| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* This file contains codegen for the Thumb2 ISA. */ |
| |
| #include "codegen_arm.h" |
| |
| #include "arch/instruction_set_features.h" |
| #include "arm_lir.h" |
| #include "base/logging.h" |
| #include "dex/compiler_ir.h" |
| #include "dex/mir_graph.h" |
| #include "dex/quick/mir_to_lir-inl.h" |
| #include "dex/reg_storage_eq.h" |
| #include "driver/compiler_driver.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "mirror/array-inl.h" |
| #include "utils.h" |
| |
| namespace art { |
| |
| LIR* ArmMir2Lir::OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) { |
| OpRegReg(kOpCmp, src1, src2); |
| return OpCondBranch(cond, target); |
| } |
| |
| /* |
| * Generate a Thumb2 IT instruction, which can nullify up to |
| * four subsequent instructions based on a condition and its |
| * inverse. The condition applies to the first instruction, which |
| * is executed if the condition is met. The string "guide" consists |
| * of 0 to 3 chars, and applies to the 2nd through 4th instruction. |
| * A "T" means the instruction is executed if the condition is |
| * met, and an "E" means the instruction is executed if the condition |
| * is not met. |
| */ |
| LIR* ArmMir2Lir::OpIT(ConditionCode ccode, const char* guide) { |
| int mask; |
| int mask3 = 0; |
| int mask2 = 0; |
| int mask1 = 0; |
| ArmConditionCode code = ArmConditionEncoding(ccode); |
| int cond_bit = code & 1; |
| int alt_bit = cond_bit ^ 1; |
| |
| switch (strlen(guide)) { |
| case 3: |
| mask1 = (guide[2] == 'T') ? cond_bit : alt_bit; |
| FALLTHROUGH_INTENDED; |
| case 2: |
| mask2 = (guide[1] == 'T') ? cond_bit : alt_bit; |
| FALLTHROUGH_INTENDED; |
| case 1: |
| mask3 = (guide[0] == 'T') ? cond_bit : alt_bit; |
| break; |
| case 0: |
| break; |
| default: |
| LOG(FATAL) << "OAT: bad case in OpIT"; |
| UNREACHABLE(); |
| } |
| mask = (mask3 << 3) | (mask2 << 2) | (mask1 << 1) | |
| (1 << (3 - strlen(guide))); |
| return NewLIR2(kThumb2It, code, mask); |
| } |
| |
| void ArmMir2Lir::UpdateIT(LIR* it, const char* new_guide) { |
| int mask; |
| int mask3 = 0; |
| int mask2 = 0; |
| int mask1 = 0; |
| ArmConditionCode code = static_cast<ArmConditionCode>(it->operands[0]); |
| int cond_bit = code & 1; |
| int alt_bit = cond_bit ^ 1; |
| |
| switch (strlen(new_guide)) { |
| case 3: |
| mask1 = (new_guide[2] == 'T') ? cond_bit : alt_bit; |
| FALLTHROUGH_INTENDED; |
| case 2: |
| mask2 = (new_guide[1] == 'T') ? cond_bit : alt_bit; |
| FALLTHROUGH_INTENDED; |
| case 1: |
| mask3 = (new_guide[0] == 'T') ? cond_bit : alt_bit; |
| break; |
| case 0: |
| break; |
| default: |
| LOG(FATAL) << "OAT: bad case in UpdateIT"; |
| UNREACHABLE(); |
| } |
| mask = (mask3 << 3) | (mask2 << 2) | (mask1 << 1) | |
| (1 << (3 - strlen(new_guide))); |
| it->operands[1] = mask; |
| } |
| |
| void ArmMir2Lir::OpEndIT(LIR* it) { |
| // TODO: use the 'it' pointer to do some checks with the LIR, for example |
| // we could check that the number of instructions matches the mask |
| // in the IT instruction. |
| CHECK(it != nullptr); |
| GenBarrier(); |
| } |
| |
| /* |
| * 64-bit 3way compare function. |
| * mov rX, #-1 |
| * cmp op1hi, op2hi |
| * blt done |
| * bgt flip |
| * sub rX, op1lo, op2lo (treat as unsigned) |
| * beq done |
| * ite hi |
| * mov(hi) rX, #-1 |
| * mov(!hi) rX, #1 |
| * flip: |
| * neg rX |
| * done: |
| */ |
| void ArmMir2Lir::GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { |
| LIR* target1; |
| LIR* target2; |
| rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| rl_src2 = LoadValueWide(rl_src2, kCoreReg); |
| RegStorage t_reg = AllocTemp(); |
| LoadConstant(t_reg, -1); |
| OpRegReg(kOpCmp, rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh()); |
| LIR* branch1 = OpCondBranch(kCondLt, NULL); |
| LIR* branch2 = OpCondBranch(kCondGt, NULL); |
| OpRegRegReg(kOpSub, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow()); |
| LIR* branch3 = OpCondBranch(kCondEq, NULL); |
| |
| LIR* it = OpIT(kCondHi, "E"); |
| NewLIR2(kThumb2MovI8M, t_reg.GetReg(), ModifiedImmediate(-1)); |
| LoadConstant(t_reg, 1); |
| OpEndIT(it); |
| |
| target2 = NewLIR0(kPseudoTargetLabel); |
| OpRegReg(kOpNeg, t_reg, t_reg); |
| |
| target1 = NewLIR0(kPseudoTargetLabel); |
| |
| RegLocation rl_temp = LocCReturn(); // Just using as template, will change |
| rl_temp.reg.SetReg(t_reg.GetReg()); |
| StoreValue(rl_dest, rl_temp); |
| FreeTemp(t_reg); |
| |
| branch1->target = target1; |
| branch2->target = target2; |
| branch3->target = branch1->target; |
| } |
| |
| void ArmMir2Lir::GenFusedLongCmpImmBranch(BasicBlock* bb, RegLocation rl_src1, |
| int64_t val, ConditionCode ccode) { |
| int32_t val_lo = Low32Bits(val); |
| int32_t val_hi = High32Bits(val); |
| DCHECK_GE(ModifiedImmediate(val_lo), 0); |
| DCHECK_GE(ModifiedImmediate(val_hi), 0); |
| LIR* taken = &block_label_list_[bb->taken]; |
| LIR* not_taken = &block_label_list_[bb->fall_through]; |
| rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| RegStorage low_reg = rl_src1.reg.GetLow(); |
| RegStorage high_reg = rl_src1.reg.GetHigh(); |
| |
| if (val == 0 && (ccode == kCondEq || ccode == kCondNe)) { |
| RegStorage t_reg = AllocTemp(); |
| NewLIR4(kThumb2OrrRRRs, t_reg.GetReg(), low_reg.GetReg(), high_reg.GetReg(), 0); |
| FreeTemp(t_reg); |
| OpCondBranch(ccode, taken); |
| return; |
| } |
| |
| switch (ccode) { |
| case kCondEq: |
| case kCondNe: |
| OpCmpImmBranch(kCondNe, high_reg, val_hi, (ccode == kCondEq) ? not_taken : taken); |
| break; |
| case kCondLt: |
| OpCmpImmBranch(kCondLt, high_reg, val_hi, taken); |
| OpCmpImmBranch(kCondGt, high_reg, val_hi, not_taken); |
| ccode = kCondUlt; |
| break; |
| case kCondLe: |
| OpCmpImmBranch(kCondLt, high_reg, val_hi, taken); |
| OpCmpImmBranch(kCondGt, high_reg, val_hi, not_taken); |
| ccode = kCondLs; |
| break; |
| case kCondGt: |
| OpCmpImmBranch(kCondGt, high_reg, val_hi, taken); |
| OpCmpImmBranch(kCondLt, high_reg, val_hi, not_taken); |
| ccode = kCondHi; |
| break; |
| case kCondGe: |
| OpCmpImmBranch(kCondGt, high_reg, val_hi, taken); |
| OpCmpImmBranch(kCondLt, high_reg, val_hi, not_taken); |
| ccode = kCondUge; |
| break; |
| default: |
| LOG(FATAL) << "Unexpected ccode: " << ccode; |
| } |
| OpCmpImmBranch(ccode, low_reg, val_lo, taken); |
| } |
| |
| void ArmMir2Lir::GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code, |
| int32_t true_val, int32_t false_val, RegStorage rs_dest, |
| RegisterClass dest_reg_class) { |
| UNUSED(dest_reg_class); |
| // TODO: Generalize the IT below to accept more than one-instruction loads. |
| DCHECK(InexpensiveConstantInt(true_val)); |
| DCHECK(InexpensiveConstantInt(false_val)); |
| |
| if ((true_val == 0 && code == kCondEq) || |
| (false_val == 0 && code == kCondNe)) { |
| OpRegRegReg(kOpSub, rs_dest, left_op, right_op); |
| DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); |
| LIR* it = OpIT(kCondNe, ""); |
| LoadConstant(rs_dest, code == kCondEq ? false_val : true_val); |
| OpEndIT(it); |
| return; |
| } |
| |
| OpRegReg(kOpCmp, left_op, right_op); // Same? |
| LIR* it = OpIT(code, "E"); // if-convert the test |
| LoadConstant(rs_dest, true_val); // .eq case - load true |
| LoadConstant(rs_dest, false_val); // .eq case - load true |
| OpEndIT(it); |
| } |
| |
| void ArmMir2Lir::GenSelect(BasicBlock* bb, MIR* mir) { |
| UNUSED(bb); |
| RegLocation rl_result; |
| RegLocation rl_src = mir_graph_->GetSrc(mir, 0); |
| RegLocation rl_dest = mir_graph_->GetDest(mir); |
| // Avoid using float regs here. |
| RegisterClass src_reg_class = rl_src.ref ? kRefReg : kCoreReg; |
| RegisterClass result_reg_class = rl_dest.ref ? kRefReg : kCoreReg; |
