;
__ LoadFromOffset(
kLoadWord, temp, temp, mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value());
// temp = temp[index_in_cache]
__ LoadFromOffset(
kLoadWord, temp, temp, CodeGenerator::GetCacheOffset(invoke->GetDexMethodIndex()));
// LR = temp[offset_of_quick_compiled_code]
__ LoadFromOffset(kLoadWord, LR, temp,
mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset(
kArmWordSize).Int32Value());
// LR()
__ blx(LR);
} else {
__ bl(GetFrameEntryLabel());
}
DCHECK(!IsLeafMethod());
}
void LocationsBuilderARM::VisitBoundType(HBoundType* instruction) {
// Nothing to do, this should be removed during prepare for register allocator.
UNUSED(instruction);
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorARM::VisitBoundType(HBoundType* instruction) {
// Nothing to do, this should be removed during prepare for register allocator.
UNUSED(instruction);
LOG(FATAL) << "Unreachable";
}
} // namespace arm
} // namespace art