| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "art_method-inl.h" |
| #include "base/callee_save_type.h" |
| #include "base/enums.h" |
| #include "callee_save_frame.h" |
| #include "common_throws.h" |
| #include "debugger.h" |
| #include "dex_file-inl.h" |
| #include "dex_file_types.h" |
| #include "dex_instruction-inl.h" |
| #include "entrypoints/entrypoint_utils-inl.h" |
| #include "entrypoints/runtime_asm_entrypoints.h" |
| #include "gc/accounting/card_table-inl.h" |
| #include "imt_conflict_table.h" |
| #include "imtable-inl.h" |
| #include "index_bss_mapping.h" |
| #include "instrumentation.h" |
| #include "interpreter/interpreter.h" |
| #include "jit/jit.h" |
| #include "linear_alloc.h" |
| #include "method_handles.h" |
| #include "method_reference.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/dex_cache-inl.h" |
| #include "mirror/method.h" |
| #include "mirror/method_handle_impl.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "oat_file.h" |
| #include "oat_quick_method_header.h" |
| #include "quick_exception_handler.h" |
| #include "runtime.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "stack.h" |
| #include "thread-inl.h" |
| #include "well_known_classes.h" |
| |
| namespace art { |
| |
| // Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame. |
| class QuickArgumentVisitor { |
| // Number of bytes for each out register in the caller method's frame. |
| static constexpr size_t kBytesStackArgLocation = 4; |
| // Frame size in bytes of a callee-save frame for RefsAndArgs. |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize = |
| GetCalleeSaveFrameSize(kRuntimeISA, CalleeSaveType::kSaveRefsAndArgs); |
| #if defined(__arm__) |
| // The callee save frame is pointed to by SP. |
| // | argN | | |
| // | ... | | |
| // | arg4 | | |
| // | arg3 spill | | Caller's frame |
| // | arg2 spill | | |
| // | arg1 spill | | |
| // | Method* | --- |
| // | LR | |
| // | ... | 4x6 bytes callee saves |
| // | R3 | |
| // | R2 | |
| // | R1 | |
| // | S15 | |
| // | : | |
| // | S0 | |
| // | | 4x2 bytes padding |
| // | Method* | <- sp |
| static constexpr bool kSplitPairAcrossRegisterAndStack = false; |
| static constexpr bool kAlignPairRegister = true; |
| static constexpr bool kQuickSoftFloatAbi = false; |
| static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = true; |
| static constexpr bool kQuickSkipOddFpRegisters = false; |
| static constexpr size_t kNumQuickGprArgs = 3; |
| static constexpr size_t kNumQuickFprArgs = 16; |
| static constexpr bool kGprFprLockstep = false; |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = |
| arm::ArmCalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs); // Offset of first FPR arg. |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = |
| arm::ArmCalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs); // Offset of first GPR arg. |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = |
| arm::ArmCalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs); // Offset of return address. |
| static size_t GprIndexToGprOffset(uint32_t gpr_index) { |
| return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); |
| } |
| #elif defined(__aarch64__) |
| // The callee save frame is pointed to by SP. |
| // | argN | | |
| // | ... | | |
| // | arg4 | | |
| // | arg3 spill | | Caller's frame |
| // | arg2 spill | | |
| // | arg1 spill | | |
| // | Method* | --- |
| // | LR | |
| // | X29 | |
| // | : | |
| // | X20 | |
| // | X7 | |
| // | : | |
| // | X1 | |
| // | D7 | |
| // | : | |
| // | D0 | |
| // | | padding |
| // | Method* | <- sp |
| static constexpr bool kSplitPairAcrossRegisterAndStack = false; |
| static constexpr bool kAlignPairRegister = false; |
| static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. |
| static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; |
| static constexpr bool kQuickSkipOddFpRegisters = false; |
| static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs. |
| static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. |
| static constexpr bool kGprFprLockstep = false; |
| // Offset of first FPR arg. |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = |
| arm64::Arm64CalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs); |
| // Offset of first GPR arg. |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = |
| arm64::Arm64CalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs); |
| // Offset of return address. |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = |
| arm64::Arm64CalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs); |
| static size_t GprIndexToGprOffset(uint32_t gpr_index) { |
| return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); |
| } |
| #elif defined(__mips__) && !defined(__LP64__) |
| // The callee save frame is pointed to by SP. |
| // | argN | | |
| // | ... | | |
| // | arg4 | | |
| // | arg3 spill | | Caller's frame |
| // | arg2 spill | | |
| // | arg1 spill | | |
| // | Method* | --- |
| // | RA | |
| // | ... | callee saves |
| // | T1 | arg5 |
| // | T0 | arg4 |
| // | A3 | arg3 |
| // | A2 | arg2 |
| // | A1 | arg1 |
| // | F19 | |
| // | F18 | f_arg5 |
| // | F17 | |
| // | F16 | f_arg4 |
| // | F15 | |
| // | F14 | f_arg3 |
| // | F13 | |
| // | F12 | f_arg2 |
| // | F11 | |
| // | F10 | f_arg1 |
| // | F9 | |
| // | F8 | f_arg0 |
| // | | padding |
| // | A0/Method* | <- sp |
| static constexpr bool kSplitPairAcrossRegisterAndStack = false; |
| static constexpr bool kAlignPairRegister = true; |
| static constexpr bool kQuickSoftFloatAbi = false; |
| static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; |
| static constexpr bool kQuickSkipOddFpRegisters = true; |
| static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs. |
| static constexpr size_t kNumQuickFprArgs = 12; // 6 arguments passed in FPRs. Floats can be |
| // passed only in even numbered registers and each |
| // double occupies two registers. |
| static constexpr bool kGprFprLockstep = false; |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 8; // Offset of first FPR arg. |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 56; // Offset of first GPR arg. |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 108; // Offset of return address. |
| static size_t GprIndexToGprOffset(uint32_t gpr_index) { |
| return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); |
| } |
| #elif defined(__mips__) && defined(__LP64__) |
| // The callee save frame is pointed to by SP. |
| // | argN | | |
| // | ... | | |
| // | arg4 | | |
| // | arg3 spill | | Caller's frame |
| // | arg2 spill | | |
| // | arg1 spill | | |
| // | Method* | --- |
| // | RA | |
| // | ... | callee saves |
| // | A7 | arg7 |
| // | A6 | arg6 |
| // | A5 | arg5 |
| // | A4 | arg4 |
| // | A3 | arg3 |
| // | A2 | arg2 |
| // | A1 | arg1 |
| // | F19 | f_arg7 |
| // | F18 | f_arg6 |
| // | F17 | f_arg5 |
| // | F16 | f_arg4 |
| // | F15 | f_arg3 |
| // | F14 | f_arg2 |
| // | F13 | f_arg1 |
| // | F12 | f_arg0 |
| // | | padding |
| // | A0/Method* | <- sp |
| // NOTE: for Mip64, when A0 is skipped, F12 is also skipped. |
| static constexpr bool kSplitPairAcrossRegisterAndStack = false; |
| static constexpr bool kAlignPairRegister = false; |
| static constexpr bool kQuickSoftFloatAbi = false; |
| static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; |
| static constexpr bool kQuickSkipOddFpRegisters = false; |
| static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs. |
| static constexpr size_t kNumQuickFprArgs = 7; // 7 arguments passed in FPRs. |
| static constexpr bool kGprFprLockstep = true; |
| |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24; // Offset of first FPR arg (F13). |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80; // Offset of first GPR arg (A1). |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200; // Offset of return address. |
| static size_t GprIndexToGprOffset(uint32_t gpr_index) { |
| return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); |
| } |
| #elif defined(__i386__) |
| // The callee save frame is pointed to by SP. |
| // | argN | | |
| // | ... | | |
| // | arg4 | | |
| // | arg3 spill | | Caller's frame |
| // | arg2 spill | | |
| // | arg1 spill | | |
| // | Method* | --- |
| // | Return | |
| // | EBP,ESI,EDI | callee saves |
| // | EBX | arg3 |
| // | EDX | arg2 |
| // | ECX | arg1 |
| // | XMM3 | float arg 4 |
| // | XMM2 | float arg 3 |
| // | XMM1 | float arg 2 |
| // | XMM0 | float arg 1 |
| // | EAX/Method* | <- sp |
| static constexpr bool kSplitPairAcrossRegisterAndStack = false; |
| static constexpr bool kAlignPairRegister = false; |
| static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. |
| static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; |
| static constexpr bool kQuickSkipOddFpRegisters = false; |
| static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs. |
| static constexpr size_t kNumQuickFprArgs = 4; // 4 arguments passed in FPRs. |
| static constexpr bool kGprFprLockstep = false; |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4; // Offset of first FPR arg. |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8; // Offset of first GPR arg. |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8; // Offset of return address. |
| static size_t GprIndexToGprOffset(uint32_t gpr_index) { |
| return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA); |
| } |
| #elif defined(__x86_64__) |
| // The callee save frame is pointed to by SP. |
| // | argN | | |
| // | ... | | |
| // | reg. arg spills | | Caller's frame |
| // | Method* | --- |
| // | Return | |
| // | R15 | callee save |
| // | R14 | callee save |
| // | R13 | callee save |
| // | R12 | callee save |
| // | R9 | arg5 |
| // | R8 | arg4 |
| // | RSI/R6 | arg1 |
| // | RBP/R5 | callee save |
| // | RBX/R3 | callee save |
| // | RDX/R2 | arg2 |
| // | RCX/R1 | arg3 |
| // | XMM7 | float arg 8 |
| // | XMM6 | float arg 7 |
| // | XMM5 | float arg 6 |
| // | XMM4 | float arg 5 |
| // | XMM3 | float arg 4 |
| // | XMM2 | float arg 3 |
| // | XMM1 | float arg 2 |
| // | XMM0 | float arg 1 |
| // | Padding | |
| // | RDI/Method* | <- sp |
| static constexpr bool kSplitPairAcrossRegisterAndStack = false; |
| static constexpr bool kAlignPairRegister = false; |
| static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI. |
| static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false; |
| static constexpr bool kQuickSkipOddFpRegisters = false; |
| static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs. |
| static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs. |
| static constexpr bool kGprFprLockstep = false; |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg. |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8; // Offset of first GPR arg. |
| static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8; // Offset of return address. |
| static size_t GprIndexToGprOffset(uint32_t gpr_index) { |
| switch (gpr_index) { |
| case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA)); |
| case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA)); |
| case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA)); |
| case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA)); |
| case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA)); |
| default: |
| LOG(FATAL) << "Unexpected GPR index: " << gpr_index; |
| return 0; |
| } |
| } |
| #else |
| #error "Unsupported architecture" |
| #endif |
| |
| public: |
| // Special handling for proxy methods. Proxy methods are instance methods so the |
| // 'this' object is the 1st argument. They also have the same frame layout as the |
| // kRefAndArgs runtime method. Since 'this' is a reference, it is located in the |
| // 1st GPR. |
| static mirror::Object* GetProxyThisObject(ArtMethod** sp) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| CHECK((*sp)->IsProxyMethod()); |
| CHECK_GT(kNumQuickGprArgs, 0u); |
| constexpr uint32_t kThisGprIndex = 0u; // 'this' is in the 1st GPR. |
| size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset + |
| GprIndexToGprOffset(kThisGprIndex); |
| uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset; |
| return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr(); |
| } |
| |
