blob: 8262f8ae46dcd8e2c6ecb5ba756740735231852f [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "runtime.h"
#include <signal.h>
#include <sys/syscall.h>
#include <cstdio>
#include <cstdlib>
#include <limits>
#include <vector>
#include "class_linker.h"
#include "class_loader.h"
#include "constants_arm.h"
#include "constants_mips.h"
#include "constants_x86.h"
#include "debugger.h"
#include "heap.h"
#include "image.h"
#include "intern_table.h"
#include "jni_internal.h"
#include "monitor.h"
#include "oat_file.h"
#include "ScopedLocalRef.h"
#include "scoped_thread_state_change.h"
#include "signal_catcher.h"
#include "signal_set.h"
#include "space.h"
#include "thread.h"
#include "thread_list.h"
#include "trace.h"
#include "UniquePtr.h"
#include "verifier/method_verifier.h"
#include "well_known_classes.h"
#if defined(ART_USE_LLVM_COMPILER)
#include "compiler_llvm/procedure_linkage_table.h"
#endif
#include "JniConstants.h" // Last to avoid LOG redefinition in ics-mr1-plus-art.
namespace art {
Runtime* Runtime::instance_ = NULL;
Runtime::Runtime()
: is_compiler_(false),
is_zygote_(false),
is_concurrent_gc_enabled_(true),
default_stack_size_(0),
heap_(NULL),
monitor_list_(NULL),
thread_list_(NULL),
intern_table_(NULL),
class_linker_(NULL),
signal_catcher_(NULL),
java_vm_(NULL),
pre_allocated_OutOfMemoryError_(NULL),
jni_stub_array_(NULL),
abstract_method_error_stub_array_(NULL),
resolution_method_(NULL),
system_class_loader_(NULL),
shutting_down_(false),
started_(false),
finished_starting_(false),
vfprintf_(NULL),
exit_(NULL),
abort_(NULL),
stats_enabled_(false),
method_trace_(0),
method_trace_file_size_(0),
tracer_(NULL),
use_compile_time_class_path_(false),
main_thread_group_(NULL),
system_thread_group_(NULL)
#if defined(ART_USE_LLVM_COMPILER)
#if defined(__arm__)
, plt_(kArm)
#elif defined(__mips__)
, plt_(kMips)
#elif defined(__i386__)
, plt_(kX86)
#endif
#endif
{
for (int i = 0; i < Runtime::kLastTrampolineMethodType; i++) {
resolution_stub_array_[i] = NULL;
}
for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) {
callee_save_methods_[i] = NULL;
}
#if defined(ART_USE_LLVM_COMPILER)
CHECK(plt_.AllocateTable()) << "Failed to allocate PLT";
#endif
}
Runtime::~Runtime() {
shutting_down_ = true;
if (IsMethodTracingActive()) {
Trace::Shutdown();
}
// Make sure to let the GC complete if it is running.
heap_->WaitForConcurrentGcToComplete();
// Make sure our internal threads are dead before we start tearing down things they're using.
Dbg::StopJdwp();
delete signal_catcher_;
// Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
delete thread_list_;
delete monitor_list_;
delete class_linker_;
delete heap_;
verifier::MethodVerifier::Shutdown();
delete intern_table_;
delete java_vm_;
Thread::Shutdown();
QuasiAtomic::Shutdown();
// TODO: acquire a static mutex on Runtime to avoid racing.
CHECK(instance_ == NULL || instance_ == this);
instance_ = NULL;
}
static bool gAborting = false;
struct AbortState {
void Dump(std::ostream& os) {
if (gAborting) {
os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
return;
}
gAborting = true;
os << "Runtime aborting...\n";
if (Runtime::Current() == NULL) {
os << "(Runtime does not yet exist!)\n";
return;
}
Thread* self = Thread::Current();
if (self == NULL) {
os << "(Aborting thread was not attached to runtime!)\n";
} else {
// TODO: we're aborting and the ScopedObjectAccess may attempt to acquire the mutator_lock_
// which may block indefinitely if there's a misbehaving thread holding it exclusively.
// The code below should be made robust to this.
ScopedObjectAccess soa(self);
self->Dump(os);
if (self->IsExceptionPending()) {
os << "Pending " << PrettyTypeOf(self->GetException()) << " on thread:\n"
<< self->GetException()->Dump();
}
}
}
};
void Runtime::Abort() {
// Ensure that we don't have multiple threads trying to abort at once,
// which would result in significantly worse diagnostics.
MutexLock mu(*Locks::abort_lock_);
// Get any pending output out of the way.
fflush(NULL);
// Many people have difficulty distinguish aborts from crashes,
// so be explicit.
AbortState state;
LOG(INTERNAL_FATAL) << Dumpable<AbortState>(state);
// Call the abort hook if we have one.
if (Runtime::Current() != NULL && Runtime::Current()->abort_ != NULL) {
LOG(INTERNAL_FATAL) << "Calling abort hook...";
Runtime::Current()->abort_();
// notreached
LOG(INTERNAL_FATAL) << "Unexpectedly returned from abort hook!";
}
#if defined(__BIONIC__)
// TODO: finish merging patches to fix abort(3) in bionic, then lose this!
