blob: 8269f8bb85906db16302bb319216a79b4762fba9 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "object_utils.h"
namespace art {
#define DISPLAY_MISSING_TARGETS (cUnit->enableDebug & \
(1 << kDebugDisplayMissingTargets))
const RegLocation badLoc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0,
INVALID_REG, INVALID_REG, INVALID_SREG,
INVALID_SREG};
/* Mark register usage state and return long retloc */
RegLocation oatGetReturnWide(CompilationUnit* cUnit, bool isDouble)
{
RegLocation gpr_res = LOC_C_RETURN_WIDE;
RegLocation fpr_res = LOC_C_RETURN_WIDE_DOUBLE;
RegLocation res = isDouble ? fpr_res : gpr_res;
oatClobber(cUnit, res.lowReg);
oatClobber(cUnit, res.highReg);
oatLockTemp(cUnit, res.lowReg);
oatLockTemp(cUnit, res.highReg);
oatMarkPair(cUnit, res.lowReg, res.highReg);
return res;
}
RegLocation oatGetReturn(CompilationUnit* cUnit, bool isFloat)
{
RegLocation gpr_res = LOC_C_RETURN;
RegLocation fpr_res = LOC_C_RETURN_FLOAT;
RegLocation res = isFloat ? fpr_res : gpr_res;
oatClobber(cUnit, res.lowReg);
if (cUnit->instructionSet == kMips) {
oatMarkInUse(cUnit, res.lowReg);
} else {
oatLockTemp(cUnit, res.lowReg);
}
return res;
}
void genInvoke(CompilationUnit* cUnit, CallInfo* info)
{
if (genIntrinsic(cUnit, info)) {
return;
}
InvokeType originalType = info->type; // avoiding mutation by ComputeInvokeInfo
int callState = 0;
LIR* nullCk;
LIR** pNullCk = NULL;
NextCallInsn nextCallInsn;
oatFlushAllRegs(cUnit); /* Everything to home location */
// Explicit register usage
oatLockCallTemps(cUnit);
OatCompilationUnit mUnit(cUnit->class_loader, cUnit->class_linker,
*cUnit->dex_file,
cUnit->code_item, cUnit->method_idx,
cUnit->access_flags);
uint32_t dexMethodIdx = info->index;
int vtableIdx;
uintptr_t directCode;
uintptr_t directMethod;
bool skipThis;
bool fastPath =
cUnit->compiler->ComputeInvokeInfo(dexMethodIdx, &mUnit, info->type,
vtableIdx, directCode,
directMethod)
&& !SLOW_INVOKE_PATH;
if (info->type == kInterface) {
nextCallInsn = fastPath ? nextInterfaceCallInsn
: nextInterfaceCallInsnWithAccessCheck;
skipThis = false;
} else if (info->type == kDirect) {
if (fastPath) {
pNullCk = &nullCk;
}
nextCallInsn = fastPath ? nextSDCallInsn : nextDirectCallInsnSP;
skipThis = false;
} else if (info->type == kStatic) {
nextCallInsn = fastPath ? nextSDCallInsn : nextStaticCallInsnSP;
skipThis = false;
} else if (info->type == kSuper) {
DCHECK(!fastPath); // Fast path is a direct call.
nextCallInsn = nextSuperCallInsnSP;
skipThis = false;
} else {
DCHECK_EQ(info->type, kVirtual);
nextCallInsn = fastPath ? nextVCallInsn : nextVCallInsnSP;
skipThis = fastPath;
}
if (!info->isRange) {
callState = genDalvikArgsNoRange(cUnit, info, callState, pNullCk,
nextCallInsn, dexMethodIdx,
vtableIdx, directCode, directMethod,
originalType, skipThis);
} else {
callState = genDalvikArgsRange(cUnit, info, callState, pNullCk,
nextCallInsn, dexMethodIdx, vtableIdx,
directCode, directMethod, originalType,
skipThis);
}
// Finish up any of the call sequence not interleaved in arg loading
while (callState >= 0) {
callState = nextCallInsn(cUnit, info, callState, dexMethodIdx,
vtableIdx, directCode, directMethod,
originalType);
}
if (DISPLAY_MISSING_TARGETS) {
genShowTarget(cUnit);
}
LIR* callInst;
#if !defined(TARGET_X86)
callInst = opReg(cUnit, kOpBlx, rINVOKE_TGT);
#else
if (fastPath && info->type != kInterface) {
callInst = opMem(cUnit, kOpBlx, rARG0, AbstractMethod::GetCodeOffset().Int32Value());
} else {
int trampoline = 0;
switch (info->type) {
case kInterface:
trampoline = fastPath ? ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline)
: ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck);
break;
case kDirect:
trampoline = ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck);
break;
case kStatic:
trampoline = ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck);
break;
case kSuper:
trampoline = ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck);
break;
case kVirtual:
trampoline = ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck);
break;
default:
LOG(FATAL) << "Unexpected invoke type";
}
callInst = opThreadMem(cUnit, kOpBlx, trampoline);
}
#endif
markSafepointPC(cUnit, callInst);
oatClobberCalleeSave(cUnit);
if (info->result.location != kLocInvalid) {
// We have a following MOVE_RESULT - do it now.
if (info->result.wide) {
RegLocation retLoc = oatGetReturnWide(cUnit, info->result.fp);
storeValueWide(cUnit, info->result, retLoc);
} else {
RegLocation retLoc = oatGetReturn(cUnit, info->result.fp);
storeValue(cUnit, info->result, retLoc);
}
}
}
/*
* Build an array of location records for the incoming arguments.
