blob: a22c516ff49db141e32e9d338d74a42d7bb43663 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Note that $opt$ is a marker for the optimizing compiler to ensure
// it does compile the method.
public class Main {
public static void expectEquals(int expected, int result) {
if (expected != result) {
throw new Error("Expected: " + expected + ", found: " + result);
}
}
public static void expectEquals(long expected, long result) {
if (expected != result) {
throw new Error("Expected: " + expected + ", found: " + result);
}
}
public static void expectEquals(float expected, float result) {
if (expected != result) {
throw new Error("Expected: " + expected + ", found: " + result);
}
}
public static void expectEquals(double expected, double result) {
if (expected != result) {
throw new Error("Expected: " + expected + ", found: " + result);
}
}
public static void expectApproxEquals(float a, float b, float maxDelta) {
boolean aproxEquals = (a > b)
? ((a - b) < maxDelta)
: ((b - a) < maxDelta);
if (!aproxEquals) {
throw new Error("Expected: " + a + ", found: " + b + ", with delta: " + maxDelta);
}
}
public static void expectApproxEquals(double a, double b, double maxDelta) {
boolean aproxEquals = (a > b)
? ((a - b) < maxDelta)
: ((b - a) < maxDelta);
if (!aproxEquals) {
throw new Error("Expected: " + a + ", found: " + b + ", with delta: " + maxDelta);
}
}
public static void expectNaN(float a) {
if (a == a) {
throw new Error("Expected NaN: " + a);
}
}
public static void expectNaN(double a) {
if (a == a) {
throw new Error("Expected NaN: " + a);
}
}
public static void main(String[] args) {
mul();
}
public static void mul() {
mulInt();
mulLong();
mulFloat();
mulDouble();
}
private static void mulInt() {
expectEquals(15, $opt$Mul(5, 3));
expectEquals(0, $opt$Mul(0, 0));
expectEquals(0, $opt$Mul(0, 3));
expectEquals(0, $opt$Mul(3, 0));
expectEquals(-3, $opt$Mul(1, -3));
expectEquals(36, $opt$Mul(-12, -3));
expectEquals(33, $opt$Mul(1, 3) * 11);
expectEquals(671088645, $opt$Mul(134217729, 5)); // (2^27 + 1) * 5
}
private static void mulLong() {
expectEquals(15L, $opt$Mul(5L, 3L));
expectEquals(0L, $opt$Mul(0L, 0L));
expectEquals(0L, $opt$Mul(0L, 3L));
expectEquals(0L, $opt$Mul(3L, 0L));
expectEquals(-3L, $opt$Mul(1L, -3L));
expectEquals(36L, $opt$Mul(-12L, -3L));
expectEquals(33L, $opt$Mul(1L, 3L) * 11F);
expectEquals(240518168583L, $opt$Mul(34359738369L, 7L)); // (2^35 + 1) * 7
}
private static void mulFloat() {
expectApproxEquals(15F, $opt$Mul(5F, 3F), 0.0001F);
expectApproxEquals(0F, $opt$Mul(0F, 0F), 0.0001F);
expectApproxEquals(0F, $opt$Mul(0F, 3F), 0.0001F);
expectApproxEquals(0F, $opt$Mul(3F, 0F), 0.0001F);
expectApproxEquals(-3F, $opt$Mul(1F, -3F), 0.0001F);
expectApproxEquals(36F, $opt$Mul(-12F, -3F), 0.0001F);
expectApproxEquals(33F, $opt$Mul(1F, 3F) * 11F, 0.0001F);
expectApproxEquals(0.02F, 0.1F * 0.2F, 0.0001F);
expectApproxEquals(-0.1F, -0.5F * 0.2F, 0.0001F);