| static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK((*sp)->IsCalleeSaveMethod()); |
| return GetCalleeSaveMethodCaller(sp, CalleeSaveType::kSaveRefsAndArgs); |
| } |
| |
| static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK((*sp)->IsCalleeSaveMethod()); |
| uint8_t* previous_sp = |
| reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize; |
| return *reinterpret_cast<ArtMethod**>(previous_sp); |
| } |
| |
| static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK((*sp)->IsCalleeSaveMethod()); |
| const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, |
| CalleeSaveType::kSaveRefsAndArgs); |
| ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>( |
| reinterpret_cast<uintptr_t>(sp) + callee_frame_size); |
| uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp); |
| const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc); |
| uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc); |
| |
| if (current_code->IsOptimized()) { |
| CodeInfo code_info = current_code->GetOptimizedCodeInfo(); |
| CodeInfoEncoding encoding = code_info.ExtractEncoding(); |
| StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding); |
| DCHECK(stack_map.IsValid()); |
| if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) { |
| InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding); |
| return inline_info.GetDexPcAtDepth(encoding.inline_info.encoding, |
| inline_info.GetDepth(encoding.inline_info.encoding)-1); |
| } else { |
| return stack_map.GetDexPc(encoding.stack_map.encoding); |
| } |
| } else { |
| return current_code->ToDexPc(*caller_sp, outer_pc); |
| } |
| } |
| |
| static bool GetInvokeType(ArtMethod** sp, InvokeType* invoke_type, uint32_t* dex_method_index) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK((*sp)->IsCalleeSaveMethod()); |
| const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA, |
| CalleeSaveType::kSaveRefsAndArgs); |
| ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>( |
| reinterpret_cast<uintptr_t>(sp) + callee_frame_size); |
| uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp); |
| const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc); |
| if (!current_code->IsOptimized()) { |
| return false; |
| } |
| uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc); |
| CodeInfo code_info = current_code->GetOptimizedCodeInfo(); |
| CodeInfoEncoding encoding = code_info.ExtractEncoding(); |
| MethodInfo method_info = current_code->GetOptimizedMethodInfo(); |
| InvokeInfo invoke(code_info.GetInvokeInfoForNativePcOffset(outer_pc_offset, encoding)); |
| if (invoke.IsValid()) { |
| *invoke_type = static_cast<InvokeType>(invoke.GetInvokeType(encoding.invoke_info.encoding)); |
| *dex_method_index = invoke.GetMethodIndex(encoding.invoke_info.encoding, method_info); |
| return true; |
| } |
| return false; |
| } |
| |
| // For the given quick ref and args quick frame, return the caller's PC. |
| static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK((*sp)->IsCalleeSaveMethod()); |
| uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset; |
| return *reinterpret_cast<uintptr_t*>(lr); |
| } |
| |
| QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, |
| uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) : |
| is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len), |
| gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset), |
| fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset), |
| stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize |
| + sizeof(ArtMethod*)), // Skip ArtMethod*. |
| gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0), |
| cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) { |
| static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0), |
| "Number of Quick FPR arguments unexpected"); |
| static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled), |
| "Double alignment unexpected"); |
| // For register alignment, we want to assume that counters(fpr_double_index_) are even if the |
| // next register is even. |
| static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0, |
| "Number of Quick FPR arguments not even"); |
| DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize); |
| } |
| |
| virtual ~QuickArgumentVisitor() {} |
| |
| virtual void Visit() = 0; |
| |
| Primitive::Type GetParamPrimitiveType() const { |
| return cur_type_; |
| } |
| |
| uint8_t* GetParamAddress() const { |
| if (!kQuickSoftFloatAbi) { |
| Primitive::Type type = GetParamPrimitiveType(); |
| if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) { |
| if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) { |
| if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) { |
| return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA)); |
| } |
| } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { |
| return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA)); |
| } |
| return stack_args_ + (stack_index_ * kBytesStackArgLocation); |
| } |
| } |
| if (gpr_index_ < kNumQuickGprArgs) { |
| return gpr_args_ + GprIndexToGprOffset(gpr_index_); |
| } |
| return stack_args_ + (stack_index_ * kBytesStackArgLocation); |
| } |
| |
| bool IsSplitLongOrDouble() const { |
| if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) || |
| (GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) { |
| return is_split_long_or_double_; |
| } else { |
| return false; // An optimization for when GPR and FPRs are 64bit. |
| } |
| } |
| |
| bool IsParamAReference() const { |
| return GetParamPrimitiveType() == Primitive::kPrimNot; |
| } |
| |
| bool IsParamALongOrDouble() const { |
| Primitive::Type type = GetParamPrimitiveType(); |
| return type == Primitive::kPrimLong || type == Primitive::kPrimDouble; |
| } |
| |
| uint64_t ReadSplitLongParam() const { |
| // The splitted long is always available through the stack. |
| return *reinterpret_cast<uint64_t*>(stack_args_ |
| + stack_index_ * kBytesStackArgLocation); |
| } |
| |
| void IncGprIndex() { |
| gpr_index_++; |
| if (kGprFprLockstep) { |
| fpr_index_++; |
| } |
| } |
| |
| void IncFprIndex() { |
| fpr_index_++; |
| if (kGprFprLockstep) { |
| gpr_index_++; |
| } |
| } |
| |
| void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) { |
| // (a) 'stack_args_' should point to the first method's argument |
| // (b) whatever the argument type it is, the 'stack_index_' should |
| // be moved forward along with every visiting. |
| gpr_index_ = 0; |
| fpr_index_ = 0; |
| if (kQuickDoubleRegAlignedFloatBackFilled) { |
| fpr_double_index_ = 0; |
| } |
| stack_index_ = 0; |
| if (!is_static_) { // Handle this. |
| cur_type_ = Primitive::kPrimNot; |
| is_split_long_or_double_ = false; |
| Visit(); |
| stack_index_++; |
| if (kNumQuickGprArgs > 0) { |
| IncGprIndex(); |
| } |
| } |
| for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) { |
| cur_type_ = Primitive::GetType(shorty_[shorty_index]); |
| switch (cur_type_) { |
| case Primitive::kPrimNot: |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| is_split_long_or_double_ = false; |
| Visit(); |
| stack_index_++; |
| if (gpr_index_ < kNumQuickGprArgs) { |
| IncGprIndex(); |
| } |
| break; |
| case Primitive::kPrimFloat: |
| is_split_long_or_double_ = false; |
| Visit(); |
| stack_index_++; |
| if (kQuickSoftFloatAbi) { |
| if (gpr_index_ < kNumQuickGprArgs) { |
| IncGprIndex(); |
| } |
| } else { |
| if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { |
| IncFprIndex(); |
| if (kQuickDoubleRegAlignedFloatBackFilled) { |
| // Double should not overlap with float. |
| // For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4. |
| fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2)); |
| // Float should not overlap with double. |
| if (fpr_index_ % 2 == 0) { |
| fpr_index_ = std::max(fpr_double_index_, fpr_index_); |
| } |
| } else if (kQuickSkipOddFpRegisters) { |
| IncFprIndex(); |
| } |
| } |
| } |
| break; |
| case Primitive::kPrimDouble: |
| case Primitive::kPrimLong: |
| if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) { |
| if (cur_type_ == Primitive::kPrimLong && |
| #if defined(__mips__) && !defined(__LP64__) |
| (gpr_index_ == 0 || gpr_index_ == 2) && |
| #else |
| gpr_index_ == 0 && |
| #endif |
| kAlignPairRegister) { |
| // Currently, this is only for ARM and MIPS, where we align long parameters with |
| // even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using |
| // R2 (on ARM) or A2(T0) (on MIPS) instead. |
| IncGprIndex(); |
| } |
| is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) && |
| ((gpr_index_ + 1) == kNumQuickGprArgs); |
| if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) { |
| // We don't want to split this. Pass over this register. |
| gpr_index_++; |
| is_split_long_or_double_ = false; |
| } |
| Visit(); |
| if (kBytesStackArgLocation == 4) { |
| stack_index_+= 2; |
| } else { |
| CHECK_EQ(kBytesStackArgLocation, 8U); |
| stack_index_++; |
| } |
| if (gpr_index_ < kNumQuickGprArgs) { |
| IncGprIndex(); |
| if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) { |
| if (gpr_index_ < kNumQuickGprArgs) { |
| IncGprIndex(); |
| } |
| } |
| } |
| } else { |
| is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) && |
| ((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled; |
| Visit(); |
| if (kBytesStackArgLocation == 4) { |
| stack_index_+= 2; |
| } else { |
| CHECK_EQ(kBytesStackArgLocation, 8U); |
| stack_index_++; |
| } |
| if (kQuickDoubleRegAlignedFloatBackFilled) { |
| if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) { |
| fpr_double_index_ += 2; |
| // Float should not overlap with double. |
| if (fpr_index_ % 2 == 0) { |
| fpr_index_ = std::max(fpr_double_index_, fpr_index_); |
| } |
| } |
| } else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { |
| IncFprIndex(); |
| if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) { |
| if (fpr_index_ + 1 < kNumQuickFprArgs + 1) { |
| IncFprIndex(); |
| } |
| } |
| } |
| } |
| break; |
| default: |
| LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_; |
| } |
| } |
| } |
| |
| protected: |
| const bool is_static_; |
| const char* const shorty_; |
| const uint32_t shorty_len_; |
| |
| private: |
| uint8_t* const gpr_args_; // Address of GPR arguments in callee save frame. |
| uint8_t* const fpr_args_; // Address of FPR arguments in callee save frame. |
| uint8_t* const stack_args_; // Address of stack arguments in caller's frame. |
| uint32_t gpr_index_; // Index into spilled GPRs. |
| // Index into spilled FPRs. |
| // In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_ |
| // holds a higher register number. |
| uint32_t fpr_index_; |
| // Index into spilled FPRs for aligned double. |
| // Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in |
| // terms of singles, may be behind fpr_index. |
| uint32_t fpr_double_index_; |
| uint32_t stack_index_; // Index into arguments on the stack. |
| // The current type of argument during VisitArguments. |
| Primitive::Type cur_type_; |
| // Does a 64bit parameter straddle the register and stack arguments? |
| bool is_split_long_or_double_; |
| }; |
| |
| // Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It |
| // allows to use the QuickArgumentVisitor constants without moving all the code in its own module. |
| extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| return QuickArgumentVisitor::GetProxyThisObject(sp); |
| } |
| |
| // Visits arguments on the stack placing them into the shadow frame. |
| class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor { |
| public: |
| BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty, |
| uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) : |
| QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {} |
| |
| void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE; |
| |
| private: |
| ShadowFrame* const sf_; |
| uint32_t cur_reg_; |
| |
| DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor); |
| }; |
| |
| void BuildQuickShadowFrameVisitor::Visit() { |
| Primitive::Type type = GetParamPrimitiveType(); |
| switch (type) { |
| case Primitive::kPrimLong: // Fall-through. |
| case Primitive::kPrimDouble: |
| if (IsSplitLongOrDouble()) { |
| sf_->SetVRegLong(cur_reg_, ReadSplitLongParam()); |
| } else { |
| sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress())); |