* Note: one location record per word of arguments, with dummy
* high-word loc for wide arguments. Also pull up any following
* MOVE_RESULT and incorporate it into the invoke.
*/
CallInfo* oatNewCallInfo(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir,
InvokeType type, bool isRange)
{
CallInfo* info = (CallInfo*)oatNew(cUnit, sizeof(CallInfo), true,
kAllocMisc);
MIR* moveResultMIR = oatFindMoveResult(cUnit, bb, mir);
if (moveResultMIR == NULL) {
info->result.location = kLocInvalid;
} else {
info->result = oatGetRawDest(cUnit, moveResultMIR);
moveResultMIR->dalvikInsn.opcode = Instruction::NOP;
}
info->numArgWords = mir->ssaRep->numUses;
info->args = (info->numArgWords == 0) ? NULL : (RegLocation*)
oatNew(cUnit, sizeof(RegLocation) * info->numArgWords, false, kAllocMisc);
for (int i = 0; i < info->numArgWords; i++) {
info->args[i] = oatGetRawSrc(cUnit, mir, i);
}
info->optFlags = mir->optimizationFlags;
info->type = type;
info->isRange = isRange;
info->index = mir->dalvikInsn.vB;
info->offset = mir->offset;
return info;
}
/*
* Target-independent code generation. Use only high-level
* load/store utilities here, or target-dependent genXX() handlers
* when necessary.
*/
bool compileDalvikInstruction(CompilationUnit* cUnit, MIR* mir,
BasicBlock* bb, LIR* labelList)
{
bool res = false; // Assume success
RegLocation rlSrc[3];
RegLocation rlDest = badLoc;
RegLocation rlResult = badLoc;
Instruction::Code opcode = mir->dalvikInsn.opcode;
int optFlags = mir->optimizationFlags;
uint32_t vB = mir->dalvikInsn.vB;
uint32_t vC = mir->dalvikInsn.vC;
/* Prep Src and Dest locations */
int nextSreg = 0;
int nextLoc = 0;
int attrs = oatDataFlowAttributes[opcode];
rlSrc[0] = rlSrc[1] = rlSrc[2] = badLoc;
if (attrs & DF_UA) {
if (attrs & DF_A_WIDE) {
rlSrc[nextLoc++] = oatGetSrcWide(cUnit, mir, nextSreg);
nextSreg+= 2;
} else {
rlSrc[nextLoc++] = oatGetSrc(cUnit, mir, nextSreg);
nextSreg++;
}
}
if (attrs & DF_UB) {
if (attrs & DF_B_WIDE) {
rlSrc[nextLoc++] = oatGetSrcWide(cUnit, mir, nextSreg);
nextSreg+= 2;
} else {
rlSrc[nextLoc++] = oatGetSrc(cUnit, mir, nextSreg);
nextSreg++;
}
}
if (attrs & DF_UC) {
if (attrs & DF_C_WIDE) {
rlSrc[nextLoc++] = oatGetSrcWide(cUnit, mir, nextSreg);
} else {
rlSrc[nextLoc++] = oatGetSrc(cUnit, mir, nextSreg);
}
}
if (attrs & DF_DA) {
if (attrs & DF_A_WIDE) {
rlDest = oatGetDestWide(cUnit, mir);
} else {
rlDest = oatGetDest(cUnit, mir);
}
}
switch (opcode) {
case Instruction::NOP:
break;
case Instruction::MOVE_EXCEPTION: {
int exOffset = Thread::ExceptionOffset().Int32Value();
rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
#if defined(TARGET_X86)
newLIR2(cUnit, kX86Mov32RT, rlResult.lowReg, exOffset);
newLIR2(cUnit, kX86Mov32TI, exOffset, 0);
#else
int resetReg = oatAllocTemp(cUnit);
loadWordDisp(cUnit, rSELF, exOffset, rlResult.lowReg);
loadConstant(cUnit, resetReg, 0);
storeWordDisp(cUnit, rSELF, exOffset, resetReg);
oatFreeTemp(cUnit, resetReg);
#endif
storeValue(cUnit, rlDest, rlResult);
break;
}
case Instruction::RETURN_VOID:
if (!(cUnit->attrs & METHOD_IS_LEAF)) {
genSuspendTest(cUnit, optFlags);
}
break;
case Instruction::RETURN:
case Instruction::RETURN_OBJECT:
if (!(cUnit->attrs & METHOD_IS_LEAF)) {
genSuspendTest(cUnit, optFlags);
}
storeValue(cUnit, oatGetReturn(cUnit, cUnit->shorty[0] == 'F'), rlSrc[0]);
break;
case Instruction::RETURN_WIDE:
if (!(cUnit->attrs & METHOD_IS_LEAF)) {
genSuspendTest(cUnit, optFlags);
}