| rl_src = LoadValue(rl_src, src_reg_class); |
| ConditionCode ccode = mir->meta.ccode; |
| if (mir->ssa_rep->num_uses == 1) { |
| // CONST case |
| int true_val = mir->dalvikInsn.vB; |
| int false_val = mir->dalvikInsn.vC; |
| rl_result = EvalLoc(rl_dest, result_reg_class, true); |
| // Change kCondNe to kCondEq for the special cases below. |
| if (ccode == kCondNe) { |
| ccode = kCondEq; |
| std::swap(true_val, false_val); |
| } |
| bool cheap_false_val = InexpensiveConstantInt(false_val); |
| if (cheap_false_val && ccode == kCondEq && (true_val == 0 || true_val == -1)) { |
| OpRegRegImm(kOpSub, rl_result.reg, rl_src.reg, -true_val); |
| DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); |
| LIR* it = OpIT(true_val == 0 ? kCondNe : kCondUge, ""); |
| LoadConstant(rl_result.reg, false_val); |
| OpEndIT(it); // Add a scheduling barrier to keep the IT shadow intact |
| } else if (cheap_false_val && ccode == kCondEq && true_val == 1) { |
| OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, 1); |
| DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); |
| LIR* it = OpIT(kCondLs, ""); |
| LoadConstant(rl_result.reg, false_val); |
| OpEndIT(it); // Add a scheduling barrier to keep the IT shadow intact |
| } else if (cheap_false_val && InexpensiveConstantInt(true_val)) { |
| OpRegImm(kOpCmp, rl_src.reg, 0); |
| LIR* it = OpIT(ccode, "E"); |
| LoadConstant(rl_result.reg, true_val); |
| LoadConstant(rl_result.reg, false_val); |
| OpEndIT(it); // Add a scheduling barrier to keep the IT shadow intact |
| } else { |
| // Unlikely case - could be tuned. |
| RegStorage t_reg1 = AllocTypedTemp(false, result_reg_class); |
| RegStorage t_reg2 = AllocTypedTemp(false, result_reg_class); |
| LoadConstant(t_reg1, true_val); |
| LoadConstant(t_reg2, false_val); |
| OpRegImm(kOpCmp, rl_src.reg, 0); |
| LIR* it = OpIT(ccode, "E"); |
| OpRegCopy(rl_result.reg, t_reg1); |
| OpRegCopy(rl_result.reg, t_reg2); |
| OpEndIT(it); // Add a scheduling barrier to keep the IT shadow intact |
| } |
| } else { |
| // MOVE case |
| RegLocation rl_true = mir_graph_->reg_location_[mir->ssa_rep->uses[1]]; |
| RegLocation rl_false = mir_graph_->reg_location_[mir->ssa_rep->uses[2]]; |
| rl_true = LoadValue(rl_true, result_reg_class); |
| rl_false = LoadValue(rl_false, result_reg_class); |
| rl_result = EvalLoc(rl_dest, result_reg_class, true); |
| OpRegImm(kOpCmp, rl_src.reg, 0); |
| LIR* it = nullptr; |
| if (rl_result.reg.GetReg() == rl_true.reg.GetReg()) { // Is the "true" case already in place? |
| it = OpIT(NegateComparison(ccode), ""); |
| OpRegCopy(rl_result.reg, rl_false.reg); |
| } else if (rl_result.reg.GetReg() == rl_false.reg.GetReg()) { // False case in place? |
| it = OpIT(ccode, ""); |
| OpRegCopy(rl_result.reg, rl_true.reg); |
| } else { // Normal - select between the two. |
| it = OpIT(ccode, "E"); |
| OpRegCopy(rl_result.reg, rl_true.reg); |
| OpRegCopy(rl_result.reg, rl_false.reg); |
| } |
| OpEndIT(it); // Add a scheduling barrier to keep the IT shadow intact |
| } |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| void ArmMir2Lir::GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) { |
| RegLocation rl_src1 = mir_graph_->GetSrcWide(mir, 0); |
| RegLocation rl_src2 = mir_graph_->GetSrcWide(mir, 2); |
| // Normalize such that if either operand is constant, src2 will be constant. |
| ConditionCode ccode = mir->meta.ccode; |
| if (rl_src1.is_const) { |
| std::swap(rl_src1, rl_src2); |
| ccode = FlipComparisonOrder(ccode); |
| } |
| if (rl_src2.is_const) { |
| rl_src2 = UpdateLocWide(rl_src2); |
| // Do special compare/branch against simple const operand if not already in registers. |
| int64_t val = mir_graph_->ConstantValueWide(rl_src2); |
| if ((rl_src2.location != kLocPhysReg) && |
| ((ModifiedImmediate(Low32Bits(val)) >= 0) && (ModifiedImmediate(High32Bits(val)) >= 0))) { |
| GenFusedLongCmpImmBranch(bb, rl_src1, val, ccode); |
| return; |
| } |
| } |
| LIR* taken = &block_label_list_[bb->taken]; |
| LIR* not_taken = &block_label_list_[bb->fall_through]; |
| rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| rl_src2 = LoadValueWide(rl_src2, kCoreReg); |
| OpRegReg(kOpCmp, rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh()); |
| switch (ccode) { |
| case kCondEq: |
| OpCondBranch(kCondNe, not_taken); |
| break; |
| case kCondNe: |
| OpCondBranch(kCondNe, taken); |
| break; |
| case kCondLt: |
| OpCondBranch(kCondLt, taken); |
| OpCondBranch(kCondGt, not_taken); |
| ccode = kCondUlt; |
| break; |
| case kCondLe: |
| OpCondBranch(kCondLt, taken); |
| OpCondBranch(kCondGt, not_taken); |
| ccode = kCondLs; |
| break; |
| case kCondGt: |
| OpCondBranch(kCondGt, taken); |
| OpCondBranch(kCondLt, not_taken); |
| ccode = kCondHi; |
| break; |
| case kCondGe: |
| OpCondBranch(kCondGt, taken); |
| OpCondBranch(kCondLt, not_taken); |
| ccode = kCondUge; |
| break; |
| default: |
| LOG(FATAL) << "Unexpected ccode: " << ccode; |
| } |
| OpRegReg(kOpCmp, rl_src1.reg.GetLow(), rl_src2.reg.GetLow()); |
| OpCondBranch(ccode, taken); |
| } |
| |
| /* |
| * Generate a register comparison to an immediate and branch. Caller |
| * is responsible for setting branch target field. |
| */ |
| LIR* ArmMir2Lir::OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value, LIR* target) { |
| LIR* branch = nullptr; |
| ArmConditionCode arm_cond = ArmConditionEncoding(cond); |
| /* |
| * A common use of OpCmpImmBranch is for null checks, and using the Thumb 16-bit |
| * compare-and-branch if zero is ideal if it will reach. However, because null checks |
| * branch forward to a slow path, they will frequently not reach - and thus have to |
| * be converted to a long form during assembly (which will trigger another assembly |
| * pass). Here we estimate the branch distance for checks, and if large directly |
| * generate the long form in an attempt to avoid an extra assembly pass. |
| * TODO: consider interspersing slowpaths in code following unconditional branches. |
| */ |
| bool skip = ((target != NULL) && (target->opcode == kPseudoThrowTarget)); |
| skip &= ((mir_graph_->GetNumDalvikInsns() - current_dalvik_offset_) > 64); |
| if (!skip && reg.Low8() && (check_value == 0)) { |
| if (arm_cond == kArmCondEq || arm_cond == kArmCondNe) { |
| branch = NewLIR2((arm_cond == kArmCondEq) ? kThumb2Cbz : kThumb2Cbnz, |
| reg.GetReg(), 0); |
| } else if (arm_cond == kArmCondLs) { |
| // kArmCondLs is an unsigned less or equal. A comparison r <= 0 is then the same as cbz. |
| // This case happens for a bounds check of array[0]. |
| branch = NewLIR2(kThumb2Cbz, reg.GetReg(), 0); |
| } |
| } |
| |
| if (branch == nullptr) { |
| OpRegImm(kOpCmp, reg, check_value); |
| branch = NewLIR2(kThumbBCond, 0, arm_cond); |
| } |
| |
| branch->target = target; |
| return branch; |
| } |
| |
| LIR* ArmMir2Lir::OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) { |
| LIR* res; |
| int opcode; |
| // If src or dest is a pair, we'll be using low reg. |
| if (r_dest.IsPair()) { |
| r_dest = r_dest.GetLow(); |
| } |
| if (r_src.IsPair()) { |
| r_src = r_src.GetLow(); |
| } |
| if (r_dest.IsFloat() || r_src.IsFloat()) |
| return OpFpRegCopy(r_dest, r_src); |
| if (r_dest.Low8() && r_src.Low8()) |
| opcode = kThumbMovRR; |
| else if (!r_dest.Low8() && !r_src.Low8()) |
| opcode = kThumbMovRR_H2H; |
| else if (r_dest.Low8()) |
| opcode = kThumbMovRR_H2L; |
| else |
| opcode = kThumbMovRR_L2H; |
| res = RawLIR(current_dalvik_offset_, opcode, r_dest.GetReg(), r_src.GetReg()); |
| if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && r_dest == r_src) { |
| res->flags.is_nop = true; |
| } |
