blob: 9f72464db67483471b80ba506a050883ed7e72fb [file] [log] [blame]
%def fbinop(instr=""):
/*
* Generic 32-bit floating-point operation. Provide an "instr" line that
* specifies an instruction that performs "s2 = s0 op s1". Because we
* use the "softfp" ABI, this must be an instruction, not a function call.
*
* For: add-float, sub-float, mul-float, div-float
*/
/* floatop vAA, vBB, vCC */
FETCH r0, 1 @ r0<- CCBB
mov r9, rINST, lsr #8 @ r9<- AA
mov r3, r0, lsr #8 @ r3<- CC
and r2, r0, #255 @ r2<- BB
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vCC
VREG_INDEX_TO_ADDR r2, r2 @ r2<- &vBB
flds s1, [r3] @ s1<- vCC
flds s0, [r2] @ s0<- vBB
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
$instr @ s2<- op
GET_INST_OPCODE ip @ extract opcode from rINST
VREG_INDEX_TO_ADDR r9, r9 @ r9<- &vAA
fsts s2, [r9] @ vAA<- s2
GOTO_OPCODE ip @ jump to next instruction
%def fbinop2addr(instr=""):
/*
* Generic 32-bit floating point "/2addr" binary operation. Provide
* an "instr" line that specifies an instruction that performs
* "s2 = s0 op s1".
*
* For: add-float/2addr, sub-float/2addr, mul-float/2addr, div-float/2addr
*/
/* binop/2addr vA, vB */
mov r3, rINST, lsr #12 @ r3<- B
ubfx r9, rINST, #8, #4 @ r9<- A
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
VREG_INDEX_TO_ADDR r9, r9 @ r9<- &vA
flds s1, [r3] @ s1<- vB
FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
flds s0, [r9] @ s0<- vA
$instr @ s2<- op
GET_INST_OPCODE ip @ extract opcode from rINST
fsts s2, [r9] @ vAA<- s2
GOTO_OPCODE ip @ jump to next instruction
%def fbinopWide(instr=""):
/*
* Generic 64-bit double-precision floating point binary operation.
* Provide an "instr" line that specifies an instruction that performs
* "d2 = d0 op d1".
*
* for: add-double, sub-double, mul-double, div-double
*/
/* doubleop vAA, vBB, vCC */
FETCH r0, 1 @ r0<- CCBB
mov r9, rINST, lsr #8 @ r9<- AA
mov r3, r0, lsr #8 @ r3<- CC
and r2, r0, #255 @ r2<- BB
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vCC
VREG_INDEX_TO_ADDR r2, r2 @ r2<- &vBB
fldd d1, [r3] @ d1<- vCC
fldd d0, [r2] @ d0<- vBB
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
$instr @ s2<- op
CLEAR_SHADOW_PAIR r9, ip, lr @ Zero shadow regs
GET_INST_OPCODE ip @ extract opcode from rINST
VREG_INDEX_TO_ADDR r9, r9 @ r9<- &vAA
fstd d2, [r9] @ vAA<- d2
GOTO_OPCODE ip @ jump to next instruction
%def fbinopWide2addr(instr=""):
/*
* Generic 64-bit floating point "/2addr" binary operation. Provide
* an "instr" line that specifies an instruction that performs
* "d2 = d0 op d1".
*
* For: add-double/2addr, sub-double/2addr, mul-double/2addr,
* div-double/2addr
*/
/* binop/2addr vA, vB */
mov r3, rINST, lsr #12 @ r3<- B
ubfx r9, rINST, #8, #4 @ r9<- A
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
CLEAR_SHADOW_PAIR r9, ip, r0 @ Zero out shadow regs
fldd d1, [r3] @ d1<- vB
VREG_INDEX_TO_ADDR r9, r9 @ r9<- &vA
FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
fldd d0, [r9] @ d0<- vA
$instr @ d2<- op
GET_INST_OPCODE ip @ extract opcode from rINST
fstd d2, [r9] @ vAA<- d2
GOTO_OPCODE ip @ jump to next instruction
%def funop(instr=""):
/*
* Generic 32-bit unary floating-point operation. Provide an "instr"
* line that specifies an instruction that performs "s1 = op s0".