storeValueWide(cUnit, oatGetReturnWide(cUnit,
cUnit->shorty[0] == 'D'), rlSrc[0]);
break;
case Instruction::MOVE_RESULT_WIDE:
if (optFlags & MIR_INLINED)
break; // Nop - combined w/ previous invoke
storeValueWide(cUnit, rlDest, oatGetReturnWide(cUnit, rlDest.fp));
break;
case Instruction::MOVE_RESULT:
case Instruction::MOVE_RESULT_OBJECT:
if (optFlags & MIR_INLINED)
break; // Nop - combined w/ previous invoke
storeValue(cUnit, rlDest, oatGetReturn(cUnit, rlDest.fp));
break;
case Instruction::MOVE:
case Instruction::MOVE_OBJECT:
case Instruction::MOVE_16:
case Instruction::MOVE_OBJECT_16:
case Instruction::MOVE_FROM16:
case Instruction::MOVE_OBJECT_FROM16:
storeValue(cUnit, rlDest, rlSrc[0]);
break;
case Instruction::MOVE_WIDE:
case Instruction::MOVE_WIDE_16:
case Instruction::MOVE_WIDE_FROM16:
storeValueWide(cUnit, rlDest, rlSrc[0]);
break;
case Instruction::CONST:
case Instruction::CONST_4:
case Instruction::CONST_16:
rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstantNoClobber(cUnit, rlResult.lowReg, vB);
storeValue(cUnit, rlDest, rlResult);
break;
case Instruction::CONST_HIGH16:
rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstantNoClobber(cUnit, rlResult.lowReg, vB << 16);
storeValue(cUnit, rlDest, rlResult);
break;
case Instruction::CONST_WIDE_16:
case Instruction::CONST_WIDE_32:
rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg, vB,
(vB & 0x80000000) ? -1 : 0);
storeValueWide(cUnit, rlDest, rlResult);
break;
case Instruction::CONST_WIDE:
rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
mir->dalvikInsn.vB_wide & 0xffffffff,
(mir->dalvikInsn.vB_wide >> 32) & 0xffffffff);
storeValueWide(cUnit, rlDest, rlResult);
break;
case Instruction::CONST_WIDE_HIGH16:
rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true);
loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
0, vB << 16);
storeValueWide(cUnit, rlDest, rlResult);
break;
case Instruction::MONITOR_ENTER:
genMonitorEnter(cUnit, optFlags, rlSrc[0]);
break;
case Instruction::MONITOR_EXIT:
genMonitorExit(cUnit, optFlags, rlSrc[0]);
break;
case Instruction::CHECK_CAST:
genCheckCast(cUnit, vB, rlSrc[0]);
break;
case Instruction::INSTANCE_OF:
genInstanceof(cUnit, vC, rlDest, rlSrc[0]);
break;
case Instruction::NEW_INSTANCE:
genNewInstance(cUnit, vB, rlDest);
break;
case Instruction::THROW:
genThrow(cUnit, rlSrc[0]);
break;
case Instruction::ARRAY_LENGTH:
int lenOffset;
lenOffset = Array::LengthOffset().Int32Value();
rlSrc[0] = loadValue(cUnit, rlSrc[0], kCoreReg);
genNullCheck(cUnit, rlSrc[0].sRegLow, rlSrc[0].lowReg, optFlags);
rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true);
loadWordDisp(cUnit, rlSrc[0].lowReg, lenOffset, rlResult.lowReg);
storeValue(cUnit, rlDest, rlResult);
break;
case Instruction::CONST_STRING:
case Instruction::CONST_STRING_JUMBO:
genConstString(cUnit, vB, rlDest);
break;
case Instruction::CONST_CLASS:
genConstClass(cUnit, vB, rlDest);
break;
case Instruction::FILL_ARRAY_DATA:
genFillArrayData(cUnit, vB, rlSrc[0]);
break;
case Instruction::FILLED_NEW_ARRAY:
genFilledNewArray(cUnit, oatNewCallInfo(cUnit, bb, mir, kStatic,
false /* not range */));
break;
case Instruction::FILLED_NEW_ARRAY_RANGE:
genFilledNewArray(cUnit, oatNewCallInfo(cUnit, bb, mir, kStatic,
true /* range */));
break;
case Instruction::NEW_ARRAY:
genNewArray(cUnit, vC, rlDest, rlSrc[0]);
break;
case Instruction::GOTO:
case Instruction::GOTO_16:
case Instruction::GOTO_32:
if (bb->taken->startOffset <= mir->offset) {
genSuspendTestAndBranch(cUnit, optFlags, &labelList[bb->taken->id]);
} else {
opUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
}
break;
case Instruction::PACKED_SWITCH:
genPackedSwitch(cUnit, vB, rlSrc[0]);
break;
case Instruction::SPARSE_SWITCH:
genSparseSwitch(cUnit, vB, rlSrc[0]);
break;
case Instruction::CMPL_FLOAT:
case Instruction::CMPG_FLOAT:
case Instruction::CMPL_DOUBLE:
case Instruction::CMPG_DOUBLE:
res = genCmpFP(cUnit, opcode, rlDest, rlSrc[0], rlSrc[1]);
break;
case Instruction::CMP_LONG:
genCmpLong(cUnit, rlDest, rlSrc[0], rlSrc[1]);
break;
case Instruction::IF_EQ:
case Instruction::IF_NE:
case Instruction::IF_LT:
case Instruction::IF_GE:
case Instruction::IF_GT:
case Instruction::IF_LE: {
LIR* taken = &labelList[bb->taken->id];
LIR* fallThrough = &labelList[bb->fallThrough->id];
bool backwardBranch;
backwardBranch = (bb->taken->startOffset <= mir->offset);
if (backwardBranch) {
genSuspendTest(cUnit, optFlags);
}
genCompareAndBranch(cUnit, opcode, rlSrc[0], rlSrc[1], taken,
fallThrough);
break;
}
case Instruction::IF_EQZ:
case Instruction::IF_NEZ:
case Instruction::IF_LTZ:
case Instruction::IF_GEZ:
case Instruction::IF_GTZ:
case Instruction::IF_LEZ: {
LIR* taken = &labelList[bb->taken->id];
LIR* fallThrough = &labelList[bb->fallThrough->id];
bool backwardBranch;
backwardBranch = (bb->taken->startOffset <= mir->offset);
if (backwardBranch) {
genSuspendTest(cUnit, optFlags);
}
genCompareZeroAndBranch(cUnit, opcode, rlSrc[0], taken, fallThrough);
break;
}
case Instruction::AGET_WIDE:
genArrayGet(cUnit, optFlags, kLong, rlSrc[0], rlSrc[1], rlDest, 3);
break;
case Instruction::AGET:
case Instruction::AGET_OBJECT:
genArrayGet(cUnit, optFlags, kWord, rlSrc[0], rlSrc[1], rlDest, 2);
break;
case Instruction::AGET_BOOLEAN:
genArrayGet(cUnit, optFlags, kUnsignedByte, rlSrc[0], rlSrc[1], rlDest, 0);
break;
case Instruction::AGET_BYTE:
genArrayGet(cUnit, optFlags, kSignedByte, rlSrc[0], rlSrc[1], rlDest, 0);
break;
case Instruction::AGET_CHAR:
genArrayGet(cUnit, optFlags, kUnsignedHalf, rlSrc[0], rlSrc[1], rlDest, 1);
break;
case Instruction::AGET_SHORT:
genArrayGet(cUnit, optFlags, kSignedHalf, rlSrc[0], rlSrc[1], rlDest, 1);
break;
case Instruction::APUT_WIDE:
genArrayPut(cUnit, optFlags, kLong, rlSrc[1], rlSrc[2], rlSrc[0], 3);
break;
case Instruction::APUT:
genArrayPut(cUnit, optFlags, kWord, rlSrc[1], rlSrc[2], rlSrc[0], 2);
break;
case Instruction::APUT_OBJECT:
genArrayObjPut(cUnit, optFlags, rlSrc[1], rlSrc[2], rlSrc[0], 2);
break;
case Instruction::APUT_SHORT:
case Instruction::APUT_CHAR:
genArrayPut(cUnit, optFlags, kUnsignedHalf, rlSrc[1], rlSrc[2], rlSrc[0], 1);
break;
case Instruction::APUT_BYTE:
case Instruction::APUT_BOOLEAN:
genArrayPut(cUnit, optFlags, kUnsignedByte, rlSrc[1], rlSrc[2],
rlSrc[0], 0);
break;
case Instruction::IGET_OBJECT:
//case Instruction::IGET_OBJECT_VOLATILE:
genIGet(cUnit, vC, optFlags, kWord, rlDest, rlSrc[0], false, true);
break;
case Instruction::IGET_WIDE:
//case Instruction::IGET_WIDE_VOLATILE:
genIGet(cUnit, vC, optFlags, kLong, rlDest, rlSrc[0], true, false);
break;
case Instruction::IGET:
//case Instruction::IGET_VOLATILE:
genIGet(cUnit, vC, optFlags, kWord, rlDest, rlSrc[0], false, false);
break;
case Instruction::IGET_CHAR:
genIGet(cUnit, vC, optFlags, kUnsignedHalf, rlDest, rlSrc[0], false, false);
break;
case Instruction::IGET_SHORT:
genIGet(cUnit, vC, optFlags, kSignedHalf, rlDest, rlSrc[0], false, false);