| return res; |
| } |
| |
| void ArmMir2Lir::OpRegCopy(RegStorage r_dest, RegStorage r_src) { |
| if (r_dest != r_src) { |
| LIR* res = OpRegCopyNoInsert(r_dest, r_src); |
| AppendLIR(res); |
| } |
| } |
| |
| void ArmMir2Lir::OpRegCopyWide(RegStorage r_dest, RegStorage r_src) { |
| if (r_dest != r_src) { |
| bool dest_fp = r_dest.IsFloat(); |
| bool src_fp = r_src.IsFloat(); |
| DCHECK(r_dest.Is64Bit()); |
| DCHECK(r_src.Is64Bit()); |
| // Note: If the register is get by register allocator, it should never be a pair. |
| // But some functions in mir_2_lir assume 64-bit registers are 32-bit register pairs. |
| // TODO: Rework Mir2Lir::LoadArg() and Mir2Lir::LoadArgDirect(). |
| if (dest_fp && r_dest.IsPair()) { |
| r_dest = As64BitFloatReg(r_dest); |
| } |
| if (src_fp && r_src.IsPair()) { |
| r_src = As64BitFloatReg(r_src); |
| } |
| if (dest_fp) { |
| if (src_fp) { |
| OpRegCopy(r_dest, r_src); |
| } else { |
| NewLIR3(kThumb2Fmdrr, r_dest.GetReg(), r_src.GetLowReg(), r_src.GetHighReg()); |
| } |
| } else { |
| if (src_fp) { |
| NewLIR3(kThumb2Fmrrd, r_dest.GetLowReg(), r_dest.GetHighReg(), r_src.GetReg()); |
| } else { |
| // Handle overlap |
| if (r_src.GetHighReg() == r_dest.GetLowReg()) { |
| DCHECK_NE(r_src.GetLowReg(), r_dest.GetHighReg()); |
| OpRegCopy(r_dest.GetHigh(), r_src.GetHigh()); |
| OpRegCopy(r_dest.GetLow(), r_src.GetLow()); |
| } else { |
| OpRegCopy(r_dest.GetLow(), r_src.GetLow()); |
| OpRegCopy(r_dest.GetHigh(), r_src.GetHigh()); |
| } |
| } |
| } |
| } |
| } |
| |
| // Table of magic divisors |
| struct MagicTable { |
| uint32_t magic; |
| uint32_t shift; |
| DividePattern pattern; |
| }; |
| |
| static const MagicTable magic_table[] = { |
| {0, 0, DivideNone}, // 0 |
| {0, 0, DivideNone}, // 1 |
| {0, 0, DivideNone}, // 2 |
| {0x55555556, 0, Divide3}, // 3 |
| {0, 0, DivideNone}, // 4 |
| {0x66666667, 1, Divide5}, // 5 |
| {0x2AAAAAAB, 0, Divide3}, // 6 |
| {0x92492493, 2, Divide7}, // 7 |
| {0, 0, DivideNone}, // 8 |
| {0x38E38E39, 1, Divide5}, // 9 |
| {0x66666667, 2, Divide5}, // 10 |
| {0x2E8BA2E9, 1, Divide5}, // 11 |
| {0x2AAAAAAB, 1, Divide5}, // 12 |
| {0x4EC4EC4F, 2, Divide5}, // 13 |
| {0x92492493, 3, Divide7}, // 14 |
| {0x88888889, 3, Divide7}, // 15 |
| }; |
| |
| // Integer division by constant via reciprocal multiply (Hacker's Delight, 10-4) |
| bool ArmMir2Lir::SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div, |
| RegLocation rl_src, RegLocation rl_dest, int lit) { |
| UNUSED(dalvik_opcode); |
| if ((lit < 0) || (lit >= static_cast<int>(sizeof(magic_table)/sizeof(magic_table[0])))) { |
| return false; |
| } |
| DividePattern pattern = magic_table[lit].pattern; |
| if (pattern == DivideNone) { |
| return false; |
| } |
| |
| RegStorage r_magic = AllocTemp(); |
| LoadConstant(r_magic, magic_table[lit].magic); |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| RegStorage r_hi = AllocTemp(); |
| RegStorage r_lo = AllocTemp(); |
| |
| // rl_dest and rl_src might overlap. |
| // Reuse r_hi to save the div result for reminder case. |
| RegStorage r_div_result = is_div ? rl_result.reg : r_hi; |
| |
| NewLIR4(kThumb2Smull, r_lo.GetReg(), r_hi.GetReg(), r_magic.GetReg(), rl_src.reg.GetReg()); |
| switch (pattern) { |
| case Divide3: |
| OpRegRegRegShift(kOpSub, r_div_result, r_hi, rl_src.reg, EncodeShift(kArmAsr, 31)); |
| break; |
| case Divide5: |
| OpRegRegImm(kOpAsr, r_lo, rl_src.reg, 31); |
| OpRegRegRegShift(kOpRsub, r_div_result, r_lo, r_hi, |
| EncodeShift(kArmAsr, magic_table[lit].shift)); |
| break; |
| case Divide7: |
| OpRegReg(kOpAdd, r_hi, rl_src.reg); |
| OpRegRegImm(kOpAsr, r_lo, rl_src.reg, 31); |
| OpRegRegRegShift(kOpRsub, r_div_result, r_lo, r_hi, |
| EncodeShift(kArmAsr, magic_table[lit].shift)); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected pattern: " << pattern; |
| } |
| |
| if (!is_div) { |
| // div_result = src / lit |
| // tmp1 = div_result * lit |
| // dest = src - tmp1 |
| RegStorage tmp1 = r_lo; |
| EasyMultiplyOp ops[2]; |
| |
| bool canEasyMultiply = GetEasyMultiplyTwoOps(lit, ops); |
| DCHECK_NE(canEasyMultiply, false); |
| |
| GenEasyMultiplyTwoOps(tmp1, r_div_result, ops); |
| OpRegRegReg(kOpSub, rl_result.reg, rl_src.reg, tmp1); |
| } |
| |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| // Try to convert *lit to 1 RegRegRegShift/RegRegShift form. |
| bool ArmMir2Lir::GetEasyMultiplyOp(int lit, ArmMir2Lir::EasyMultiplyOp* op) { |
| if (lit == 0) { |
| // Special case for *divide-by-zero*. The ops won't actually be used to generate code, as |
| // GenArithOpIntLit will directly generate exception-throwing code, and multiply-by-zero will |
| // have been optimized away earlier. |
| op->op = kOpInvalid; |
| op->shift = 0; |
| return true; |
| } |
| |
| if (IsPowerOfTwo(lit)) { |
| op->op = kOpLsl; |
| op->shift = CTZ(lit); |
| return true; |
| } |
| |
| if (IsPowerOfTwo(lit - 1)) { |
| op->op = kOpAdd; |
| op->shift = CTZ(lit - 1); |
| return true; |
| } |
| |
| if (IsPowerOfTwo(lit + 1)) { |
| op->op = kOpRsub; |
| op->shift = CTZ(lit + 1); |
| return true; |
| } |
| |
| op->op = kOpInvalid; |
| op->shift = 0; |
| return false; |
| } |
| |
| // Try to convert *lit to 1~2 RegRegRegShift/RegRegShift forms. |
| bool ArmMir2Lir::GetEasyMultiplyTwoOps(int lit, EasyMultiplyOp* ops) { |
| if (GetEasyMultiplyOp(lit, &ops[0])) { |
| ops[1].op = kOpInvalid; |
| ops[1].shift = 0; |
| return true; |
| } |
| |
| int lit1 = lit; |
| uint32_t shift = CTZ(lit1); |
| if (GetEasyMultiplyOp(lit1 >> shift, &ops[0])) { |
| ops[1].op = kOpLsl; |
| ops[1].shift = shift; |
| return true; |
| } |
| |
| lit1 = lit - 1; |
| shift = CTZ(lit1); |
| if (GetEasyMultiplyOp(lit1 >> shift, &ops[0])) { |
| ops[1].op = kOpAdd; |
| ops[1].shift = shift; |
| return true; |
| } |
| |
| lit1 = lit + 1; |
| shift = CTZ(lit1); |
| if (GetEasyMultiplyOp(lit1 >> shift, &ops[0])) { |
| ops[1].op = kOpRsub; |
| ops[1].shift = shift; |
| return true; |
| } |
| |
| ops[1].op = kOpInvalid; |
| ops[1].shift = 0; |
| |
| return false; |
| } |
| |
| // Generate instructions to do multiply. |
| // Additional temporary register is required, |
| // if it need to generate 2 instructions and src/dest overlap. |
| void ArmMir2Lir::GenEasyMultiplyTwoOps(RegStorage r_dest, RegStorage r_src, EasyMultiplyOp* ops) { |
| // tmp1 = ( src << shift1) + [ src | -src | 0 ] |
| // dest = (tmp1 << shift2) + [ src | -src | 0 ] |
| |
| RegStorage r_tmp1; |
| if (ops[1].op == kOpInvalid) { |
| r_tmp1 = r_dest; |
| } else if (r_dest.GetReg() != r_src.GetReg()) { |
| r_tmp1 = r_dest; |
| } else { |
| r_tmp1 = AllocTemp(); |
| } |
| |
| switch (ops[0].op) { |
| case kOpLsl: |
| OpRegRegImm(kOpLsl, r_tmp1, r_src, ops[0].shift); |
| break; |
| case kOpAdd: |
| OpRegRegRegShift(kOpAdd, r_tmp1, r_src, r_src, EncodeShift(kArmLsl, ops[0].shift)); |
| break; |
| case kOpRsub: |
| OpRegRegRegShift(kOpRsub, r_tmp1, r_src, r_src, EncodeShift(kArmLsl, ops[0].shift)); |
| break; |
| default: |
| DCHECK_EQ(ops[0].op, kOpInvalid); |
| break; |
| } |
| |
| switch (ops[1].op) { |
| case kOpInvalid: |
| return; |
| case kOpLsl: |
| OpRegRegImm(kOpLsl, r_dest, r_tmp1, ops[1].shift); |
| break; |
| case kOpAdd: |
| OpRegRegRegShift(kOpAdd, r_dest, r_src, r_tmp1, EncodeShift(kArmLsl, ops[1].shift)); |
| break; |
| case kOpRsub: |
| OpRegRegRegShift(kOpRsub, r_dest, r_src, r_tmp1, EncodeShift(kArmLsl, ops[1].shift)); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected opcode passed to GenEasyMultiplyTwoOps"; |
| break; |
| } |
| } |
| |
| bool ArmMir2Lir::EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) { |
| EasyMultiplyOp ops[2]; |
| |
| if (!GetEasyMultiplyTwoOps(lit, ops)) { |
