| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "code_generator_x86_64.h" |
| |
| #include "art_method.h" |
| #include "code_generator_utils.h" |
| #include "compiled_method.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "gc/accounting/card_table.h" |
| #include "intrinsics.h" |
| #include "intrinsics_x86_64.h" |
| #include "lock_word.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/object_reference.h" |
| #include "thread.h" |
| #include "utils/assembler.h" |
| #include "utils/stack_checks.h" |
| #include "utils/x86_64/assembler_x86_64.h" |
| #include "utils/x86_64/managed_register_x86_64.h" |
| |
| namespace art { |
| |
| template<class MirrorType> |
| class GcRoot; |
| |
| namespace x86_64 { |
| |
| static constexpr int kCurrentMethodStackOffset = 0; |
| static constexpr Register kMethodRegisterArgument = RDI; |
| // The compare/jump sequence will generate about (1.5 * num_entries) instructions. A jump |
| // table version generates 7 instructions and num_entries literals. Compare/jump sequence will |
| // generates less code/data with a small num_entries. |
| static constexpr uint32_t kPackedSwitchJumpTableThreshold = 5; |
| |
| static constexpr Register kCoreCalleeSaves[] = { RBX, RBP, R12, R13, R14, R15 }; |
| static constexpr FloatRegister kFpuCalleeSaves[] = { XMM12, XMM13, XMM14, XMM15 }; |
| |
| static constexpr int kC2ConditionMask = 0x400; |
| |
| // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. |
| #define __ down_cast<X86_64Assembler*>(codegen->GetAssembler())-> // NOLINT |
| #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kX86_64PointerSize, x).Int32Value() |
| |
| class NullCheckSlowPathX86_64 : public SlowPathCode { |
| public: |
| explicit NullCheckSlowPathX86_64(HNullCheck* instruction) : SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| x86_64_codegen->InvokeRuntime(kQuickThrowNullPointer, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathX86_64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathX86_64); |
| }; |
| |
| class DivZeroCheckSlowPathX86_64 : public SlowPathCode { |
| public: |
| explicit DivZeroCheckSlowPathX86_64(HDivZeroCheck* instruction) : SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| x86_64_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathX86_64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathX86_64); |
| }; |
| |
| class DivRemMinusOneSlowPathX86_64 : public SlowPathCode { |
| public: |
| DivRemMinusOneSlowPathX86_64(HInstruction* at, Register reg, Primitive::Type type, bool is_div) |
| : SlowPathCode(at), cpu_reg_(CpuRegister(reg)), type_(type), is_div_(is_div) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| __ Bind(GetEntryLabel()); |
| if (type_ == Primitive::kPrimInt) { |
| if (is_div_) { |
| __ negl(cpu_reg_); |
| } else { |
| __ xorl(cpu_reg_, cpu_reg_); |
| } |
| |
| } else { |
| DCHECK_EQ(Primitive::kPrimLong, type_); |
| if (is_div_) { |
| __ negq(cpu_reg_); |
| } else { |
| __ xorl(cpu_reg_, cpu_reg_); |
| } |
| } |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "DivRemMinusOneSlowPathX86_64"; } |
| |
| private: |
| const CpuRegister cpu_reg_; |
| const Primitive::Type type_; |
| const bool is_div_; |
| DISALLOW_COPY_AND_ASSIGN(DivRemMinusOneSlowPathX86_64); |
| }; |
| |
| class SuspendCheckSlowPathX86_64 : public SlowPathCode { |
| public: |
| SuspendCheckSlowPathX86_64(HSuspendCheck* instruction, HBasicBlock* successor) |
| : SlowPathCode(instruction), successor_(successor) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); // Only saves full width XMM for SIMD. |
| x86_64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickTestSuspend, void, void>(); |
| RestoreLiveRegisters(codegen, locations); // Only restores full width XMM for SIMD. |
| if (successor_ == nullptr) { |
| __ jmp(GetReturnLabel()); |
| } else { |
| __ jmp(x86_64_codegen->GetLabelOf(successor_)); |
| } |
| } |
| |
| Label* GetReturnLabel() { |
| DCHECK(successor_ == nullptr); |
| return &return_label_; |
| } |
| |
| HBasicBlock* GetSuccessor() const { |
| return successor_; |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathX86_64"; } |
| |
| private: |
| HBasicBlock* const successor_; |
| Label return_label_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathX86_64); |
| }; |
| |
| class BoundsCheckSlowPathX86_64 : public SlowPathCode { |
| public: |
| explicit BoundsCheckSlowPathX86_64(HBoundsCheck* instruction) |
| : SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| // Are we using an array length from memory? |
| HInstruction* array_length = instruction_->InputAt(1); |
| Location length_loc = locations->InAt(1); |
| InvokeRuntimeCallingConvention calling_convention; |
| if (array_length->IsArrayLength() && array_length->IsEmittedAtUseSite()) { |
| // Load the array length into our temporary. |
| uint32_t len_offset = CodeGenerator::GetArrayLengthOffset(array_length->AsArrayLength()); |
| Location array_loc = array_length->GetLocations()->InAt(0); |
| Address array_len(array_loc.AsRegister<CpuRegister>(), len_offset); |
| length_loc = Location::RegisterLocation(calling_convention.GetRegisterAt(1)); |
| // Check for conflicts with index. |
| if (length_loc.Equals(locations->InAt(0))) { |
| // We know we aren't using parameter 2. |
| length_loc = Location::RegisterLocation(calling_convention.GetRegisterAt(2)); |
| } |
| __ movl(length_loc.AsRegister<CpuRegister>(), array_len); |
| if (mirror::kUseStringCompression) { |
| __ shrl(length_loc.AsRegister<CpuRegister>(), Immediate(1)); |
| } |
| } |
| |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| codegen->EmitParallelMoves( |
| locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimInt, |
| length_loc, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimInt); |
| QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() |
| ? kQuickThrowStringBounds |
| : kQuickThrowArrayBounds; |
| x86_64_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>(); |
| CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); |
| } |
| |
| bool IsFatal() const OVERRIDE { return true; } |
| |
| const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathX86_64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathX86_64); |
| }; |
| |
| class LoadClassSlowPathX86_64 : public SlowPathCode { |
| public: |
| LoadClassSlowPathX86_64(HLoadClass* cls, |
| HInstruction* at, |
| uint32_t dex_pc, |
| bool do_clinit) |
| : SlowPathCode(at), cls_(cls), dex_pc_(dex_pc), do_clinit_(do_clinit) { |
| DCHECK(at->IsLoadClass() || at->IsClinitCheck()); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| |
| SaveLiveRegisters(codegen, locations); |
| |
| // Custom calling convention: RAX serves as both input and output. |
| __ movl(CpuRegister(RAX), Immediate(cls_->GetTypeIndex().index_)); |
| x86_64_codegen->InvokeRuntime(do_clinit_ ? kQuickInitializeStaticStorage : kQuickInitializeType, |
| instruction_, |
| dex_pc_, |
| this); |
| if (do_clinit_) { |
| CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>(); |
| } else { |
| CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>(); |
| } |
| |
| Location out = locations->Out(); |
| // Move the class to the desired location. |
| if (out.IsValid()) { |
| DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); |
| x86_64_codegen->Move(out, Location::RegisterLocation(RAX)); |
| } |
| |
| RestoreLiveRegisters(codegen, locations); |
| // For HLoadClass/kBssEntry, store the resolved Class to the BSS entry. |
| DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_); |
| if (cls_ == instruction_ && cls_->GetLoadKind() == HLoadClass::LoadKind::kBssEntry) { |
| DCHECK(out.IsValid()); |
| __ movl(Address::Absolute(CodeGeneratorX86_64::kDummy32BitOffset, /* no_rip */ false), |
| locations->Out().AsRegister<CpuRegister>()); |
| Label* fixup_label = x86_64_codegen->NewTypeBssEntryPatch(cls_); |
| __ Bind(fixup_label); |
| } |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathX86_64"; } |
| |
| private: |
| // The class this slow path will load. |
| HLoadClass* const cls_; |
| |
| // The dex PC of `at_`. |
| const uint32_t dex_pc_; |
| |
| // Whether to initialize the class. |
| const bool do_clinit_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathX86_64); |
| }; |
| |
| class LoadStringSlowPathX86_64 : public SlowPathCode { |
| public: |
| explicit LoadStringSlowPathX86_64(HLoadString* instruction) : SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| |
| CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex(); |
| // Custom calling convention: RAX serves as both input and output. |
| __ movl(CpuRegister(RAX), Immediate(string_index.index_)); |
| x86_64_codegen->InvokeRuntime(kQuickResolveString, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| x86_64_codegen->Move(locations->Out(), Location::RegisterLocation(RAX)); |
| RestoreLiveRegisters(codegen, locations); |
| |
| // Store the resolved String to the BSS entry. |
| __ movl(Address::Absolute(CodeGeneratorX86_64::kDummy32BitOffset, /* no_rip */ false), |
| locations->Out().AsRegister<CpuRegister>()); |
| Label* fixup_label = x86_64_codegen->NewStringBssEntryPatch(instruction_->AsLoadString()); |
| __ Bind(fixup_label); |
| |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathX86_64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathX86_64); |
| }; |
| |
| class TypeCheckSlowPathX86_64 : public SlowPathCode { |
| public: |
| TypeCheckSlowPathX86_64(HInstruction* instruction, bool is_fatal) |
| : SlowPathCode(instruction), is_fatal_(is_fatal) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| uint32_t dex_pc = instruction_->GetDexPc(); |
| DCHECK(instruction_->IsCheckCast() |
| || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| |
| CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| |
| if (!is_fatal_) { |
| SaveLiveRegisters(codegen, locations); |
| } |
| |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| codegen->EmitParallelMoves(locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimNot, |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimNot); |
| if (instruction_->IsInstanceOf()) { |
| x86_64_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>(); |
| } else { |
| DCHECK(instruction_->IsCheckCast()); |
| x86_64_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>(); |
| } |
| |
| if (!is_fatal_) { |
| if (instruction_->IsInstanceOf()) { |
| x86_64_codegen->Move(locations->Out(), Location::RegisterLocation(RAX)); |
