blob: 4c52ed31c46865f502c4a36ad4b1c251330f025d [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_
#define ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_
#include "entrypoint_utils.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/enums.h"
#include "class_linker-inl.h"
#include "common_throws.h"
#include "dex/dex_file.h"
#include "dex/invoke_type.h"
#include "entrypoints/quick/callee_save_frame.h"
#include "handle_scope-inl.h"
#include "imt_conflict_table.h"
#include "imtable-inl.h"
#include "indirect_reference_table.h"
#include "jni/jni_internal.h"
#include "mirror/array.h"
#include "mirror/class-inl.h"
#include "mirror/object-inl.h"
#include "mirror/throwable.h"
#include "nth_caller_visitor.h"
#include "runtime.h"
#include "stack_map.h"
#include "thread.h"
#include "well_known_classes.h"
namespace art {
inline ArtMethod* GetResolvedMethod(ArtMethod* outer_method,
const CodeInfo& code_info,
const BitTableRange<InlineInfo>& inline_infos)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(!outer_method->IsObsolete());
// This method is being used by artQuickResolutionTrampoline, before it sets up
// the passed parameters in a GC friendly way. Therefore we must never be
// suspended while executing it.
ScopedAssertNoThreadSuspension sants(__FUNCTION__);
{
InlineInfo inline_info = inline_infos.back();
if (inline_info.EncodesArtMethod()) {
return inline_info.GetArtMethod();
}
uint32_t method_index = code_info.GetMethodIndexOf(inline_info);
if (inline_info.GetDexPc() == static_cast<uint32_t>(-1)) {
// "charAt" special case. It is the only non-leaf method we inline across dex files.
ArtMethod* inlined_method = jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt);
DCHECK_EQ(inlined_method->GetDexMethodIndex(), method_index);
return inlined_method;
}
}
// Find which method did the call in the inlining hierarchy.
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ArtMethod* method = outer_method;
for (InlineInfo inline_info : inline_infos) {
DCHECK(!inline_info.EncodesArtMethod());
DCHECK_NE(inline_info.GetDexPc(), static_cast<uint32_t>(-1));
uint32_t method_index = code_info.GetMethodIndexOf(inline_info);
ArtMethod* inlined_method = class_linker->LookupResolvedMethod(method_index,
method->GetDexCache(),
method->GetClassLoader());
if (UNLIKELY(inlined_method == nullptr)) {
LOG(FATAL) << "Could not find an inlined method from an .oat file: "
<< method->GetDexFile()->PrettyMethod(method_index) << " . "
<< "This must be due to duplicate classes or playing wrongly with class loaders";
UNREACHABLE();
}
DCHECK(!inlined_method->IsRuntimeMethod());
if (UNLIKELY(inlined_method->GetDexFile() != method->GetDexFile())) {
// TODO: We could permit inlining within a multi-dex oat file and the boot image,
// even going back from boot image methods to the same oat file. However, this is
// not currently implemented in the compiler. Therefore crossing dex file boundary
// indicates that the inlined definition is not the same as the one used at runtime.
LOG(FATAL) << "Inlined method resolution crossed dex file boundary: from "
<< method->PrettyMethod()
<< " in " << method->GetDexFile()->GetLocation() << "/"
<< static_cast<const void*>(method->GetDexFile())
<< " to " << inlined_method->PrettyMethod()
<< " in " << inlined_method->GetDexFile()->GetLocation() << "/"
<< static_cast<const void*>(inlined_method->GetDexFile()) << ". "
<< "This must be due to duplicate classes or playing wrongly with class loaders";
UNREACHABLE();
}
method = inlined_method;
}
return method;
}
ALWAYS_INLINE inline mirror::Class* CheckObjectAlloc(mirror::Class* klass,
Thread* self,
bool* slow_path)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!Roles::uninterruptible_) {
if (UNLIKELY(!klass->IsInstantiable())) {
self->ThrowNewException("Ljava/lang/InstantiationError;", klass->PrettyDescriptor().c_str());
*slow_path = true;
return nullptr; // Failure
}
if (UNLIKELY(klass->IsClassClass())) {
ThrowIllegalAccessError(nullptr, "Class %s is inaccessible",
klass->PrettyDescriptor().c_str());
*slow_path = true;
return nullptr; // Failure
}
if (UNLIKELY(!klass->IsInitialized())) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_klass(hs.NewHandle(klass));
// EnsureInitialized (the class initializer) might cause a GC.