// Bionic doesn't implement POSIX semantics for abort(3) in a multi-threaded
// process, so if we call abort(3) on a device, all threads in the process
// receive SIGABRT. debuggerd dumps the stack trace of the main
// thread, whether or not that was the thread that failed. By
// stuffing a value into a bogus address, we cause a segmentation
// fault in the current thread, and get a useful log from debuggerd.
// We can also trivially tell the difference between a crash and
// a deliberate abort by looking at the fault address.
*reinterpret_cast<char*>(0xdeadd00d) = 38;
#elif defined(__APPLE__)
// TODO: check that this actually gives good stack traces on the Mac!
pthread_kill(pthread_self(), SIGABRT);
#else
// TODO: we ought to be able to use pthread_kill(3) here (or abort(3),
// which POSIX defines in terms of raise(3), which POSIX defines in terms
// of pthread_kill(3)). On Linux, though, libcorkscrew can't unwind through
// libpthread, which means the stacks we dump would be useless. Calling
// tgkill(2) directly avoids that.
syscall(__NR_tgkill, getpid(), GetTid(), SIGABRT);
#endif
// notreached
}
bool Runtime::PreZygoteFork() {
heap_->PreZygoteFork();
return true;
}
void Runtime::CallExitHook(jint status) {
if (exit_ != NULL) {
ScopedThreadStateChange tsc(Thread::Current(), kNative);
exit_(status);
LOG(WARNING) << "Exit hook returned instead of exiting!";
}
}
// Parse a string of the form /[0-9]+[kKmMgG]?/, which is used to specify
// memory sizes. [kK] indicates kilobytes, [mM] megabytes, and
// [gG] gigabytes.
//
// "s" should point just past the "-Xm?" part of the string.
// "div" specifies a divisor, e.g. 1024 if the value must be a multiple
// of 1024.
//
// The spec says the -Xmx and -Xms options must be multiples of 1024. It
// doesn't say anything about -Xss.
//
// Returns 0 (a useless size) if "s" is malformed or specifies a low or
// non-evenly-divisible value.
//
size_t ParseMemoryOption(const char* s, size_t div) {
// strtoul accepts a leading [+-], which we don't want,
// so make sure our string starts with a decimal digit.
if (isdigit(*s)) {
char* s2;
size_t val = strtoul(s, &s2, 10);
if (s2 != s) {
// s2 should be pointing just after the number.
// If this is the end of the string, the user
// has specified a number of bytes. Otherwise,
// there should be exactly one more character
// that specifies a multiplier.
if (*s2 != '\0') {
// The remainder of the string is either a single multiplier
// character, or nothing to indicate that the value is in
// bytes.
char c = *s2++;
if (*s2 == '\0') {
size_t mul;
if (c == '\0') {
mul = 1;
} else if (c == 'k' || c == 'K') {
mul = KB;
} else if (c == 'm' || c == 'M') {
mul = MB;
} else if (c == 'g' || c == 'G') {
mul = GB;
} else {
// Unknown multiplier character.
return 0;
}
if (val <= std::numeric_limits<size_t>::max() / mul) {
val *= mul;
} else {
// Clamp to a multiple of 1024.
val = std::numeric_limits<size_t>::max() & ~(1024-1);
}
} else {
// There's more than one character after the numeric part.
return 0;
}
}
// The man page says that a -Xm value must be a multiple of 1024.
if (val % div == 0) {
return val;
}
}
}
return 0;
}
size_t ParseIntegerOrDie(const std::string& s) {
std::string::size_type colon = s.find(':');
if (colon == std::string::npos) {
LOG(FATAL) << "Missing integer: " << s;
}
const char* begin = &s[colon + 1];
char* end;
size_t result = strtoul(begin, &end, 10);
if (begin == end || *end != '\0') {
LOG(FATAL) << "Failed to parse integer in: " << s;
}
return result;
}
Runtime::ParsedOptions* Runtime::ParsedOptions::Create(const Options& options, bool ignore_unrecognized) {
UniquePtr<ParsedOptions> parsed(new ParsedOptions());
const char* boot_class_path_string = getenv("BOOTCLASSPATH");
if (boot_class_path_string != NULL) {
parsed->boot_class_path_string_ = boot_class_path_string;
}
const char* class_path_string = getenv("CLASSPATH");
if (class_path_string != NULL) {
parsed->class_path_string_ = class_path_string;
}
// -Xcheck:jni is off by default for regular builds but on by default in debug builds.
parsed->check_jni_ = kIsDebugBuild;
parsed->heap_initial_size_ = Heap::kInitialSize;
parsed->heap_maximum_size_ = Heap::kMaximumSize;
parsed->heap_growth_limit_ = 0; // 0 means no growth limit.
parsed->stack_size_ = 0; // 0 means default.
parsed->is_compiler_ = false;
parsed->is_zygote_ = false;
parsed->is_concurrent_gc_enabled_ = true;
parsed->jni_globals_max_ = 0;
parsed->lock_profiling_threshold_ = 0;
parsed->hook_is_sensitive_thread_ = NULL;
parsed->hook_vfprintf_ = vfprintf;
parsed->hook_exit_ = exit;
parsed->hook_abort_ = NULL; // We don't call abort(3) by default; see Runtime::Abort.
// gLogVerbosity.class_linker = true; // TODO: don't check this in!
// gLogVerbosity.compiler = true; // TODO: don't check this in!
// gLogVerbosity.heap = true; // TODO: don't check this in!