| } |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ jmp(GetExitLabel()); |
| } |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathX86_64"; } |
| |
| bool IsFatal() const OVERRIDE { return is_fatal_; } |
| |
| private: |
| const bool is_fatal_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathX86_64); |
| }; |
| |
| class DeoptimizationSlowPathX86_64 : public SlowPathCode { |
| public: |
| explicit DeoptimizationSlowPathX86_64(HDeoptimize* instruction) |
| : SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| LocationSummary* locations = instruction_->GetLocations(); |
| SaveLiveRegisters(codegen, locations); |
| InvokeRuntimeCallingConvention calling_convention; |
| x86_64_codegen->Load32BitValue( |
| CpuRegister(calling_convention.GetRegisterAt(0)), |
| static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind())); |
| x86_64_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>(); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathX86_64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathX86_64); |
| }; |
| |
| class ArraySetSlowPathX86_64 : public SlowPathCode { |
| public: |
| explicit ArraySetSlowPathX86_64(HInstruction* instruction) : SlowPathCode(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetArena()); |
| parallel_move.AddMove( |
| locations->InAt(0), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimNot, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(1), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimInt, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(2), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(2)), |
| Primitive::kPrimNot, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| |
| CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); |
| x86_64_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); |
| RestoreLiveRegisters(codegen, locations); |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathX86_64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathX86_64); |
| }; |
| |
| // Slow path marking an object reference `ref` during a read |
| // barrier. The field `obj.field` in the object `obj` holding this |
| // reference does not get updated by this slow path after marking (see |
| // ReadBarrierMarkAndUpdateFieldSlowPathX86_64 below for that). |
| // |
| // This means that after the execution of this slow path, `ref` will |
| // always be up-to-date, but `obj.field` may not; i.e., after the |
| // flip, `ref` will be a to-space reference, but `obj.field` will |
| // probably still be a from-space reference (unless it gets updated by |
| // another thread, or if another thread installed another object |
| // reference (different from `ref`) in `obj.field`). |
| class ReadBarrierMarkSlowPathX86_64 : public SlowPathCode { |
| public: |
| ReadBarrierMarkSlowPathX86_64(HInstruction* instruction, |
| Location ref, |
| bool unpoison_ref_before_marking) |
| : SlowPathCode(instruction), |
| ref_(ref), |
| unpoison_ref_before_marking_(unpoison_ref_before_marking) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathX86_64"; } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CpuRegister ref_cpu_reg = ref_.AsRegister<CpuRegister>(); |
| Register ref_reg = ref_cpu_reg.AsRegister(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsArraySet() || |
| instruction_->IsLoadClass() || |
| instruction_->IsLoadString() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast() || |
| (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) || |
| (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier marking slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| if (unpoison_ref_before_marking_) { |
| // Object* ref = ref_addr->AsMirrorPtr() |
| __ MaybeUnpoisonHeapReference(ref_cpu_reg); |
| } |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); |
| DCHECK_NE(ref_reg, RSP); |
| DCHECK(0 <= ref_reg && ref_reg < kNumberOfCpuRegisters) << ref_reg; |
| // "Compact" slow path, saving two moves. |
| // |
| // Instead of using the standard runtime calling convention (input |
| // and output in R0): |
| // |
| // RDI <- ref |
| // RAX <- ReadBarrierMark(RDI) |
| // ref <- RAX |
| // |
| // we just use rX (the register containing `ref`) as input and output |
| // of a dedicated entrypoint: |
| // |
| // rX <- ReadBarrierMarkRegX(rX) |
| // |
| int32_t entry_point_offset = |
| CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kX86_64PointerSize>(ref_reg); |
| // This runtime call does not require a stack map. |
| x86_64_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); |
| __ jmp(GetExitLabel()); |
| } |
| |
| private: |
| // The location (register) of the marked object reference. |
| const Location ref_; |
| // Should the reference in `ref_` be unpoisoned prior to marking it? |
| const bool unpoison_ref_before_marking_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathX86_64); |
| }; |
| |
| // Slow path marking an object reference `ref` during a read barrier, |
| // and if needed, atomically updating the field `obj.field` in the |
| // object `obj` holding this reference after marking (contrary to |
| // ReadBarrierMarkSlowPathX86_64 above, which never tries to update |
| // `obj.field`). |
| // |
| // This means that after the execution of this slow path, both `ref` |
| // and `obj.field` will be up-to-date; i.e., after the flip, both will |
| // hold the same to-space reference (unless another thread installed |
| // another object reference (different from `ref`) in `obj.field`). |
| class ReadBarrierMarkAndUpdateFieldSlowPathX86_64 : public SlowPathCode { |
| public: |
| ReadBarrierMarkAndUpdateFieldSlowPathX86_64(HInstruction* instruction, |
| Location ref, |
| CpuRegister obj, |
| const Address& field_addr, |
| bool unpoison_ref_before_marking, |
| CpuRegister temp1, |
| CpuRegister temp2) |
| : SlowPathCode(instruction), |
| ref_(ref), |
| obj_(obj), |
| field_addr_(field_addr), |
| unpoison_ref_before_marking_(unpoison_ref_before_marking), |
| temp1_(temp1), |
| temp2_(temp2) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| const char* GetDescription() const OVERRIDE { |
| return "ReadBarrierMarkAndUpdateFieldSlowPathX86_64"; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CpuRegister ref_cpu_reg = ref_.AsRegister<CpuRegister>(); |
| Register ref_reg = ref_cpu_reg.AsRegister(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; |
| // This slow path is only used by the UnsafeCASObject intrinsic. |
| DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier marking and field updating slow path: " |
| << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject); |
| |
| __ Bind(GetEntryLabel()); |
| if (unpoison_ref_before_marking_) { |
| // Object* ref = ref_addr->AsMirrorPtr() |
| __ MaybeUnpoisonHeapReference(ref_cpu_reg); |
| } |
| |
| // Save the old (unpoisoned) reference. |
| __ movl(temp1_, ref_cpu_reg); |
| |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); |
| DCHECK_NE(ref_reg, RSP); |
| DCHECK(0 <= ref_reg && ref_reg < kNumberOfCpuRegisters) << ref_reg; |
| // "Compact" slow path, saving two moves. |
| // |
| // Instead of using the standard runtime calling convention (input |
| // and output in R0): |
| // |
| // RDI <- ref |
| // RAX <- ReadBarrierMark(RDI) |
| // ref <- RAX |
| // |
| // we just use rX (the register containing `ref`) as input and output |
| // of a dedicated entrypoint: |
| // |
| // rX <- ReadBarrierMarkRegX(rX) |
| // |
| int32_t entry_point_offset = |
| CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kX86_64PointerSize>(ref_reg); |
| // This runtime call does not require a stack map. |
| x86_64_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); |
| |
| // If the new reference is different from the old reference, |
| // update the field in the holder (`*field_addr`). |
| // |
| // Note that this field could also hold a different object, if |
| // another thread had concurrently changed it. In that case, the |
| // LOCK CMPXCHGL instruction in the compare-and-set (CAS) |
| // operation below would abort the CAS, leaving the field as-is. |
| NearLabel done; |
| __ cmpl(temp1_, ref_cpu_reg); |
| __ j(kEqual, &done); |
| |
| // Update the the holder's field atomically. This may fail if |
| // mutator updates before us, but it's OK. This is achived |
| // using a strong compare-and-set (CAS) operation with relaxed |
| // memory synchronization ordering, where the expected value is |
| // the old reference and the desired value is the new reference. |
| // This operation is implemented with a 32-bit LOCK CMPXLCHG |
| // instruction, which requires the expected value (the old |
| // reference) to be in EAX. Save RAX beforehand, and move the |
| // expected value (stored in `temp1_`) into EAX. |
| __ movq(temp2_, CpuRegister(RAX)); |
| __ movl(CpuRegister(RAX), temp1_); |
| |
| // Convenience aliases. |
| CpuRegister base = obj_; |
| CpuRegister expected = CpuRegister(RAX); |
| CpuRegister value = ref_cpu_reg; |
| |
| bool base_equals_value = (base.AsRegister() == value.AsRegister()); |
| Register value_reg = ref_reg; |
| if (kPoisonHeapReferences) { |
| if (base_equals_value) { |
| // If `base` and `value` are the same register location, move |
| // `value_reg` to a temporary register. This way, poisoning |
| // `value_reg` won't invalidate `base`. |
| value_reg = temp1_.AsRegister(); |
| __ movl(CpuRegister(value_reg), base); |
| } |
| |
| // Check that the register allocator did not assign the location |
| // of `expected` (RAX) to `value` nor to `base`, so that heap |
| // poisoning (when enabled) works as intended below. |
| // - If `value` were equal to `expected`, both references would |
| // be poisoned twice, meaning they would not be poisoned at |
| // all, as heap poisoning uses address negation. |
| // - If `base` were equal to `expected`, poisoning `expected` |
| // would invalidate `base`. |
| DCHECK_NE(value_reg, expected.AsRegister()); |
| DCHECK_NE(base.AsRegister(), expected.AsRegister()); |
| |
| __ PoisonHeapReference(expected); |
| __ PoisonHeapReference(CpuRegister(value_reg)); |
| } |
| |
| __ LockCmpxchgl(field_addr_, CpuRegister(value_reg)); |
| |
| // If heap poisoning is enabled, we need to unpoison the values |
| // that were poisoned earlier. |
| if (kPoisonHeapReferences) { |
| if (base_equals_value) { |
| // `value_reg` has been moved to a temporary register, no need |
| // to unpoison it. |
| } else { |