| } |
| ++cur_reg_; |
| break; |
| case Primitive::kPrimNot: { |
| StackReference<mirror::Object>* stack_ref = |
| reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); |
| sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr()); |
| } |
| break; |
| case Primitive::kPrimBoolean: // Fall-through. |
| case Primitive::kPrimByte: // Fall-through. |
| case Primitive::kPrimChar: // Fall-through. |
| case Primitive::kPrimShort: // Fall-through. |
| case Primitive::kPrimInt: // Fall-through. |
| case Primitive::kPrimFloat: |
| sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress())); |
| break; |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| ++cur_reg_; |
| } |
| |
| // Don't inline. See b/65159206. |
| NO_INLINE |
| static void HandleDeoptimization(JValue* result, |
| ArtMethod* method, |
| ShadowFrame* deopt_frame, |
| ManagedStack* fragment) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Coming from partial-fragment deopt. |
| Thread* self = Thread::Current(); |
| if (kIsDebugBuild) { |
| // Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom |
| // of the call-stack) corresponds to the called method. |
| ShadowFrame* linked = deopt_frame; |
| while (linked->GetLink() != nullptr) { |
| linked = linked->GetLink(); |
| } |
| CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " " |
| << ArtMethod::PrettyMethod(linked->GetMethod()); |
| } |
| |
| if (VLOG_IS_ON(deopt)) { |
| // Print out the stack to verify that it was a partial-fragment deopt. |
| LOG(INFO) << "Continue-ing from deopt. Stack is:"; |
| QuickExceptionHandler::DumpFramesWithType(self, true); |
| } |
| |
| ObjPtr<mirror::Throwable> pending_exception; |
| bool from_code = false; |
| DeoptimizationMethodType method_type; |
| self->PopDeoptimizationContext(/* out */ result, |
| /* out */ &pending_exception, |
| /* out */ &from_code, |
| /* out */ &method_type); |
| |
| // Push a transition back into managed code onto the linked list in thread. |
| self->PushManagedStackFragment(fragment); |
| |
| // Ensure that the stack is still in order. |
| if (kIsDebugBuild) { |
| class DummyStackVisitor : public StackVisitor { |
| public: |
| explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_) |
| : StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {} |
| |
| bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking |
| // logic. Just always say we want to continue. |
| return true; |
| } |
| }; |
| DummyStackVisitor dsv(self); |
| dsv.WalkStack(); |
| } |
| |
| // Restore the exception that was pending before deoptimization then interpret the |
| // deoptimized frames. |
| if (pending_exception != nullptr) { |
| self->SetException(pending_exception); |
| } |
| interpreter::EnterInterpreterFromDeoptimize(self, |
| deopt_frame, |
| result, |
| from_code, |
| DeoptimizationMethodType::kDefault); |
| } |
| |
| extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Ensure we don't get thread suspension until the object arguments are safely in the shadow |
| // frame. |
| ScopedQuickEntrypointChecks sqec(self); |
| |
| if (UNLIKELY(!method->IsInvokable())) { |
| method->ThrowInvocationTimeError(); |
| return 0; |
| } |
| |
| JValue tmp_value; |
| ShadowFrame* deopt_frame = self->PopStackedShadowFrame( |
| StackedShadowFrameType::kDeoptimizationShadowFrame, false); |
| ManagedStack fragment; |
| |
| DCHECK(!method->IsNative()) << method->PrettyMethod(); |
| uint32_t shorty_len = 0; |
| ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); |
| const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem(); |
| DCHECK(code_item != nullptr) << method->PrettyMethod(); |
| const char* shorty = non_proxy_method->GetShorty(&shorty_len); |
| |
| JValue result; |
| |
| if (UNLIKELY(deopt_frame != nullptr)) { |
| HandleDeoptimization(&result, method, deopt_frame, &fragment); |
| } else { |
| const char* old_cause = self->StartAssertNoThreadSuspension( |
| "Building interpreter shadow frame"); |
| uint16_t num_regs = code_item->registers_size_; |
| // No last shadow coming from quick. |
| ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = |
| CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0); |
| ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get(); |
| size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_; |
| BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len, |
| shadow_frame, first_arg_reg); |
| shadow_frame_builder.VisitArguments(); |
| const bool needs_initialization = |
| method->IsStatic() && !method->GetDeclaringClass()->IsInitialized(); |
| // Push a transition back into managed code onto the linked list in thread. |
| self->PushManagedStackFragment(&fragment); |
| self->PushShadowFrame(shadow_frame); |
| self->EndAssertNoThreadSuspension(old_cause); |
| |
| if (needs_initialization) { |
| // Ensure static method's class is initialized. |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass())); |
| if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) { |
| DCHECK(Thread::Current()->IsExceptionPending()) |
| << shadow_frame->GetMethod()->PrettyMethod(); |
| self->PopManagedStackFragment(fragment); |
| return 0; |
| } |
| } |
| |
| result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame); |
| } |
| |
| // Pop transition. |
| self->PopManagedStackFragment(fragment); |
| |
| // Request a stack deoptimization if needed |
| ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp); |
| uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp); |
| // If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization |
| // should be done and it knows the real return pc. |
| if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) && |
| Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) { |
| if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) { |
| LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method " |
| << caller->PrettyMethod(); |
| } else { |
| // Push the context of the deoptimization stack so we can restore the return value and the |
| // exception before executing the deoptimized frames. |
| self->PushDeoptimizationContext( |
| result, |
| shorty[0] == 'L' || shorty[0] == '[', /* class or array */ |
| self->GetException(), |
| false /* from_code */, |
| DeoptimizationMethodType::kDefault); |
| |
| // Set special exception to cause deoptimization. |
| self->SetException(Thread::GetDeoptimizationException()); |
| } |
| } |
| |
| // No need to restore the args since the method has already been run by the interpreter. |
| return result.GetJ(); |
| } |
| |
| // Visits arguments on the stack placing them into the args vector, Object* arguments are converted |
| // to jobjects. |
| class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor { |
| public: |
| BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len, |
| ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) : |
| QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {} |
| |
| void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE; |
| |
| void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| private: |
| ScopedObjectAccessUnchecked* const soa_; |
| std::vector<jvalue>* const args_; |
| // References which we must update when exiting in case the GC moved the objects. |
| std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_; |
| |
| DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor); |
| }; |
| |
| void BuildQuickArgumentVisitor::Visit() { |
| jvalue val; |
| Primitive::Type type = GetParamPrimitiveType(); |
| switch (type) { |
| case Primitive::kPrimNot: { |
| StackReference<mirror::Object>* stack_ref = |
| reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); |
| val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); |
| references_.push_back(std::make_pair(val.l, stack_ref)); |
| break; |
| } |
| case Primitive::kPrimLong: // Fall-through. |
| case Primitive::kPrimDouble: |
| if (IsSplitLongOrDouble()) { |
| val.j = ReadSplitLongParam(); |
| } else { |
| val.j = *reinterpret_cast<jlong*>(GetParamAddress()); |
| } |
| break; |
| case Primitive::kPrimBoolean: // Fall-through. |
| case Primitive::kPrimByte: // Fall-through. |
| case Primitive::kPrimChar: // Fall-through. |
| case Primitive::kPrimShort: // Fall-through. |
| case Primitive::kPrimInt: // Fall-through. |
| case Primitive::kPrimFloat: |
| val.i = *reinterpret_cast<jint*>(GetParamAddress()); |
| break; |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| args_->push_back(val); |
| } |
| |
| void BuildQuickArgumentVisitor::FixupReferences() { |
| // Fixup any references which may have changed. |
| for (const auto& pair : references_) { |
| pair.second->Assign(soa_->Decode<mirror::Object>(pair.first)); |
| soa_->Env()->DeleteLocalRef(pair.first); |
| } |
| } |
| // Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method |
| // which is responsible for recording callee save registers. We explicitly place into jobjects the |
| // incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a |
| // field within the proxy object, which will box the primitive arguments and deal with error cases. |
| extern "C" uint64_t artQuickProxyInvokeHandler( |
| ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod(); |
| DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod(); |
| // Ensure we don't get thread suspension until the object arguments are safely in jobjects. |
| const char* old_cause = |
| self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments"); |
| // Register the top of the managed stack, making stack crawlable. |
| DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod(); |
| self->VerifyStack(); |
| // Start new JNI local reference state. |
| JNIEnvExt* env = self->GetJniEnv(); |
| ScopedObjectAccessUnchecked soa(env); |
| ScopedJniEnvLocalRefState env_state(env); |
| // Create local ref. copies of proxy method and the receiver. |
| jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver); |
| |
| // Placing arguments into args vector and remove the receiver. |
| ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize); |
| CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " " |
| << non_proxy_method->PrettyMethod(); |
| std::vector<jvalue> args; |
| uint32_t shorty_len = 0; |
| const char* shorty = non_proxy_method->GetShorty(&shorty_len); |
| BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args); |
| |
| local_ref_visitor.VisitArguments(); |
| DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod(); |
| args.erase(args.begin()); |
| |
| // Convert proxy method into expected interface method. |
| ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize); |
| DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod(); |
| DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod(); |
| self->EndAssertNoThreadSuspension(old_cause); |
| DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize); |
| DCHECK(!Runtime::Current()->IsActiveTransaction()); |
| ObjPtr<mirror::Method> interface_reflect_method = |
| mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(), interface_method); |
| if (interface_reflect_method == nullptr) { |
| soa.Self()->AssertPendingOOMException(); |
| return 0; |
| } |
| jobject interface_method_jobj = soa.AddLocalReference<jobject>(interface_reflect_method); |
| |
| // All naked Object*s should now be in jobjects, so its safe to go into the main invoke code |
| // that performs allocations. |
| JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args); |
| // Restore references which might have moved. |
| local_ref_visitor.FixupReferences(); |
| return result.GetJ(); |
| } |
| |
| // Read object references held in arguments from quick frames and place in a JNI local references, |
| // so they don't get garbage collected. |
| class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor { |
| public: |
| RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, |
| uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) : |
| QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {} |
| |
| void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE; |
| |
| void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| private: |
| ScopedObjectAccessUnchecked* const soa_; |
| // References which we must update when exiting in case the GC moved the objects. |