// may cause us to suspend meaning that another thread may try to
// change the allocator while we are stuck in the entrypoints of
// an old allocator. Also, the class initialization may fail. To
// handle these cases we mark the slow path boolean as true so
// that the caller knows to check the allocator type to see if it
// has changed and to null-check the return value in case the
// initialization fails.
*slow_path = true;
if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_klass, true, true)) {
DCHECK(self->IsExceptionPending());
return nullptr; // Failure
} else {
DCHECK(!self->IsExceptionPending());
}
return h_klass.Get();
}
return klass;
}
ALWAYS_INLINE
inline mirror::Class* CheckClassInitializedForObjectAlloc(mirror::Class* klass,
Thread* self,
bool* slow_path)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!Roles::uninterruptible_) {
if (UNLIKELY(!klass->IsInitialized())) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(klass));
// EnsureInitialized (the class initializer) might cause a GC.
// may cause us to suspend meaning that another thread may try to
// change the allocator while we are stuck in the entrypoints of
// an old allocator. Also, the class initialization may fail. To
// handle these cases we mark the slow path boolean as true so
// that the caller knows to check the allocator type to see if it
// has changed and to null-check the return value in case the
// initialization fails.
*slow_path = true;
if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
DCHECK(self->IsExceptionPending());
return nullptr; // Failure
}
return h_class.Get();
}
return klass;
}
// Allocate an instance of klass. Throws InstantationError if klass is not instantiable,
// or IllegalAccessError if klass is j.l.Class. Performs a clinit check too.
template <bool kInstrumented>
ALWAYS_INLINE
inline mirror::Object* AllocObjectFromCode(mirror::Class* klass,
Thread* self,
gc::AllocatorType allocator_type) {
bool slow_path = false;
klass = CheckObjectAlloc(klass, self, &slow_path);
if (UNLIKELY(slow_path)) {
if (klass == nullptr) {
return nullptr;
}
// CheckObjectAlloc can cause thread suspension which means we may now be instrumented.
return klass->Alloc</*kInstrumented*/true>(
self,
Runtime::Current()->GetHeap()->GetCurrentAllocator()).Ptr();
}
DCHECK(klass != nullptr);
return klass->Alloc<kInstrumented>(self, allocator_type).Ptr();
}
// Given the context of a calling Method and a resolved class, create an instance.
template <bool kInstrumented>
ALWAYS_INLINE
inline mirror::Object* AllocObjectFromCodeResolved(mirror::Class* klass,
Thread* self,
gc::AllocatorType allocator_type) {
DCHECK(klass != nullptr);
bool slow_path = false;
klass = CheckClassInitializedForObjectAlloc(klass, self, &slow_path);
if (UNLIKELY(slow_path)) {
if (klass == nullptr) {
return nullptr;
}
gc::Heap* heap = Runtime::Current()->GetHeap();
// Pass in false since the object cannot be finalizable.
// CheckClassInitializedForObjectAlloc can cause thread suspension which means we may now be
// instrumented.
return klass->Alloc</*kInstrumented*/true, false>(self, heap->GetCurrentAllocator()).Ptr();
}
// Pass in false since the object cannot be finalizable.
return klass->Alloc<kInstrumented, false>(self, allocator_type).Ptr();
}
// Given the context of a calling Method and an initialized class, create an instance.
template <bool kInstrumented>
ALWAYS_INLINE
inline mirror::Object* AllocObjectFromCodeInitialized(mirror::Class* klass,
Thread* self,
gc::AllocatorType allocator_type) {
DCHECK(klass != nullptr);
// Pass in false since the object cannot be finalizable.
return klass->Alloc<kInstrumented, false>(self, allocator_type).Ptr();
}
template <bool kAccessCheck>
ALWAYS_INLINE
inline mirror::Class* CheckArrayAlloc(dex::TypeIndex type_idx,
int32_t component_count,
ArtMethod* method,
bool* slow_path) {
if (UNLIKELY(component_count < 0)) {
ThrowNegativeArraySizeException(component_count);
*slow_path = true;
return nullptr; // Failure
}
ObjPtr<mirror::Class> klass = method->GetDexCache()->GetResolvedType(type_idx);
if (UNLIKELY(klass == nullptr)) { // Not in dex cache so try to resolve
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
klass = class_linker->ResolveType(type_idx, method);
*slow_path = true;
if (klass == nullptr) { // Error
DCHECK(Thread::Current()->IsExceptionPending());
return nullptr; // Failure
}
CHECK(klass->IsArrayClass()) << klass->PrettyClass();
}
if (kAccessCheck) {
ObjPtr<mirror::Class> referrer = method->GetDeclaringClass();
if (UNLIKELY(!referrer->CanAccess(klass))) {
ThrowIllegalAccessErrorClass(referrer, klass);
*slow_path = true;
return nullptr; // Failure
}
}
return klass.Ptr();
}
// Given the context of a calling Method, use its DexCache to resolve a type to an array Class. If
// it cannot be resolved, throw an error. If it can, use it to create an array.