break;
case Instruction::IGET_BOOLEAN:
case Instruction::IGET_BYTE:
genIGet(cUnit, vC, optFlags, kUnsignedByte, rlDest, rlSrc[0], false, false);
break;
case Instruction::IPUT_WIDE:
//case Instruction::IPUT_WIDE_VOLATILE:
genIPut(cUnit, vC, optFlags, kLong, rlSrc[0], rlSrc[1], true, false);
break;
case Instruction::IPUT_OBJECT:
//case Instruction::IPUT_OBJECT_VOLATILE:
genIPut(cUnit, vC, optFlags, kWord, rlSrc[0], rlSrc[1], false, true);
break;
case Instruction::IPUT:
//case Instruction::IPUT_VOLATILE:
genIPut(cUnit, vC, optFlags, kWord, rlSrc[0], rlSrc[1], false, false);
break;
case Instruction::IPUT_BOOLEAN:
case Instruction::IPUT_BYTE:
genIPut(cUnit, vC, optFlags, kUnsignedByte, rlSrc[0], rlSrc[1], false, false);
break;
case Instruction::IPUT_CHAR:
genIPut(cUnit, vC, optFlags, kUnsignedHalf, rlSrc[0], rlSrc[1], false, false);
break;
case Instruction::IPUT_SHORT:
genIPut(cUnit, vC, optFlags, kSignedHalf, rlSrc[0], rlSrc[1], false, false);
break;
case Instruction::SGET_OBJECT:
genSget(cUnit, vB, rlDest, false, true);
break;
case Instruction::SGET:
case Instruction::SGET_BOOLEAN:
case Instruction::SGET_BYTE:
case Instruction::SGET_CHAR:
case Instruction::SGET_SHORT:
genSget(cUnit, vB, rlDest, false, false);
break;
case Instruction::SGET_WIDE:
genSget(cUnit, vB, rlDest, true, false);
break;
case Instruction::SPUT_OBJECT:
genSput(cUnit, vB, rlSrc[0], false, true);
break;
case Instruction::SPUT:
case Instruction::SPUT_BOOLEAN:
case Instruction::SPUT_BYTE:
case Instruction::SPUT_CHAR:
case Instruction::SPUT_SHORT:
genSput(cUnit, vB, rlSrc[0], false, false);
break;
case Instruction::SPUT_WIDE:
genSput(cUnit, vB, rlSrc[0], true, false);
break;
case Instruction::INVOKE_STATIC_RANGE:
genInvoke(cUnit, oatNewCallInfo(cUnit, bb, mir, kStatic, true));
break;
case Instruction::INVOKE_STATIC:
genInvoke(cUnit, oatNewCallInfo(cUnit, bb, mir, kStatic, false));
break;
case Instruction::INVOKE_DIRECT:
genInvoke(cUnit, oatNewCallInfo(cUnit, bb, mir, kDirect, false));
break;
case Instruction::INVOKE_DIRECT_RANGE:
genInvoke(cUnit, oatNewCallInfo(cUnit, bb, mir, kDirect, true));
break;
case Instruction::INVOKE_VIRTUAL:
genInvoke(cUnit, oatNewCallInfo(cUnit, bb, mir, kVirtual, false));
break;
case Instruction::INVOKE_VIRTUAL_RANGE:
genInvoke(cUnit, oatNewCallInfo(cUnit, bb, mir, kVirtual, true));
break;
case Instruction::INVOKE_SUPER:
genInvoke(cUnit, oatNewCallInfo(cUnit, bb, mir, kSuper, false));
break;
case Instruction::INVOKE_SUPER_RANGE:
genInvoke(cUnit, oatNewCallInfo(cUnit, bb, mir, kSuper, true));
break;
case Instruction::INVOKE_INTERFACE:
genInvoke(cUnit, oatNewCallInfo(cUnit, bb, mir, kInterface, false));
break;
case Instruction::INVOKE_INTERFACE_RANGE:
genInvoke(cUnit, oatNewCallInfo(cUnit, bb, mir, kInterface, true));
break;
case Instruction::NEG_INT:
case Instruction::NOT_INT:
res = genArithOpInt(cUnit, opcode, rlDest, rlSrc[0], rlSrc[0]);
break;
case Instruction::NEG_LONG:
case Instruction::NOT_LONG:
res = genArithOpLong(cUnit, opcode, rlDest, rlSrc[0], rlSrc[0]);
break;
case Instruction::NEG_FLOAT:
res = genArithOpFloat(cUnit, opcode, rlDest, rlSrc[0], rlSrc[0]);
break;
case Instruction::NEG_DOUBLE:
res = genArithOpDouble(cUnit, opcode, rlDest, rlSrc[0], rlSrc[0]);
break;
case Instruction::INT_TO_LONG:
genIntToLong(cUnit, rlDest, rlSrc[0]);
break;
case Instruction::LONG_TO_INT:
rlSrc[0] = oatUpdateLocWide(cUnit, rlSrc[0]);