| __ UnpoisonHeapReference(CpuRegister(value_reg)); |
| } |
| // No need to unpoison `expected` (RAX), as it is be overwritten below. |
| } |
| |
| // Restore RAX. |
| __ movq(CpuRegister(RAX), temp2_); |
| |
| __ Bind(&done); |
| __ jmp(GetExitLabel()); |
| } |
| |
| private: |
| // The location (register) of the marked object reference. |
| const Location ref_; |
| // The register containing the object holding the marked object reference field. |
| const CpuRegister obj_; |
| // The address of the marked reference field. The base of this address must be `obj_`. |
| const Address field_addr_; |
| |
| // Should the reference in `ref_` be unpoisoned prior to marking it? |
| const bool unpoison_ref_before_marking_; |
| |
| const CpuRegister temp1_; |
| const CpuRegister temp2_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathX86_64); |
| }; |
| |
| // Slow path generating a read barrier for a heap reference. |
| class ReadBarrierForHeapReferenceSlowPathX86_64 : public SlowPathCode { |
| public: |
| ReadBarrierForHeapReferenceSlowPathX86_64(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) |
| : SlowPathCode(instruction), |
| out_(out), |
| ref_(ref), |
| obj_(obj), |
| offset_(offset), |
| index_(index) { |
| DCHECK(kEmitCompilerReadBarrier); |
| // If `obj` is equal to `out` or `ref`, it means the initial |
| // object has been overwritten by (or after) the heap object |
| // reference load to be instrumented, e.g.: |
| // |
| // __ movl(out, Address(out, offset)); |
| // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); |
| // |
| // In that case, we have lost the information about the original |
| // object, and the emitted read barrier cannot work properly. |
| DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; |
| DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); |
| LocationSummary* locations = instruction_->GetLocations(); |
| CpuRegister reg_out = out_.AsRegister<CpuRegister>(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out.AsRegister())) << out_; |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast() || |
| (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier for heap reference slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| // We may have to change the index's value, but as `index_` is a |
| // constant member (like other "inputs" of this slow path), |
| // introduce a copy of it, `index`. |
| Location index = index_; |
| if (index_.IsValid()) { |
| // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. |
| if (instruction_->IsArrayGet()) { |
| // Compute real offset and store it in index_. |
| Register index_reg = index_.AsRegister<CpuRegister>().AsRegister(); |
| DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg)); |
| if (codegen->IsCoreCalleeSaveRegister(index_reg)) { |
| // We are about to change the value of `index_reg` (see the |
| // calls to art::x86_64::X86_64Assembler::shll and |
| // art::x86_64::X86_64Assembler::AddImmediate below), but it |
| // has not been saved by the previous call to |
| // art::SlowPathCode::SaveLiveRegisters, as it is a |
| // callee-save register -- |
| // art::SlowPathCode::SaveLiveRegisters does not consider |
| // callee-save registers, as it has been designed with the |
| // assumption that callee-save registers are supposed to be |
| // handled by the called function. So, as a callee-save |
| // register, `index_reg` _would_ eventually be saved onto |
| // the stack, but it would be too late: we would have |
| // changed its value earlier. Therefore, we manually save |
| // it here into another freely available register, |
| // `free_reg`, chosen of course among the caller-save |
| // registers (as a callee-save `free_reg` register would |
| // exhibit the same problem). |
| // |
| // Note we could have requested a temporary register from |
| // the register allocator instead; but we prefer not to, as |
| // this is a slow path, and we know we can find a |
| // caller-save register that is available. |
| Register free_reg = FindAvailableCallerSaveRegister(codegen).AsRegister(); |
| __ movl(CpuRegister(free_reg), CpuRegister(index_reg)); |
| index_reg = free_reg; |
| index = Location::RegisterLocation(index_reg); |
| } else { |
| // The initial register stored in `index_` has already been |
| // saved in the call to art::SlowPathCode::SaveLiveRegisters |
| // (as it is not a callee-save register), so we can freely |
| // use it. |
| } |
| // Shifting the index value contained in `index_reg` by the |
| // scale factor (2) cannot overflow in practice, as the |
| // runtime is unable to allocate object arrays with a size |
| // larger than 2^26 - 1 (that is, 2^28 - 4 bytes). |
| __ shll(CpuRegister(index_reg), Immediate(TIMES_4)); |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| __ AddImmediate(CpuRegister(index_reg), Immediate(offset_)); |
| } else { |
| // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile |
| // intrinsics, `index_` is not shifted by a scale factor of 2 |
| // (as in the case of ArrayGet), as it is actually an offset |
| // to an object field within an object. |
| DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) || |
| (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile)) |
| << instruction_->AsInvoke()->GetIntrinsic(); |
| DCHECK_EQ(offset_, 0U); |
| DCHECK(index_.IsRegister()); |
| } |
| } |
| |
| // We're moving two or three locations to locations that could |
| // overlap, so we need a parallel move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetArena()); |
| parallel_move.AddMove(ref_, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0)), |
| Primitive::kPrimNot, |
| nullptr); |
| parallel_move.AddMove(obj_, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(1)), |
| Primitive::kPrimNot, |
| nullptr); |
| if (index.IsValid()) { |
| parallel_move.AddMove(index, |
| Location::RegisterLocation(calling_convention.GetRegisterAt(2)), |
| Primitive::kPrimInt, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } else { |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| __ movl(CpuRegister(calling_convention.GetRegisterAt(2)), Immediate(offset_)); |
| } |
| x86_64_codegen->InvokeRuntime(kQuickReadBarrierSlow, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes< |
| kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); |
| x86_64_codegen->Move(out_, Location::RegisterLocation(RAX)); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { |
| return "ReadBarrierForHeapReferenceSlowPathX86_64"; |
| } |
| |
| private: |
| CpuRegister FindAvailableCallerSaveRegister(CodeGenerator* codegen) { |
| size_t ref = static_cast<int>(ref_.AsRegister<CpuRegister>().AsRegister()); |
| size_t obj = static_cast<int>(obj_.AsRegister<CpuRegister>().AsRegister()); |
| for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { |
| if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { |
| return static_cast<CpuRegister>(i); |
| } |
| } |
| // We shall never fail to find a free caller-save register, as |
| // there are more than two core caller-save registers on x86-64 |
| // (meaning it is possible to find one which is different from |
| // `ref` and `obj`). |
| DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); |
| LOG(FATAL) << "Could not find a free caller-save register"; |
| UNREACHABLE(); |
| } |
| |
| const Location out_; |
| const Location ref_; |
| const Location obj_; |
| const uint32_t offset_; |
| // An additional location containing an index to an array. |
| // Only used for HArrayGet and the UnsafeGetObject & |
| // UnsafeGetObjectVolatile intrinsics. |
| const Location index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathX86_64); |
| }; |
| |
| // Slow path generating a read barrier for a GC root. |
| class ReadBarrierForRootSlowPathX86_64 : public SlowPathCode { |
| public: |
| ReadBarrierForRootSlowPathX86_64(HInstruction* instruction, Location out, Location root) |
| : SlowPathCode(instruction), out_(out), root_(root) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg())); |
| DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) |
| << "Unexpected instruction in read barrier for GC root slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); |
| x86_64_codegen->Move(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_); |
| x86_64_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>(); |
| x86_64_codegen->Move(out_, Location::RegisterLocation(RAX)); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathX86_64"; } |
| |
| private: |
| const Location out_; |
| const Location root_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathX86_64); |
| }; |
| |
| #undef __ |
| // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. |
| #define __ down_cast<X86_64Assembler*>(GetAssembler())-> // NOLINT |
| |
| inline Condition X86_64IntegerCondition(IfCondition cond) { |
| switch (cond) { |
| case kCondEQ: return kEqual; |
| case kCondNE: return kNotEqual; |
| case kCondLT: return kLess; |
| case kCondLE: return kLessEqual; |
| case kCondGT: return kGreater; |
| case kCondGE: return kGreaterEqual; |
| case kCondB: return kBelow; |
| case kCondBE: return kBelowEqual; |
| case kCondA: return kAbove; |
| case kCondAE: return kAboveEqual; |
| } |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| // Maps FP condition to x86_64 name. |
| inline Condition X86_64FPCondition(IfCondition cond) { |
| switch (cond) { |
| case kCondEQ: return kEqual; |
| case kCondNE: return kNotEqual; |
| case kCondLT: return kBelow; |
| case kCondLE: return kBelowEqual; |
| case kCondGT: return kAbove; |
| case kCondGE: return kAboveEqual; |
| default: break; // should not happen |
| }; |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| HInvokeStaticOrDirect::DispatchInfo CodeGeneratorX86_64::GetSupportedInvokeStaticOrDirectDispatch( |
| const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, |
| HInvokeStaticOrDirect* invoke ATTRIBUTE_UNUSED) { |
| return desired_dispatch_info; |
| } |
| |
| void CodeGeneratorX86_64::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, |
| Location temp) { |
| // All registers are assumed to be correctly set up. |
| |
| Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. |
| switch (invoke->GetMethodLoadKind()) { |
| case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: { |
| // temp = thread->string_init_entrypoint |
| uint32_t offset = |
| GetThreadOffset<kX86_64PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value(); |