| std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_; |
| |
| DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor); |
| }; |
| |
| void RememberForGcArgumentVisitor::Visit() { |
| if (IsParamAReference()) { |
| StackReference<mirror::Object>* stack_ref = |
| reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); |
| jobject reference = |
| soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr()); |
| references_.push_back(std::make_pair(reference, stack_ref)); |
| } |
| } |
| |
| void RememberForGcArgumentVisitor::FixupReferences() { |
| // Fixup any references which may have changed. |
| for (const auto& pair : references_) { |
| pair.second->Assign(soa_->Decode<mirror::Object>(pair.first)); |
| soa_->Env()->DeleteLocalRef(pair.first); |
| } |
| } |
| |
| extern "C" const void* artInstrumentationMethodEntryFromCode(ArtMethod* method, |
| mirror::Object* this_object, |
| Thread* self, |
| ArtMethod** sp) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| const void* result; |
| // Instrumentation changes the stack. Thus, when exiting, the stack cannot be verified, so skip |
| // that part. |
| ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false); |
| instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); |
| if (instrumentation->IsDeoptimized(method)) { |
| result = GetQuickToInterpreterBridge(); |
| } else { |
| result = instrumentation->GetQuickCodeFor(method, kRuntimePointerSize); |
| DCHECK(!Runtime::Current()->GetClassLinker()->IsQuickToInterpreterBridge(result)); |
| } |
| |
| bool interpreter_entry = (result == GetQuickToInterpreterBridge()); |
| bool is_static = method->IsStatic(); |
| uint32_t shorty_len; |
| const char* shorty = |
| method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(&shorty_len); |
| |
| ScopedObjectAccessUnchecked soa(self); |
| RememberForGcArgumentVisitor visitor(sp, is_static, shorty, shorty_len, &soa); |
| visitor.VisitArguments(); |
| |
| instrumentation->PushInstrumentationStackFrame(self, |
| is_static ? nullptr : this_object, |
| method, |
| QuickArgumentVisitor::GetCallingPc(sp), |
| interpreter_entry); |
| |
| visitor.FixupReferences(); |
| if (UNLIKELY(self->IsExceptionPending())) { |
| return nullptr; |
| } |
| CHECK(result != nullptr) << method->PrettyMethod(); |
| return result; |
| } |
| |
| extern "C" TwoWordReturn artInstrumentationMethodExitFromCode(Thread* self, |
| ArtMethod** sp, |
| uint64_t* gpr_result, |
| uint64_t* fpr_result) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current())); |
| CHECK(gpr_result != nullptr); |
| CHECK(fpr_result != nullptr); |
| // Instrumentation exit stub must not be entered with a pending exception. |
| CHECK(!self->IsExceptionPending()) << "Enter instrumentation exit stub with pending exception " |
| << self->GetException()->Dump(); |
| // Compute address of return PC and sanity check that it currently holds 0. |
| size_t return_pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA, |
| CalleeSaveType::kSaveEverything); |
| uintptr_t* return_pc = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) + |
| return_pc_offset); |
| CHECK_EQ(*return_pc, 0U); |
| |
| // Pop the frame filling in the return pc. The low half of the return value is 0 when |
| // deoptimization shouldn't be performed with the high-half having the return address. When |
| // deoptimization should be performed the low half is zero and the high-half the address of the |
| // deoptimization entry point. |
| instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); |
| TwoWordReturn return_or_deoptimize_pc = instrumentation->PopInstrumentationStackFrame( |
| self, return_pc, gpr_result, fpr_result); |
| if (self->IsExceptionPending()) { |
| return GetTwoWordFailureValue(); |
| } |
| return return_or_deoptimize_pc; |
| } |
| |
| // Lazily resolve a method for quick. Called by stub code. |
| extern "C" const void* artQuickResolutionTrampoline( |
| ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // The resolution trampoline stashes the resolved method into the callee-save frame to transport |
| // it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely |
| // does not have the same stack layout as the callee-save method). |
| ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false); |
| // Start new JNI local reference state |
| JNIEnvExt* env = self->GetJniEnv(); |
| ScopedObjectAccessUnchecked soa(env); |
| ScopedJniEnvLocalRefState env_state(env); |
| const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up"); |
| |
| // Compute details about the called method (avoid GCs) |
| ClassLinker* linker = Runtime::Current()->GetClassLinker(); |
| InvokeType invoke_type; |
| MethodReference called_method(nullptr, 0); |
| const bool called_method_known_on_entry = !called->IsRuntimeMethod(); |
| ArtMethod* caller = nullptr; |
| if (!called_method_known_on_entry) { |
| caller = QuickArgumentVisitor::GetCallingMethod(sp); |
| called_method.dex_file = caller->GetDexFile(); |
| |
| InvokeType stack_map_invoke_type; |
| uint32_t stack_map_dex_method_idx; |
| const bool found_stack_map = QuickArgumentVisitor::GetInvokeType(sp, |
| &stack_map_invoke_type, |
| &stack_map_dex_method_idx); |
| // For debug builds, we make sure both of the paths are consistent by also looking at the dex |
| // code. |
| if (!found_stack_map || kIsDebugBuild) { |
| uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp); |
| const DexFile::CodeItem* code; |
| code = caller->GetCodeItem(); |
| CHECK_LT(dex_pc, code->insns_size_in_code_units_); |
| const Instruction& instr = code->InstructionAt(dex_pc); |
| Instruction::Code instr_code = instr.Opcode(); |
| bool is_range; |
| switch (instr_code) { |
| case Instruction::INVOKE_DIRECT: |
| invoke_type = kDirect; |
| is_range = false; |
| break; |
| case Instruction::INVOKE_DIRECT_RANGE: |
| invoke_type = kDirect; |
| is_range = true; |
| break; |
| case Instruction::INVOKE_STATIC: |
| invoke_type = kStatic; |
| is_range = false; |
| break; |
| case Instruction::INVOKE_STATIC_RANGE: |
| invoke_type = kStatic; |
| is_range = true; |
| break; |
| case Instruction::INVOKE_SUPER: |
| invoke_type = kSuper; |
| is_range = false; |
| break; |
| case Instruction::INVOKE_SUPER_RANGE: |
| invoke_type = kSuper; |
| is_range = true; |
| break; |
| case Instruction::INVOKE_VIRTUAL: |
| invoke_type = kVirtual; |
| is_range = false; |
| break; |
| case Instruction::INVOKE_VIRTUAL_RANGE: |
| invoke_type = kVirtual; |
| is_range = true; |
| break; |
| case Instruction::INVOKE_INTERFACE: |
| invoke_type = kInterface; |
| is_range = false; |
| break; |
| case Instruction::INVOKE_INTERFACE_RANGE: |
| invoke_type = kInterface; |
| is_range = true; |
| break; |
| default: |
| LOG(FATAL) << "Unexpected call into trampoline: " << instr.DumpString(nullptr); |
| UNREACHABLE(); |
| } |
| called_method.index = (is_range) ? instr.VRegB_3rc() : instr.VRegB_35c(); |
| // Check that the invoke matches what we expected, note that this path only happens for debug |
| // builds. |
| if (found_stack_map) { |
| DCHECK_EQ(stack_map_invoke_type, invoke_type); |
| if (invoke_type != kSuper) { |
| // Super may be sharpened. |
| DCHECK_EQ(stack_map_dex_method_idx, called_method.index) |
| << called_method.dex_file->PrettyMethod(stack_map_dex_method_idx) << " " |
| << called_method.PrettyMethod(); |
| } |
| } else { |
| VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " " |
| << called_method.index; |
| } |
| } else { |
| invoke_type = stack_map_invoke_type; |
| called_method.index = stack_map_dex_method_idx; |
| } |
| } else { |
| invoke_type = kStatic; |
| called_method.dex_file = called->GetDexFile(); |
| called_method.index = called->GetDexMethodIndex(); |
| } |
| uint32_t shorty_len; |
| const char* shorty = |
| called_method.dex_file->GetMethodShorty(called_method.GetMethodId(), &shorty_len); |
| RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa); |
| visitor.VisitArguments(); |
| self->EndAssertNoThreadSuspension(old_cause); |
| const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface; |
| // Resolve method filling in dex cache. |
| if (!called_method_known_on_entry) { |
| StackHandleScope<1> hs(self); |
| mirror::Object* dummy = nullptr; |
| HandleWrapper<mirror::Object> h_receiver( |
| hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy)); |
| DCHECK_EQ(caller->GetDexFile(), called_method.dex_file); |
| called = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>( |
| self, called_method.index, caller, invoke_type); |
| |
| // Update .bss entry in oat file if any. |
| if (called != nullptr && called_method.dex_file->GetOatDexFile() != nullptr) { |
| size_t bss_offset = IndexBssMappingLookup::GetBssOffset( |
| called_method.dex_file->GetOatDexFile()->GetMethodBssMapping(), |
| called_method.index, |
| called_method.dex_file->NumMethodIds(), |
| static_cast<size_t>(kRuntimePointerSize)); |
| if (bss_offset != IndexBssMappingLookup::npos) { |
| DCHECK_ALIGNED(bss_offset, static_cast<size_t>(kRuntimePointerSize)); |
| const OatFile* oat_file = called_method.dex_file->GetOatDexFile()->GetOatFile(); |
| ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(const_cast<uint8_t*>( |
| oat_file->BssBegin() + bss_offset)); |
| DCHECK_GE(method_entry, oat_file->GetBssMethods().data()); |
| DCHECK_LT(method_entry, |
| oat_file->GetBssMethods().data() + oat_file->GetBssMethods().size()); |
| *method_entry = called; |
| } |
| } |
| } |
| const void* code = nullptr; |
| if (LIKELY(!self->IsExceptionPending())) { |
| // Incompatible class change should have been handled in resolve method. |
| CHECK(!called->CheckIncompatibleClassChange(invoke_type)) |
| << called->PrettyMethod() << " " << invoke_type; |
| if (virtual_or_interface || invoke_type == kSuper) { |
| // Refine called method based on receiver for kVirtual/kInterface, and |
| // caller for kSuper. |
| ArtMethod* orig_called = called; |
| if (invoke_type == kVirtual) { |
| CHECK(receiver != nullptr) << invoke_type; |
| called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize); |
| } else if (invoke_type == kInterface) { |
| CHECK(receiver != nullptr) << invoke_type; |
| called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize); |
| } else { |
| DCHECK_EQ(invoke_type, kSuper); |
| CHECK(caller != nullptr) << invoke_type; |
| ObjPtr<mirror::Class> ref_class = linker->LookupResolvedType( |
| caller->GetDexFile()->GetMethodId(called_method.index).class_idx_, caller); |
| if (ref_class->IsInterface()) { |
| called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize); |
| } else { |
| called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry( |
| called->GetMethodIndex(), kRuntimePointerSize); |
| } |
| } |
| |
| CHECK(called != nullptr) << orig_called->PrettyMethod() << " " |
| << mirror::Object::PrettyTypeOf(receiver) << " " |
| << invoke_type << " " << orig_called->GetVtableIndex(); |
| } |
| |
| // Ensure that the called method's class is initialized. |
| StackHandleScope<1> hs(soa.Self()); |
| Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass())); |
| linker->EnsureInitialized(soa.Self(), called_class, true, true); |
| if (LIKELY(called_class->IsInitialized())) { |
| if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) { |
| // If we are single-stepping or the called method is deoptimized (by a |
| // breakpoint, for example), then we have to execute the called method |
| // with the interpreter. |
| code = GetQuickToInterpreterBridge(); |
| } else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) { |
| // If the caller is deoptimized (by a breakpoint, for example), we have to |
| // continue its execution with interpreter when returning from the called |
| // method. Because we do not want to execute the called method with the |
| // interpreter, we wrap its execution into the instrumentation stubs. |
| // When the called method returns, it will execute the instrumentation |
| // exit hook that will determine the need of the interpreter with a call |
| // to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if |
| // it is needed. |
| code = GetQuickInstrumentationEntryPoint(); |
| } else { |
| code = called->GetEntryPointFromQuickCompiledCode(); |
| } |
| } else if (called_class->IsInitializing()) { |
| if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) { |