// gLogVerbosity.gc = true; // TODO: don't check this in!
// gLogVerbosity.jdwp = true; // TODO: don't check this in!
// gLogVerbosity.jni = true; // TODO: don't check this in!
// gLogVerbosity.monitor = true; // TODO: don't check this in!
// gLogVerbosity.startup = true; // TODO: don't check this in!
// gLogVerbosity.third_party_jni = true; // TODO: don't check this in!
// gLogVerbosity.threads = true; // TODO: don't check this in!
parsed->method_trace_ = false;
parsed->method_trace_file_ = "/data/method-trace-file.bin";
parsed->method_trace_file_size_ = 10 * MB;
for (size_t i = 0; i < options.size(); ++i) {
const std::string option(options[i].first);
if (true && options[0].first == "-Xzygote") {
LOG(INFO) << "option[" << i << "]=" << option;
}
if (StartsWith(option, "-Xbootclasspath:")) {
parsed->boot_class_path_string_ = option.substr(strlen("-Xbootclasspath:")).data();
} else if (option == "-classpath" || option == "-cp") {
// TODO: support -Djava.class.path
i++;
if (i == options.size()) {
// TODO: usage
LOG(FATAL) << "Missing required class path value for " << option;
return NULL;
}
const StringPiece& value = options[i].first;
parsed->class_path_string_ = value.data();
} else if (option == "bootclasspath") {
parsed->boot_class_path_
= reinterpret_cast<const std::vector<const DexFile*>*>(options[i].second);
} else if (StartsWith(option, "-Ximage:")) {
parsed->image_ = option.substr(strlen("-Ximage:")).data();
} else if (StartsWith(option, "-Xcheck:jni")) {
parsed->check_jni_ = true;
} else if (StartsWith(option, "-Xrunjdwp:") || StartsWith(option, "-agentlib:jdwp=")) {
std::string tail(option.substr(option[1] == 'X' ? 10 : 15));
if (tail == "help" || !Dbg::ParseJdwpOptions(tail)) {
LOG(FATAL) << "Example: -Xrunjdwp:transport=dt_socket,address=8000,server=y\n"
<< "Example: -Xrunjdwp:transport=dt_socket,address=localhost:6500,server=n";
return NULL;
}
} else if (StartsWith(option, "-Xms")) {
size_t size = ParseMemoryOption(option.substr(strlen("-Xms")).c_str(), 1024);
if (size == 0) {
if (ignore_unrecognized) {
continue;
}
// TODO: usage
LOG(FATAL) << "Failed to parse " << option;
return NULL;
}
parsed->heap_initial_size_ = size;
} else if (StartsWith(option, "-Xmx")) {
size_t size = ParseMemoryOption(option.substr(strlen("-Xmx")).c_str(), 1024);
if (size == 0) {
if (ignore_unrecognized) {
continue;
}
// TODO: usage
LOG(FATAL) << "Failed to parse " << option;
return NULL;
}
parsed->heap_maximum_size_ = size;
} else if (StartsWith(option, "-XX:HeapGrowthLimit=")) {
size_t size = ParseMemoryOption(option.substr(strlen("-XX:HeapGrowthLimit=")).c_str(), 1024);
if (size == 0) {
if (ignore_unrecognized) {
continue;
}
// TODO: usage
LOG(FATAL) << "Failed to parse " << option;
return NULL;
}
parsed->heap_growth_limit_ = size;
} else if (StartsWith(option, "-Xss")) {
size_t size = ParseMemoryOption(option.substr(strlen("-Xss")).c_str(), 1);
if (size == 0) {
if (ignore_unrecognized) {
continue;
}
// TODO: usage
LOG(FATAL) << "Failed to parse " << option;
return NULL;
}
parsed->stack_size_ = size;
} else if (StartsWith(option, "-D")) {
parsed->properties_.push_back(option.substr(strlen("-D")));
} else if (StartsWith(option, "-Xjnitrace:")) {
parsed->jni_trace_ = option.substr(strlen("-Xjnitrace:"));
} else if (option == "compiler") {
parsed->is_compiler_ = true;
} else if (option == "-Xzygote") {
parsed->is_zygote_ = true;
} else if (StartsWith(option, "-Xgc:")) {
std::vector<std::string> gc_options;
Split(option.substr(strlen("-Xgc:")), ',', gc_options);
for (size_t i = 0; i < gc_options.size(); ++i) {
if (gc_options[i] == "noconcurrent") {
parsed->is_concurrent_gc_enabled_ = false;
} else if (gc_options[i] == "concurrent") {
parsed->is_concurrent_gc_enabled_ = true;
} else {
LOG(WARNING) << "Ignoring unknown -Xgc option: " << gc_options[i];
}
}
} else if (StartsWith(option, "-verbose:")) {
std::vector<std::string> verbose_options;
Split(option.substr(strlen("-verbose:")), ',', verbose_options);
for (size_t i = 0; i < verbose_options.size(); ++i) {
if (verbose_options[i] == "class") {
gLogVerbosity.class_linker = true;
} else if (verbose_options[i] == "compiler") {
gLogVerbosity.compiler = true;
} else if (verbose_options[i] == "heap") {
gLogVerbosity.heap = true;
} else if (verbose_options[i] == "gc") {
gLogVerbosity.gc = true;
} else if (verbose_options[i] == "jdwp") {
gLogVerbosity.jdwp = true;