| __ gs()->movq(temp.AsRegister<CpuRegister>(), Address::Absolute(offset, /* no_rip */ true)); |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: |
| callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative: |
| DCHECK(GetCompilerOptions().IsBootImage()); |
| __ leal(temp.AsRegister<CpuRegister>(), |
| Address::Absolute(kDummy32BitOffset, /* no_rip */ false)); |
| RecordBootMethodPatch(invoke); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress: |
| Load64BitValue(temp.AsRegister<CpuRegister>(), invoke->GetMethodAddress()); |
| break; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: { |
| __ movq(temp.AsRegister<CpuRegister>(), |
| Address::Absolute(kDummy32BitOffset, /* no_rip */ false)); |
| // Bind a new fixup label at the end of the "movl" insn. |
| uint32_t offset = invoke->GetDexCacheArrayOffset(); |
| __ Bind(NewPcRelativeDexCacheArrayPatch(invoke->GetDexFileForPcRelativeDexCache(), offset)); |
| break; |
| } |
| case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: { |
| Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); |
| Register method_reg; |
| CpuRegister reg = temp.AsRegister<CpuRegister>(); |
| if (current_method.IsRegister()) { |
| method_reg = current_method.AsRegister<Register>(); |
| } else { |
| DCHECK(invoke->GetLocations()->Intrinsified()); |
| DCHECK(!current_method.IsValid()); |
| method_reg = reg.AsRegister(); |
| __ movq(reg, Address(CpuRegister(RSP), kCurrentMethodStackOffset)); |
| } |
| // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_; |
| __ movq(reg, |
| Address(CpuRegister(method_reg), |
| ArtMethod::DexCacheResolvedMethodsOffset(kX86_64PointerSize).SizeValue())); |
| // temp = temp[index_in_cache]; |
| // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file. |
| uint32_t index_in_cache = invoke->GetDexMethodIndex(); |
| __ movq(reg, Address(reg, CodeGenerator::GetCachePointerOffset(index_in_cache))); |
| break; |
| } |
| } |
| |
| switch (invoke->GetCodePtrLocation()) { |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf: |
| __ call(&frame_entry_label_); |
| break; |
| case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod: |
| // (callee_method + offset_of_quick_compiled_code)() |
| __ call(Address(callee_method.AsRegister<CpuRegister>(), |
| ArtMethod::EntryPointFromQuickCompiledCodeOffset( |
| kX86_64PointerSize).SizeValue())); |
| break; |
| } |
| |
| DCHECK(!IsLeafMethod()); |
| } |
| |
| void CodeGeneratorX86_64::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_in) { |
| CpuRegister temp = temp_in.AsRegister<CpuRegister>(); |
| size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| invoke->GetVTableIndex(), kX86_64PointerSize).SizeValue(); |
| |
| // Use the calling convention instead of the location of the receiver, as |
| // intrinsics may have put the receiver in a different register. In the intrinsics |
| // slow path, the arguments have been moved to the right place, so here we are |
| // guaranteed that the receiver is the first register of the calling convention. |
| InvokeDexCallingConvention calling_convention; |
| Register receiver = calling_convention.GetRegisterAt(0); |
| |
| size_t class_offset = mirror::Object::ClassOffset().SizeValue(); |
| // /* HeapReference<Class> */ temp = receiver->klass_ |
| __ movl(temp, Address(CpuRegister(receiver), class_offset)); |
| MaybeRecordImplicitNullCheck(invoke); |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| __ MaybeUnpoisonHeapReference(temp); |
| // temp = temp->GetMethodAt(method_offset); |
| __ movq(temp, Address(temp, method_offset)); |
| // call temp->GetEntryPoint(); |
| __ call(Address(temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset( |
| kX86_64PointerSize).SizeValue())); |
| } |
| |
| void CodeGeneratorX86_64::RecordBootMethodPatch(HInvokeStaticOrDirect* invoke) { |
| boot_image_method_patches_.emplace_back(*invoke->GetTargetMethod().dex_file, |
| invoke->GetTargetMethod().dex_method_index); |
| __ Bind(&boot_image_method_patches_.back().label); |
| } |
| |
| void CodeGeneratorX86_64::RecordBootTypePatch(HLoadClass* load_class) { |
| boot_image_type_patches_.emplace_back(load_class->GetDexFile(), |
| load_class->GetTypeIndex().index_); |
| __ Bind(&boot_image_type_patches_.back().label); |
| } |
| |
| Label* CodeGeneratorX86_64::NewTypeBssEntryPatch(HLoadClass* load_class) { |
| type_bss_entry_patches_.emplace_back(load_class->GetDexFile(), load_class->GetTypeIndex().index_); |
| return &type_bss_entry_patches_.back().label; |
| } |
| |
| void CodeGeneratorX86_64::RecordBootStringPatch(HLoadString* load_string) { |
| DCHECK(GetCompilerOptions().IsBootImage()); |
| string_patches_.emplace_back(load_string->GetDexFile(), load_string->GetStringIndex().index_); |
| __ Bind(&string_patches_.back().label); |
| } |
| |
| Label* CodeGeneratorX86_64::NewStringBssEntryPatch(HLoadString* load_string) { |
| DCHECK(!GetCompilerOptions().IsBootImage()); |
| string_patches_.emplace_back(load_string->GetDexFile(), load_string->GetStringIndex().index_); |
| return &string_patches_.back().label; |
| } |
| |
| Label* CodeGeneratorX86_64::NewPcRelativeDexCacheArrayPatch(const DexFile& dex_file, |
| uint32_t element_offset) { |
| // Add a patch entry and return the label. |
| pc_relative_dex_cache_patches_.emplace_back(dex_file, element_offset); |
| return &pc_relative_dex_cache_patches_.back().label; |
| } |
| |
| // The label points to the end of the "movl" or another instruction but the literal offset |
| // for method patch needs to point to the embedded constant which occupies the last 4 bytes. |
| constexpr uint32_t kLabelPositionToLiteralOffsetAdjustment = 4u; |
| |
| template <LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)> |
| inline void CodeGeneratorX86_64::EmitPcRelativeLinkerPatches( |
| const ArenaDeque<PatchInfo<Label>>& infos, |
| ArenaVector<LinkerPatch>* linker_patches) { |
| for (const PatchInfo<Label>& info : infos) { |
| uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; |
| linker_patches->push_back( |
| Factory(literal_offset, &info.dex_file, info.label.Position(), info.index)); |
| } |
| } |
| |
| void CodeGeneratorX86_64::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) { |
| DCHECK(linker_patches->empty()); |
| size_t size = |
| pc_relative_dex_cache_patches_.size() + |
| boot_image_method_patches_.size() + |
| boot_image_type_patches_.size() + |
| type_bss_entry_patches_.size() + |
| string_patches_.size(); |
| linker_patches->reserve(size); |
| EmitPcRelativeLinkerPatches<LinkerPatch::DexCacheArrayPatch>(pc_relative_dex_cache_patches_, |
| linker_patches); |
| if (GetCompilerOptions().IsBootImage()) { |
| EmitPcRelativeLinkerPatches<LinkerPatch::RelativeMethodPatch>(boot_image_method_patches_, |
| linker_patches); |
| EmitPcRelativeLinkerPatches<LinkerPatch::RelativeTypePatch>(boot_image_type_patches_, |
| linker_patches); |
| EmitPcRelativeLinkerPatches<LinkerPatch::RelativeStringPatch>(string_patches_, linker_patches); |
| } else { |
| DCHECK(boot_image_method_patches_.empty()); |
| DCHECK(boot_image_type_patches_.empty()); |
| EmitPcRelativeLinkerPatches<LinkerPatch::StringBssEntryPatch>(string_patches_, linker_patches); |
| } |
| EmitPcRelativeLinkerPatches<LinkerPatch::TypeBssEntryPatch>(type_bss_entry_patches_, |
| linker_patches); |
| DCHECK_EQ(size, linker_patches->size()); |
| } |
| |
| void CodeGeneratorX86_64::DumpCoreRegister(std::ostream& stream, int reg) const { |
| stream << Register(reg); |
| } |
| |
| void CodeGeneratorX86_64::DumpFloatingPointRegister(std::ostream& stream, int reg) const { |
| stream << FloatRegister(reg); |
| } |
| |
| size_t CodeGeneratorX86_64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { |
| __ movq(Address(CpuRegister(RSP), stack_index), CpuRegister(reg_id)); |
| return kX86_64WordSize; |
| } |
| |
| size_t CodeGeneratorX86_64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { |
| __ movq(CpuRegister(reg_id), Address(CpuRegister(RSP), stack_index)); |
| return kX86_64WordSize; |
| } |
| |
| size_t CodeGeneratorX86_64::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| if (GetGraph()->HasSIMD()) { |
| __ movups(Address(CpuRegister(RSP), stack_index), XmmRegister(reg_id)); |
| } else { |
| __ movsd(Address(CpuRegister(RSP), stack_index), XmmRegister(reg_id)); |
| } |
| return GetFloatingPointSpillSlotSize(); |
| } |
| |
| size_t CodeGeneratorX86_64::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { |
| if (GetGraph()->HasSIMD()) { |
| __ movups(XmmRegister(reg_id), Address(CpuRegister(RSP), stack_index)); |
| } else { |
| __ movsd(XmmRegister(reg_id), Address(CpuRegister(RSP), stack_index)); |
| } |
| return GetFloatingPointSpillSlotSize(); |
| } |
| |
| void CodeGeneratorX86_64::InvokeRuntime(QuickEntrypointEnum entrypoint, |
| HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntime(entrypoint, instruction, slow_path); |
| GenerateInvokeRuntime(GetThreadOffset<kX86_64PointerSize>(entrypoint).Int32Value()); |
| if (EntrypointRequiresStackMap(entrypoint)) { |
| RecordPcInfo(instruction, dex_pc, slow_path); |
| } |
| } |
| |
| void CodeGeneratorX86_64::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, |
| HInstruction* instruction, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); |
| GenerateInvokeRuntime(entry_point_offset); |
| } |
| |
| void CodeGeneratorX86_64::GenerateInvokeRuntime(int32_t entry_point_offset) { |
| __ gs()->call(Address::Absolute(entry_point_offset, /* no_rip */ true)); |
| } |
| |
| static constexpr int kNumberOfCpuRegisterPairs = 0; |
| // Use a fake return address register to mimic Quick. |
| static constexpr Register kFakeReturnRegister = Register(kLastCpuRegister + 1); |
| CodeGeneratorX86_64::CodeGeneratorX86_64(HGraph* graph, |
| const X86_64InstructionSetFeatures& isa_features, |
| const CompilerOptions& compiler_options, |
| OptimizingCompilerStats* stats) |
| : CodeGenerator(graph, |
| kNumberOfCpuRegisters, |
| kNumberOfFloatRegisters, |
| kNumberOfCpuRegisterPairs, |
| ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves), |
| arraysize(kCoreCalleeSaves)) |
| | (1 << kFakeReturnRegister), |
| ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves), |
| arraysize(kFpuCalleeSaves)), |
| compiler_options, |
| stats), |
| block_labels_(nullptr), |
| location_builder_(graph, this), |
| instruction_visitor_(graph, this), |
| move_resolver_(graph->GetArena(), this), |
| assembler_(graph->GetArena()), |