// When verification/compiler hasn't been able to verify access, optionally perform an access
// check.
template <bool kAccessCheck, bool kInstrumented>
ALWAYS_INLINE
inline ObjPtr<mirror::Array> AllocArrayFromCode(dex::TypeIndex type_idx,
int32_t component_count,
ArtMethod* method,
Thread* self,
gc::AllocatorType allocator_type) {
bool slow_path = false;
ObjPtr<mirror::Class> klass =
CheckArrayAlloc<kAccessCheck>(type_idx, component_count, method, &slow_path);
if (UNLIKELY(slow_path)) {
if (klass == nullptr) {
return nullptr;
}
gc::Heap* heap = Runtime::Current()->GetHeap();
// CheckArrayAlloc can cause thread suspension which means we may now be instrumented.
return mirror::Array::Alloc</*kInstrumented*/true>(self,
klass,
component_count,
klass->GetComponentSizeShift(),
heap->GetCurrentAllocator());
}
return mirror::Array::Alloc<kInstrumented>(self, klass, component_count,
klass->GetComponentSizeShift(), allocator_type);
}
template <bool kInstrumented>
ALWAYS_INLINE
inline mirror::Array* AllocArrayFromCodeResolved(mirror::Class* klass,
int32_t component_count,
Thread* self,
gc::AllocatorType allocator_type) {
DCHECK(klass != nullptr);
if (UNLIKELY(component_count < 0)) {
ThrowNegativeArraySizeException(component_count);
return nullptr; // Failure
}
// No need to retry a slow-path allocation as the above code won't cause a GC or thread
// suspension.
return mirror::Array::Alloc<kInstrumented>(self, klass, component_count,
klass->GetComponentSizeShift(), allocator_type).Ptr();
}
template<FindFieldType type, bool access_check>
inline ArtField* FindFieldFromCode(uint32_t field_idx,
ArtMethod* referrer,
Thread* self,
size_t expected_size) {
constexpr bool is_primitive = (type & FindFieldFlags::PrimitiveBit) != 0;
constexpr bool is_set = (type & FindFieldFlags::WriteBit) != 0;
constexpr bool is_static = (type & FindFieldFlags::StaticBit) != 0;
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ArtField* resolved_field;
if (access_check) {
// Slow path: According to JLS 13.4.8, a linkage error may occur if a compile-time
// qualifying type of a field and the resolved run-time qualifying type of a field differed
// in their static-ness.
//
// In particular, don't assume the dex instruction already correctly knows if the
// real field is static or not. The resolution must not be aware of this.
ArtMethod* method = referrer->GetInterfaceMethodIfProxy(kRuntimePointerSize);
StackHandleScope<2> hs(self);
Handle<mirror::DexCache> h_dex_cache(hs.NewHandle(method->GetDexCache()));
Handle<mirror::ClassLoader> h_class_loader(hs.NewHandle(method->GetClassLoader()));
resolved_field = class_linker->ResolveFieldJLS(field_idx,
h_dex_cache,
h_class_loader);
} else {
// Fast path: Verifier already would've called ResolveFieldJLS and we wouldn't
// be executing here if there was a static/non-static mismatch.
resolved_field = class_linker->ResolveField(field_idx, referrer, is_static);
}
if (UNLIKELY(resolved_field == nullptr)) {
DCHECK(self->IsExceptionPending()); // Throw exception and unwind.
return nullptr; // Failure.