| // If we are single-stepping or the called method is deoptimized (by a |
| // breakpoint, for example), then we have to execute the called method |
| // with the interpreter. |
| code = GetQuickToInterpreterBridge(); |
| } else if (invoke_type == kStatic) { |
| // Class is still initializing, go to oat and grab code (trampoline must be left in place |
| // until class is initialized to stop races between threads). |
| code = linker->GetQuickOatCodeFor(called); |
| } else { |
| // No trampoline for non-static methods. |
| code = called->GetEntryPointFromQuickCompiledCode(); |
| } |
| } else { |
| DCHECK(called_class->IsErroneous()); |
| } |
| } |
| CHECK_EQ(code == nullptr, self->IsExceptionPending()); |
| // Fixup any locally saved objects may have moved during a GC. |
| visitor.FixupReferences(); |
| // Place called method in callee-save frame to be placed as first argument to quick method. |
| *sp = called; |
| |
| return code; |
| } |
| |
| /* |
| * This class uses a couple of observations to unite the different calling conventions through |
| * a few constants. |
| * |
| * 1) Number of registers used for passing is normally even, so counting down has no penalty for |
| * possible alignment. |
| * 2) Known 64b architectures store 8B units on the stack, both for integral and floating point |
| * types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote |
| * when we have to split things |
| * 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats |
| * and we can use Int handling directly. |
| * 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code |
| * necessary when widening. Also, widening of Ints will take place implicitly, and the |
| * extension should be compatible with Aarch64, which mandates copying the available bits |
| * into LSB and leaving the rest unspecified. |
| * 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on |
| * the stack. |
| * 6) There is only little endian. |
| * |
| * |
| * Actual work is supposed to be done in a delegate of the template type. The interface is as |
| * follows: |
| * |
| * void PushGpr(uintptr_t): Add a value for the next GPR |
| * |
| * void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need |
| * padding, that is, think the architecture is 32b and aligns 64b. |
| * |
| * void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to |
| * split this if necessary. The current state will have aligned, if |
| * necessary. |
| * |
| * void PushStack(uintptr_t): Push a value to the stack. |
| * |
| * uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr, |
| * as this might be important for null initialization. |
| * Must return the jobject, that is, the reference to the |
| * entry in the HandleScope (nullptr if necessary). |
| * |
| */ |
| template<class T> class BuildNativeCallFrameStateMachine { |
| public: |
| #if defined(__arm__) |
| // TODO: These are all dummy values! |
| static constexpr bool kNativeSoftFloatAbi = true; |
| static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3 |
| static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs. |
| |
| static constexpr size_t kRegistersNeededForLong = 2; |
| static constexpr size_t kRegistersNeededForDouble = 2; |
| static constexpr bool kMultiRegistersAligned = true; |
| static constexpr bool kMultiFPRegistersWidened = false; |
| static constexpr bool kMultiGPRegistersWidened = false; |
| static constexpr bool kAlignLongOnStack = true; |
| static constexpr bool kAlignDoubleOnStack = true; |
| #elif defined(__aarch64__) |
| static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. |
| static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs. |
| static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. |
| |
| static constexpr size_t kRegistersNeededForLong = 1; |
| static constexpr size_t kRegistersNeededForDouble = 1; |
| static constexpr bool kMultiRegistersAligned = false; |
| static constexpr bool kMultiFPRegistersWidened = false; |
| static constexpr bool kMultiGPRegistersWidened = false; |
| static constexpr bool kAlignLongOnStack = false; |
| static constexpr bool kAlignDoubleOnStack = false; |
| #elif defined(__mips__) && !defined(__LP64__) |
| static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI. |
| static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs. |
| static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs. |
| |
| static constexpr size_t kRegistersNeededForLong = 2; |
| static constexpr size_t kRegistersNeededForDouble = 2; |
| static constexpr bool kMultiRegistersAligned = true; |
| static constexpr bool kMultiFPRegistersWidened = true; |
| static constexpr bool kMultiGPRegistersWidened = false; |
| static constexpr bool kAlignLongOnStack = true; |
| static constexpr bool kAlignDoubleOnStack = true; |
| #elif defined(__mips__) && defined(__LP64__) |
| // Let the code prepare GPRs only and we will load the FPRs with same data. |
| static constexpr bool kNativeSoftFloatAbi = true; |
| static constexpr size_t kNumNativeGprArgs = 8; |
| static constexpr size_t kNumNativeFprArgs = 0; |
| |
| static constexpr size_t kRegistersNeededForLong = 1; |
| static constexpr size_t kRegistersNeededForDouble = 1; |
| static constexpr bool kMultiRegistersAligned = false; |
| static constexpr bool kMultiFPRegistersWidened = false; |
| static constexpr bool kMultiGPRegistersWidened = true; |
| static constexpr bool kAlignLongOnStack = false; |
| static constexpr bool kAlignDoubleOnStack = false; |
| #elif defined(__i386__) |
| // TODO: Check these! |
| static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp |
| static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs. |
| static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs. |
| |
| static constexpr size_t kRegistersNeededForLong = 2; |
| static constexpr size_t kRegistersNeededForDouble = 2; |
| static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways |
| static constexpr bool kMultiFPRegistersWidened = false; |
| static constexpr bool kMultiGPRegistersWidened = false; |
| static constexpr bool kAlignLongOnStack = false; |
| static constexpr bool kAlignDoubleOnStack = false; |
| #elif defined(__x86_64__) |
| static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI. |
| static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs. |
| static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs. |
| |
| static constexpr size_t kRegistersNeededForLong = 1; |
| static constexpr size_t kRegistersNeededForDouble = 1; |
| static constexpr bool kMultiRegistersAligned = false; |
| static constexpr bool kMultiFPRegistersWidened = false; |
| static constexpr bool kMultiGPRegistersWidened = false; |
| static constexpr bool kAlignLongOnStack = false; |
| static constexpr bool kAlignDoubleOnStack = false; |
| #else |
| #error "Unsupported architecture" |
| #endif |
| |
| public: |
| explicit BuildNativeCallFrameStateMachine(T* delegate) |
| : gpr_index_(kNumNativeGprArgs), |
| fpr_index_(kNumNativeFprArgs), |
| stack_entries_(0), |
| delegate_(delegate) { |
| // For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff |
| // the next register is even; counting down is just to make the compiler happy... |
| static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even"); |
| static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even"); |
| } |
| |
| virtual ~BuildNativeCallFrameStateMachine() {} |
| |
| bool HavePointerGpr() const { |
| return gpr_index_ > 0; |
| } |
| |
| void AdvancePointer(const void* val) { |
| if (HavePointerGpr()) { |
| gpr_index_--; |
| PushGpr(reinterpret_cast<uintptr_t>(val)); |
| } else { |
| stack_entries_++; // TODO: have a field for pointer length as multiple of 32b |
| PushStack(reinterpret_cast<uintptr_t>(val)); |
| gpr_index_ = 0; |
| } |
| } |
| |
| bool HaveHandleScopeGpr() const { |
| return gpr_index_ > 0; |
| } |
| |
| void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) { |
| uintptr_t handle = PushHandle(ptr); |
| if (HaveHandleScopeGpr()) { |
| gpr_index_--; |
| PushGpr(handle); |
| } else { |
| stack_entries_++; |
| PushStack(handle); |
| gpr_index_ = 0; |
| } |
| } |
| |
| bool HaveIntGpr() const { |
| return gpr_index_ > 0; |
| } |
| |
| void AdvanceInt(uint32_t val) { |
| if (HaveIntGpr()) { |
| gpr_index_--; |
| if (kMultiGPRegistersWidened) { |
| DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t)); |
| PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val))); |
| } else { |
| PushGpr(val); |
| } |
| } else { |
| stack_entries_++; |
| if (kMultiGPRegistersWidened) { |
| DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t)); |
| PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val))); |
| } else { |
| PushStack(val); |
| } |
| gpr_index_ = 0; |
| } |
| } |
| |
| bool HaveLongGpr() const { |
| return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0); |
| } |
| |
| bool LongGprNeedsPadding() const { |
| return kRegistersNeededForLong > 1 && // only pad when using multiple registers |
| kAlignLongOnStack && // and when it needs alignment |
| (gpr_index_ & 1) == 1; // counter is odd, see constructor |
| } |
| |
| bool LongStackNeedsPadding() const { |
| return kRegistersNeededForLong > 1 && // only pad when using multiple registers |
| kAlignLongOnStack && // and when it needs 8B alignment |
| (stack_entries_ & 1) == 1; // counter is odd |
| } |
| |
| void AdvanceLong(uint64_t val) { |
| if (HaveLongGpr()) { |
| if (LongGprNeedsPadding()) { |
| PushGpr(0); |
| gpr_index_--; |
| } |
| if (kRegistersNeededForLong == 1) { |
| PushGpr(static_cast<uintptr_t>(val)); |
| } else { |
| PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF)); |
| PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); |
| } |
| gpr_index_ -= kRegistersNeededForLong; |
| } else { |
| if (LongStackNeedsPadding()) { |
| PushStack(0); |
| stack_entries_++; |
| } |
| if (kRegistersNeededForLong == 1) { |
| PushStack(static_cast<uintptr_t>(val)); |
| stack_entries_++; |
| } else { |
| PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); |
| PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); |
| stack_entries_ += 2; |
| } |
| gpr_index_ = 0; |
| } |
| } |
| |
| bool HaveFloatFpr() const { |
| return fpr_index_ > 0; |
| } |
| |
| void AdvanceFloat(float val) { |
| if (kNativeSoftFloatAbi) { |
| AdvanceInt(bit_cast<uint32_t, float>(val)); |
| } else { |
| if (HaveFloatFpr()) { |
| fpr_index_--; |
| if (kRegistersNeededForDouble == 1) { |
| if (kMultiFPRegistersWidened) { |
| PushFpr8(bit_cast<uint64_t, double>(val)); |
| } else { |
| // No widening, just use the bits. |
| PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val))); |
| } |
| } else { |
| PushFpr4(val); |
| } |
| } else { |
| stack_entries_++; |
| if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) { |
| // Need to widen before storing: Note the "double" in the template instantiation. |
| // Note: We need to jump through those hoops to make the compiler happy. |
| DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t)); |
| PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val))); |
| } else { |
| PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val))); |
| } |
| fpr_index_ = 0; |
| } |
| } |
| } |
| |
| bool HaveDoubleFpr() const { |
| return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0); |
| } |
| |
| bool DoubleFprNeedsPadding() const { |
| return kRegistersNeededForDouble > 1 && // only pad when using multiple registers |
| kAlignDoubleOnStack && // and when it needs alignment |
| (fpr_index_ & 1) == 1; // counter is odd, see constructor |
| } |
| |
| bool DoubleStackNeedsPadding() const { |
| return kRegistersNeededForDouble > 1 && // only pad when using multiple registers |
| kAlignDoubleOnStack && // and when it needs 8B alignment |
| (stack_entries_ & 1) == 1; // counter is odd |
| } |
| |
| void AdvanceDouble(uint64_t val) { |
| if (kNativeSoftFloatAbi) { |
| AdvanceLong(val); |
| } else { |
| if (HaveDoubleFpr()) { |
| if (DoubleFprNeedsPadding()) { |
| PushFpr4(0); |
| fpr_index_--; |
| } |
| PushFpr8(val); |
| fpr_index_ -= kRegistersNeededForDouble; |
| } else { |
| if (DoubleStackNeedsPadding()) { |
| PushStack(0); |
| stack_entries_++; |
| } |
| if (kRegistersNeededForDouble == 1) { |