| isa_features_(isa_features), |
| constant_area_start_(0), |
| pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_method_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| type_bss_entry_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| jit_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| jit_class_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), |
| fixups_to_jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) { |
| AddAllocatedRegister(Location::RegisterLocation(kFakeReturnRegister)); |
| } |
| |
| InstructionCodeGeneratorX86_64::InstructionCodeGeneratorX86_64(HGraph* graph, |
| CodeGeneratorX86_64* codegen) |
| : InstructionCodeGenerator(graph, codegen), |
| assembler_(codegen->GetAssembler()), |
| codegen_(codegen) {} |
| |
| void CodeGeneratorX86_64::SetupBlockedRegisters() const { |
| // Stack register is always reserved. |
| blocked_core_registers_[RSP] = true; |
| |
| // Block the register used as TMP. |
| blocked_core_registers_[TMP] = true; |
| } |
| |
| static dwarf::Reg DWARFReg(Register reg) { |
| return dwarf::Reg::X86_64Core(static_cast<int>(reg)); |
| } |
| |
| static dwarf::Reg DWARFReg(FloatRegister reg) { |
| return dwarf::Reg::X86_64Fp(static_cast<int>(reg)); |
| } |
| |
| void CodeGeneratorX86_64::GenerateFrameEntry() { |
| __ cfi().SetCurrentCFAOffset(kX86_64WordSize); // return address |
| __ Bind(&frame_entry_label_); |
| bool skip_overflow_check = IsLeafMethod() |
| && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kX86_64); |
| DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); |
| |
| if (!skip_overflow_check) { |
| __ testq(CpuRegister(RAX), Address( |
| CpuRegister(RSP), -static_cast<int32_t>(GetStackOverflowReservedBytes(kX86_64)))); |
| RecordPcInfo(nullptr, 0); |
| } |
| |
| if (HasEmptyFrame()) { |
| return; |
| } |
| |
| for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) { |
| Register reg = kCoreCalleeSaves[i]; |
| if (allocated_registers_.ContainsCoreRegister(reg)) { |
| __ pushq(CpuRegister(reg)); |
| __ cfi().AdjustCFAOffset(kX86_64WordSize); |
| __ cfi().RelOffset(DWARFReg(reg), 0); |
| } |
| } |
| |
| int adjust = GetFrameSize() - GetCoreSpillSize(); |
| __ subq(CpuRegister(RSP), Immediate(adjust)); |
| __ cfi().AdjustCFAOffset(adjust); |
| uint32_t xmm_spill_location = GetFpuSpillStart(); |
| size_t xmm_spill_slot_size = GetFloatingPointSpillSlotSize(); |
| |
| for (int i = arraysize(kFpuCalleeSaves) - 1; i >= 0; --i) { |
| if (allocated_registers_.ContainsFloatingPointRegister(kFpuCalleeSaves[i])) { |
| int offset = xmm_spill_location + (xmm_spill_slot_size * i); |
| __ movsd(Address(CpuRegister(RSP), offset), XmmRegister(kFpuCalleeSaves[i])); |
| __ cfi().RelOffset(DWARFReg(kFpuCalleeSaves[i]), offset); |
| } |
| } |
| |
| if (GetGraph()->HasShouldDeoptimizeFlag()) { |
| // Initialize should_deoptimize flag to 0. |
| __ movl(Address(CpuRegister(RSP), xmm_spill_location - kShouldDeoptimizeFlagSize), |
| Immediate(0)); |
| } |
| |
| // Save the current method if we need it. Note that we do not |
| // do this in HCurrentMethod, as the instruction might have been removed |
| // in the SSA graph. |
| if (RequiresCurrentMethod()) { |
| __ movq(Address(CpuRegister(RSP), kCurrentMethodStackOffset), |
| CpuRegister(kMethodRegisterArgument)); |
| } |
| } |
| |
| void CodeGeneratorX86_64::GenerateFrameExit() { |
| __ cfi().RememberState(); |
| if (!HasEmptyFrame()) { |
| uint32_t xmm_spill_location = GetFpuSpillStart(); |
| size_t xmm_spill_slot_size = GetFloatingPointSpillSlotSize(); |
| for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) { |
| if (allocated_registers_.ContainsFloatingPointRegister(kFpuCalleeSaves[i])) { |
| int offset = xmm_spill_location + (xmm_spill_slot_size * i); |
| __ movsd(XmmRegister(kFpuCalleeSaves[i]), Address(CpuRegister(RSP), offset)); |
| __ cfi().Restore(DWARFReg(kFpuCalleeSaves[i])); |
| } |
| } |
| |
| int adjust = GetFrameSize() - GetCoreSpillSize(); |
| __ addq(CpuRegister(RSP), Immediate(adjust)); |
| __ cfi().AdjustCFAOffset(-adjust); |
| |
| for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) { |
| Register reg = kCoreCalleeSaves[i]; |
| if (allocated_registers_.ContainsCoreRegister(reg)) { |
| __ popq(CpuRegister(reg)); |
| __ cfi().AdjustCFAOffset(-static_cast<int>(kX86_64WordSize)); |
| __ cfi().Restore(DWARFReg(reg)); |
| } |
| } |
| } |
| __ ret(); |
| __ cfi().RestoreState(); |
| __ cfi().DefCFAOffset(GetFrameSize()); |
| } |
| |
| void CodeGeneratorX86_64::Bind(HBasicBlock* block) { |
| __ Bind(GetLabelOf(block)); |
| } |
| |
| void CodeGeneratorX86_64::Move(Location destination, Location source) { |
| if (source.Equals(destination)) { |
| return; |
| } |
| if (destination.IsRegister()) { |
| CpuRegister dest = destination.AsRegister<CpuRegister>(); |
| if (source.IsRegister()) { |
| __ movq(dest, source.AsRegister<CpuRegister>()); |
| } else if (source.IsFpuRegister()) { |
| __ movd(dest, source.AsFpuRegister<XmmRegister>()); |
| } else if (source.IsStackSlot()) { |
| __ movl(dest, Address(CpuRegister(RSP), source.GetStackIndex())); |
| } else if (source.IsConstant()) { |
| HConstant* constant = source.GetConstant(); |
| if (constant->IsLongConstant()) { |
| Load64BitValue(dest, constant->AsLongConstant()->GetValue()); |
| } else { |
| Load32BitValue(dest, GetInt32ValueOf(constant)); |
| } |
| } else { |
| DCHECK(source.IsDoubleStackSlot()); |
| __ movq(dest, Address(CpuRegister(RSP), source.GetStackIndex())); |
| } |
| } else if (destination.IsFpuRegister()) { |
| XmmRegister dest = destination.AsFpuRegister<XmmRegister>(); |
| if (source.IsRegister()) { |
| __ movd(dest, source.AsRegister<CpuRegister>()); |
| } else if (source.IsFpuRegister()) { |
| __ movaps(dest, source.AsFpuRegister<XmmRegister>()); |
| } else if (source.IsConstant()) { |
| HConstant* constant = source.GetConstant(); |
| int64_t value = CodeGenerator::GetInt64ValueOf(constant); |
| if (constant->IsFloatConstant()) { |
| Load32BitValue(dest, static_cast<int32_t>(value)); |
| } else { |
| Load64BitValue(dest, value); |
| } |
| } else if (source.IsStackSlot()) { |
| __ movss(dest, Address(CpuRegister(RSP), source.GetStackIndex())); |
| } else { |
| DCHECK(source.IsDoubleStackSlot()); |
| __ movsd(dest, Address(CpuRegister(RSP), source.GetStackIndex())); |
| } |
| } else if (destination.IsStackSlot()) { |
| if (source.IsRegister()) { |
| __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), |
| source.AsRegister<CpuRegister>()); |
| } else if (source.IsFpuRegister()) { |
| __ movss(Address(CpuRegister(RSP), destination.GetStackIndex()), |
| source.AsFpuRegister<XmmRegister>()); |
| } else if (source.IsConstant()) { |
| HConstant* constant = source.GetConstant(); |
| int32_t value = GetInt32ValueOf(constant); |
| __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), Immediate(value)); |
| } else { |
| DCHECK(source.IsStackSlot()) << source; |
| __ movl(CpuRegister(TMP), Address(CpuRegister(RSP), source.GetStackIndex())); |
| __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP)); |
| } |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()); |
| if (source.IsRegister()) { |
| __ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), |
| source.AsRegister<CpuRegister>()); |
| } else if (source.IsFpuRegister()) { |
| __ movsd(Address(CpuRegister(RSP), destination.GetStackIndex()), |
| source.AsFpuRegister<XmmRegister>()); |
| } else if (source.IsConstant()) { |
| HConstant* constant = source.GetConstant(); |
| DCHECK(constant->IsLongConstant() || constant->IsDoubleConstant()); |
| int64_t value = GetInt64ValueOf(constant); |
| Store64BitValueToStack(destination, value); |
| } else { |
| DCHECK(source.IsDoubleStackSlot()); |
| __ movq(CpuRegister(TMP), Address(CpuRegister(RSP), source.GetStackIndex())); |
| __ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP)); |
| } |
| } |
| } |
| |
| void CodeGeneratorX86_64::MoveConstant(Location location, int32_t value) { |
| DCHECK(location.IsRegister()); |
| Load64BitValue(location.AsRegister<CpuRegister>(), static_cast<int64_t>(value)); |
| } |
| |
| void CodeGeneratorX86_64::MoveLocation( |
| Location dst, Location src, Primitive::Type dst_type ATTRIBUTE_UNUSED) { |
| Move(dst, src); |
| } |
| |
| void CodeGeneratorX86_64::AddLocationAsTemp(Location location, LocationSummary* locations) { |
| if (location.IsRegister()) { |
| locations->AddTemp(location); |
| } else { |
| UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::HandleGoto(HInstruction* got, HBasicBlock* successor) { |
| DCHECK(!successor->IsExitBlock()); |
| |
| HBasicBlock* block = got->GetBlock(); |
| HInstruction* previous = got->GetPrevious(); |
| |
| HLoopInformation* info = block->GetLoopInformation(); |
| if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { |
| GenerateSuspendCheck(info->GetSuspendCheck(), successor); |
| return; |
| } |
| |
| if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { |
| GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); |
| } |
| if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) { |
| __ jmp(codegen_->GetLabelOf(successor)); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitGoto(HGoto* got) { |
| got->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitGoto(HGoto* got) { |
| HandleGoto(got, got->GetSuccessor()); |
| } |
| |
| void LocationsBuilderX86_64::VisitTryBoundary(HTryBoundary* try_boundary) { |
| try_boundary->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitTryBoundary(HTryBoundary* try_boundary) { |
| HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); |
| if (!successor->IsExitBlock()) { |
| HandleGoto(try_boundary, successor); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitExit(HExit* exit) { |
| exit->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { |
| } |
| |
| template<class LabelType> |
| void InstructionCodeGeneratorX86_64::GenerateFPJumps(HCondition* cond, |
| LabelType* true_label, |
| LabelType* false_label) { |
| if (cond->IsFPConditionTrueIfNaN()) { |
| __ j(kUnordered, true_label); |
| } else if (cond->IsFPConditionFalseIfNaN()) { |
| __ j(kUnordered, false_label); |
| } |
| __ j(X86_64FPCondition(cond->GetCondition()), true_label); |
| } |
| |
| void InstructionCodeGeneratorX86_64::GenerateCompareTest(HCondition* condition) { |
| LocationSummary* locations = condition->GetLocations(); |
| |
| Location left = locations->InAt(0); |
| Location right = locations->InAt(1); |