| return false; |
| } |
| |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| |
| GenEasyMultiplyTwoOps(rl_result.reg, rl_src.reg, ops); |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| RegLocation ArmMir2Lir::GenDivRem(RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2, bool is_div, int flags) { |
| UNUSED(rl_dest, rl_src1, rl_src2, is_div, flags); |
| LOG(FATAL) << "Unexpected use of GenDivRem for Arm"; |
| UNREACHABLE(); |
| } |
| |
| RegLocation ArmMir2Lir::GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit, |
| bool is_div) { |
| UNUSED(rl_dest, rl_src1, lit, is_div); |
| LOG(FATAL) << "Unexpected use of GenDivRemLit for Arm"; |
| UNREACHABLE(); |
| } |
| |
| RegLocation ArmMir2Lir::GenDivRemLit(RegLocation rl_dest, RegStorage reg1, int lit, bool is_div) { |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| |
| // Put the literal in a temp. |
| RegStorage lit_temp = AllocTemp(); |
| LoadConstant(lit_temp, lit); |
| // Use the generic case for div/rem with arg2 in a register. |
| // TODO: The literal temp can be freed earlier during a modulus to reduce reg pressure. |
| rl_result = GenDivRem(rl_result, reg1, lit_temp, is_div); |
| FreeTemp(lit_temp); |
| |
| return rl_result; |
| } |
| |
| RegLocation ArmMir2Lir::GenDivRem(RegLocation rl_dest, RegStorage reg1, RegStorage reg2, |
| bool is_div) { |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| if (is_div) { |
| // Simple case, use sdiv instruction. |
| OpRegRegReg(kOpDiv, rl_result.reg, reg1, reg2); |
| } else { |
| // Remainder case, use the following code: |
| // temp = reg1 / reg2 - integer division |
| // temp = temp * reg2 |
| // dest = reg1 - temp |
| |
| RegStorage temp = AllocTemp(); |
| OpRegRegReg(kOpDiv, temp, reg1, reg2); |
| OpRegReg(kOpMul, temp, reg2); |
| OpRegRegReg(kOpSub, rl_result.reg, reg1, temp); |
| FreeTemp(temp); |
| } |
| |
| return rl_result; |
| } |
| |
| bool ArmMir2Lir::GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) { |
| DCHECK_EQ(cu_->instruction_set, kThumb2); |
| if (is_long) { |
| return false; |
| } |
| RegLocation rl_src1 = info->args[0]; |
| RegLocation rl_src2 = info->args[1]; |
| rl_src1 = LoadValue(rl_src1, kCoreReg); |
| rl_src2 = LoadValue(rl_src2, kCoreReg); |
| RegLocation rl_dest = InlineTarget(info); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegReg(kOpCmp, rl_src1.reg, rl_src2.reg); |
| LIR* it = OpIT((is_min) ? kCondGt : kCondLt, "E"); |
| OpRegReg(kOpMov, rl_result.reg, rl_src2.reg); |
| OpRegReg(kOpMov, rl_result.reg, rl_src1.reg); |
| OpEndIT(it); |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| bool ArmMir2Lir::GenInlinedPeek(CallInfo* info, OpSize size) { |
| RegLocation rl_src_address = info->args[0]; // long address |
| rl_src_address = NarrowRegLoc(rl_src_address); // ignore high half in info->args[1] |
| RegLocation rl_dest = InlineTarget(info); |
| RegLocation rl_address = LoadValue(rl_src_address, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| if (size == k64) { |
| // Fake unaligned LDRD by two unaligned LDR instructions on ARMv7 with SCTLR.A set to 0. |
| if (rl_address.reg.GetReg() != rl_result.reg.GetLowReg()) { |
| Load32Disp(rl_address.reg, 0, rl_result.reg.GetLow()); |
| Load32Disp(rl_address.reg, 4, rl_result.reg.GetHigh()); |
| } else { |
| Load32Disp(rl_address.reg, 4, rl_result.reg.GetHigh()); |
| Load32Disp(rl_address.reg, 0, rl_result.reg.GetLow()); |
| } |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| DCHECK(size == kSignedByte || size == kSignedHalf || size == k32); |
| // Unaligned load with LDR and LDRSH is allowed on ARMv7 with SCTLR.A set to 0. |
| LoadBaseDisp(rl_address.reg, 0, rl_result.reg, size, kNotVolatile); |
| StoreValue(rl_dest, rl_result); |
| } |
| return true; |
| } |
| |
| bool ArmMir2Lir::GenInlinedPoke(CallInfo* info, OpSize size) { |
| RegLocation rl_src_address = info->args[0]; // long address |
| rl_src_address = NarrowRegLoc(rl_src_address); // ignore high half in info->args[1] |
| RegLocation rl_src_value = info->args[2]; // [size] value |
| RegLocation rl_address = LoadValue(rl_src_address, kCoreReg); |
| if (size == k64) { |
| // Fake unaligned STRD by two unaligned STR instructions on ARMv7 with SCTLR.A set to 0. |
| RegLocation rl_value = LoadValueWide(rl_src_value, kCoreReg); |
| StoreBaseDisp(rl_address.reg, 0, rl_value.reg.GetLow(), k32, kNotVolatile); |
| StoreBaseDisp(rl_address.reg, 4, rl_value.reg.GetHigh(), k32, kNotVolatile); |
| } else { |
| DCHECK(size == kSignedByte || size == kSignedHalf || size == k32); |
| // Unaligned store with STR and STRSH is allowed on ARMv7 with SCTLR.A set to 0. |
| RegLocation rl_value = LoadValue(rl_src_value, kCoreReg); |
| StoreBaseDisp(rl_address.reg, 0, rl_value.reg, size, kNotVolatile); |
| } |
| return true; |
| } |
| |
| // Generate a CAS with memory_order_seq_cst semantics. |
| bool ArmMir2Lir::GenInlinedCas(CallInfo* info, bool is_long, bool is_object) { |
| DCHECK_EQ(cu_->instruction_set, kThumb2); |
| // Unused - RegLocation rl_src_unsafe = info->args[0]; |
| RegLocation rl_src_obj = info->args[1]; // Object - known non-null |
| RegLocation rl_src_offset = info->args[2]; // long low |
| rl_src_offset = NarrowRegLoc(rl_src_offset); // ignore high half in info->args[3] |
| RegLocation rl_src_expected = info->args[4]; // int, long or Object |
| // If is_long, high half is in info->args[5] |
| RegLocation rl_src_new_value = info->args[is_long ? 6 : 5]; // int, long or Object |
| // If is_long, high half is in info->args[7] |
| RegLocation rl_dest = InlineTarget(info); // boolean place for result |
| |
| // We have only 5 temporary registers available and actually only 4 if the InlineTarget |
| // above locked one of the temps. For a straightforward CAS64 we need 7 registers: |
| // r_ptr (1), new_value (2), expected(2) and ldrexd result (2). If neither expected nor |
| // new_value is in a non-temp core register we shall reload them in the ldrex/strex loop |
| // into the same temps, reducing the number of required temps down to 5. We shall work |
| // around the potentially locked temp by using LR for r_ptr, unconditionally. |
| // TODO: Pass information about the need for more temps to the stack frame generation |
| // code so that we can rely on being able to allocate enough temps. |
| DCHECK(!GetRegInfo(rs_rARM_LR)->IsTemp()); |
| MarkTemp(rs_rARM_LR); |
| FreeTemp(rs_rARM_LR); |
| LockTemp(rs_rARM_LR); |
| bool load_early = true; |
| if (is_long) { |
| RegStorage expected_reg = rl_src_expected.reg.IsPair() ? rl_src_expected.reg.GetLow() : |
| rl_src_expected.reg; |
| RegStorage new_val_reg = rl_src_new_value.reg.IsPair() ? rl_src_new_value.reg.GetLow() : |
| rl_src_new_value.reg; |
| bool expected_is_core_reg = rl_src_expected.location == kLocPhysReg && !expected_reg.IsFloat(); |
| bool new_value_is_core_reg = rl_src_new_value.location == kLocPhysReg && !new_val_reg.IsFloat(); |
| bool expected_is_good_reg = expected_is_core_reg && !IsTemp(expected_reg); |
| bool new_value_is_good_reg = new_value_is_core_reg && !IsTemp(new_val_reg); |
| |
| if (!expected_is_good_reg && !new_value_is_good_reg) { |
| // None of expected/new_value is non-temp reg, need to load both late |
| load_early = false; |
| // Make sure they are not in the temp regs and the load will not be skipped. |
| if (expected_is_core_reg) { |
| FlushRegWide(rl_src_expected.reg); |
| ClobberSReg(rl_src_expected.s_reg_low); |
| ClobberSReg(GetSRegHi(rl_src_expected.s_reg_low)); |
| rl_src_expected.location = kLocDalvikFrame; |
| } |
| if (new_value_is_core_reg) { |
| FlushRegWide(rl_src_new_value.reg); |