expectNaN($opt$Mul(0F, Float.POSITIVE_INFINITY));
expectNaN($opt$Mul(0F, Float.NEGATIVE_INFINITY));
expectNaN($opt$Mul(Float.NaN, 11F));
expectNaN($opt$Mul(Float.NaN, -11F));
expectNaN($opt$Mul(Float.NaN, Float.NEGATIVE_INFINITY));
expectNaN($opt$Mul(Float.NaN, Float.POSITIVE_INFINITY));
expectEquals(Float.POSITIVE_INFINITY, $opt$Mul(2F, 3.40282346638528860e+38F));
expectEquals(Float.POSITIVE_INFINITY, $opt$Mul(2F, Float.POSITIVE_INFINITY));
expectEquals(Float.NEGATIVE_INFINITY, $opt$Mul(-2F, Float.POSITIVE_INFINITY));
expectEquals(Float.NEGATIVE_INFINITY, $opt$Mul(-2F, 3.40282346638528860e+38F));
expectEquals(Float.NEGATIVE_INFINITY, $opt$Mul(2F, Float.NEGATIVE_INFINITY));
expectEquals(Float.POSITIVE_INFINITY, $opt$Mul(-2F, Float.NEGATIVE_INFINITY));
expectEquals(Float.NEGATIVE_INFINITY, $opt$Mul(Float.POSITIVE_INFINITY, Float.NEGATIVE_INFINITY));
expectEquals(Float.POSITIVE_INFINITY, $opt$Mul(Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY));
expectEquals(Float.POSITIVE_INFINITY, $opt$Mul(Float.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY));
}
private static void mulDouble() {
expectApproxEquals(15D, $opt$Mul(5D, 3D), 0.0001D);
expectApproxEquals(0D, $opt$Mul(0D, 0D), 0.0001D);
expectApproxEquals(0D, $opt$Mul(0D, 3D), 0.0001D);
expectApproxEquals(0D, $opt$Mul(3D, 0D), 0.0001D);
expectApproxEquals(-3D, $opt$Mul(1D, -3D), 0.0001D);
expectApproxEquals(36D, $opt$Mul(-12D, -3D), 0.0001D);
expectApproxEquals(33D, $opt$Mul(1D, 3D) * 11D, 0.0001D);
expectApproxEquals(0.02D, 0.1D * 0.2D, 0.0001D);
expectApproxEquals(-0.1D, -0.5D * 0.2D, 0.0001D);
expectNaN($opt$Mul(0D, Double.POSITIVE_INFINITY));
expectNaN($opt$Mul(0D, Double.NEGATIVE_INFINITY));
expectNaN($opt$Mul(Double.NaN, 11D));
expectNaN($opt$Mul(Double.NaN, -11D));
expectNaN($opt$Mul(Double.NaN, Double.NEGATIVE_INFINITY));
expectNaN($opt$Mul(Double.NaN, Double.POSITIVE_INFINITY));
expectEquals(Double.POSITIVE_INFINITY, $opt$Mul(2D, 1.79769313486231570e+308));
expectEquals(Double.POSITIVE_INFINITY, $opt$Mul(2D, Double.POSITIVE_INFINITY));
expectEquals(Double.NEGATIVE_INFINITY, $opt$Mul(-2D, Double.POSITIVE_INFINITY));
expectEquals(Double.NEGATIVE_INFINITY, $opt$Mul(-2D, 1.79769313486231570e+308));
expectEquals(Double.NEGATIVE_INFINITY, $opt$Mul(2D, Double.NEGATIVE_INFINITY));
expectEquals(Double.POSITIVE_INFINITY, $opt$Mul(-2D, Double.NEGATIVE_INFINITY));
expectEquals(Double.NEGATIVE_INFINITY, $opt$Mul(Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY));
expectEquals(Double.POSITIVE_INFINITY, $opt$Mul(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY));
expectEquals(Double.POSITIVE_INFINITY, $opt$Mul(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY));
}
static int $opt$Mul(int a, int b) {
return a * b;
}
static long $opt$Mul(long a, long b) {
return a * b;
}
static float $opt$Mul(float a, float b) {
return a * b;
}
static double $opt$Mul(double a, double b) {
return a * b;
}
}