| Primitive::Type type = condition->InputAt(0)->GetType(); |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: { |
| codegen_->GenerateIntCompare(left, right); |
| break; |
| } |
| case Primitive::kPrimLong: { |
| codegen_->GenerateLongCompare(left, right); |
| break; |
| } |
| case Primitive::kPrimFloat: { |
| if (right.IsFpuRegister()) { |
| __ ucomiss(left.AsFpuRegister<XmmRegister>(), right.AsFpuRegister<XmmRegister>()); |
| } else if (right.IsConstant()) { |
| __ ucomiss(left.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| right.GetConstant()->AsFloatConstant()->GetValue())); |
| } else { |
| DCHECK(right.IsStackSlot()); |
| __ ucomiss(left.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), right.GetStackIndex())); |
| } |
| break; |
| } |
| case Primitive::kPrimDouble: { |
| if (right.IsFpuRegister()) { |
| __ ucomisd(left.AsFpuRegister<XmmRegister>(), right.AsFpuRegister<XmmRegister>()); |
| } else if (right.IsConstant()) { |
| __ ucomisd(left.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| right.GetConstant()->AsDoubleConstant()->GetValue())); |
| } else { |
| DCHECK(right.IsDoubleStackSlot()); |
| __ ucomisd(left.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), right.GetStackIndex())); |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected condition type " << type; |
| } |
| } |
| |
| template<class LabelType> |
| void InstructionCodeGeneratorX86_64::GenerateCompareTestAndBranch(HCondition* condition, |
| LabelType* true_target_in, |
| LabelType* false_target_in) { |
| // Generated branching requires both targets to be explicit. If either of the |
| // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead. |
| LabelType fallthrough_target; |
| LabelType* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in; |
| LabelType* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in; |
| |
| // Generate the comparison to set the CC. |
| GenerateCompareTest(condition); |
| |
| // Now generate the correct jump(s). |
| Primitive::Type type = condition->InputAt(0)->GetType(); |
| switch (type) { |
| case Primitive::kPrimLong: { |
| __ j(X86_64IntegerCondition(condition->GetCondition()), true_target); |
| break; |
| } |
| case Primitive::kPrimFloat: { |
| GenerateFPJumps(condition, true_target, false_target); |
| break; |
| } |
| case Primitive::kPrimDouble: { |
| GenerateFPJumps(condition, true_target, false_target); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected condition type " << type; |
| } |
| |
| if (false_target != &fallthrough_target) { |
| __ jmp(false_target); |
| } |
| |
| if (fallthrough_target.IsLinked()) { |
| __ Bind(&fallthrough_target); |
| } |
| } |
| |
| static bool AreEflagsSetFrom(HInstruction* cond, HInstruction* branch) { |
| // Moves may affect the eflags register (move zero uses xorl), so the EFLAGS |
| // are set only strictly before `branch`. We can't use the eflags on long |
| // conditions if they are materialized due to the complex branching. |
| return cond->IsCondition() && |
| cond->GetNext() == branch && |
| !Primitive::IsFloatingPointType(cond->InputAt(0)->GetType()); |
| } |
| |
| template<class LabelType> |
| void InstructionCodeGeneratorX86_64::GenerateTestAndBranch(HInstruction* instruction, |
| size_t condition_input_index, |
| LabelType* true_target, |
| LabelType* false_target) { |
| HInstruction* cond = instruction->InputAt(condition_input_index); |
| |
| if (true_target == nullptr && false_target == nullptr) { |
| // Nothing to do. The code always falls through. |
| return; |
| } else if (cond->IsIntConstant()) { |
| // Constant condition, statically compared against "true" (integer value 1). |
| if (cond->AsIntConstant()->IsTrue()) { |
| if (true_target != nullptr) { |
| __ jmp(true_target); |
| } |
| } else { |
| DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); |
| if (false_target != nullptr) { |
| __ jmp(false_target); |
| } |
| } |
| return; |
| } |
| |
| // The following code generates these patterns: |
| // (1) true_target == nullptr && false_target != nullptr |
| // - opposite condition true => branch to false_target |
| // (2) true_target != nullptr && false_target == nullptr |
| // - condition true => branch to true_target |
| // (3) true_target != nullptr && false_target != nullptr |
| // - condition true => branch to true_target |
| // - branch to false_target |
| if (IsBooleanValueOrMaterializedCondition(cond)) { |
| if (AreEflagsSetFrom(cond, instruction)) { |
| if (true_target == nullptr) { |
| __ j(X86_64IntegerCondition(cond->AsCondition()->GetOppositeCondition()), false_target); |
| } else { |
| __ j(X86_64IntegerCondition(cond->AsCondition()->GetCondition()), true_target); |
| } |
| } else { |
| // Materialized condition, compare against 0. |
| Location lhs = instruction->GetLocations()->InAt(condition_input_index); |
| if (lhs.IsRegister()) { |
| __ testl(lhs.AsRegister<CpuRegister>(), lhs.AsRegister<CpuRegister>()); |
| } else { |
| __ cmpl(Address(CpuRegister(RSP), lhs.GetStackIndex()), Immediate(0)); |
| } |
| if (true_target == nullptr) { |
| __ j(kEqual, false_target); |
| } else { |
| __ j(kNotEqual, true_target); |
| } |
| } |
| } else { |
| // Condition has not been materialized, use its inputs as the |
| // comparison and its condition as the branch condition. |
| HCondition* condition = cond->AsCondition(); |
| |
| // If this is a long or FP comparison that has been folded into |
| // the HCondition, generate the comparison directly. |
| Primitive::Type type = condition->InputAt(0)->GetType(); |
| if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) { |
| GenerateCompareTestAndBranch(condition, true_target, false_target); |
| return; |
| } |
| |
| Location lhs = condition->GetLocations()->InAt(0); |
| Location rhs = condition->GetLocations()->InAt(1); |
| codegen_->GenerateIntCompare(lhs, rhs); |
| if (true_target == nullptr) { |
| __ j(X86_64IntegerCondition(condition->GetOppositeCondition()), false_target); |
| } else { |
| __ j(X86_64IntegerCondition(condition->GetCondition()), true_target); |
| } |
| } |
| |
| // If neither branch falls through (case 3), the conditional branch to `true_target` |
| // was already emitted (case 2) and we need to emit a jump to `false_target`. |
| if (true_target != nullptr && false_target != nullptr) { |
| __ jmp(false_target); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitIf(HIf* if_instr) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr); |
| if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { |
| locations->SetInAt(0, Location::Any()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitIf(HIf* if_instr) { |
| HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); |
| HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); |
| Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ? |
| nullptr : codegen_->GetLabelOf(true_successor); |
| Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ? |
| nullptr : codegen_->GetLabelOf(false_successor); |
| GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target); |
| } |
| |
| void LocationsBuilderX86_64::VisitDeoptimize(HDeoptimize* deoptimize) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) |
| LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); |
| InvokeRuntimeCallingConvention calling_convention; |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetCustomSlowPathCallerSaves(caller_saves); |
| if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { |
| locations->SetInAt(0, Location::Any()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitDeoptimize(HDeoptimize* deoptimize) { |
| SlowPathCode* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathX86_64>(deoptimize); |
| GenerateTestAndBranch<Label>(deoptimize, |
| /* condition_input_index */ 0, |
| slow_path->GetEntryLabel(), |
| /* false_target */ nullptr); |
| } |
| |
| void LocationsBuilderX86_64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) |
| LocationSummary(flag, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { |
| __ movl(flag->GetLocations()->Out().AsRegister<CpuRegister>(), |
| Address(CpuRegister(RSP), codegen_->GetStackOffsetOfShouldDeoptimizeFlag())); |
| } |
| |
| static bool SelectCanUseCMOV(HSelect* select) { |
| // There are no conditional move instructions for XMMs. |
| if (Primitive::IsFloatingPointType(select->GetType())) { |
| return false; |
| } |
| |
| // A FP condition doesn't generate the single CC that we need. |
| HInstruction* condition = select->GetCondition(); |
| if (condition->IsCondition() && |
| Primitive::IsFloatingPointType(condition->InputAt(0)->GetType())) { |
| return false; |
| } |
| |
| // We can generate a CMOV for this Select. |
| return true; |
| } |
| |
| void LocationsBuilderX86_64::VisitSelect(HSelect* select) { |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select); |
| if (Primitive::IsFloatingPointType(select->GetType())) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::Any()); |
| } else { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (SelectCanUseCMOV(select)) { |
| if (select->InputAt(1)->IsConstant()) { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| } |
| if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { |
| locations->SetInAt(2, Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitSelect(HSelect* select) { |
| LocationSummary* locations = select->GetLocations(); |
| if (SelectCanUseCMOV(select)) { |
| // If both the condition and the source types are integer, we can generate |
| // a CMOV to implement Select. |
| CpuRegister value_false = locations->InAt(0).AsRegister<CpuRegister>(); |
| Location value_true_loc = locations->InAt(1); |
| DCHECK(locations->InAt(0).Equals(locations->Out())); |
| |
| HInstruction* select_condition = select->GetCondition(); |
| Condition cond = kNotEqual; |
| |
| // Figure out how to test the 'condition'. |
| if (select_condition->IsCondition()) { |
| HCondition* condition = select_condition->AsCondition(); |
| if (!condition->IsEmittedAtUseSite()) { |
| // This was a previously materialized condition. |
| // Can we use the existing condition code? |
| if (AreEflagsSetFrom(condition, select)) { |
| // Materialization was the previous instruction. Condition codes are right. |
| cond = X86_64IntegerCondition(condition->GetCondition()); |
| } else { |
| // No, we have to recreate the condition code. |
| CpuRegister cond_reg = locations->InAt(2).AsRegister<CpuRegister>(); |
| __ testl(cond_reg, cond_reg); |