} else if (verbose_options[i] == "jni") {
gLogVerbosity.jni = true;
} else if (verbose_options[i] == "monitor") {
gLogVerbosity.monitor = true;
} else if (verbose_options[i] == "startup") {
gLogVerbosity.startup = true;
} else if (verbose_options[i] == "third-party-jni") {
gLogVerbosity.third_party_jni = true;
} else if (verbose_options[i] == "threads") {
gLogVerbosity.threads = true;
} else {
LOG(WARNING) << "Ignoring unknown -verbose option: " << verbose_options[i];
}
}
} else if (StartsWith(option, "-Xjnigreflimit:")) {
parsed->jni_globals_max_ = ParseIntegerOrDie(option);
} else if (StartsWith(option, "-Xlockprofthreshold:")) {
parsed->lock_profiling_threshold_ = ParseIntegerOrDie(option);
} else if (StartsWith(option, "-Xstacktracefile:")) {
parsed->stack_trace_file_ = option.substr(strlen("-Xstacktracefile:"));
} else if (option == "sensitiveThread") {
parsed->hook_is_sensitive_thread_ = reinterpret_cast<bool (*)()>(const_cast<void*>(options[i].second));
} else if (option == "vfprintf") {
parsed->hook_vfprintf_ =
reinterpret_cast<int (*)(FILE *, const char*, va_list)>(const_cast<void*>(options[i].second));
} else if (option == "exit") {
parsed->hook_exit_ = reinterpret_cast<void(*)(jint)>(const_cast<void*>(options[i].second));
} else if (option == "abort") {
parsed->hook_abort_ = reinterpret_cast<void(*)()>(const_cast<void*>(options[i].second));
} else if (option == "host-prefix") {
parsed->host_prefix_ = reinterpret_cast<const char*>(options[i].second);
} else if (option == "-Xgenregmap" || option == "-Xgc:precise") {
// We silently ignore these for backwards compatibility.
} else if (option == "-Xmethod-trace") {
parsed->method_trace_ = true;
} else if (StartsWith(option, "-Xmethod-trace-file:")) {
parsed->method_trace_file_ = option.substr(strlen("-Xmethod-trace-file:"));
} else if (StartsWith(option, "-Xmethod-trace-file-size:")) {
parsed->method_trace_file_size_ = ParseIntegerOrDie(option);
} else if (option == "-Xprofile:threadcpuclock") {
Trace::SetDefaultClockSource(kProfilerClockSourceThreadCpu);
} else if (option == "-Xprofile:wallclock") {
Trace::SetDefaultClockSource(kProfilerClockSourceWall);
} else if (option == "-Xprofile:dualclock") {
Trace::SetDefaultClockSource(kProfilerClockSourceDual);
} else {
if (!ignore_unrecognized) {
// TODO: print usage via vfprintf
LOG(ERROR) << "Unrecognized option " << option;
// TODO: this should exit, but for now tolerate unknown options
//return NULL;
}
}
}
if (!parsed->is_compiler_ && parsed->image_.empty()) {
parsed->image_ += GetAndroidRoot();
parsed->image_ += "/framework/boot.art";
}
if (parsed->heap_growth_limit_ == 0) {
parsed->heap_growth_limit_ = parsed->heap_maximum_size_;
}
return parsed.release();
}
bool Runtime::Create(const Options& options, bool ignore_unrecognized) {
// TODO: acquire a static mutex on Runtime to avoid racing.
if (Runtime::instance_ != NULL) {
return false;
}
Locks::Init();
instance_ = new Runtime;
if (!instance_->Init(options, ignore_unrecognized)) {
delete instance_;
instance_ = NULL;
return false;
}
return true;
}
static void CreateSystemClassLoader() {
if (Runtime::Current()->UseCompileTimeClassPath()) {
return;
}
ScopedObjectAccess soa(Thread::Current());
Class* class_loader_class = soa.Decode<Class*>(WellKnownClasses::java_lang_ClassLoader);
CHECK(Runtime::Current()->GetClassLinker()->EnsureInitialized(class_loader_class, true, true));
AbstractMethod* getSystemClassLoader = class_loader_class->FindDirectMethod("getSystemClassLoader", "()Ljava/lang/ClassLoader;");
CHECK(getSystemClassLoader != NULL);
ClassLoader* class_loader =
down_cast<ClassLoader*>(InvokeWithJValues(soa, NULL, getSystemClassLoader, NULL).GetL());
CHECK(class_loader != NULL);
soa.Self()->SetClassLoaderOverride(class_loader);
Class* thread_class = soa.Decode<Class*>(WellKnownClasses::java_lang_Thread);
CHECK(Runtime::Current()->GetClassLinker()->EnsureInitialized(thread_class, true, true));
Field* contextClassLoader = thread_class->FindDeclaredInstanceField("contextClassLoader",
"Ljava/lang/ClassLoader;");
CHECK(contextClassLoader != NULL);
contextClassLoader->SetObject(soa.Self()->GetPeer(), class_loader);
}
void Runtime::Start() {
VLOG(startup) << "Runtime::Start entering";
CHECK(host_prefix_.empty()) << host_prefix_;
// Relocate the OatFiles (ELF images).
class_linker_->RelocateExecutable();
// Pre-allocate an OutOfMemoryError for the double-OOME case.