| ClobberSReg(rl_src_new_value.s_reg_low); |
| ClobberSReg(GetSRegHi(rl_src_new_value.s_reg_low)); |
| rl_src_new_value.location = kLocDalvikFrame; |
| } |
| } |
| } |
| |
| // Prevent reordering with prior memory operations. |
| GenMemBarrier(kAnyStore); |
| |
| RegLocation rl_object = LoadValue(rl_src_obj, kRefReg); |
| RegLocation rl_new_value; |
| if (!is_long) { |
| rl_new_value = LoadValue(rl_src_new_value, LocToRegClass(rl_src_new_value)); |
| } else if (load_early) { |
| rl_new_value = LoadValueWide(rl_src_new_value, kCoreReg); |
| } |
| |
| if (is_object && !mir_graph_->IsConstantNullRef(rl_new_value)) { |
| // Mark card for object assuming new value is stored. |
| MarkGCCard(0, rl_new_value.reg, rl_object.reg); |
| } |
| |
| RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg); |
| |
| RegStorage r_ptr = rs_rARM_LR; |
| OpRegRegReg(kOpAdd, r_ptr, rl_object.reg, rl_offset.reg); |
| |
| // Free now unneeded rl_object and rl_offset to give more temps. |
| ClobberSReg(rl_object.s_reg_low); |
| FreeTemp(rl_object.reg); |
| ClobberSReg(rl_offset.s_reg_low); |
| FreeTemp(rl_offset.reg); |
| |
| RegLocation rl_expected; |
| if (!is_long) { |
| rl_expected = LoadValue(rl_src_expected, LocToRegClass(rl_src_new_value)); |
| } else if (load_early) { |
| rl_expected = LoadValueWide(rl_src_expected, kCoreReg); |
| } else { |
| // NOTE: partially defined rl_expected & rl_new_value - but we just want the regs. |
| RegStorage low_reg = AllocTemp(); |
| RegStorage high_reg = AllocTemp(); |
| rl_new_value.reg = RegStorage::MakeRegPair(low_reg, high_reg); |
| rl_expected = rl_new_value; |
| } |
| |
| // do { |
| // tmp = [r_ptr] - expected; |
| // } while (tmp == 0 && failure([r_ptr] <- r_new_value)); |
| // result = tmp != 0; |
| |
| RegStorage r_tmp = AllocTemp(); |
| LIR* target = NewLIR0(kPseudoTargetLabel); |
| |
| LIR* it = nullptr; |
| if (is_long) { |
| RegStorage r_tmp_high = AllocTemp(); |
| if (!load_early) { |
| LoadValueDirectWide(rl_src_expected, rl_expected.reg); |
| } |
| NewLIR3(kThumb2Ldrexd, r_tmp.GetReg(), r_tmp_high.GetReg(), r_ptr.GetReg()); |
| OpRegReg(kOpSub, r_tmp, rl_expected.reg.GetLow()); |
| OpRegReg(kOpSub, r_tmp_high, rl_expected.reg.GetHigh()); |
| if (!load_early) { |
| LoadValueDirectWide(rl_src_new_value, rl_new_value.reg); |
| } |
| // Make sure we use ORR that sets the ccode |
| if (r_tmp.Low8() && r_tmp_high.Low8()) { |
| NewLIR2(kThumbOrr, r_tmp.GetReg(), r_tmp_high.GetReg()); |
| } else { |
| NewLIR4(kThumb2OrrRRRs, r_tmp.GetReg(), r_tmp.GetReg(), r_tmp_high.GetReg(), 0); |
| } |
| FreeTemp(r_tmp_high); // Now unneeded |
| |
| DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); |
| it = OpIT(kCondEq, "T"); |
| NewLIR4(kThumb2Strexd /* eq */, r_tmp.GetReg(), rl_new_value.reg.GetLowReg(), rl_new_value.reg.GetHighReg(), r_ptr.GetReg()); |
| |
| } else { |
| NewLIR3(kThumb2Ldrex, r_tmp.GetReg(), r_ptr.GetReg(), 0); |
| OpRegReg(kOpSub, r_tmp, rl_expected.reg); |
| DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); |
| it = OpIT(kCondEq, "T"); |
| NewLIR4(kThumb2Strex /* eq */, r_tmp.GetReg(), rl_new_value.reg.GetReg(), r_ptr.GetReg(), 0); |
| } |
| |
| // Still one conditional left from OpIT(kCondEq, "T") from either branch |
| OpRegImm(kOpCmp /* eq */, r_tmp, 1); |
| OpEndIT(it); |
| |
| OpCondBranch(kCondEq, target); |
| |
| if (!load_early) { |
| FreeTemp(rl_expected.reg); // Now unneeded. |
| } |
| |
| // Prevent reordering with subsequent memory operations. |
| GenMemBarrier(kLoadAny); |
| |
| // result := (tmp1 != 0) ? 0 : 1; |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegRegImm(kOpRsub, rl_result.reg, r_tmp, 1); |
| DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); |
| it = OpIT(kCondUlt, ""); |
| LoadConstant(rl_result.reg, 0); /* cc */ |
| FreeTemp(r_tmp); // Now unneeded. |
| OpEndIT(it); // Barrier to terminate OpIT. |
| |
| StoreValue(rl_dest, rl_result); |
| |
| // Now, restore lr to its non-temp status. |
| Clobber(rs_rARM_LR); |
| UnmarkTemp(rs_rARM_LR); |
| return true; |
| } |
| |
| bool ArmMir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) { |
| constexpr int kLargeArrayThreshold = 256; |
| |
| RegLocation rl_src = info->args[0]; |
| RegLocation rl_src_pos = info->args[1]; |
| RegLocation rl_dst = info->args[2]; |
| RegLocation rl_dst_pos = info->args[3]; |
| RegLocation rl_length = info->args[4]; |
| // Compile time check, handle exception by non-inline method to reduce related meta-data. |
| if ((rl_src_pos.is_const && (mir_graph_->ConstantValue(rl_src_pos) < 0)) || |
| (rl_dst_pos.is_const && (mir_graph_->ConstantValue(rl_dst_pos) < 0)) || |
| (rl_length.is_const && (mir_graph_->ConstantValue(rl_length) < 0))) { |
| return false; |
| } |
| |
| ClobberCallerSave(); |
| LockCallTemps(); // Prepare for explicit register usage. |
| LockTemp(rs_r12); |
| RegStorage rs_src = rs_r0; |
| RegStorage rs_dst = rs_r1; |
| LoadValueDirectFixed(rl_src, rs_src); |
| LoadValueDirectFixed(rl_dst, rs_dst); |
| |
| // Handle null pointer exception in slow-path. |
| LIR* src_check_branch = OpCmpImmBranch(kCondEq, rs_src, 0, nullptr); |
| LIR* dst_check_branch = OpCmpImmBranch(kCondEq, rs_dst, 0, nullptr); |
| // Handle potential overlapping in slow-path. |
| LIR* src_dst_same = OpCmpBranch(kCondEq, rs_src, rs_dst, nullptr); |
| // Handle exception or big length in slow-path. |
| RegStorage rs_length = rs_r2; |
| LoadValueDirectFixed(rl_length, rs_length); |
| LIR* len_neg_or_too_big = OpCmpImmBranch(kCondHi, rs_length, kLargeArrayThreshold, nullptr); |
| // Src bounds check. |
| RegStorage rs_pos = rs_r3; |
| RegStorage rs_arr_length = rs_r12; |
| LoadValueDirectFixed(rl_src_pos, rs_pos); |
| LIR* src_pos_negative = OpCmpImmBranch(kCondLt, rs_pos, 0, nullptr); |
| Load32Disp(rs_src, mirror::Array::LengthOffset().Int32Value(), rs_arr_length); |
| OpRegReg(kOpSub, rs_arr_length, rs_pos); |
| LIR* src_bad_len = OpCmpBranch(kCondLt, rs_arr_length, rs_length, nullptr); |
| // Dst bounds check. |
| LoadValueDirectFixed(rl_dst_pos, rs_pos); |
| LIR* dst_pos_negative = OpCmpImmBranch(kCondLt, rs_pos, 0, nullptr); |
| Load32Disp(rs_dst, mirror::Array::LengthOffset().Int32Value(), rs_arr_length); |
| OpRegReg(kOpSub, rs_arr_length, rs_pos); |
| LIR* dst_bad_len = OpCmpBranch(kCondLt, rs_arr_length, rs_length, nullptr); |
| |
| // Everything is checked now. |
| OpRegImm(kOpAdd, rs_dst, mirror::Array::DataOffset(2).Int32Value()); |
| OpRegReg(kOpAdd, rs_dst, rs_pos); |
| OpRegReg(kOpAdd, rs_dst, rs_pos); |
| OpRegImm(kOpAdd, rs_src, mirror::Array::DataOffset(2).Int32Value()); |
| LoadValueDirectFixed(rl_src_pos, rs_pos); |
| OpRegReg(kOpAdd, rs_src, rs_pos); |
| OpRegReg(kOpAdd, rs_src, rs_pos); |
| |
| RegStorage rs_tmp = rs_pos; |
| OpRegRegImm(kOpLsl, rs_length, rs_length, 1); |
| |
| // Copy one element. |
| OpRegRegImm(kOpAnd, rs_tmp, rs_length, 2); |
| LIR* jmp_to_begin_loop = OpCmpImmBranch(kCondEq, rs_tmp, 0, nullptr); |
| OpRegImm(kOpSub, rs_length, 2); |
| LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, kSignedHalf); |
| StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, kSignedHalf); |
| |
| // Copy two elements. |
| LIR *begin_loop = NewLIR0(kPseudoTargetLabel); |
| LIR* jmp_to_ret = OpCmpImmBranch(kCondEq, rs_length, 0, nullptr); |
| OpRegImm(kOpSub, rs_length, 4); |
| LoadBaseIndexed(rs_src, rs_length, rs_tmp, 0, k32); |
| StoreBaseIndexed(rs_dst, rs_length, rs_tmp, 0, k32); |
| OpUnconditionalBranch(begin_loop); |
| |
| LIR *check_failed = NewLIR0(kPseudoTargetLabel); |
| LIR* launchpad_branch = OpUnconditionalBranch(nullptr); |
| LIR* return_point = NewLIR0(kPseudoTargetLabel); |
| |
| src_check_branch->target = check_failed; |