| } |
| } else { |
| GenerateCompareTest(condition); |
| cond = X86_64IntegerCondition(condition->GetCondition()); |
| } |
| } else { |
| // Must be a Boolean condition, which needs to be compared to 0. |
| CpuRegister cond_reg = locations->InAt(2).AsRegister<CpuRegister>(); |
| __ testl(cond_reg, cond_reg); |
| } |
| |
| // If the condition is true, overwrite the output, which already contains false. |
| // Generate the correct sized CMOV. |
| bool is_64_bit = Primitive::Is64BitType(select->GetType()); |
| if (value_true_loc.IsRegister()) { |
| __ cmov(cond, value_false, value_true_loc.AsRegister<CpuRegister>(), is_64_bit); |
| } else { |
| __ cmov(cond, |
| value_false, |
| Address(CpuRegister(RSP), value_true_loc.GetStackIndex()), is_64_bit); |
| } |
| } else { |
| NearLabel false_target; |
| GenerateTestAndBranch<NearLabel>(select, |
| /* condition_input_index */ 2, |
| /* true_target */ nullptr, |
| &false_target); |
| codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType()); |
| __ Bind(&false_target); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitNativeDebugInfo(HNativeDebugInfo* info) { |
| new (GetGraph()->GetArena()) LocationSummary(info); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitNativeDebugInfo(HNativeDebugInfo*) { |
| // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. |
| } |
| |
| void CodeGeneratorX86_64::GenerateNop() { |
| __ nop(); |
| } |
| |
| void LocationsBuilderX86_64::HandleCondition(HCondition* cond) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall); |
| // Handle the long/FP comparisons made in instruction simplification. |
| switch (cond->InputAt(0)->GetType()) { |
| case Primitive::kPrimLong: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| break; |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::Any()); |
| break; |
| default: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| break; |
| } |
| if (!cond->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::HandleCondition(HCondition* cond) { |
| if (cond->IsEmittedAtUseSite()) { |
| return; |
| } |
| |
| LocationSummary* locations = cond->GetLocations(); |
| Location lhs = locations->InAt(0); |
| Location rhs = locations->InAt(1); |
| CpuRegister reg = locations->Out().AsRegister<CpuRegister>(); |
| NearLabel true_label, false_label; |
| |
| switch (cond->InputAt(0)->GetType()) { |
| default: |
| // Integer case. |
| |
| // Clear output register: setcc only sets the low byte. |
| __ xorl(reg, reg); |
| |
| codegen_->GenerateIntCompare(lhs, rhs); |
| __ setcc(X86_64IntegerCondition(cond->GetCondition()), reg); |
| return; |
| case Primitive::kPrimLong: |
| // Clear output register: setcc only sets the low byte. |
| __ xorl(reg, reg); |
| |
| codegen_->GenerateLongCompare(lhs, rhs); |
| __ setcc(X86_64IntegerCondition(cond->GetCondition()), reg); |
| return; |
| case Primitive::kPrimFloat: { |
| XmmRegister lhs_reg = lhs.AsFpuRegister<XmmRegister>(); |
| if (rhs.IsConstant()) { |
| float value = rhs.GetConstant()->AsFloatConstant()->GetValue(); |
| __ ucomiss(lhs_reg, codegen_->LiteralFloatAddress(value)); |
| } else if (rhs.IsStackSlot()) { |
| __ ucomiss(lhs_reg, Address(CpuRegister(RSP), rhs.GetStackIndex())); |
| } else { |
| __ ucomiss(lhs_reg, rhs.AsFpuRegister<XmmRegister>()); |
| } |
| GenerateFPJumps(cond, &true_label, &false_label); |
| break; |
| } |
| case Primitive::kPrimDouble: { |
| XmmRegister lhs_reg = lhs.AsFpuRegister<XmmRegister>(); |
| if (rhs.IsConstant()) { |
| double value = rhs.GetConstant()->AsDoubleConstant()->GetValue(); |
| __ ucomisd(lhs_reg, codegen_->LiteralDoubleAddress(value)); |
| } else if (rhs.IsDoubleStackSlot()) { |
| __ ucomisd(lhs_reg, Address(CpuRegister(RSP), rhs.GetStackIndex())); |
| } else { |
| __ ucomisd(lhs_reg, rhs.AsFpuRegister<XmmRegister>()); |
| } |
| GenerateFPJumps(cond, &true_label, &false_label); |
| break; |
| } |
| } |
| |
| // Convert the jumps into the result. |
| NearLabel done_label; |
| |
| // False case: result = 0. |
| __ Bind(&false_label); |
| __ xorl(reg, reg); |
| __ jmp(&done_label); |
| |
| // True case: result = 1. |
| __ Bind(&true_label); |
| __ movl(reg, Immediate(1)); |
| __ Bind(&done_label); |
| } |
| |
| void LocationsBuilderX86_64::VisitEqual(HEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitEqual(HEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86_64::VisitNotEqual(HNotEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitNotEqual(HNotEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86_64::VisitLessThan(HLessThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitLessThan(HLessThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86_64::VisitLessThanOrEqual(HLessThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitLessThanOrEqual(HLessThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86_64::VisitGreaterThan(HGreaterThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitGreaterThan(HGreaterThan* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86_64::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86_64::VisitBelow(HBelow* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitBelow(HBelow* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86_64::VisitBelowOrEqual(HBelowOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitBelowOrEqual(HBelowOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86_64::VisitAbove(HAbove* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitAbove(HAbove* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86_64::VisitAboveOrEqual(HAboveOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitAboveOrEqual(HAboveOrEqual* comp) { |
| HandleCondition(comp); |
| } |
| |
| void LocationsBuilderX86_64::VisitCompare(HCompare* compare) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall); |
| switch (compare->InputAt(0)->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitCompare(HCompare* compare) { |
| LocationSummary* locations = compare->GetLocations(); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| Location left = locations->InAt(0); |
| Location right = locations->InAt(1); |
| |
| NearLabel less, greater, done; |
| Primitive::Type type = compare->InputAt(0)->GetType(); |
| Condition less_cond = kLess; |
| |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimInt: { |
| codegen_->GenerateIntCompare(left, right); |
| break; |
| } |
| case Primitive::kPrimLong: { |
| codegen_->GenerateLongCompare(left, right); |
| break; |
| } |
| case Primitive::kPrimFloat: { |
| XmmRegister left_reg = left.AsFpuRegister<XmmRegister>(); |
| if (right.IsConstant()) { |
| float value = right.GetConstant()->AsFloatConstant()->GetValue(); |
| __ ucomiss(left_reg, codegen_->LiteralFloatAddress(value)); |
| } else if (right.IsStackSlot()) { |
| __ ucomiss(left_reg, Address(CpuRegister(RSP), right.GetStackIndex())); |
| } else { |
| __ ucomiss(left_reg, right.AsFpuRegister<XmmRegister>()); |
| } |
| __ j(kUnordered, compare->IsGtBias() ? &greater : &less); |
| less_cond = kBelow; // ucomis{s,d} sets CF |
| break; |
| } |
| case Primitive::kPrimDouble: { |
| XmmRegister left_reg = left.AsFpuRegister<XmmRegister>(); |
| if (right.IsConstant()) { |
| double value = right.GetConstant()->AsDoubleConstant()->GetValue(); |
| __ ucomisd(left_reg, codegen_->LiteralDoubleAddress(value)); |
| } else if (right.IsDoubleStackSlot()) { |
| __ ucomisd(left_reg, Address(CpuRegister(RSP), right.GetStackIndex())); |
| } else { |
| __ ucomisd(left_reg, right.AsFpuRegister<XmmRegister>()); |
| } |
| __ j(kUnordered, compare->IsGtBias() ? &greater : &less); |
| less_cond = kBelow; // ucomis{s,d} sets CF |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected compare type " << type; |
| } |
| |
| __ movl(out, Immediate(0)); |
| __ j(kEqual, &done); |
| __ j(less_cond, &less); |
| |
| __ Bind(&greater); |
| __ movl(out, Immediate(1)); |
| __ jmp(&done); |
| |
| __ Bind(&less); |
| __ movl(out, Immediate(-1)); |
| |
| __ Bind(&done); |
| } |
| |
| void LocationsBuilderX86_64::VisitIntConstant(HIntConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderX86_64::VisitNullConstant(HNullConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderX86_64::VisitLongConstant(HLongConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderX86_64::VisitFloatConstant(HFloatConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderX86_64::VisitDoubleConstant(HDoubleConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitDoubleConstant( |
| HDoubleConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderX86_64::VisitConstructorFence(HConstructorFence* constructor_fence) { |
| constructor_fence->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitConstructorFence( |
| HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); |
| } |
| |
| void LocationsBuilderX86_64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| memory_barrier->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); |
| } |
| |
| void LocationsBuilderX86_64::VisitReturnVoid(HReturnVoid* ret) { |
| ret->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) { |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderX86_64::VisitReturn(HReturn* ret) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall); |
| switch (ret->InputAt(0)->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| case Primitive::kPrimLong: |
| locations->SetInAt(0, Location::RegisterLocation(RAX)); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetInAt(0, Location::FpuRegisterLocation(XMM0)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected return type " << ret->InputAt(0)->GetType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitReturn(HReturn* ret) { |
| if (kIsDebugBuild) { |
| switch (ret->InputAt(0)->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| case Primitive::kPrimLong: |
| DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegister<CpuRegister>().AsRegister(), RAX); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>().AsFloatRegister(), |
| XMM0); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected return type " << ret->InputAt(0)->GetType(); |
| } |
| } |
| codegen_->GenerateFrameExit(); |
| } |
| |
| Location InvokeDexCallingConventionVisitorX86_64::GetReturnLocation(Primitive::Type type) const { |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: |
| case Primitive::kPrimLong: |
| return Location::RegisterLocation(RAX); |
| |
| case Primitive::kPrimVoid: |