Thread* self = Thread::Current();
self->ThrowNewException("Ljava/lang/OutOfMemoryError;",
"OutOfMemoryError thrown while trying to throw OutOfMemoryError; no stack available");
pre_allocated_OutOfMemoryError_ = self->GetException();
self->ClearException();
// Restore main thread state to kNative as expected by native code.
self->TransitionFromRunnableToSuspended(kNative);
started_ = true;
// InitNativeMethods needs to be after started_ so that the classes
// it touches will have methods linked to the oat file if necessary.
InitNativeMethods();
// Initialize well known thread group values that may be accessed threads while attaching.
InitThreadGroups(self);
Thread::FinishStartup();
if (!is_zygote_) {
DidForkFromZygote();
}
StartDaemonThreads();
CreateSystemClassLoader();
self->GetJniEnv()->locals.AssertEmpty();
VLOG(startup) << "Runtime::Start exiting";
finished_starting_ = true;
}
void Runtime::DidForkFromZygote() {
is_zygote_ = false;
StartSignalCatcher();
// Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
// this will pause the runtime, so we probably want this to come last.
Dbg::StartJdwp();
}
void Runtime::StartSignalCatcher() {
if (!is_zygote_) {
signal_catcher_ = new SignalCatcher(stack_trace_file_);
}
}
void Runtime::StartDaemonThreads() {
VLOG(startup) << "Runtime::StartDaemonThreads entering";
Thread* self = Thread::Current();
// Must be in the kNative state for calling native methods.
{
MutexLock mu(*Locks::thread_suspend_count_lock_);
CHECK_EQ(self->GetState(), kNative);
}
JNIEnv* env = self->GetJniEnv();
env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons, WellKnownClasses::java_lang_Daemons_start);
CHECK(!env->ExceptionCheck());
VLOG(startup) << "Runtime::StartDaemonThreads exiting";
}
bool Runtime::Init(const Options& raw_options, bool ignore_unrecognized) {
CHECK_EQ(sysconf(_SC_PAGE_SIZE), kPageSize);
UniquePtr<ParsedOptions> options(ParsedOptions::Create(raw_options, ignore_unrecognized));
if (options.get() == NULL) {
LOG(ERROR) << "Failed to parse options";
return false;
}
VLOG(startup) << "Runtime::Init -verbose:startup enabled";
QuasiAtomic::Startup();
SetJniGlobalsMax(options->jni_globals_max_);
Monitor::Init(options->lock_profiling_threshold_, options->hook_is_sensitive_thread_);
host_prefix_ = options->host_prefix_;
boot_class_path_string_ = options->boot_class_path_string_;
class_path_string_ = options->class_path_string_;
properties_ = options->properties_;
is_compiler_ = options->is_compiler_;
is_zygote_ = options->is_zygote_;
is_concurrent_gc_enabled_ = options->is_concurrent_gc_enabled_;
vfprintf_ = options->hook_vfprintf_;
exit_ = options->hook_exit_;
abort_ = options->hook_abort_;
default_stack_size_ = options->stack_size_;
stack_trace_file_ = options->stack_trace_file_;
monitor_list_ = new MonitorList;
thread_list_ = new ThreadList;
intern_table_ = new InternTable;
verifier::MethodVerifier::Init();
heap_ = new Heap(options->heap_initial_size_,
options->heap_growth_limit_,
options->heap_maximum_size_,
options->image_,
options->is_concurrent_gc_enabled_);
BlockSignals();
InitPlatformSignalHandlers();
java_vm_ = new JavaVMExt(this, options.get());
Thread::Startup();
// ClassLinker needs an attached thread, but we can't fully attach a thread
// without creating objects. We can't supply a thread group yet; it will be fixed later.
Thread::Attach("main", false, NULL);
// Set us to runnable so tools using a runtime can allocate and GC by default
Thread::Current()->TransitionFromSuspendedToRunnable();
// Now we're attached, we can take the heap lock and validate the heap.
GetHeap()->EnableObjectValidation();
CHECK_GE(GetHeap()->GetSpaces().size(), 1U);
if (GetHeap()->GetSpaces()[0]->IsImageSpace()) {
class_linker_ = ClassLinker::CreateFromImage(intern_table_);
} else {
CHECK(options->boot_class_path_ != NULL);
CHECK_NE(options->boot_class_path_->size(), 0U);
class_linker_ = ClassLinker::CreateFromCompiler(*options->boot_class_path_, intern_table_);
}
CHECK(class_linker_ != NULL);
method_trace_ = options->method_trace_;
method_trace_file_ = options->method_trace_file_;
method_trace_file_size_ = options->method_trace_file_size_;
if (options->method_trace_) {
Trace::Start(options->method_trace_file_.c_str(), -1, options->method_trace_file_size_, 0, false);
}
VLOG(startup) << "Runtime::Init exiting";
return true;
}
void Runtime::InitNativeMethods() {
VLOG(startup) << "Runtime::InitNativeMethods entering";
Thread* self = Thread::Current();
JNIEnv* env = self->GetJniEnv();
// Must be in the kNative state for calling native methods (JNI_OnLoad code).