}
ObjPtr<mirror::Class> fields_class = resolved_field->GetDeclaringClass();
if (access_check) {
if (UNLIKELY(resolved_field->IsStatic() != is_static)) {
ThrowIncompatibleClassChangeErrorField(resolved_field, is_static, referrer);
return nullptr;
}
ObjPtr<mirror::Class> referring_class = referrer->GetDeclaringClass();
if (UNLIKELY(!referring_class->CheckResolvedFieldAccess(fields_class,
resolved_field,
referrer->GetDexCache(),
field_idx))) {
DCHECK(self->IsExceptionPending()); // Throw exception and unwind.
return nullptr; // Failure.
}
if (UNLIKELY(is_set && resolved_field->IsFinal() && (fields_class != referring_class))) {
ThrowIllegalAccessErrorFinalField(referrer, resolved_field);
return nullptr; // Failure.
} else {
if (UNLIKELY(resolved_field->IsPrimitiveType() != is_primitive ||
resolved_field->FieldSize() != expected_size)) {
self->ThrowNewExceptionF("Ljava/lang/NoSuchFieldError;",
"Attempted read of %zd-bit %s on field '%s'",
expected_size * (32 / sizeof(int32_t)),
is_primitive ? "primitive" : "non-primitive",
resolved_field->PrettyField(true).c_str());
return nullptr; // Failure.
}
}
}
if (!is_static) {
// instance fields must be being accessed on an initialized class
return resolved_field;
} else {
// If the class is initialized we're done.
if (LIKELY(fields_class->IsInitialized())) {
return resolved_field;
} else {
StackHandleScope<1> hs(self);
if (LIKELY(class_linker->EnsureInitialized(self, hs.NewHandle(fields_class), true, true))) {
// Otherwise let's ensure the class is initialized before resolving the field.
return resolved_field;
}
DCHECK(self->IsExceptionPending()); // Throw exception and unwind
return nullptr; // Failure.
}
}
}
// Explicit template declarations of FindFieldFromCode for all field access types.
#define EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, _access_check) \
template REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE \
ArtField* FindFieldFromCode<_type, _access_check>(uint32_t field_idx, \
ArtMethod* referrer, \
Thread* self, size_t expected_size) \
#define EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(_type) \
EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, false); \
EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, true)
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstanceObjectRead);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstanceObjectWrite);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstancePrimitiveRead);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstancePrimitiveWrite);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticObjectRead);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticObjectWrite);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticPrimitiveRead);
EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticPrimitiveWrite);
#undef EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL
#undef EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL
// Follow virtual/interface indirections if applicable.
// Will throw null-pointer exception the if the object is null.
template<InvokeType type, bool access_check>
ALWAYS_INLINE ArtMethod* FindMethodToCall(uint32_t method_idx,
ArtMethod* resolved_method,
ObjPtr<mirror::Object>* this_object,
ArtMethod* referrer,
Thread* self)
REQUIRES_SHARED(Locks::mutator_lock_) {
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
// Null pointer check.
if (UNLIKELY(*this_object == nullptr && type != kStatic)) {
if (UNLIKELY(resolved_method->GetDeclaringClass()->IsStringClass() &&
resolved_method->IsConstructor())) {
// Hack for String init:
//
// We assume that the input of String.<init> in verified code is always
// an unitialized reference. If it is a null constant, it must have been
// optimized out by the compiler. Do not throw NullPointerException.
} else {
// Maintain interpreter-like semantics where NullPointerException is thrown
// after potential NoSuchMethodError from class linker.
ThrowNullPointerExceptionForMethodAccess(method_idx, type);
return nullptr; // Failure.
}
}
switch (type) {
case kStatic:
case kDirect:
return resolved_method;
case kVirtual: {
ObjPtr<mirror::Class> klass = (*this_object)->GetClass();
uint16_t vtable_index = resolved_method->GetMethodIndex();
if (access_check &&
(!klass->HasVTable() ||
vtable_index >= static_cast<uint32_t>(klass->GetVTableLength()))) {
// Behavior to agree with that of the verifier.
ThrowNoSuchMethodError(type, resolved_method->GetDeclaringClass(),
resolved_method->GetName(), resolved_method->GetSignature());
return nullptr; // Failure.
}
DCHECK(klass->HasVTable()) << klass->PrettyClass();
return klass->GetVTableEntry(vtable_index, class_linker->GetImagePointerSize());
}
case kSuper: {
// TODO This lookup is quite slow.
// NB This is actually quite tricky to do any other way. We cannot use GetDeclaringClass since
// that will actually not be what we want in some cases where there are miranda methods or
// defaults. What we actually need is a GetContainingClass that says which classes virtuals
// this method is coming from.