| dst_check_branch->target = check_failed; |
| src_dst_same->target = check_failed; |
| len_neg_or_too_big->target = check_failed; |
| src_pos_negative->target = check_failed; |
| src_bad_len->target = check_failed; |
| dst_pos_negative->target = check_failed; |
| dst_bad_len->target = check_failed; |
| jmp_to_begin_loop->target = begin_loop; |
| jmp_to_ret->target = return_point; |
| |
| AddIntrinsicSlowPath(info, launchpad_branch, return_point); |
| ClobberCallerSave(); // We must clobber everything because slow path will return here |
| |
| return true; |
| } |
| |
| void ArmMir2Lir::OpPcRelLoad(RegStorage reg, LIR* target) { |
| ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral); |
| LIR* lir = NewLIR2(kThumb2LdrPcRel12, reg.GetReg(), 0); |
| lir->target = target; |
| } |
| |
| LIR* ArmMir2Lir::OpVldm(RegStorage r_base, int count) { |
| return NewLIR3(kThumb2Vldms, r_base.GetReg(), rs_fr0.GetReg(), count); |
| } |
| |
| LIR* ArmMir2Lir::OpVstm(RegStorage r_base, int count) { |
| return NewLIR3(kThumb2Vstms, r_base.GetReg(), rs_fr0.GetReg(), count); |
| } |
| |
| void ArmMir2Lir::GenMaddMsubInt(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, |
| RegLocation rl_src3, bool is_sub) { |
| rl_src1 = LoadValue(rl_src1, kCoreReg); |
| rl_src2 = LoadValue(rl_src2, kCoreReg); |
| rl_src3 = LoadValue(rl_src3, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| NewLIR4(is_sub ? kThumb2Mls : kThumb2Mla, rl_result.reg.GetReg(), rl_src1.reg.GetReg(), |
| rl_src2.reg.GetReg(), rl_src3.reg.GetReg()); |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| void ArmMir2Lir::GenMultiplyByTwoBitMultiplier(RegLocation rl_src, |
| RegLocation rl_result, int lit, |
| int first_bit, int second_bit) { |
| UNUSED(lit); |
| OpRegRegRegShift(kOpAdd, rl_result.reg, rl_src.reg, rl_src.reg, |
| EncodeShift(kArmLsl, second_bit - first_bit)); |
| if (first_bit != 0) { |
| OpRegRegImm(kOpLsl, rl_result.reg, rl_result.reg, first_bit); |
| } |
| } |
| |
| void ArmMir2Lir::GenDivZeroCheckWide(RegStorage reg) { |
| DCHECK(reg.IsPair()); // TODO: support k64BitSolo. |
| RegStorage t_reg = AllocTemp(); |
| NewLIR4(kThumb2OrrRRRs, t_reg.GetReg(), reg.GetLowReg(), reg.GetHighReg(), 0); |
| FreeTemp(t_reg); |
| GenDivZeroCheck(kCondEq); |
| } |
| |
| // Test suspend flag, return target of taken suspend branch |
| LIR* ArmMir2Lir::OpTestSuspend(LIR* target) { |
| #ifdef ARM_R4_SUSPEND_FLAG |
| NewLIR2(kThumbSubRI8, rs_rARM_SUSPEND.GetReg(), 1); |
| return OpCondBranch((target == NULL) ? kCondEq : kCondNe, target); |
| #else |
| RegStorage t_reg = AllocTemp(); |
| LoadBaseDisp(rs_rARM_SELF, Thread::ThreadFlagsOffset<4>().Int32Value(), |
| t_reg, kUnsignedHalf, kNotVolatile); |
| LIR* cmp_branch = OpCmpImmBranch((target == NULL) ? kCondNe : kCondEq, t_reg, |
| 0, target); |
| FreeTemp(t_reg); |
| return cmp_branch; |
| #endif |
| } |
| |
| // Decrement register and branch on condition |
| LIR* ArmMir2Lir::OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) { |
| // Combine sub & test using sub setflags encoding here |
| OpRegRegImm(kOpSub, reg, reg, 1); // For value == 1, this should set flags. |
| DCHECK(last_lir_insn_->u.m.def_mask->HasBit(ResourceMask::kCCode)); |
| return OpCondBranch(c_code, target); |
| } |
| |
| bool ArmMir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) { |
| if (!cu_->compiler_driver->GetInstructionSetFeatures()->IsSmp()) { |
| return false; |
| } |
| // Start off with using the last LIR as the barrier. If it is not enough, then we will generate one. |
| LIR* barrier = last_lir_insn_; |
| |
| int dmb_flavor; |
| // TODO: revisit Arm barrier kinds |
| switch (barrier_kind) { |
| case kAnyStore: dmb_flavor = kISH; break; |
| case kLoadAny: dmb_flavor = kISH; break; |
| case kStoreStore: dmb_flavor = kISHST; break; |
| case kAnyAny: dmb_flavor = kISH; break; |
| default: |
| LOG(FATAL) << "Unexpected MemBarrierKind: " << barrier_kind; |
| dmb_flavor = kSY; // quiet gcc. |
| break; |
| } |
| |
| bool ret = false; |
| |
| // If the same barrier already exists, don't generate another. |
| if (barrier == nullptr |
| || (barrier != nullptr && (barrier->opcode != kThumb2Dmb || barrier->operands[0] != dmb_flavor))) { |
| barrier = NewLIR1(kThumb2Dmb, dmb_flavor); |
| ret = true; |
| } |
| |
| // At this point we must have a memory barrier. Mark it as a scheduling barrier as well. |
| DCHECK(!barrier->flags.use_def_invalid); |
| barrier->u.m.def_mask = &kEncodeAll; |
| return ret; |
| } |
| |
| void ArmMir2Lir::GenNegLong(RegLocation rl_dest, RegLocation rl_src) { |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| RegStorage z_reg = AllocTemp(); |
| LoadConstantNoClobber(z_reg, 0); |
| // Check for destructive overlap |
| if (rl_result.reg.GetLowReg() == rl_src.reg.GetHighReg()) { |
| RegStorage t_reg = AllocTemp(); |
| OpRegCopy(t_reg, rl_result.reg.GetLow()); |
| OpRegRegReg(kOpSub, rl_result.reg.GetLow(), z_reg, rl_src.reg.GetLow()); |
| OpRegRegReg(kOpSbc, rl_result.reg.GetHigh(), z_reg, t_reg); |
| FreeTemp(t_reg); |
| } else { |
| OpRegRegReg(kOpSub, rl_result.reg.GetLow(), z_reg, rl_src.reg.GetLow()); |
| OpRegRegReg(kOpSbc, rl_result.reg.GetHigh(), z_reg, rl_src.reg.GetHigh()); |
| } |
| FreeTemp(z_reg); |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| void ArmMir2Lir::GenMulLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2) { |
| UNUSED(opcode); |
| /* |
| * tmp1 = src1.hi * src2.lo; // src1.hi is no longer needed |
| * dest = src1.lo * src2.lo; |
| * tmp1 += src1.lo * src2.hi; |
| * dest.hi += tmp1; |
| * |
| * To pull off inline multiply, we have a worst-case requirement of 7 temporary |
| * registers. Normally for Arm, we get 5. We can get to 6 by including |
| * lr in the temp set. The only problematic case is all operands and result are |
| * distinct, and none have been promoted. In that case, we can succeed by aggressively |
| * freeing operand temp registers after they are no longer needed. All other cases |
| * can proceed normally. We'll just punt on the case of the result having a misaligned |
| * overlap with either operand and send that case to a runtime handler. |
| */ |
| RegLocation rl_result; |
| if (PartiallyIntersects(rl_src1, rl_dest) || (PartiallyIntersects(rl_src2, rl_dest))) { |
| FlushAllRegs(); |
| CallRuntimeHelperRegLocationRegLocation(kQuickLmul, rl_src1, rl_src2, false); |
| rl_result = GetReturnWide(kCoreReg); |
| StoreValueWide(rl_dest, rl_result); |
| return; |
| } |
| |
| rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| rl_src2 = LoadValueWide(rl_src2, kCoreReg); |
| |
| int reg_status = 0; |
| RegStorage res_lo; |
| RegStorage res_hi; |
| bool dest_promoted = rl_dest.location == kLocPhysReg && rl_dest.reg.Valid() && |
| !IsTemp(rl_dest.reg.GetLow()) && !IsTemp(rl_dest.reg.GetHigh()); |
| bool src1_promoted = !IsTemp(rl_src1.reg.GetLow()) && !IsTemp(rl_src1.reg.GetHigh()); |
| bool src2_promoted = !IsTemp(rl_src2.reg.GetLow()) && !IsTemp(rl_src2.reg.GetHigh()); |
| // Check if rl_dest is *not* either operand and we have enough temp registers. |
| if ((rl_dest.s_reg_low != rl_src1.s_reg_low && rl_dest.s_reg_low != rl_src2.s_reg_low) && |
| (dest_promoted || src1_promoted || src2_promoted)) { |
| // In this case, we do not need to manually allocate temp registers for result. |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| res_lo = rl_result.reg.GetLow(); |
| res_hi = rl_result.reg.GetHigh(); |
| } else { |
| res_lo = AllocTemp(); |
| if ((rl_src1.s_reg_low == rl_src2.s_reg_low) || src1_promoted || src2_promoted) { |
| // In this case, we have enough temp registers to be allocated for result. |