{
MutexLock mu(*Locks::thread_suspend_count_lock_);
CHECK_EQ(self->GetState(), kNative);
}
// First set up JniConstants, which is used by both the runtime's built-in native
// methods and libcore.
JniConstants::init(env);
WellKnownClasses::Init(env);
// Then set up the native methods provided by the runtime itself.
RegisterRuntimeNativeMethods(env);
// Then set up libcore, which is just a regular JNI library with a regular JNI_OnLoad.
// Most JNI libraries can just use System.loadLibrary, but libcore can't because it's
// the library that implements System.loadLibrary!
{
std::string mapped_name(StringPrintf(OS_SHARED_LIB_FORMAT_STR, "javacore"));
std::string reason;
self->TransitionFromSuspendedToRunnable();
if (!instance_->java_vm_->LoadNativeLibrary(mapped_name, NULL, reason)) {
LOG(FATAL) << "LoadNativeLibrary failed for \"" << mapped_name << "\": " << reason;
}
self->TransitionFromRunnableToSuspended(kNative);
}
VLOG(startup) << "Runtime::InitNativeMethods exiting";
}
void Runtime::InitThreadGroups(Thread* self) {
JNIEnvExt* env = self->GetJniEnv();
ScopedJniEnvLocalRefState env_state(env);
main_thread_group_ =
env->NewGlobalRef(env->GetStaticObjectField(WellKnownClasses::java_lang_ThreadGroup,
WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup));
CHECK(main_thread_group_ != NULL || IsCompiler());
system_thread_group_ =
env->NewGlobalRef(env->GetStaticObjectField(WellKnownClasses::java_lang_ThreadGroup,
WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup));
CHECK(system_thread_group_ != NULL || IsCompiler());
}
jobject Runtime::GetMainThreadGroup() const {
CHECK(main_thread_group_ != NULL || IsCompiler());
return main_thread_group_;
}
jobject Runtime::GetSystemThreadGroup() const {
CHECK(system_thread_group_ != NULL || IsCompiler());
return system_thread_group_;
}
void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
#define REGISTER(FN) extern void FN(JNIEnv*); FN(env)
// Register Throwable first so that registration of other native methods can throw exceptions
REGISTER(register_java_lang_Throwable);
REGISTER(register_dalvik_system_DexFile);
REGISTER(register_dalvik_system_VMDebug);
REGISTER(register_dalvik_system_VMRuntime);
REGISTER(register_dalvik_system_VMStack);
REGISTER(register_dalvik_system_Zygote);
REGISTER(register_java_lang_Class);
REGISTER(register_java_lang_Object);
REGISTER(register_java_lang_Runtime);
REGISTER(register_java_lang_String);
REGISTER(register_java_lang_System);
REGISTER(register_java_lang_Thread);
REGISTER(register_java_lang_VMClassLoader);
REGISTER(register_java_lang_reflect_Array);
REGISTER(register_java_lang_reflect_Constructor);
REGISTER(register_java_lang_reflect_Field);
REGISTER(register_java_lang_reflect_Method);
REGISTER(register_java_lang_reflect_Proxy);
REGISTER(register_java_util_concurrent_atomic_AtomicLong);
REGISTER(register_org_apache_harmony_dalvik_ddmc_DdmServer);
REGISTER(register_org_apache_harmony_dalvik_ddmc_DdmVmInternal);
REGISTER(register_sun_misc_Unsafe);
#undef REGISTER
}
void Runtime::DumpForSigQuit(std::ostream& os) {
GetClassLinker()->DumpForSigQuit(os);
GetInternTable()->DumpForSigQuit(os);
GetJavaVM()->DumpForSigQuit(os);
GetHeap()->DumpForSigQuit(os);
os << "\n";
thread_list_->DumpForSigQuit(os);
}
void Runtime::DumpLockHolders(std::ostream& os) {
uint64_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
if ((thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
<< "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
<< "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
<< "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
}
}
void Runtime::SetStatsEnabled(bool new_state) {
if (new_state == true) {
GetStats()->Clear(~0);
// TODO: wouldn't it make more sense to clear _all_ threads' stats?
Thread::Current()->GetStats()->Clear(~0);
}
stats_enabled_ = new_state;
}
void Runtime::ResetStats(int kinds) {
GetStats()->Clear(kinds & 0xffff);
// TODO: wouldn't it make more sense to clear _all_ threads' stats?
Thread::Current()->GetStats()->Clear(kinds >> 16);
}
int32_t Runtime::GetStat(int kind) {
RuntimeStats* stats;
if (kind < (1<<16)) {
stats = GetStats();
} else {
stats = Thread::Current()->GetStats();
kind >>= 16;
}
switch (kind) {
case KIND_ALLOCATED_OBJECTS:
return stats->allocated_objects;
case KIND_ALLOCATED_BYTES:
return stats->allocated_bytes;
case KIND_FREED_OBJECTS:
return stats->freed_objects;
case KIND_FREED_BYTES:
return stats->freed_bytes;
case KIND_GC_INVOCATIONS:
return stats->gc_for_alloc_count;
case KIND_CLASS_INIT_COUNT:
return stats->class_init_count;
case KIND_CLASS_INIT_TIME:
// Convert ns to us, reduce to 32 bits.