StackHandleScope<2> hs2(self);
HandleWrapperObjPtr<mirror::Object> h_this(hs2.NewHandleWrapper(this_object));
Handle<mirror::Class> h_referring_class(hs2.NewHandle(referrer->GetDeclaringClass()));
const dex::TypeIndex method_type_idx =
referrer->GetDexFile()->GetMethodId(method_idx).class_idx_;
ObjPtr<mirror::Class> method_reference_class =
class_linker->ResolveType(method_type_idx, referrer);
if (UNLIKELY(method_reference_class == nullptr)) {
// Bad type idx.
CHECK(self->IsExceptionPending());
return nullptr;
} else if (!method_reference_class->IsInterface()) {
// It is not an interface. If the referring class is in the class hierarchy of the
// referenced class in the bytecode, we use its super class. Otherwise, we throw
// a NoSuchMethodError.
ObjPtr<mirror::Class> super_class = nullptr;
if (method_reference_class->IsAssignableFrom(h_referring_class.Get())) {
super_class = h_referring_class->GetSuperClass();
}
uint16_t vtable_index = resolved_method->GetMethodIndex();
if (access_check) {
// Check existence of super class.
if (super_class == nullptr ||
!super_class->HasVTable() ||
vtable_index >= static_cast<uint32_t>(super_class->GetVTableLength())) {
// Behavior to agree with that of the verifier.
ThrowNoSuchMethodError(type, resolved_method->GetDeclaringClass(),
resolved_method->GetName(), resolved_method->GetSignature());
return nullptr; // Failure.
}
}
DCHECK(super_class != nullptr);
DCHECK(super_class->HasVTable());
return super_class->GetVTableEntry(vtable_index, class_linker->GetImagePointerSize());
} else {
// It is an interface.
if (access_check) {
if (!method_reference_class->IsAssignableFrom(h_this->GetClass())) {
ThrowIncompatibleClassChangeErrorClassForInterfaceSuper(resolved_method,
method_reference_class,
h_this.Get(),
referrer);
return nullptr; // Failure.
}
}
// TODO We can do better than this for a (compiled) fastpath.
ArtMethod* result = method_reference_class->FindVirtualMethodForInterfaceSuper(
resolved_method, class_linker->GetImagePointerSize());
// Throw an NSME if nullptr;
if (result == nullptr) {
ThrowNoSuchMethodError(type, resolved_method->GetDeclaringClass(),
resolved_method->GetName(), resolved_method->GetSignature());
}
return result;
}
UNREACHABLE();
}
case kInterface: {
uint32_t imt_index = ImTable::GetImtIndex(resolved_method);
PointerSize pointer_size = class_linker->GetImagePointerSize();
ObjPtr<mirror::Class> klass = (*this_object)->GetClass();
ArtMethod* imt_method = klass->GetImt(pointer_size)->Get(imt_index, pointer_size);
if (!imt_method->IsRuntimeMethod()) {
if (kIsDebugBuild) {
ArtMethod* method = klass->FindVirtualMethodForInterface(
resolved_method, class_linker->GetImagePointerSize());
CHECK_EQ(imt_method, method) << ArtMethod::PrettyMethod(resolved_method) << " / "
<< imt_method->PrettyMethod() << " / "
<< ArtMethod::PrettyMethod(method) << " / "
<< klass->PrettyClass();
}
return imt_method;
} else {
ArtMethod* interface_method = klass->FindVirtualMethodForInterface(
resolved_method, class_linker->GetImagePointerSize());
if (UNLIKELY(interface_method == nullptr)) {
ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(resolved_method,
*this_object, referrer);
return nullptr; // Failure.
}
return interface_method;
}
}
default:
LOG(FATAL) << "Unknown invoke type " << type;
return nullptr; // Failure.
}
}
template<InvokeType type, bool access_check>
inline ArtMethod* FindMethodFromCode(uint32_t method_idx,
ObjPtr<mirror::Object>* this_object,
ArtMethod* referrer,
Thread* self) {
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
constexpr ClassLinker::ResolveMode resolve_mode =
access_check ? ClassLinker::ResolveMode::kCheckICCEAndIAE
: ClassLinker::ResolveMode::kNoChecks;
ArtMethod* resolved_method;
if (type == kStatic) {
resolved_method = class_linker->ResolveMethod<resolve_mode>(self, method_idx, referrer, type);
} else {
StackHandleScope<1> hs(self);
HandleWrapperObjPtr<mirror::Object> h_this(hs.NewHandleWrapper(this_object));
resolved_method = class_linker->ResolveMethod<resolve_mode>(self, method_idx, referrer, type);
}
if (UNLIKELY(resolved_method == nullptr)) {
DCHECK(self->IsExceptionPending()); // Throw exception and unwind.
return nullptr; // Failure.