| res_hi = AllocTemp(); |
| reg_status = 1; |
| } else { |
| // In this case, all temps are now allocated. |
| // res_hi will be allocated after we can free src1_hi. |
| reg_status = 2; |
| } |
| } |
| |
| // Temporarily add LR to the temp pool, and assign it to tmp1 |
| MarkTemp(rs_rARM_LR); |
| FreeTemp(rs_rARM_LR); |
| RegStorage tmp1 = rs_rARM_LR; |
| LockTemp(rs_rARM_LR); |
| |
| if (rl_src1.reg == rl_src2.reg) { |
| DCHECK(res_hi.Valid()); |
| DCHECK(res_lo.Valid()); |
| NewLIR3(kThumb2MulRRR, tmp1.GetReg(), rl_src1.reg.GetLowReg(), rl_src1.reg.GetHighReg()); |
| NewLIR4(kThumb2Umull, res_lo.GetReg(), res_hi.GetReg(), rl_src1.reg.GetLowReg(), |
| rl_src1.reg.GetLowReg()); |
| OpRegRegRegShift(kOpAdd, res_hi, res_hi, tmp1, EncodeShift(kArmLsl, 1)); |
| } else { |
| NewLIR3(kThumb2MulRRR, tmp1.GetReg(), rl_src2.reg.GetLowReg(), rl_src1.reg.GetHighReg()); |
| if (reg_status == 2) { |
| DCHECK(!res_hi.Valid()); |
| DCHECK_NE(rl_src1.reg.GetLowReg(), rl_src2.reg.GetLowReg()); |
| DCHECK_NE(rl_src1.reg.GetHighReg(), rl_src2.reg.GetHighReg()); |
| // Will force free src1_hi, so must clobber. |
| Clobber(rl_src1.reg); |
| FreeTemp(rl_src1.reg.GetHigh()); |
| res_hi = AllocTemp(); |
| } |
| DCHECK(res_hi.Valid()); |
| DCHECK(res_lo.Valid()); |
| NewLIR4(kThumb2Umull, res_lo.GetReg(), res_hi.GetReg(), rl_src2.reg.GetLowReg(), |
| rl_src1.reg.GetLowReg()); |
| NewLIR4(kThumb2Mla, tmp1.GetReg(), rl_src1.reg.GetLowReg(), rl_src2.reg.GetHighReg(), |
| tmp1.GetReg()); |
| NewLIR4(kThumb2AddRRR, res_hi.GetReg(), tmp1.GetReg(), res_hi.GetReg(), 0); |
| if (reg_status == 2) { |
| FreeTemp(rl_src1.reg.GetLow()); |
| } |
| } |
| |
| // Now, restore lr to its non-temp status. |
| FreeTemp(tmp1); |
| Clobber(rs_rARM_LR); |
| UnmarkTemp(rs_rARM_LR); |
| |
| if (reg_status != 0) { |
| // We had manually allocated registers for rl_result. |
| // Now construct a RegLocation. |
| rl_result = GetReturnWide(kCoreReg); // Just using as a template. |
| rl_result.reg = RegStorage::MakeRegPair(res_lo, res_hi); |
| } |
| |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| void ArmMir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src1, |
| RegLocation rl_src2, int flags) { |
| switch (opcode) { |
| case Instruction::MUL_LONG: |
| case Instruction::MUL_LONG_2ADDR: |
| GenMulLong(opcode, rl_dest, rl_src1, rl_src2); |
| return; |
| case Instruction::NEG_LONG: |
| GenNegLong(rl_dest, rl_src2); |
| return; |
| |
| default: |
| break; |
| } |
| |
| // Fallback for all other ops. |
| Mir2Lir::GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2, flags); |
| } |
| |
| /* |
| * Generate array load |
| */ |
| void ArmMir2Lir::GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array, |
| RegLocation rl_index, RegLocation rl_dest, int scale) { |
| RegisterClass reg_class = RegClassBySize(size); |
| int len_offset = mirror::Array::LengthOffset().Int32Value(); |
| int data_offset; |
| RegLocation rl_result; |
| bool constant_index = rl_index.is_const; |
| rl_array = LoadValue(rl_array, kRefReg); |
| if (!constant_index) { |
| rl_index = LoadValue(rl_index, kCoreReg); |
| } |
| |
| if (rl_dest.wide) { |
| data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value(); |
| } else { |
| data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value(); |
| } |
| |
| // If index is constant, just fold it into the data offset |
| if (constant_index) { |
| data_offset += mir_graph_->ConstantValue(rl_index) << scale; |
| } |
| |
| /* null object? */ |
| GenNullCheck(rl_array.reg, opt_flags); |
| |
| bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK)); |
| RegStorage reg_len; |
| if (needs_range_check) { |
| reg_len = AllocTemp(); |
| /* Get len */ |
| Load32Disp(rl_array.reg, len_offset, reg_len); |
| MarkPossibleNullPointerException(opt_flags); |
| } else { |
| ForceImplicitNullCheck(rl_array.reg, opt_flags); |
| } |
| if (rl_dest.wide || rl_dest.fp || constant_index) { |
| RegStorage reg_ptr; |
| if (constant_index) { |
| reg_ptr = rl_array.reg; // NOTE: must not alter reg_ptr in constant case. |
| } else { |
| // No special indexed operation, lea + load w/ displacement |
| reg_ptr = AllocTempRef(); |
| OpRegRegRegShift(kOpAdd, reg_ptr, rl_array.reg, rl_index.reg, EncodeShift(kArmLsl, scale)); |
| FreeTemp(rl_index.reg); |
| } |
| rl_result = EvalLoc(rl_dest, reg_class, true); |
| |
| if (needs_range_check) { |
| if (constant_index) { |
| GenArrayBoundsCheck(mir_graph_->ConstantValue(rl_index), reg_len); |
| } else { |
| GenArrayBoundsCheck(rl_index.reg, reg_len); |
| } |
| FreeTemp(reg_len); |
| } |
| LoadBaseDisp(reg_ptr, data_offset, rl_result.reg, size, kNotVolatile); |
| if (!constant_index) { |
| FreeTemp(reg_ptr); |
| } |
| if (rl_dest.wide) { |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| StoreValue(rl_dest, rl_result); |
| } |
| } else { |
| // Offset base, then use indexed load |
| RegStorage reg_ptr = AllocTempRef(); |
| OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset); |
| FreeTemp(rl_array.reg); |
| rl_result = EvalLoc(rl_dest, reg_class, true); |
| |
| if (needs_range_check) { |
| GenArrayBoundsCheck(rl_index.reg, reg_len); |
| FreeTemp(reg_len); |
| } |
| LoadBaseIndexed(reg_ptr, rl_index.reg, rl_result.reg, scale, size); |
| FreeTemp(reg_ptr); |
| StoreValue(rl_dest, rl_result); |
| } |
| } |
| |
| /* |
| * Generate array store |
| * |
| */ |
| void ArmMir2Lir::GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array, |
| RegLocation rl_index, RegLocation rl_src, int scale, bool card_mark) { |
| RegisterClass reg_class = RegClassBySize(size); |
| int len_offset = mirror::Array::LengthOffset().Int32Value(); |
| bool constant_index = rl_index.is_const; |
| |
| int data_offset; |
| if (size == k64 || size == kDouble) { |
| data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Int32Value(); |
| } else { |
| data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Int32Value(); |
| } |
| |
| // If index is constant, just fold it into the data offset. |
| if (constant_index) { |
| data_offset += mir_graph_->ConstantValue(rl_index) << scale; |
| } |
| |
| rl_array = LoadValue(rl_array, kRefReg); |
| if (!constant_index) { |
| rl_index = LoadValue(rl_index, kCoreReg); |
| } |
| |
| RegStorage reg_ptr; |
| bool allocated_reg_ptr_temp = false; |
| if (constant_index) { |
| reg_ptr = rl_array.reg; |
| } else if (IsTemp(rl_array.reg) && !card_mark) { |
| Clobber(rl_array.reg); |
| reg_ptr = rl_array.reg; |
| } else { |
| allocated_reg_ptr_temp = true; |
| reg_ptr = AllocTempRef(); |
| } |
| |
| /* null object? */ |
| GenNullCheck(rl_array.reg, opt_flags); |
| |
| bool needs_range_check = (!(opt_flags & MIR_IGNORE_RANGE_CHECK)); |
| RegStorage reg_len; |
| if (needs_range_check) { |
| reg_len = AllocTemp(); |
| // NOTE: max live temps(4) here. |
| /* Get len */ |
| Load32Disp(rl_array.reg, len_offset, reg_len); |
| MarkPossibleNullPointerException(opt_flags); |
| } else { |
| ForceImplicitNullCheck(rl_array.reg, opt_flags); |
| } |
| /* at this point, reg_ptr points to array, 2 live temps */ |
| if (rl_src.wide || rl_src.fp || constant_index) { |
| if (rl_src.wide) { |
| rl_src = LoadValueWide(rl_src, reg_class); |
| } else { |
| rl_src = LoadValue(rl_src, reg_class); |
| } |
| if (!constant_index) { |
| OpRegRegRegShift(kOpAdd, reg_ptr, rl_array.reg, rl_index.reg, EncodeShift(kArmLsl, scale)); |
| } |
| if (needs_range_check) { |
| if (constant_index) { |
| GenArrayBoundsCheck(mir_graph_->ConstantValue(rl_index), reg_len); |
| } else { |
| GenArrayBoundsCheck(rl_index.reg, reg_len); |
| } |
| FreeTemp(reg_len); |
| } |
| |
| StoreBaseDisp(reg_ptr, data_offset, rl_src.reg, size, kNotVolatile); |