| PushStack(static_cast<uintptr_t>(val)); |
| stack_entries_++; |
| } else { |
| PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF)); |
| PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF)); |
| stack_entries_ += 2; |
| } |
| fpr_index_ = 0; |
| } |
| } |
| } |
| |
| uint32_t GetStackEntries() const { |
| return stack_entries_; |
| } |
| |
| uint32_t GetNumberOfUsedGprs() const { |
| return kNumNativeGprArgs - gpr_index_; |
| } |
| |
| uint32_t GetNumberOfUsedFprs() const { |
| return kNumNativeFprArgs - fpr_index_; |
| } |
| |
| private: |
| void PushGpr(uintptr_t val) { |
| delegate_->PushGpr(val); |
| } |
| void PushFpr4(float val) { |
| delegate_->PushFpr4(val); |
| } |
| void PushFpr8(uint64_t val) { |
| delegate_->PushFpr8(val); |
| } |
| void PushStack(uintptr_t val) { |
| delegate_->PushStack(val); |
| } |
| uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) { |
| return delegate_->PushHandle(ref); |
| } |
| |
| uint32_t gpr_index_; // Number of free GPRs |
| uint32_t fpr_index_; // Number of free FPRs |
| uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not |
| // extended |
| T* const delegate_; // What Push implementation gets called |
| }; |
| |
| // Computes the sizes of register stacks and call stack area. Handling of references can be extended |
| // in subclasses. |
| // |
| // To handle native pointers, use "L" in the shorty for an object reference, which simulates |
| // them with handles. |
| class ComputeNativeCallFrameSize { |
| public: |
| ComputeNativeCallFrameSize() : num_stack_entries_(0) {} |
| |
| virtual ~ComputeNativeCallFrameSize() {} |
| |
| uint32_t GetStackSize() const { |
| return num_stack_entries_ * sizeof(uintptr_t); |
| } |
| |
| uint8_t* LayoutCallStack(uint8_t* sp8) const { |
| sp8 -= GetStackSize(); |
| // Align by kStackAlignment. |
| sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); |
| return sp8; |
| } |
| |
| uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr) |
| const { |
| // Assumption is OK right now, as we have soft-float arm |
| size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs; |
| sp8 -= fregs * sizeof(uintptr_t); |
| *start_fpr = reinterpret_cast<uint32_t*>(sp8); |
| size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs; |
| sp8 -= iregs * sizeof(uintptr_t); |
| *start_gpr = reinterpret_cast<uintptr_t*>(sp8); |
| return sp8; |
| } |
| |
| uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr, |
| uint32_t** start_fpr) const { |
| // Native call stack. |
| sp8 = LayoutCallStack(sp8); |
| *start_stack = reinterpret_cast<uintptr_t*>(sp8); |
| |
| // Put fprs and gprs below. |
| sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr); |
| |
| // Return the new bottom. |
| return sp8; |
| } |
| |
| virtual void WalkHeader( |
| BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| } |
| |
| void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) { |
| BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this); |
| |
| WalkHeader(&sm); |
| |
| for (uint32_t i = 1; i < shorty_len; ++i) { |
| Primitive::Type cur_type_ = Primitive::GetType(shorty[i]); |
| switch (cur_type_) { |
| case Primitive::kPrimNot: |
| // TODO: fix abuse of mirror types. |
| sm.AdvanceHandleScope( |
| reinterpret_cast<mirror::Object*>(0x12345678)); |
| break; |
| |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| sm.AdvanceInt(0); |
| break; |
| case Primitive::kPrimFloat: |
| sm.AdvanceFloat(0); |
| break; |
| case Primitive::kPrimDouble: |
| sm.AdvanceDouble(0); |
| break; |
| case Primitive::kPrimLong: |
| sm.AdvanceLong(0); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty; |
| UNREACHABLE(); |
| } |
| } |
| |
| num_stack_entries_ = sm.GetStackEntries(); |
| } |
| |
| void PushGpr(uintptr_t /* val */) { |
| // not optimizing registers, yet |
| } |
| |
| void PushFpr4(float /* val */) { |
| // not optimizing registers, yet |
| } |
| |
| void PushFpr8(uint64_t /* val */) { |
| // not optimizing registers, yet |
| } |
| |
| void PushStack(uintptr_t /* val */) { |
| // counting is already done in the superclass |
| } |
| |
| virtual uintptr_t PushHandle(mirror::Object* /* ptr */) { |
| return reinterpret_cast<uintptr_t>(nullptr); |
| } |
| |
| protected: |
| uint32_t num_stack_entries_; |
| }; |
| |
| class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize { |
| public: |
| explicit ComputeGenericJniFrameSize(bool critical_native) |
| : num_handle_scope_references_(0), critical_native_(critical_native) {} |
| |
| // Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs |
| // is at *m = sp. Will update to point to the bottom of the save frame. |
| // |
| // Note: assumes ComputeAll() has been run before. |
| void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ArtMethod* method = **m; |
| |
| DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize); |
| |
| uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp); |
| |
| // First, fix up the layout of the callee-save frame. |
| // We have to squeeze in the HandleScope, and relocate the method pointer. |
| |
| // "Free" the slot for the method. |
| sp8 += sizeof(void*); // In the callee-save frame we use a full pointer. |
| |
| // Under the callee saves put handle scope and new method stack reference. |
| size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_); |
| size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*); |
| |
| sp8 -= scope_and_method; |
| // Align by kStackAlignment. |
| sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment)); |
| |
| uint8_t* sp8_table = sp8 + sizeof(ArtMethod*); |
| *handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(), |
| num_handle_scope_references_); |
| |
| // Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us. |
| uint8_t* method_pointer = sp8; |
| auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer); |
| *new_method_ref = method; |
| *m = new_method_ref; |
| } |
| |
| // Adds space for the cookie. Note: may leave stack unaligned. |
| void LayoutCookie(uint8_t** sp) const { |
| // Reference cookie and padding |
| *sp -= 8; |
| } |
| |
| // Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie. |
| // Returns the new bottom. Note: this may be unaligned. |
| uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // First, fix up the layout of the callee-save frame. |
| // We have to squeeze in the HandleScope, and relocate the method pointer. |
| LayoutCalleeSaveFrame(self, m, sp, handle_scope); |
| |
| // The bottom of the callee-save frame is now where the method is, *m. |
| uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m); |
| |
| // Add space for cookie. |
| LayoutCookie(&sp8); |
| |
| return sp8; |
| } |
| |
| // WARNING: After this, *sp won't be pointing to the method anymore! |
| uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len, |
| HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr, |
| uint32_t** start_fpr) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| Walk(shorty, shorty_len); |
| |
| // JNI part. |
| uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope); |
| |
| sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr); |
| |
| // Return the new bottom. |
| return sp8; |
| } |
| |
| uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE; |
| |
| // Add JNIEnv* and jobj/jclass before the shorty-derived elements. |
| void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE |
| REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| private: |
| uint32_t num_handle_scope_references_; |
| const bool critical_native_; |
| }; |
| |
| uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) { |
| num_handle_scope_references_++; |
| return reinterpret_cast<uintptr_t>(nullptr); |
| } |
| |
| void ComputeGenericJniFrameSize::WalkHeader( |
| BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) { |
| // First 2 parameters are always excluded for @CriticalNative. |
| if (UNLIKELY(critical_native_)) { |
| return; |
| } |
| |
| // JNIEnv |
| sm->AdvancePointer(nullptr); |
| |
| // Class object or this as first argument |
| sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678)); |
| } |
| |
| // Class to push values to three separate regions. Used to fill the native call part. Adheres to |
| // the template requirements of BuildGenericJniFrameStateMachine. |
| class FillNativeCall { |
| public: |
| FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) : |
| cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {} |
| |
| virtual ~FillNativeCall() {} |
| |
| void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) { |
| cur_gpr_reg_ = gpr_regs; |
| cur_fpr_reg_ = fpr_regs; |
| cur_stack_arg_ = stack_args; |
| } |
| |
| void PushGpr(uintptr_t val) { |
| *cur_gpr_reg_ = val; |
| cur_gpr_reg_++; |
| } |
| |
| void PushFpr4(float val) { |
| *cur_fpr_reg_ = val; |
| cur_fpr_reg_++; |
| } |
| |
| void PushFpr8(uint64_t val) { |
| uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_); |
| *tmp = val; |
| cur_fpr_reg_ += 2; |
| } |
| |
| void PushStack(uintptr_t val) { |
| *cur_stack_arg_ = val; |
| cur_stack_arg_++; |
| } |
| |
| virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) { |
| LOG(FATAL) << "(Non-JNI) Native call does not use handles."; |
| UNREACHABLE(); |
| } |
| |
| private: |
| uintptr_t* cur_gpr_reg_; |
| uint32_t* cur_fpr_reg_; |
| uintptr_t* cur_stack_arg_; |
| }; |
| |
| // Visits arguments on the stack placing them into a region lower down the stack for the benefit |
| // of transitioning into native code. |
| class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor { |
| public: |
| BuildGenericJniFrameVisitor(Thread* self, |
| bool is_static, |
| bool critical_native, |
| const char* shorty, |
| uint32_t shorty_len, |
| ArtMethod*** sp) |
| : QuickArgumentVisitor(*sp, is_static, shorty, shorty_len), |
| jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native), |
| sm_(&jni_call_) { |
| ComputeGenericJniFrameSize fsc(critical_native); |
| uintptr_t* start_gpr_reg; |
| uint32_t* start_fpr_reg; |
| uintptr_t* start_stack_arg; |
| bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len, |
| &handle_scope_, |
| &start_stack_arg, |
| &start_gpr_reg, &start_fpr_reg); |
| |
| jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_); |
| |
| // First 2 parameters are always excluded for CriticalNative methods. |
| if (LIKELY(!critical_native)) { |
| // jni environment is always first argument |
| sm_.AdvancePointer(self->GetJniEnv()); |
| |
| if (is_static) { |
| sm_.AdvanceHandleScope((**sp)->GetDeclaringClass()); |
| } // else "this" reference is already handled by QuickArgumentVisitor. |
| } |
| } |
| |
| void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE; |
| |
| void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| StackReference<mirror::Object>* GetFirstHandleScopeEntry() { |
| return handle_scope_->GetHandle(0).GetReference(); |
| } |
| |
| jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) { |
| return handle_scope_->GetHandle(0).ToJObject(); |
| } |
| |
| void* GetBottomOfUsedArea() const { |
| return bottom_of_used_area_; |
| } |
| |
| private: |
| // A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall. |
| class FillJniCall FINAL : public FillNativeCall { |
| public: |
| FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, |
| HandleScope* handle_scope, bool critical_native) |
| : FillNativeCall(gpr_regs, fpr_regs, stack_args), |
| handle_scope_(handle_scope), |
| cur_entry_(0), |
| critical_native_(critical_native) {} |
| |
| uintptr_t PushHandle(mirror::Object* ref) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_); |
| |
| void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) { |
| FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args); |
| handle_scope_ = scope; |
| cur_entry_ = 0U; |
| } |
| |
| void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Initialize padding entries. |
| size_t expected_slots = handle_scope_->NumberOfReferences(); |
| while (cur_entry_ < expected_slots) { |
| handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr); |
| } |
| |
| if (!critical_native_) { |
| // Non-critical natives have at least the self class (jclass) or this (jobject). |
| DCHECK_NE(cur_entry_, 0U); |
| } |
| } |
| |
| bool CriticalNative() const { |
| return critical_native_; |
| } |
| |
| private: |