*
* for: int-to-float, float-to-int
*/
/* unop vA, vB */
mov r3, rINST, lsr #12 @ r3<- B
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
flds s0, [r3] @ s0<- vB
ubfx r9, rINST, #8, #4 @ r9<- A
FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
$instr @ s1<- op
GET_INST_OPCODE ip @ extract opcode from rINST
VREG_INDEX_TO_ADDR r9, r9 @ r9<- &vA
fsts s1, [r9] @ vA<- s1
GOTO_OPCODE ip @ jump to next instruction
%def funopNarrower(instr=""):
/*
* Generic 64bit-to-32bit unary floating point operation. Provide an
* "instr" line that specifies an instruction that performs "s0 = op d0".
*
* For: double-to-int, double-to-float
*/
/* unop vA, vB */
mov r3, rINST, lsr #12 @ r3<- B
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
fldd d0, [r3] @ d0<- vB
ubfx r9, rINST, #8, #4 @ r9<- A
FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
$instr @ s0<- op
GET_INST_OPCODE ip @ extract opcode from rINST
VREG_INDEX_TO_ADDR r9, r9 @ r9<- &vA
fsts s0, [r9] @ vA<- s0
GOTO_OPCODE ip @ jump to next instruction
%def funopWider(instr=""):
/*
* Generic 32bit-to-64bit floating point unary operation. Provide an
* "instr" line that specifies an instruction that performs "d0 = op s0".
*
* For: int-to-double, float-to-double
*/
/* unop vA, vB */
mov r3, rINST, lsr #12 @ r3<- B
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
flds s0, [r3] @ s0<- vB
ubfx r9, rINST, #8, #4 @ r9<- A
FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
$instr @ d0<- op
CLEAR_SHADOW_PAIR r9, ip, lr @ Zero shadow regs
GET_INST_OPCODE ip @ extract opcode from rINST
VREG_INDEX_TO_ADDR r9, r9 @ r9<- &vA
fstd d0, [r9] @ vA<- d0
GOTO_OPCODE ip @ jump to next instruction
%def op_add_double():
% fbinopWide(instr="faddd d2, d0, d1")
%def op_add_double_2addr():
% fbinopWide2addr(instr="faddd d2, d0, d1")
%def op_add_float():
% fbinop(instr="fadds s2, s0, s1")
%def op_add_float_2addr():
% fbinop2addr(instr="fadds s2, s0, s1")
%def op_cmpg_double():
/*
* Compare two floating-point values. Puts 0, 1, or -1 into the
* destination register based on the results of the comparison.
*
* int compare(x, y) {
* if (x == y) {
* return 0;
* } else if (x < y) {
* return -1;
* } else if (x > y) {
* return 1;
* } else {
* return 1;
* }
* }
*/
/* op vAA, vBB, vCC */
FETCH r0, 1 @ r0<- CCBB
mov r9, rINST, lsr #8 @ r9<- AA
and r2, r0, #255 @ r2<- BB
mov r3, r0, lsr #8 @ r3<- CC
VREG_INDEX_TO_ADDR r2, r2 @ r2<- &vBB
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vCC
fldd d0, [r2] @ d0<- vBB
fldd d1, [r3] @ d1<- vCC
vcmpe.f64 d0, d1 @ compare (vBB, vCC)
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
mov r0, #1 @ r0<- 1 (default)
GET_INST_OPCODE ip @ extract opcode from rINST
fmstat @ export status flags
mvnmi r0, #0 @ (less than) r1<- -1
moveq r0, #0 @ (equal) r1<- 0
SET_VREG r0, r9 @ vAA<- r0
GOTO_OPCODE ip @ jump to next instruction
%def op_cmpg_float():
/*
* Compare two floating-point values. Puts 0, 1, or -1 into the
* destination register based on the results of the comparison.
*
* int compare(x, y) {
* if (x == y) {
* return 0;
* } else if (x < y) {
* return -1;
* } else if (x > y) {
* return 1;
* } else {
* return 1;
* }
* }
*/
/* op vAA, vBB, vCC */
FETCH r0, 1 @ r0<- CCBB
mov r9, rINST, lsr #8 @ r9<- AA
and r2, r0, #255 @ r2<- BB
mov r3, r0, lsr #8 @ r3<- CC
VREG_INDEX_TO_ADDR r2, r2 @ r2<- &vBB
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vCC
flds s0, [r2] @ s0<- vBB
flds s1, [r3] @ s1<- vCC
vcmpe.f32 s0, s1 @ compare (vBB, vCC)
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
mov r0, #1 @ r0<- 1 (default)
GET_INST_OPCODE ip @ extract opcode from rINST
fmstat @ export status flags
mvnmi r0, #0 @ (less than) r1<- -1
moveq r0, #0 @ (equal) r1<- 0
SET_VREG r0, r9 @ vAA<- r0
GOTO_OPCODE ip @ jump to next instruction
%def op_cmpl_double():
/*
* Compare two floating-point values. Puts 0, 1, or -1 into the
* destination register based on the results of the comparison.