return static_cast<int>(stats->class_init_time_ns / 1000);
case KIND_EXT_ALLOCATED_OBJECTS:
case KIND_EXT_ALLOCATED_BYTES:
case KIND_EXT_FREED_OBJECTS:
case KIND_EXT_FREED_BYTES:
return 0; // backward compatibility
default:
LOG(FATAL) << "Unknown statistic " << kind;
return -1; // unreachable
}
}
void Runtime::BlockSignals() {
SignalSet signals;
signals.Add(SIGPIPE);
// SIGQUIT is used to dump the runtime's state (including stack traces).
signals.Add(SIGQUIT);
// SIGUSR1 is used to initiate a GC.
signals.Add(SIGUSR1);
signals.Block();
}
void Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group) {
Thread::Attach(thread_name, as_daemon, thread_group);
if (thread_name == NULL) {
LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
}
}
void Runtime::DetachCurrentThread() {
Thread* self = Thread::Current();
if (self == NULL) {
LOG(FATAL) << "attempting to detach thread that is not attached";
}
if (self->HasManagedStack()) {
LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
}
thread_list_->Unregister(self);
}
void Runtime::VisitRoots(Heap::RootVisitor* visitor, void* arg) const {
Dbg::VisitRoots(visitor, arg);
class_linker_->VisitRoots(visitor, arg);
intern_table_->VisitRoots(visitor, arg);
java_vm_->VisitRoots(visitor, arg);
thread_list_->VisitRoots(visitor, arg);
if (pre_allocated_OutOfMemoryError_ != NULL) {
visitor(pre_allocated_OutOfMemoryError_, arg);
}
visitor(jni_stub_array_, arg);
visitor(abstract_method_error_stub_array_, arg);
for (int i = 0; i < Runtime::kLastTrampolineMethodType; i++) {
visitor(resolution_stub_array_[i], arg);
}
visitor(resolution_method_, arg);
for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) {
visitor(callee_save_methods_[i], arg);
}
}
void Runtime::SetJniDlsymLookupStub(ByteArray* jni_stub_array) {
CHECK(jni_stub_array != NULL) << " jni_stub_array=" << jni_stub_array;
CHECK(jni_stub_array_ == NULL || jni_stub_array_ == jni_stub_array)
<< "jni_stub_array_=" << jni_stub_array_ << " jni_stub_array=" << jni_stub_array;
jni_stub_array_ = jni_stub_array;
}
void Runtime::SetAbstractMethodErrorStubArray(ByteArray* abstract_method_error_stub_array) {
CHECK(abstract_method_error_stub_array != NULL);
CHECK(abstract_method_error_stub_array_ == NULL || abstract_method_error_stub_array_ == abstract_method_error_stub_array);
abstract_method_error_stub_array_ = abstract_method_error_stub_array;
}
void Runtime::SetResolutionStubArray(ByteArray* resolution_stub_array, TrampolineType type) {
CHECK(resolution_stub_array != NULL);
CHECK(!HasResolutionStubArray(type) || resolution_stub_array_[type] == resolution_stub_array);
resolution_stub_array_[type] = resolution_stub_array;
}
AbstractMethod* Runtime::CreateResolutionMethod() {
Class* method_class = AbstractMethod::GetMethodClass();
SirtRef<AbstractMethod> method(down_cast<AbstractMethod*>(method_class->AllocObject()));
method->SetDeclaringClass(method_class);
// TODO: use a special method for resolution method saves
method->SetDexMethodIndex(DexFile::kDexNoIndex16);
ByteArray* unknown_resolution_stub = GetResolutionStubArray(kUnknownMethod);
CHECK(unknown_resolution_stub != NULL);
method->SetCode(unknown_resolution_stub->GetData());
return method.get();
}
AbstractMethod* Runtime::CreateCalleeSaveMethod(InstructionSet instruction_set, CalleeSaveType type) {
Class* method_class = AbstractMethod::GetMethodClass();
SirtRef<AbstractMethod> method(down_cast<AbstractMethod*>(method_class->AllocObject()));
method->SetDeclaringClass(method_class);
// TODO: use a special method for callee saves
method->SetDexMethodIndex(DexFile::kDexNoIndex16);
method->SetCode(NULL);
if ((instruction_set == kThumb2) || (instruction_set == kArm)) {
uint32_t ref_spills = (1 << art::arm::R5) | (1 << art::arm::R6) | (1 << art::arm::R7) |
(1 << art::arm::R8) | (1 << art::arm::R10) | (1 << art::arm::R11);
uint32_t arg_spills = (1 << art::arm::R1) | (1 << art::arm::R2) | (1 << art::arm::R3);
uint32_t all_spills = (1 << art::arm::R4) | (1 << art::arm::R9);
uint32_t core_spills = ref_spills | (type == kRefsAndArgs ? arg_spills :0) |
(type == kSaveAll ? all_spills :0) | (1 << art::arm::LR);
uint32_t fp_all_spills = (1 << art::arm::S0) | (1 << art::arm::S1) | (1 << art::arm::S2) |
(1 << art::arm::S3) | (1 << art::arm::S4) | (1 << art::arm::S5) |