rlSrc[0] = oatWideToNarrow(cUnit, rlSrc[0]);
storeValue(cUnit, rlDest, rlSrc[0]);
break;
case Instruction::INT_TO_BYTE:
case Instruction::INT_TO_SHORT:
case Instruction::INT_TO_CHAR:
genIntNarrowing(cUnit, opcode, rlDest, rlSrc[0]);
break;
case Instruction::INT_TO_FLOAT:
case Instruction::INT_TO_DOUBLE:
case Instruction::LONG_TO_FLOAT:
case Instruction::LONG_TO_DOUBLE:
case Instruction::FLOAT_TO_INT:
case Instruction::FLOAT_TO_LONG:
case Instruction::FLOAT_TO_DOUBLE:
case Instruction::DOUBLE_TO_INT:
case Instruction::DOUBLE_TO_LONG:
case Instruction::DOUBLE_TO_FLOAT:
genConversion(cUnit, opcode, rlDest, rlSrc[0]);
break;
case Instruction::ADD_INT:
case Instruction::SUB_INT:
case Instruction::MUL_INT:
case Instruction::DIV_INT:
case Instruction::REM_INT:
case Instruction::AND_INT:
case Instruction::OR_INT:
case Instruction::XOR_INT:
case Instruction::SHL_INT:
case Instruction::SHR_INT:
case Instruction::USHR_INT:
case Instruction::ADD_INT_2ADDR:
case Instruction::SUB_INT_2ADDR:
case Instruction::MUL_INT_2ADDR:
case Instruction::DIV_INT_2ADDR:
case Instruction::REM_INT_2ADDR:
case Instruction::AND_INT_2ADDR:
case Instruction::OR_INT_2ADDR:
case Instruction::XOR_INT_2ADDR:
case Instruction::SHL_INT_2ADDR:
case Instruction::SHR_INT_2ADDR:
case Instruction::USHR_INT_2ADDR:
genArithOpInt(cUnit, opcode, rlDest, rlSrc[0], rlSrc[1]);
break;
case Instruction::ADD_LONG:
case Instruction::SUB_LONG:
case Instruction::MUL_LONG:
case Instruction::DIV_LONG:
case Instruction::REM_LONG:
case Instruction::AND_LONG:
case Instruction::OR_LONG:
case Instruction::XOR_LONG:
case Instruction::ADD_LONG_2ADDR:
case Instruction::SUB_LONG_2ADDR:
case Instruction::MUL_LONG_2ADDR:
case Instruction::DIV_LONG_2ADDR:
case Instruction::REM_LONG_2ADDR:
case Instruction::AND_LONG_2ADDR:
case Instruction::OR_LONG_2ADDR:
case Instruction::XOR_LONG_2ADDR:
genArithOpLong(cUnit, opcode, rlDest, rlSrc[0], rlSrc[1]);
break;
case Instruction::SHL_LONG:
case Instruction::SHR_LONG:
case Instruction::USHR_LONG:
case Instruction::SHL_LONG_2ADDR:
case Instruction::SHR_LONG_2ADDR:
case Instruction::USHR_LONG_2ADDR:
genShiftOpLong(cUnit, opcode, rlDest, rlSrc[0], rlSrc[1]);
break;
case Instruction::ADD_FLOAT:
case Instruction::SUB_FLOAT:
case Instruction::MUL_FLOAT:
case Instruction::DIV_FLOAT:
case Instruction::REM_FLOAT:
case Instruction::ADD_FLOAT_2ADDR:
case Instruction::SUB_FLOAT_2ADDR:
case Instruction::MUL_FLOAT_2ADDR:
case Instruction::DIV_FLOAT_2ADDR:
case Instruction::REM_FLOAT_2ADDR:
genArithOpFloat(cUnit, opcode, rlDest, rlSrc[0], rlSrc[1]);
break;
case Instruction::ADD_DOUBLE:
case Instruction::SUB_DOUBLE:
case Instruction::MUL_DOUBLE:
case Instruction::DIV_DOUBLE:
case Instruction::REM_DOUBLE:
case Instruction::ADD_DOUBLE_2ADDR:
case Instruction::SUB_DOUBLE_2ADDR:
case Instruction::MUL_DOUBLE_2ADDR:
case Instruction::DIV_DOUBLE_2ADDR:
case Instruction::REM_DOUBLE_2ADDR:
genArithOpDouble(cUnit, opcode, rlDest, rlSrc[0], rlSrc[1]);
break;
case Instruction::RSUB_INT:
case Instruction::ADD_INT_LIT16:
case Instruction::MUL_INT_LIT16:
case Instruction::DIV_INT_LIT16:
case Instruction::REM_INT_LIT16:
case Instruction::AND_INT_LIT16:
case Instruction::OR_INT_LIT16:
case Instruction::XOR_INT_LIT16:
case Instruction::ADD_INT_LIT8:
case Instruction::RSUB_INT_LIT8:
case Instruction::MUL_INT_LIT8:
case Instruction::DIV_INT_LIT8:
case Instruction::REM_INT_LIT8:
case Instruction::AND_INT_LIT8:
case Instruction::OR_INT_LIT8:
case Instruction::XOR_INT_LIT8:
case Instruction::SHL_INT_LIT8:
case Instruction::SHR_INT_LIT8:
case Instruction::USHR_INT_LIT8:
genArithOpIntLit(cUnit, opcode, rlDest, rlSrc[0], vC);
break;
default:
res = true;
}
return res;
}
const char* extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
"kMirOpPhi",
"kMirOpCopy",
"kMirFusedCmplFloat",
"kMirFusedCmpgFloat",
"kMirFusedCmplDouble",
"kMirFusedCmpgDouble",
"kMirFusedCmpLong",
"kMirNop",
"kMirOpNullCheck",
"kMirOpRangeCheck",
"kMirOpDivZeroCheck",
"kMirOpCheck",
};
/* Extended MIR instructions like PHI */
void handleExtendedMethodMIR(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir)
{
int opOffset = mir->dalvikInsn.opcode - kMirOpFirst;
char* msg = NULL;
if (cUnit->printMe) {
msg = (char*)oatNew(cUnit, strlen(extendedMIROpNames[opOffset]) + 1,
false, kAllocDebugInfo);
strcpy(msg, extendedMIROpNames[opOffset]);
}
LIR* op = newLIR1(cUnit, kPseudoExtended, (int) msg);
switch ((ExtendedMIROpcode)mir->dalvikInsn.opcode) {
case kMirOpPhi: {
char* ssaString = NULL;
if (cUnit->printMe) {
ssaString = oatGetSSAString(cUnit, mir->ssaRep);
}
op->flags.isNop = true;
newLIR1(cUnit, kPseudoSSARep, (int) ssaString);
break;
}
case kMirOpCopy: {
RegLocation rlSrc = oatGetSrc(cUnit, mir, 0);
RegLocation rlDest = oatGetDest(cUnit, mir);
storeValue(cUnit, rlDest, rlSrc);
break;
}
case kMirOpFusedCmplFloat:
genFusedFPCmpBranch(cUnit, bb, mir, false /*gt bias*/, false /*double*/);
break;
case kMirOpFusedCmpgFloat:
genFusedFPCmpBranch(cUnit, bb, mir, true /*gt bias*/, false /*double*/);
break;
case kMirOpFusedCmplDouble:
genFusedFPCmpBranch(cUnit, bb, mir, false /*gt bias*/, true /*double*/);
break;
case kMirOpFusedCmpgDouble:
genFusedFPCmpBranch(cUnit, bb, mir, true /*gt bias*/, true /*double*/);
break;
case kMirOpFusedCmpLong:
genFusedLongCmpBranch(cUnit, bb, mir);
break;
default:
break;
}
}
/* Handle the content in each basic block */
bool methodBlockCodeGen(CompilationUnit* cUnit, BasicBlock* bb)
{
if (bb->blockType == kDead) return false;
cUnit->currentDalvikOffset = bb->startOffset;
MIR* mir;
LIR* labelList = cUnit->blockLabelList;
int blockId = bb->id;
cUnit->curBlock = bb;
labelList[blockId].operands[0] = bb->startOffset;
/* Insert the block label */
labelList[blockId].opcode = kPseudoNormalBlockLabel;
oatAppendLIR(cUnit, (LIR*) &labelList[blockId]);
LIR* headLIR = NULL;
/* If this is a catch block, mark the beginning as a safepoint */
if (bb->catchEntry) {
headLIR = newLIR0(cUnit, kPseudoSafepointPC);
}
/* Free temp registers and reset redundant store tracking */
oatResetRegPool(cUnit);
oatResetDefTracking(cUnit);
oatClobberAllRegs(cUnit);
if (bb->blockType == kEntryBlock) {
int startVReg = cUnit->numDalvikRegisters - cUnit->numIns;
genEntrySequence(cUnit, &cUnit->regLocation[startVReg],
cUnit->regLocation[cUnit->methodSReg]);
} else if (bb->blockType == kExitBlock) {
genExitSequence(cUnit);
}
for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
oatResetRegPool(cUnit);
if (cUnit->disableOpt & (1 << kTrackLiveTemps)) {
oatClobberAllRegs(cUnit);
}
if (cUnit->disableOpt & (1 << kSuppressLoads)) {
oatResetDefTracking(cUnit);
}
#ifndef NDEBUG
/* Reset temp tracking sanity check */
cUnit->liveSReg = INVALID_SREG;
#endif
cUnit->currentDalvikOffset = mir->offset;
int opcode = mir->dalvikInsn.opcode;
LIR* boundaryLIR;
/* Mark the beginning of a Dalvik instruction for line tracking */
char* instStr = cUnit->printMe ?