*
* int compare(x, y) {
* if (x == y) {
* return 0;
* } else if (x > y) {
* return 1;
* } else if (x < y) {
* return -1;
* } else {
* return -1;
* }
* }
*/
/* op vAA, vBB, vCC */
FETCH r0, 1 @ r0<- CCBB
mov r9, rINST, lsr #8 @ r9<- AA
and r2, r0, #255 @ r2<- BB
mov r3, r0, lsr #8 @ r3<- CC
VREG_INDEX_TO_ADDR r2, r2 @ r2<- &vBB
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vCC
fldd d0, [r2] @ d0<- vBB
fldd d1, [r3] @ d1<- vCC
vcmpe.f64 d0, d1 @ compare (vBB, vCC)
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
mvn r0, #0 @ r0<- -1 (default)
GET_INST_OPCODE ip @ extract opcode from rINST
fmstat @ export status flags
movgt r0, #1 @ (greater than) r1<- 1
moveq r0, #0 @ (equal) r1<- 0
SET_VREG r0, r9 @ vAA<- r0
GOTO_OPCODE ip @ jump to next instruction
%def op_cmpl_float():
/*
* Compare two floating-point values. Puts 0, 1, or -1 into the
* destination register based on the results of the comparison.
*
* int compare(x, y) {
* if (x == y) {
* return 0;
* } else if (x > y) {
* return 1;
* } else if (x < y) {
* return -1;
* } else {
* return -1;
* }
* }
*/
/* op vAA, vBB, vCC */
FETCH r0, 1 @ r0<- CCBB
mov r9, rINST, lsr #8 @ r9<- AA
and r2, r0, #255 @ r2<- BB
mov r3, r0, lsr #8 @ r3<- CC
VREG_INDEX_TO_ADDR r2, r2 @ r2<- &vBB
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vCC
flds s0, [r2] @ s0<- vBB
flds s1, [r3] @ s1<- vCC
vcmpe.f32 s0, s1 @ compare (vBB, vCC)
FETCH_ADVANCE_INST 2 @ advance rPC, load rINST
mvn r0, #0 @ r0<- -1 (default)
GET_INST_OPCODE ip @ extract opcode from rINST
fmstat @ export status flags
movgt r0, #1 @ (greater than) r1<- 1
moveq r0, #0 @ (equal) r1<- 0
SET_VREG r0, r9 @ vAA<- r0
GOTO_OPCODE ip @ jump to next instruction
%def op_div_double():
% fbinopWide(instr="fdivd d2, d0, d1")
%def op_div_double_2addr():
% fbinopWide2addr(instr="fdivd d2, d0, d1")
%def op_div_float():
% fbinop(instr="fdivs s2, s0, s1")
%def op_div_float_2addr():
% fbinop2addr(instr="fdivs s2, s0, s1")
%def op_double_to_float():
% funopNarrower(instr="vcvt.f32.f64 s0, d0")
%def op_double_to_int():
% funopNarrower(instr="ftosizd s0, d0")
%def op_double_to_long():
% unopWide(instr="bl d2l_doconv")
%def op_double_to_long_helper_code():
/*
* Convert the double in r0/r1 to a long in r0/r1.
*
* We have to clip values to long min/max per the specification. The
* expected common case is a "reasonable" value that converts directly
* to modest integer. The EABI convert function isn't doing this for us.