(1 << art::arm::S6) | (1 << art::arm::S7) | (1 << art::arm::S8) |
(1 << art::arm::S9) | (1 << art::arm::S10) | (1 << art::arm::S11) |
(1 << art::arm::S12) | (1 << art::arm::S13) | (1 << art::arm::S14) |
(1 << art::arm::S15) | (1 << art::arm::S16) | (1 << art::arm::S17) |
(1 << art::arm::S18) | (1 << art::arm::S19) | (1 << art::arm::S20) |
(1 << art::arm::S21) | (1 << art::arm::S22) | (1 << art::arm::S23) |
(1 << art::arm::S24) | (1 << art::arm::S25) | (1 << art::arm::S26) |
(1 << art::arm::S27) | (1 << art::arm::S28) | (1 << art::arm::S29) |
(1 << art::arm::S30) | (1 << art::arm::S31);
uint32_t fp_spills = type == kSaveAll ? fp_all_spills : 0;
size_t frame_size = RoundUp((__builtin_popcount(core_spills) /* gprs */ +
__builtin_popcount(fp_spills) /* fprs */ +
1 /* Method* */) * kPointerSize, kStackAlignment);
method->SetFrameSizeInBytes(frame_size);
method->SetCoreSpillMask(core_spills);
method->SetFpSpillMask(fp_spills);
} else if (instruction_set == kMips) {
uint32_t ref_spills = (1 << art::mips::S2) | (1 << art::mips::S3) | (1 << art::mips::S4) |
(1 << art::mips::S5) | (1 << art::mips::S6) | (1 << art::mips::S7) |
(1 << art::mips::FP);
uint32_t arg_spills = (1 << art::mips::A1) | (1 << art::mips::A2) | (1 << art::mips::A3);
uint32_t all_spills = (1 << art::mips::S1) | (1 << art::mips::SP);
uint32_t core_spills = ref_spills | (type == kRefsAndArgs ? arg_spills : 0) |
(type == kSaveAll ? all_spills : 0) | (1 << art::mips::RA);
uint32_t fp_all_spills = (1 << art::mips::F0) | (1 << art::mips::F1) | (1 << art::mips::F2) |
(1 << art::mips::F3) | (1 << art::mips::F4) | (1 << art::mips::F5) |
(1 << art::mips::F6) | (1 << art::mips::F7) | (1 << art::mips::F8) |
(1 << art::mips::F9) | (1 << art::mips::F10) | (1 << art::mips::F11) |
(1 << art::mips::F12) | (1 << art::mips::F13) | (1 << art::mips::F14) |
(1 << art::mips::F15) | (1 << art::mips::F16) | (1 << art::mips::F17) |
(1 << art::mips::F18) | (1 << art::mips::F19) | (1 << art::mips::F20) |
(1 << art::mips::F21) | (1 << art::mips::F22) | (1 << art::mips::F23) |
(1 << art::mips::F24) | (1 << art::mips::F25) | (1 << art::mips::F26) |
(1 << art::mips::F27) | (1 << art::mips::F28) | (1 << art::mips::F29) |
(1 << art::mips::F30) | (1 << art::mips::F31);
uint32_t fp_spills = type == kSaveAll ? fp_all_spills : 0;
size_t frame_size = RoundUp((__builtin_popcount(core_spills) /* gprs */ +
__builtin_popcount(fp_spills) /* fprs */ +
1 /* Method* */) * kPointerSize, kStackAlignment);
method->SetFrameSizeInBytes(frame_size);
method->SetCoreSpillMask(core_spills);
method->SetFpSpillMask(fp_spills);
} else if (instruction_set == kX86) {
uint32_t ref_spills = (1 << art::x86::EBP) | (1 << art::x86::ESI) | (1 << art::x86::EDI);
uint32_t arg_spills = (1 << art::x86::ECX) | (1 << art::x86::EDX) | (1 << art::x86::EBX);
uint32_t core_spills = ref_spills | (type == kRefsAndArgs ? arg_spills : 0) |
(1 << art::x86::kNumberOfCpuRegisters); // fake return address callee save
size_t frame_size = RoundUp((__builtin_popcount(core_spills) /* gprs */ +
1 /* Method* */) * kPointerSize, kStackAlignment);
method->SetFrameSizeInBytes(frame_size);
method->SetCoreSpillMask(core_spills);
method->SetFpSpillMask(0);
} else {
UNIMPLEMENTED(FATAL);
}
return method.get();
}
void Runtime::SetCalleeSaveMethod(AbstractMethod* method, CalleeSaveType type) {
DCHECK_LT(static_cast<int>(type), static_cast<int>(kLastCalleeSaveType));
callee_save_methods_[type] = method;
}
void Runtime::EnableMethodTracing(Trace* tracer) {
CHECK(!IsMethodTracingActive());
tracer_ = tracer;
}
void Runtime::DisableMethodTracing() {
CHECK(IsMethodTracingActive());
delete tracer_;
tracer_ = NULL;
}
const std::vector<const DexFile*>& Runtime::GetCompileTimeClassPath(jobject class_loader) {
if (class_loader == NULL) {
return GetClassLinker()->GetBootClassPath();
}
CHECK(UseCompileTimeClassPath());
CompileTimeClassPaths::const_iterator it = compile_time_class_paths_.find(class_loader);
CHECK(it != compile_time_class_paths_.end());
return it->second;
}
void Runtime::SetCompileTimeClassPath(jobject class_loader, std::vector<const DexFile*>& class_path) {
CHECK(!IsStarted());
use_compile_time_class_path_ = true;
compile_time_class_paths_.Put(class_loader, class_path);
}
} // namespace art