oatGetDalvikDisassembly(cUnit, mir->dalvikInsn, "") : NULL;
boundaryLIR = markBoundary(cUnit, mir->offset, instStr);
/* Remember the first LIR for this block */
if (headLIR == NULL) {
headLIR = boundaryLIR;
/* Set the first boundaryLIR as a scheduling barrier */
headLIR->defMask = ENCODE_ALL;
}
/* If we're compiling for the debugger, generate an update callout */
if (cUnit->genDebugger) {
genDebuggerUpdate(cUnit, mir->offset);
}
/* Don't generate the SSA annotation unless verbose mode is on */
if (cUnit->printMe && mir->ssaRep) {
char* ssaString = oatGetSSAString(cUnit, mir->ssaRep);
newLIR1(cUnit, kPseudoSSARep, (int) ssaString);
}
if (opcode == kMirOpCheck) {
// Combine check and work halves of throwing instruction.
MIR* workHalf = mir->meta.throwInsn;
mir->dalvikInsn.opcode = workHalf->dalvikInsn.opcode;
opcode = workHalf->dalvikInsn.opcode;
SSARepresentation* ssaRep = workHalf->ssaRep;
workHalf->ssaRep = mir->ssaRep;
mir->ssaRep = ssaRep;
workHalf->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
}
if (opcode >= kMirOpFirst) {
handleExtendedMethodMIR(cUnit, bb, mir);
continue;
}
bool notHandled = compileDalvikInstruction(cUnit, mir, bb, labelList);
if (notHandled) {
LOG(FATAL) << StringPrintf("%#06x: Opcode %#x (%s)",
mir->offset, opcode,
Instruction::Name(mir->dalvikInsn.opcode));
}
}
if (headLIR) {
/*
* Eliminate redundant loads/stores and delay stores into later
* slots
*/
oatApplyLocalOptimizations(cUnit, (LIR*) headLIR, cUnit->lastLIRInsn);
/*
* Generate an unconditional branch to the fallthrough block.
*/
if (bb->fallThrough) {
opUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
}
}
return false;
}
/* Set basic block labels */
bool labelBlocks(CompilationUnit* cUnit, BasicBlock* bb)
{
LIR* labelList = cUnit->blockLabelList;
int blockId = bb->id;
cUnit->curBlock = bb;
labelList[blockId].operands[0] = bb->startOffset;
/* Insert the block label */
labelList[blockId].opcode = kPseudoNormalBlockLabel;
return false;
}
void oatSpecialMIR2LIR(CompilationUnit* cUnit, SpecialCaseHandler specialCase)
{
/* Find the first DalvikByteCode block */
int numReachableBlocks = cUnit->numReachableBlocks;
const GrowableList *blockList = &cUnit->blockList;
BasicBlock*bb = NULL;
for (int idx = 0; idx < numReachableBlocks; idx++) {
int dfsIndex = cUnit->dfsOrder.elemList[idx];
bb = (BasicBlock*)oatGrowableListGetElement(blockList, dfsIndex);
if (bb->blockType == kDalvikByteCode) {
break;
}
}
if (bb == NULL) {
return;
}
DCHECK_EQ(bb->startOffset, 0);
DCHECK(bb->firstMIRInsn != NULL);
/* Get the first instruction */
MIR* mir = bb->firstMIRInsn;
/* Free temp registers and reset redundant store tracking */
oatResetRegPool(cUnit);
oatResetDefTracking(cUnit);
oatClobberAllRegs(cUnit);
genSpecialCase(cUnit, bb, mir, specialCase);
}
void oatMethodMIR2LIR(CompilationUnit* cUnit)
{
/* Used to hold the labels of each block */
cUnit->blockLabelList =
(LIR*) oatNew(cUnit, sizeof(LIR) * cUnit->numBlocks, true, kAllocLIR);
oatDataFlowAnalysisDispatcher(cUnit, methodBlockCodeGen,
kPreOrderDFSTraversal, false /* Iterative */);
handleSuspendLaunchpads(cUnit);
handleThrowLaunchpads(cUnit);
handleIntrinsicLaunchpads(cUnit);
if (!(cUnit->disableOpt & (1 << kSafeOptimizations))) {
removeRedundantBranches(cUnit);
}
}
/* Needed by the ld/st optmizatons */
LIR* oatRegCopyNoInsert(CompilationUnit* cUnit, int rDest, int rSrc)
{
return opRegCopyNoInsert(cUnit, rDest, rSrc);
}
/* Needed by the register allocator */
void oatRegCopy(CompilationUnit* cUnit, int rDest, int rSrc)
{
opRegCopy(cUnit, rDest, rSrc);
}
/* Needed by the register allocator */
void oatRegCopyWide(CompilationUnit* cUnit, int destLo, int destHi,
int srcLo, int srcHi)
{
opRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
}
void oatFlushRegImpl(CompilationUnit* cUnit, int rBase,
int displacement, int rSrc, OpSize size)
{
storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
}
void oatFlushRegWideImpl(CompilationUnit* cUnit, int rBase,
int displacement, int rSrcLo, int rSrcHi)
{
storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
}
} // namespace art