*/
d2l_doconv:
ubfx r2, r1, #20, #11 @ grab the exponent
movw r3, #0x43e
cmp r2, r3 @ MINLONG < x > MAXLONG?
bhs d2l_special_cases
b __aeabi_d2lz @ tail call to convert double to long
d2l_special_cases:
movw r3, #0x7ff
cmp r2, r3
beq d2l_maybeNaN @ NaN?
d2l_notNaN:
adds r1, r1, r1 @ sign bit to carry
mov r0, #0xffffffff @ assume maxlong for lsw
mov r1, #0x7fffffff @ assume maxlong for msw
adc r0, r0, #0
adc r1, r1, #0 @ convert maxlong to minlong if exp negative
bx lr @ return
d2l_maybeNaN:
orrs r3, r0, r1, lsl #12
beq d2l_notNaN @ if fraction is non-zero, it's a NaN
mov r0, #0
mov r1, #0
bx lr @ return 0 for NaN
%def op_float_to_double():
% funopWider(instr="vcvt.f64.f32 d0, s0")
%def op_float_to_int():
% funop(instr="ftosizs s1, s0")
%def op_float_to_long():
% unopWider(instr="bl f2l_doconv")
%def op_float_to_long_helper_code():
/*
* Convert the float in r0 to a long in r0/r1.
*
* We have to clip values to long min/max per the specification. The
* expected common case is a "reasonable" value that converts directly
* to modest integer. The EABI convert function isn't doing this for us.
*/
f2l_doconv:
ubfx r2, r0, #23, #8 @ grab the exponent
cmp r2, #0xbe @ MININT < x > MAXINT?
bhs f2l_special_cases
b __aeabi_f2lz @ tail call to convert float to long
f2l_special_cases:
cmp r2, #0xff @ NaN or infinity?
beq f2l_maybeNaN
f2l_notNaN:
adds r0, r0, r0 @ sign bit to carry
mov r0, #0xffffffff @ assume maxlong for lsw
mov r1, #0x7fffffff @ assume maxlong for msw
adc r0, r0, #0
adc r1, r1, #0 @ convert maxlong to minlong if exp negative
bx lr @ return
f2l_maybeNaN:
lsls r3, r0, #9
beq f2l_notNaN @ if fraction is non-zero, it's a NaN
mov r0, #0
mov r1, #0
bx lr @ return 0 for NaN
%def op_int_to_double():
% funopWider(instr="fsitod d0, s0")
%def op_int_to_float():
% funop(instr="fsitos s1, s0")
%def op_long_to_double():
/*
* Specialised 64-bit floating point operation.
*
* Note: The result will be returned in d2.
*
* For: long-to-double
*/
mov r3, rINST, lsr #12 @ r3<- B
ubfx r9, rINST, #8, #4 @ r9<- A
VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[B]
VREG_INDEX_TO_ADDR r9, r9 @ r9<- &fp[A]
vldr d0, [r3] @ d0<- vAA
FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
vcvt.f64.s32 d1, s1 @ d1<- (double)(vAAh)
vcvt.f64.u32 d2, s0 @ d2<- (double)(vAAl)
vldr d3, constval$opcode
vmla.f64 d2, d1, d3 @ d2<- vAAh*2^32 + vAAl
GET_INST_OPCODE ip @ extract opcode from rINST
vstr.64 d2, [r9] @ vAA<- d2
GOTO_OPCODE ip @ jump to next instruction
/* literal pool helper */
constval${opcode}:
.8byte 0x41f0000000000000
%def op_long_to_float():
% unopNarrower(instr="bl __aeabi_l2f")
%def op_mul_double():
% fbinopWide(instr="fmuld d2, d0, d1")
%def op_mul_double_2addr():
% fbinopWide2addr(instr="fmuld d2, d0, d1")
%def op_mul_float():
% fbinop(instr="fmuls s2, s0, s1")
%def op_mul_float_2addr():
% fbinop2addr(instr="fmuls s2, s0, s1")
%def op_neg_double():
% unopWide(instr="add r1, r1, #0x80000000")
%def op_neg_float():
% unop(instr="add r0, r0, #0x80000000")
%def op_rem_double():
/* EABI doesn't define a double remainder function, but libm does */
% binopWide(instr="bl fmod")
%def op_rem_double_2addr():
/* EABI doesn't define a double remainder function, but libm does */
% binopWide2addr(instr="bl fmod")
%def op_rem_float():
/* EABI doesn't define a float remainder function, but libm does */
% binop(instr="bl fmodf")
%def op_rem_float_2addr():
/* EABI doesn't define a float remainder function, but libm does */
% binop2addr(instr="bl fmodf")
%def op_sub_double():
% fbinopWide(instr="fsubd d2, d0, d1")
%def op_sub_double_2addr():
% fbinopWide2addr(instr="fsubd d2, d0, d1")
%def op_sub_float():
% fbinop(instr="fsubs s2, s0, s1")
%def op_sub_float_2addr():
% fbinop2addr(instr="fsubs s2, s0, s1")