}
return FindMethodToCall<type, access_check>(
method_idx, resolved_method, this_object, referrer, self);
}
// Explicit template declarations of FindMethodFromCode for all invoke types.
#define EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL(_type, _access_check) \
template REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE \
ArtMethod* FindMethodFromCode<_type, _access_check>(uint32_t method_idx, \
ObjPtr<mirror::Object>* this_object, \
ArtMethod* referrer, \
Thread* self)
#define EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(_type) \
EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL(_type, false); \
EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL(_type, true)
EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kStatic);
EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kDirect);
EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kVirtual);
EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kSuper);
EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kInterface);
#undef EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL
#undef EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL
// Fast path field resolution that can't initialize classes or throw exceptions.
inline ArtField* FindFieldFast(uint32_t field_idx, ArtMethod* referrer, FindFieldType type,
size_t expected_size) {
ScopedAssertNoThreadSuspension ants(__FUNCTION__);
ArtField* resolved_field =
referrer->GetDexCache()->GetResolvedField(field_idx, kRuntimePointerSize);
if (UNLIKELY(resolved_field == nullptr)) {
return nullptr;
}
// Check for incompatible class change.
const bool is_primitive = (type & FindFieldFlags::PrimitiveBit) != 0;
const bool is_set = (type & FindFieldFlags::WriteBit) != 0;
const bool is_static = (type & FindFieldFlags::StaticBit) != 0;
if (UNLIKELY(resolved_field->IsStatic() != is_static)) {
// Incompatible class change.
return nullptr;
}
ObjPtr<mirror::Class> fields_class = resolved_field->GetDeclaringClass();
if (is_static) {
// Check class is initialized else fail so that we can contend to initialize the class with
// other threads that may be racing to do this.
if (UNLIKELY(!fields_class->IsInitialized())) {
return nullptr;
}
}
ObjPtr<mirror::Class> referring_class = referrer->GetDeclaringClass();
if (UNLIKELY(!referring_class->CanAccess(fields_class) ||
!referring_class->CanAccessMember(fields_class, resolved_field->GetAccessFlags()) ||
(is_set && resolved_field->IsFinal() && (fields_class != referring_class)))) {
// Illegal access.
return nullptr;
}
if (UNLIKELY(resolved_field->IsPrimitiveType() != is_primitive ||
resolved_field->FieldSize() != expected_size)) {
return nullptr;
}
return resolved_field;
}
// Fast path method resolution that can't throw exceptions.
template <InvokeType type, bool access_check>
inline ArtMethod* FindMethodFast(uint32_t method_idx,
ObjPtr<mirror::Object> this_object,
ArtMethod* referrer) {
ScopedAssertNoThreadSuspension ants(__FUNCTION__);
if (UNLIKELY(this_object == nullptr && type != kStatic)) {
return nullptr;
}
ObjPtr<mirror::Class> referring_class = referrer->GetDeclaringClass();
ObjPtr<mirror::DexCache> dex_cache = referrer->GetDexCache();
constexpr ClassLinker::ResolveMode resolve_mode = access_check
? ClassLinker::ResolveMode::kCheckICCEAndIAE
: ClassLinker::ResolveMode::kNoChecks;
ClassLinker* linker = Runtime::Current()->GetClassLinker();
ArtMethod* resolved_method = linker->GetResolvedMethod<type, resolve_mode>(method_idx, referrer);
if (UNLIKELY(resolved_method == nullptr)) {
return nullptr;
}
if (type == kInterface) { // Most common form of slow path dispatch.
return this_object->GetClass()->FindVirtualMethodForInterface(resolved_method,
kRuntimePointerSize);
} else if (type == kStatic || type == kDirect) {
return resolved_method;
} else if (type == kSuper) {
// TODO This lookup is rather slow.
dex::TypeIndex method_type_idx = dex_cache->GetDexFile()->GetMethodId(method_idx).class_idx_;
ObjPtr<mirror::Class> method_reference_class = linker->LookupResolvedType(
method_type_idx, dex_cache, referrer->GetClassLoader());
if (method_reference_class == nullptr) {
// Need to do full type resolution...