| HandleScope* handle_scope_; |
| size_t cur_entry_; |
| const bool critical_native_; |
| }; |
| |
| HandleScope* handle_scope_; |
| FillJniCall jni_call_; |
| void* bottom_of_used_area_; |
| |
| BuildNativeCallFrameStateMachine<FillJniCall> sm_; |
| |
| DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor); |
| }; |
| |
| uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) { |
| uintptr_t tmp; |
| MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_); |
| h.Assign(ref); |
| tmp = reinterpret_cast<uintptr_t>(h.ToJObject()); |
| cur_entry_++; |
| return tmp; |
| } |
| |
| void BuildGenericJniFrameVisitor::Visit() { |
| Primitive::Type type = GetParamPrimitiveType(); |
| switch (type) { |
| case Primitive::kPrimLong: { |
| jlong long_arg; |
| if (IsSplitLongOrDouble()) { |
| long_arg = ReadSplitLongParam(); |
| } else { |
| long_arg = *reinterpret_cast<jlong*>(GetParamAddress()); |
| } |
| sm_.AdvanceLong(long_arg); |
| break; |
| } |
| case Primitive::kPrimDouble: { |
| uint64_t double_arg; |
| if (IsSplitLongOrDouble()) { |
| // Read into union so that we don't case to a double. |
| double_arg = ReadSplitLongParam(); |
| } else { |
| double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress()); |
| } |
| sm_.AdvanceDouble(double_arg); |
| break; |
| } |
| case Primitive::kPrimNot: { |
| StackReference<mirror::Object>* stack_ref = |
| reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress()); |
| sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr()); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress())); |
| break; |
| case Primitive::kPrimBoolean: // Fall-through. |
| case Primitive::kPrimByte: // Fall-through. |
| case Primitive::kPrimChar: // Fall-through. |
| case Primitive::kPrimShort: // Fall-through. |
| case Primitive::kPrimInt: // Fall-through. |
| sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress())); |
| break; |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| } |
| |
| void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) { |
| // Clear out rest of the scope. |
| jni_call_.ResetRemainingScopeSlots(); |
| if (!jni_call_.CriticalNative()) { |
| // Install HandleScope. |
| self->PushHandleScope(handle_scope_); |
| } |
| } |
| |
| #if defined(__arm__) || defined(__aarch64__) |
| extern "C" const void* artFindNativeMethod(); |
| #else |
| extern "C" const void* artFindNativeMethod(Thread* self); |
| #endif |
| |
| static uint64_t artQuickGenericJniEndJNIRef(Thread* self, |
| uint32_t cookie, |
| bool fast_native ATTRIBUTE_UNUSED, |
| jobject l, |
| jobject lock) { |
| // TODO: add entrypoints for @FastNative returning objects. |
| if (lock != nullptr) { |
| return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self)); |
| } else { |
| return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self)); |
| } |
| } |
| |
| static void artQuickGenericJniEndJNINonRef(Thread* self, |
| uint32_t cookie, |
| bool fast_native, |
| jobject lock) { |
| if (lock != nullptr) { |
| JniMethodEndSynchronized(cookie, lock, self); |
| // Ignore "fast_native" here because synchronized functions aren't very fast. |
| } else { |
| if (UNLIKELY(fast_native)) { |
| JniMethodFastEnd(cookie, self); |
| } else { |
| JniMethodEnd(cookie, self); |
| } |
| } |
| } |
| |
| /* |
| * Initializes an alloca region assumed to be directly below sp for a native call: |
| * Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers. |
| * The final element on the stack is a pointer to the native code. |
| * |
| * On entry, the stack has a standard callee-save frame above sp, and an alloca below it. |
| * We need to fix this, as the handle scope needs to go into the callee-save frame. |
| * |
| * The return of this function denotes: |
| * 1) How many bytes of the alloca can be released, if the value is non-negative. |
| * 2) An error, if the value is negative. |
| */ |
| extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Note: We cannot walk the stack properly until fixed up below. |
| ArtMethod* called = *sp; |
| DCHECK(called->IsNative()) << called->PrettyMethod(true); |
| Runtime* runtime = Runtime::Current(); |
| jit::Jit* jit = runtime->GetJit(); |
| if (jit != nullptr) { |
| jit->AddSamples(self, called, 1u, /*with_backedges*/ false); |
| } |
| uint32_t shorty_len = 0; |
| const char* shorty = called->GetShorty(&shorty_len); |
| bool critical_native = called->IsCriticalNative(); |
| bool fast_native = called->IsFastNative(); |
| bool normal_native = !critical_native && !fast_native; |
| |
| // Run the visitor and update sp. |
| BuildGenericJniFrameVisitor visitor(self, |
| called->IsStatic(), |
| critical_native, |
| shorty, |
| shorty_len, |
| &sp); |
| { |
| ScopedAssertNoThreadSuspension sants(__FUNCTION__); |
| visitor.VisitArguments(); |
| // FinalizeHandleScope pushes the handle scope on the thread. |
| visitor.FinalizeHandleScope(self); |
| } |
| |
| // Fix up managed-stack things in Thread. After this we can walk the stack. |
| self->SetTopOfStackTagged(sp); |
| |
| self->VerifyStack(); |
| |
| uint32_t cookie; |
| uint32_t* sp32; |
| // Skip calling JniMethodStart for @CriticalNative. |
| if (LIKELY(!critical_native)) { |
| // Start JNI, save the cookie. |
| if (called->IsSynchronized()) { |
| DCHECK(normal_native) << " @FastNative and synchronize is not supported"; |
| cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self); |
| if (self->IsExceptionPending()) { |
| self->PopHandleScope(); |
| // A negative value denotes an error. |
| return GetTwoWordFailureValue(); |
| } |
| } else { |
| if (fast_native) { |
| cookie = JniMethodFastStart(self); |
| } else { |
| DCHECK(normal_native); |
| cookie = JniMethodStart(self); |
| } |
| } |
| sp32 = reinterpret_cast<uint32_t*>(sp); |
| *(sp32 - 1) = cookie; |
| } |
| |
| // Retrieve the stored native code. |
| void const* nativeCode = called->GetEntryPointFromJni(); |
| |
| // There are two cases for the content of nativeCode: |
| // 1) Pointer to the native function. |
| // 2) Pointer to the trampoline for native code binding. |
| // In the second case, we need to execute the binding and continue with the actual native function |
| // pointer. |
| DCHECK(nativeCode != nullptr); |
| if (nativeCode == GetJniDlsymLookupStub()) { |
| #if defined(__arm__) || defined(__aarch64__) |
| nativeCode = artFindNativeMethod(); |
| #else |
| nativeCode = artFindNativeMethod(self); |
| #endif |
| |
| if (nativeCode == nullptr) { |
| DCHECK(self->IsExceptionPending()); // There should be an exception pending now. |
| |
| // @CriticalNative calls do not need to call back into JniMethodEnd. |
| if (LIKELY(!critical_native)) { |
| // End JNI, as the assembly will move to deliver the exception. |
| jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr; |
| if (shorty[0] == 'L') { |
| artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock); |
| } else { |
| artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock); |
| } |
| } |
| |
| return GetTwoWordFailureValue(); |
| } |
| // Note that the native code pointer will be automatically set by artFindNativeMethod(). |
| } |
| |
| #if defined(__mips__) && !defined(__LP64__) |
| // On MIPS32 if the first two arguments are floating-point, we need to know their types |
| // so that art_quick_generic_jni_trampoline can correctly extract them from the stack |
| // and load into floating-point registers. |
| // Possible arrangements of first two floating-point arguments on the stack (32-bit FPU |
| // view): |
| // (1) |
| // | DOUBLE | DOUBLE | other args, if any |
| // | F12 | F13 | F14 | F15 | |
| // | SP+0 | SP+4 | SP+8 | SP+12 | SP+16 |
| // (2) |
| // | DOUBLE | FLOAT | (PAD) | other args, if any |
| // | F12 | F13 | F14 | | |
| // | SP+0 | SP+4 | SP+8 | SP+12 | SP+16 |
| // (3) |
| // | FLOAT | (PAD) | DOUBLE | other args, if any |
| // | F12 | | F14 | F15 | |
| // | SP+0 | SP+4 | SP+8 | SP+12 | SP+16 |
| // (4) |
| // | FLOAT | FLOAT | other args, if any |
| // | F12 | F14 | |
| // | SP+0 | SP+4 | SP+8 |
| // As you can see, only the last case (4) is special. In all others we can just |
| // load F12/F13 and F14/F15 in the same manner. |
| // Set bit 0 of the native code address to 1 in this case (valid code addresses |
| // are always a multiple of 4 on MIPS32, so we have 2 spare bits available). |
| if (nativeCode != nullptr && |
| shorty != nullptr && |
| shorty_len >= 3 && |
| shorty[1] == 'F' && |
| shorty[2] == 'F') { |
| nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1); |
| } |
| #endif |
| |
| // Return native code addr(lo) and bottom of alloca address(hi). |
| return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()), |
| reinterpret_cast<uintptr_t>(nativeCode)); |
| } |
| |
| // Defined in quick_jni_entrypoints.cc. |
| extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie, |
| jvalue result, uint64_t result_f, ArtMethod* called, |
| HandleScope* handle_scope); |
| /* |
| * Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and |
| * unlocking. |
| */ |
| extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self, |
| jvalue result, |
| uint64_t result_f) { |
| // We're here just back from a native call. We don't have the shared mutator lock at this point |
| // yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing |
| // anything that requires a mutator lock before that would cause problems as GC may have the |
| // exclusive mutator lock and may be moving objects, etc. |
| ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame(); |
| DCHECK(self->GetManagedStack()->GetTopQuickFrameTag()); |
| uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp); |
| ArtMethod* called = *sp; |
| uint32_t cookie = *(sp32 - 1); |
| HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp)); |
| return GenericJniMethodEnd(self, cookie, result, result_f, called, table); |
| } |
| |
| // We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value |
| // for the method pointer. |
| // |
| // It is valid to use this, as at the usage points here (returns from C functions) we are assuming |
| // to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations). |
| |
| template <InvokeType type, bool access_check> |
| static TwoWordReturn artInvokeCommon(uint32_t method_idx, |
| ObjPtr<mirror::Object> this_object, |
| Thread* self, |
| ArtMethod** sp) { |
| ScopedQuickEntrypointChecks sqec(self); |
| DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs)); |
| ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp); |
| ArtMethod* method = FindMethodFast<type, access_check>(method_idx, this_object, caller_method); |
| if (UNLIKELY(method == nullptr)) { |
| const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile(); |
| uint32_t shorty_len; |
| const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len); |
| { |
| // Remember the args in case a GC happens in FindMethodFromCode. |
| ScopedObjectAccessUnchecked soa(self->GetJniEnv()); |
| RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa); |
| visitor.VisitArguments(); |
| method = FindMethodFromCode<type, access_check>(method_idx, |
| &this_object, |
| caller_method, |
| self); |
| visitor.FixupReferences(); |
| } |
| |
| if (UNLIKELY(method == nullptr)) { |
| CHECK(self->IsExceptionPending()); |
| return GetTwoWordFailureValue(); // Failure. |
| } |
| } |
| DCHECK(!self->IsExceptionPending()); |
| const void* code = method->GetEntryPointFromQuickCompiledCode(); |
| |
| // When we return, the caller will branch to this address, so it had better not be 0! |
| DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod() |
| << " location: " |
| << method->GetDexFile()->GetLocation(); |
| |
| return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), |
| reinterpret_cast<uintptr_t>(method)); |
| } |
| |
| // Explicit artInvokeCommon template function declarations to please analysis tool. |
| #define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \ |
| template REQUIRES_SHARED(Locks::mutator_lock_) \ |
| TwoWordReturn artInvokeCommon<type, access_check>( \ |
| uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp) |
| |
| EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false); |
| EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true); |
| EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false); |
| EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true); |
| EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false); |
| EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true); |
| EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false); |
| EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true); |
| EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false); |
| EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true); |
| #undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL |
| |
| // See comments in runtime_support_asm.S |
| extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck( |
| uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp); |
| } |
| |
| extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck( |
| uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp); |
| } |
| |
| extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck( |
| uint32_t method_idx, |
| mirror::Object* this_object ATTRIBUTE_UNUSED, |
| Thread* self, |
| ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) { |
| // For static, this_object is not required and may be random garbage. Don't pass it down so that |
| // it doesn't cause ObjPtr alignment failure check. |
| return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp); |
| } |
| |
| extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck( |
| uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp); |
| } |
| |
| extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck( |
| uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp); |
| } |
| |
| // Helper function for art_quick_imt_conflict_trampoline to look up the interface method. |
| extern "C" ArtMethod* artLookupResolvedMethod(uint32_t method_index, ArtMethod* referrer) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ScopedAssertNoThreadSuspension ants(__FUNCTION__); |
| DCHECK(!referrer->IsProxyMethod()); |
| ArtMethod* result = Runtime::Current()->GetClassLinker()->LookupResolvedMethod( |
| method_index, referrer->GetDexCache(), referrer->GetClassLoader()); |
| DCHECK(result == nullptr || |
| result->GetDeclaringClass()->IsInterface() || |
| result->GetDeclaringClass() == |
| WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object)) |
| << result->PrettyMethod(); |
| return result; |
| } |
| |
| // Determine target of interface dispatch. The interface method and this object are known non-null. |
| // The interface method is the method returned by the dex cache in the conflict trampoline. |
| extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method, |
| mirror::Object* raw_this_object, |
| Thread* self, |
| ArtMethod** sp) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ScopedQuickEntrypointChecks sqec(self); |
| StackHandleScope<2> hs(self); |
| Handle<mirror::Object> this_object = hs.NewHandle(raw_this_object); |
| Handle<mirror::Class> cls = hs.NewHandle(this_object->GetClass()); |
| |
| ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp); |
| ArtMethod* method = nullptr; |
| ImTable* imt = cls->GetImt(kRuntimePointerSize); |
| |
| if (UNLIKELY(interface_method == nullptr)) { |
| // The interface method is unresolved, so resolve it in the dex file of the caller. |
| // Fetch the dex_method_idx of the target interface method from the caller. |
| uint32_t dex_method_idx; |
| uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp); |
| const DexFile::CodeItem* code_item = caller_method->GetCodeItem(); |
| DCHECK_LT(dex_pc, code_item->insns_size_in_code_units_); |
| const Instruction& instr = code_item->InstructionAt(dex_pc); |
| Instruction::Code instr_code = instr.Opcode(); |
| DCHECK(instr_code == Instruction::INVOKE_INTERFACE || |
| instr_code == Instruction::INVOKE_INTERFACE_RANGE) |
| << "Unexpected call into interface trampoline: " << instr.DumpString(nullptr); |
| if (instr_code == Instruction::INVOKE_INTERFACE) { |
| dex_method_idx = instr.VRegB_35c(); |
| } else { |
| DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE); |
| dex_method_idx = instr.VRegB_3rc(); |
| } |
| |
| const DexFile& dex_file = caller_method->GetDeclaringClass()->GetDexFile(); |
| uint32_t shorty_len; |
| const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(dex_method_idx), |
| &shorty_len); |
| { |
| // Remember the args in case a GC happens in ClassLinker::ResolveMethod(). |
| ScopedObjectAccessUnchecked soa(self->GetJniEnv()); |
| RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa); |
| visitor.VisitArguments(); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| interface_method = class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>( |
| self, dex_method_idx, caller_method, kInterface); |
| visitor.FixupReferences(); |
| } |
| |
| if (UNLIKELY(interface_method == nullptr)) { |
| CHECK(self->IsExceptionPending()); |
| return GetTwoWordFailureValue(); // Failure. |
| } |
| } |
| |
| DCHECK(!interface_method->IsRuntimeMethod()); |
| // Look whether we have a match in the ImtConflictTable. |
| uint32_t imt_index = ImTable::GetImtIndex(interface_method); |
| ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize); |
| if (LIKELY(conflict_method->IsRuntimeMethod())) { |
| ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize); |
| DCHECK(current_table != nullptr); |
| method = current_table->Lookup(interface_method, kRuntimePointerSize); |
| } else { |
| // It seems we aren't really a conflict method! |
| if (kIsDebugBuild) { |
| ArtMethod* m = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize); |
| CHECK_EQ(conflict_method, m) |
| << interface_method->PrettyMethod() << " / " << conflict_method->PrettyMethod() << " / " |
| << " / " << ArtMethod::PrettyMethod(m) << " / " << cls->PrettyClass(); |
| } |
| method = conflict_method; |
| } |
| if (method != nullptr) { |
| return GetTwoWordSuccessValue( |
| reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()), |
| reinterpret_cast<uintptr_t>(method)); |
| } |
| |
| // No match, use the IfTable. |
| method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize); |
| if (UNLIKELY(method == nullptr)) { |
| ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch( |
| interface_method, this_object.Get(), caller_method); |
| return GetTwoWordFailureValue(); // Failure. |
| } |
| |
| // We arrive here if we have found an implementation, and it is not in the ImtConflictTable. |
| // We create a new table with the new pair { interface_method, method }. |
| DCHECK(conflict_method->IsRuntimeMethod()); |
| ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable( |
| cls.Get(), |
| conflict_method, |
| interface_method, |
| method, |
| /*force_new_conflict_method*/false); |
| if (new_conflict_method != conflict_method) { |
| // Update the IMT if we create a new conflict method. No fence needed here, as the |
| // data is consistent. |
| imt->Set(imt_index, |
| new_conflict_method, |
| kRuntimePointerSize); |
| } |
| |
| const void* code = method->GetEntryPointFromQuickCompiledCode(); |
| |
| // When we return, the caller will branch to this address, so it had better not be 0! |
| DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod() |
| << " location: " << method->GetDexFile()->GetLocation(); |
| |
| return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code), |
| reinterpret_cast<uintptr_t>(method)); |
| } |
| |
| // Returns shorty type so the caller can determine how to put |result| |
| // into expected registers. The shorty type is static so the compiler |
| // could call different flavors of this code path depending on the |
| // shorty type though this would require different entry points for |
| // each type. |
| extern "C" uintptr_t artInvokePolymorphic( |
| JValue* result, |
| mirror::Object* raw_receiver, |
| Thread* self, |
| ArtMethod** sp) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ScopedQuickEntrypointChecks sqec(self); |
| DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs)); |
| |
| // Start new JNI local reference state |
| JNIEnvExt* env = self->GetJniEnv(); |
| ScopedObjectAccessUnchecked soa(env); |
| ScopedJniEnvLocalRefState env_state(env); |
| const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe."); |
| |
| // From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC. |
| ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp); |
| uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp); |
| const DexFile::CodeItem* code = caller_method->GetCodeItem(); |
| const Instruction& inst = code->InstructionAt(dex_pc); |
| DCHECK(inst.Opcode() == Instruction::INVOKE_POLYMORPHIC || |
| inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE); |
| const uint32_t proto_idx = inst.VRegH(); |
| const char* shorty = caller_method->GetDexFile()->GetShorty(proto_idx); |
| const size_t shorty_length = strlen(shorty); |
| static const bool kMethodIsStatic = false; // invoke() and invokeExact() are not static. |
| RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa); |
| gc_visitor.VisitArguments(); |
| |
| // Wrap raw_receiver in a Handle for safety. |
| StackHandleScope<3> hs(self); |
| Handle<mirror::Object> receiver_handle(hs.NewHandle(raw_receiver)); |
| raw_receiver = nullptr; |
| self->EndAssertNoThreadSuspension(old_cause); |
| |
| // Resolve method. |
| ClassLinker* linker = Runtime::Current()->GetClassLinker(); |
| ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>( |
| self, inst.VRegB(), caller_method, kVirtual); |
| |
| if (UNLIKELY(receiver_handle.IsNull())) { |
| ThrowNullPointerExceptionForMethodAccess(resolved_method, InvokeType::kVirtual); |
| return static_cast<uintptr_t>('V'); |
| } |
| |
| // TODO(oth): Ensure this path isn't taken for VarHandle accessors (b/65872996). |
| DCHECK_EQ(resolved_method->GetDeclaringClass(), |
| WellKnownClasses::ToClass(WellKnownClasses::java_lang_invoke_MethodHandle)); |
| |
| Handle<mirror::MethodHandle> method_handle(hs.NewHandle( |
| ObjPtr<mirror::MethodHandle>::DownCast(MakeObjPtr(receiver_handle.Get())))); |
| |
| Handle<mirror::MethodType> method_type( |
| hs.NewHandle(linker->ResolveMethodType(self, proto_idx, caller_method))); |
| |
| // This implies we couldn't resolve one or more types in this method handle. |
| if (UNLIKELY(method_type.IsNull())) { |
| CHECK(self->IsExceptionPending()); |
| return static_cast<uintptr_t>('V'); |
| } |
| |
| DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst.VRegA()); |
| DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic); |
| |
| // Fix references before constructing the shadow frame. |
| gc_visitor.FixupReferences(); |
| |
| // Construct shadow frame placing arguments consecutively from |first_arg|. |
| const bool is_range = (inst.Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE); |
| const size_t num_vregs = is_range ? inst.VRegA_4rcc() : inst.VRegA_45cc(); |
| const size_t first_arg = 0; |
| ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = |
| CREATE_SHADOW_FRAME(num_vregs, /* link */ nullptr, resolved_method, dex_pc); |
| ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get(); |
| ScopedStackedShadowFramePusher |
| frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction); |
| BuildQuickShadowFrameVisitor shadow_frame_builder(sp, |
| kMethodIsStatic, |
| shorty, |
| strlen(shorty), |
| shadow_frame, |
| first_arg); |
| shadow_frame_builder.VisitArguments(); |
| |
| // Push a transition back into managed code onto the linked list in thread. |
| ManagedStack fragment; |
| self->PushManagedStackFragment(&fragment); |
| |
| // Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in |
| // consecutive order. |
| RangeInstructionOperands operands(first_arg + 1, num_vregs - 1); |
| bool isExact = (jni::EncodeArtMethod(resolved_method) == |
| WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact); |
| bool success = false; |
| if (isExact) { |
| success = MethodHandleInvokeExact(self, |
| *shadow_frame, |
| method_handle, |
| method_type, |
| &operands, |
| result); |
| } else { |
| success = MethodHandleInvoke(self, |
| *shadow_frame, |
| method_handle, |
| method_type, |
| &operands, |
| result); |
| } |
| DCHECK(success || self->IsExceptionPending()); |
| |
| // Pop transition record. |
| self->PopManagedStackFragment(fragment); |
| |
| return static_cast<uintptr_t>(shorty[0]); |
| } |
| |
| } // namespace art |