| } else { |
| /* reg_ptr -> array data */ |
| OpRegRegImm(kOpAdd, reg_ptr, rl_array.reg, data_offset); |
| rl_src = LoadValue(rl_src, reg_class); |
| if (needs_range_check) { |
| GenArrayBoundsCheck(rl_index.reg, reg_len); |
| FreeTemp(reg_len); |
| } |
| StoreBaseIndexed(reg_ptr, rl_index.reg, rl_src.reg, scale, size); |
| } |
| if (allocated_reg_ptr_temp) { |
| FreeTemp(reg_ptr); |
| } |
| if (card_mark) { |
| MarkGCCard(opt_flags, rl_src.reg, rl_array.reg); |
| } |
| } |
| |
| |
| void ArmMir2Lir::GenShiftImmOpLong(Instruction::Code opcode, |
| RegLocation rl_dest, RegLocation rl_src, RegLocation rl_shift, |
| int flags) { |
| UNUSED(flags); |
| rl_src = LoadValueWide(rl_src, kCoreReg); |
| // Per spec, we only care about low 6 bits of shift amount. |
| int shift_amount = mir_graph_->ConstantValue(rl_shift) & 0x3f; |
| if (shift_amount == 0) { |
| StoreValueWide(rl_dest, rl_src); |
| return; |
| } |
| if (PartiallyIntersects(rl_src, rl_dest)) { |
| GenShiftOpLong(opcode, rl_dest, rl_src, rl_shift); |
| return; |
| } |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| switch (opcode) { |
| case Instruction::SHL_LONG: |
| case Instruction::SHL_LONG_2ADDR: |
| if (shift_amount == 1) { |
| OpRegRegReg(kOpAdd, rl_result.reg.GetLow(), rl_src.reg.GetLow(), rl_src.reg.GetLow()); |
| OpRegRegReg(kOpAdc, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), rl_src.reg.GetHigh()); |
| } else if (shift_amount == 32) { |
| OpRegCopy(rl_result.reg.GetHigh(), rl_src.reg); |
| LoadConstant(rl_result.reg.GetLow(), 0); |
| } else if (shift_amount > 31) { |
| OpRegRegImm(kOpLsl, rl_result.reg.GetHigh(), rl_src.reg.GetLow(), shift_amount - 32); |
| LoadConstant(rl_result.reg.GetLow(), 0); |
| } else { |
| OpRegRegImm(kOpLsl, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), shift_amount); |
| OpRegRegRegShift(kOpOr, rl_result.reg.GetHigh(), rl_result.reg.GetHigh(), rl_src.reg.GetLow(), |
| EncodeShift(kArmLsr, 32 - shift_amount)); |
| OpRegRegImm(kOpLsl, rl_result.reg.GetLow(), rl_src.reg.GetLow(), shift_amount); |
| } |
| break; |
| case Instruction::SHR_LONG: |
| case Instruction::SHR_LONG_2ADDR: |
| if (shift_amount == 32) { |
| OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh()); |
| OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), 31); |
| } else if (shift_amount > 31) { |
| OpRegRegImm(kOpAsr, rl_result.reg.GetLow(), rl_src.reg.GetHigh(), shift_amount - 32); |
| OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), 31); |
| } else { |
| RegStorage t_reg = AllocTemp(); |
| OpRegRegImm(kOpLsr, t_reg, rl_src.reg.GetLow(), shift_amount); |
| OpRegRegRegShift(kOpOr, rl_result.reg.GetLow(), t_reg, rl_src.reg.GetHigh(), |
| EncodeShift(kArmLsl, 32 - shift_amount)); |
| FreeTemp(t_reg); |
| OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), shift_amount); |
| } |
| break; |
| case Instruction::USHR_LONG: |
| case Instruction::USHR_LONG_2ADDR: |
| if (shift_amount == 32) { |
| OpRegCopy(rl_result.reg.GetLow(), rl_src.reg.GetHigh()); |
| LoadConstant(rl_result.reg.GetHigh(), 0); |
| } else if (shift_amount > 31) { |
| OpRegRegImm(kOpLsr, rl_result.reg.GetLow(), rl_src.reg.GetHigh(), shift_amount - 32); |
| LoadConstant(rl_result.reg.GetHigh(), 0); |
| } else { |
| RegStorage t_reg = AllocTemp(); |
| OpRegRegImm(kOpLsr, t_reg, rl_src.reg.GetLow(), shift_amount); |
| OpRegRegRegShift(kOpOr, rl_result.reg.GetLow(), t_reg, rl_src.reg.GetHigh(), |
| EncodeShift(kArmLsl, 32 - shift_amount)); |
| FreeTemp(t_reg); |
| OpRegRegImm(kOpLsr, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), shift_amount); |
| } |
| break; |
| default: |
| LOG(FATAL) << "Unexpected case"; |
| } |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| void ArmMir2Lir::GenArithImmOpLong(Instruction::Code opcode, |
| RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2, |
| int flags) { |
| if ((opcode == Instruction::SUB_LONG_2ADDR) || (opcode == Instruction::SUB_LONG)) { |
| if (!rl_src2.is_const) { |
| // Don't bother with special handling for subtract from immediate. |
| GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2, flags); |
| return; |
| } |
| } else { |
| // Normalize |
| if (!rl_src2.is_const) { |
| DCHECK(rl_src1.is_const); |
| std::swap(rl_src1, rl_src2); |
| } |
| } |
| if (PartiallyIntersects(rl_src1, rl_dest)) { |
| GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2, flags); |
| return; |
| } |
| DCHECK(rl_src2.is_const); |
| int64_t val = mir_graph_->ConstantValueWide(rl_src2); |
| uint32_t val_lo = Low32Bits(val); |
| uint32_t val_hi = High32Bits(val); |
| int32_t mod_imm_lo = ModifiedImmediate(val_lo); |
| int32_t mod_imm_hi = ModifiedImmediate(val_hi); |
| |
| // Only a subset of add/sub immediate instructions set carry - so bail if we don't fit |
| switch (opcode) { |
| case Instruction::ADD_LONG: |
| case Instruction::ADD_LONG_2ADDR: |
| case Instruction::SUB_LONG: |
| case Instruction::SUB_LONG_2ADDR: |
| if ((mod_imm_lo < 0) || (mod_imm_hi < 0)) { |
| GenArithOpLong(opcode, rl_dest, rl_src1, rl_src2, flags); |
| return; |
| } |
| break; |
| default: |
| break; |
| } |
| rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| // NOTE: once we've done the EvalLoc on dest, we can no longer bail. |
| switch (opcode) { |
| case Instruction::ADD_LONG: |
| case Instruction::ADD_LONG_2ADDR: |
| NewLIR3(kThumb2AddRRI8M, rl_result.reg.GetLowReg(), rl_src1.reg.GetLowReg(), mod_imm_lo); |
| NewLIR3(kThumb2AdcRRI8M, rl_result.reg.GetHighReg(), rl_src1.reg.GetHighReg(), mod_imm_hi); |
| break; |
| case Instruction::OR_LONG: |
| case Instruction::OR_LONG_2ADDR: |
| if ((val_lo != 0) || (rl_result.reg.GetLowReg() != rl_src1.reg.GetLowReg())) { |
| OpRegRegImm(kOpOr, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), val_lo); |
| } |
| if ((val_hi != 0) || (rl_result.reg.GetHighReg() != rl_src1.reg.GetHighReg())) { |
| OpRegRegImm(kOpOr, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), val_hi); |
| } |
| break; |
| case Instruction::XOR_LONG: |
| case Instruction::XOR_LONG_2ADDR: |
| OpRegRegImm(kOpXor, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), val_lo); |
| OpRegRegImm(kOpXor, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), val_hi); |
| break; |
| case Instruction::AND_LONG: |
| case Instruction::AND_LONG_2ADDR: |
| if ((val_lo != 0xffffffff) || (rl_result.reg.GetLowReg() != rl_src1.reg.GetLowReg())) { |
| OpRegRegImm(kOpAnd, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), val_lo); |
| } |
| if ((val_hi != 0xffffffff) || (rl_result.reg.GetHighReg() != rl_src1.reg.GetHighReg())) { |
| OpRegRegImm(kOpAnd, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), val_hi); |
| } |
| break; |
| case Instruction::SUB_LONG_2ADDR: |
| case Instruction::SUB_LONG: |
| NewLIR3(kThumb2SubRRI8M, rl_result.reg.GetLowReg(), rl_src1.reg.GetLowReg(), mod_imm_lo); |
| NewLIR3(kThumb2SbcRRI8M, rl_result.reg.GetHighReg(), rl_src1.reg.GetHighReg(), mod_imm_hi); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected opcode " << opcode; |
| } |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| bool ArmMir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div, |
| RegLocation rl_src, RegLocation rl_dest, int lit) { |
| if (lit < 2) { |
| return false; |
| } |
| |
| // ARM does either not support a division instruction, or it is potentially expensive. Look for |
| // more special cases. |
| if (!IsPowerOfTwo(lit)) { |
| return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit); |
| } |
| |
| return Mir2Lir::HandleEasyDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit); |
| } |
| |
| } // namespace art |