return nullptr;
} else if (!method_reference_class->IsInterface()) {
// It is not an interface. If the referring class is in the class hierarchy of the
// referenced class in the bytecode, we use its super class. Otherwise, we cannot
// resolve the method.
if (!method_reference_class->IsAssignableFrom(referring_class)) {
return nullptr;
}
ObjPtr<mirror::Class> super_class = referring_class->GetSuperClass();
if (resolved_method->GetMethodIndex() >= super_class->GetVTableLength()) {
// The super class does not have the method.
return nullptr;
}
return super_class->GetVTableEntry(resolved_method->GetMethodIndex(), kRuntimePointerSize);
} else {
return method_reference_class->FindVirtualMethodForInterfaceSuper(
resolved_method, kRuntimePointerSize);
}
} else {
DCHECK(type == kVirtual);
return this_object->GetClass()->GetVTableEntry(
resolved_method->GetMethodIndex(), kRuntimePointerSize);
}
}
inline ObjPtr<mirror::Class> ResolveVerifyAndClinit(dex::TypeIndex type_idx,
ArtMethod* referrer,
Thread* self,
bool can_run_clinit,
bool verify_access) {
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
ObjPtr<mirror::Class> klass = class_linker->ResolveType(type_idx, referrer);
if (UNLIKELY(klass == nullptr)) {
CHECK(self->IsExceptionPending());
return nullptr; // Failure - Indicate to caller to deliver exception
}
// Perform access check if necessary.
ObjPtr<mirror::Class> referring_class = referrer->GetDeclaringClass();
if (verify_access && UNLIKELY(!referring_class->CanAccess(klass))) {
ThrowIllegalAccessErrorClass(referring_class, klass);
return nullptr; // Failure - Indicate to caller to deliver exception
}
// If we're just implementing const-class, we shouldn't call <clinit>.
if (!can_run_clinit) {
return klass;
}
// If we are the <clinit> of this class, just return our storage.
//
// Do not set the DexCache InitializedStaticStorage, since that implies <clinit> has finished
// running.
if (klass == referring_class && referrer->IsConstructor() && referrer->IsStatic()) {
return klass;
}
StackHandleScope<1> hs(self);
Handle<mirror::Class> h_class(hs.NewHandle(klass));
if (!class_linker->EnsureInitialized(self, h_class, true, true)) {
CHECK(self->IsExceptionPending());
return nullptr; // Failure - Indicate to caller to deliver exception
}
return h_class.Get();
}
inline void UnlockJniSynchronizedMethod(jobject locked, Thread* self) {
// Save any pending exception over monitor exit call.
mirror::Throwable* saved_exception = nullptr;
if (UNLIKELY(self->IsExceptionPending())) {
saved_exception = self->GetException();
self->ClearException();
}
// Decode locked object and unlock, before popping local references.
self->DecodeJObject(locked)->MonitorExit(self);
if (UNLIKELY(self->IsExceptionPending())) {
LOG(FATAL) << "Synchronized JNI code returning with an exception:\n"
<< saved_exception->Dump()
<< "\nEncountered second exception during implicit MonitorExit:\n"
<< self->GetException()->Dump();
}
// Restore pending exception.
if (saved_exception != nullptr) {
self->SetException(saved_exception);
}
}
template <typename INT_TYPE, typename FLOAT_TYPE>
inline INT_TYPE art_float_to_integral(FLOAT_TYPE f) {
const INT_TYPE kMaxInt = static_cast<INT_TYPE>(std::numeric_limits<INT_TYPE>::max());
const INT_TYPE kMinInt = static_cast<INT_TYPE>(std::numeric_limits<INT_TYPE>::min());
const FLOAT_TYPE kMaxIntAsFloat = static_cast<FLOAT_TYPE>(kMaxInt);
const FLOAT_TYPE kMinIntAsFloat = static_cast<FLOAT_TYPE>(kMinInt);
if (LIKELY(f > kMinIntAsFloat)) {
if (LIKELY(f < kMaxIntAsFloat)) {
return static_cast<INT_TYPE>(f);
} else {
return kMaxInt;
}
} else {
return (f != f) ? 0 : kMinInt; // f != f implies NaN
}
}
} // namespace art
#endif // ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_