| return Location::NoLocation(); |
| |
| case Primitive::kPrimDouble: |
| case Primitive::kPrimFloat: |
| return Location::FpuRegisterLocation(XMM0); |
| } |
| |
| UNREACHABLE(); |
| } |
| |
| Location InvokeDexCallingConventionVisitorX86_64::GetMethodLocation() const { |
| return Location::RegisterLocation(kMethodRegisterArgument); |
| } |
| |
| Location InvokeDexCallingConventionVisitorX86_64::GetNextLocation(Primitive::Type type) { |
| switch (type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: { |
| uint32_t index = gp_index_++; |
| stack_index_++; |
| if (index < calling_convention.GetNumberOfRegisters()) { |
| return Location::RegisterLocation(calling_convention.GetRegisterAt(index)); |
| } else { |
| return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1)); |
| } |
| } |
| |
| case Primitive::kPrimLong: { |
| uint32_t index = gp_index_; |
| stack_index_ += 2; |
| if (index < calling_convention.GetNumberOfRegisters()) { |
| gp_index_ += 1; |
| return Location::RegisterLocation(calling_convention.GetRegisterAt(index)); |
| } else { |
| gp_index_ += 2; |
| return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2)); |
| } |
| } |
| |
| case Primitive::kPrimFloat: { |
| uint32_t index = float_index_++; |
| stack_index_++; |
| if (index < calling_convention.GetNumberOfFpuRegisters()) { |
| return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index)); |
| } else { |
| return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1)); |
| } |
| } |
| |
| case Primitive::kPrimDouble: { |
| uint32_t index = float_index_++; |
| stack_index_ += 2; |
| if (index < calling_convention.GetNumberOfFpuRegisters()) { |
| return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index)); |
| } else { |
| return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2)); |
| } |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unexpected parameter type " << type; |
| break; |
| } |
| return Location::NoLocation(); |
| } |
| |
| void LocationsBuilderX86_64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| // The trampoline uses the same calling convention as dex calling conventions, |
| // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain |
| // the method_idx. |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); |
| } |
| |
| void LocationsBuilderX86_64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| IntrinsicLocationsBuilderX86_64 intrinsic(codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| } |
| |
| static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorX86_64* codegen) { |
| if (invoke->GetLocations()->Intrinsified()) { |
| IntrinsicCodeGeneratorX86_64 intrinsic(codegen); |
| intrinsic.Dispatch(invoke); |
| return true; |
| } |
| return false; |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| LocationSummary* locations = invoke->GetLocations(); |
| codegen_->GenerateStaticOrDirectCall( |
| invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void LocationsBuilderX86_64::HandleInvoke(HInvoke* invoke) { |
| InvokeDexCallingConventionVisitorX86_64 calling_convention_visitor; |
| CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); |
| } |
| |
| void LocationsBuilderX86_64::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| IntrinsicLocationsBuilderX86_64 intrinsic(codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| return; |
| } |
| |
| codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); |
| DCHECK(!codegen_->IsLeafMethod()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void LocationsBuilderX86_64::VisitInvokeInterface(HInvokeInterface* invoke) { |
| HandleInvoke(invoke); |
| // Add the hidden argument. |
| invoke->GetLocations()->AddTemp(Location::RegisterLocation(RAX)); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitInvokeInterface(HInvokeInterface* invoke) { |
| // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. |
| LocationSummary* locations = invoke->GetLocations(); |
| CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| CpuRegister hidden_reg = locations->GetTemp(1).AsRegister<CpuRegister>(); |
| Location receiver = locations->InAt(0); |
| size_t class_offset = mirror::Object::ClassOffset().SizeValue(); |
| |
| // Set the hidden argument. This is safe to do this here, as RAX |
| // won't be modified thereafter, before the `call` instruction. |
| DCHECK_EQ(RAX, hidden_reg.AsRegister()); |
| codegen_->Load64BitValue(hidden_reg, invoke->GetDexMethodIndex()); |
| |
| if (receiver.IsStackSlot()) { |
| __ movl(temp, Address(CpuRegister(RSP), receiver.GetStackIndex())); |
| // /* HeapReference<Class> */ temp = temp->klass_ |
| __ movl(temp, Address(temp, class_offset)); |
| } else { |
| // /* HeapReference<Class> */ temp = receiver->klass_ |
| __ movl(temp, Address(receiver.AsRegister<CpuRegister>(), class_offset)); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(invoke); |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| __ MaybeUnpoisonHeapReference(temp); |
| // temp = temp->GetAddressOfIMT() |
| __ movq(temp, |
| Address(temp, mirror::Class::ImtPtrOffset(kX86_64PointerSize).Uint32Value())); |
| // temp = temp->GetImtEntryAt(method_offset); |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| invoke->GetImtIndex(), kX86_64PointerSize)); |
| // temp = temp->GetImtEntryAt(method_offset); |
| __ movq(temp, Address(temp, method_offset)); |
| // call temp->GetEntryPoint(); |
| __ call(Address( |
| temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86_64PointerSize).SizeValue())); |
| |
| DCHECK(!codegen_->IsLeafMethod()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| void LocationsBuilderX86_64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { |
| codegen_->GenerateInvokePolymorphicCall(invoke); |
| } |
| |
| void LocationsBuilderX86_64::VisitNeg(HNeg* neg) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); |
| switch (neg->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitNeg(HNeg* neg) { |
| LocationSummary* locations = neg->GetLocations(); |
| Location out = locations->Out(); |
| Location in = locations->InAt(0); |
| switch (neg->GetResultType()) { |
| case Primitive::kPrimInt: |
| DCHECK(in.IsRegister()); |
| DCHECK(in.Equals(out)); |
| __ negl(out.AsRegister<CpuRegister>()); |
| break; |
| |
| case Primitive::kPrimLong: |
| DCHECK(in.IsRegister()); |
| DCHECK(in.Equals(out)); |
| __ negq(out.AsRegister<CpuRegister>()); |
| break; |
| |
| case Primitive::kPrimFloat: { |
| DCHECK(in.Equals(out)); |
| XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| // Implement float negation with an exclusive or with value |
| // 0x80000000 (mask for bit 31, representing the sign of a |
| // single-precision floating-point number). |
| __ movss(mask, codegen_->LiteralInt32Address(0x80000000)); |
| __ xorps(out.AsFpuRegister<XmmRegister>(), mask); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| DCHECK(in.Equals(out)); |
| XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| // Implement double negation with an exclusive or with value |
| // 0x8000000000000000 (mask for bit 63, representing the sign of |
| // a double-precision floating-point number). |
| __ movsd(mask, codegen_->LiteralInt64Address(INT64_C(0x8000000000000000))); |
| __ xorpd(out.AsFpuRegister<XmmRegister>(), mask); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitTypeConversion(HTypeConversion* conversion) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(conversion, LocationSummary::kNoCall); |
| Primitive::Type result_type = conversion->GetResultType(); |
| Primitive::Type input_type = conversion->GetInputType(); |
| DCHECK_NE(result_type, input_type); |
| |
| // The Java language does not allow treating boolean as an integral type but |
| // our bit representation makes it safe. |
| |
| switch (result_type) { |
| case Primitive::kPrimByte: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to byte is a result of code transformations. |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-byte' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimShort: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to short is a result of code transformations. |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-short' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimInt: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-int' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-int' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-int' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimLong: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-long' instruction. |
| // TODO: We would benefit from a (to-be-implemented) |
| // Location::RegisterOrStackSlot requirement for this input. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-long' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-long' instruction. |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimChar: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to char is a result of code transformations. |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| // Processing a Dex `int-to-char' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimFloat: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-float' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-float' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-float' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| }; |
| break; |
| |
| case Primitive::kPrimDouble: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-double' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-double' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| break; |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-double' instruction. |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitTypeConversion(HTypeConversion* conversion) { |
| LocationSummary* locations = conversion->GetLocations(); |
| Location out = locations->Out(); |
| Location in = locations->InAt(0); |
| Primitive::Type result_type = conversion->GetResultType(); |
| Primitive::Type input_type = conversion->GetInputType(); |
| DCHECK_NE(result_type, input_type); |
| switch (result_type) { |
| case Primitive::kPrimByte: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to byte is a result of code transformations. |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-byte' instruction. |
| if (in.IsRegister()) { |
| __ movsxb(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>()); |
| } else if (in.IsStackSlot() || in.IsDoubleStackSlot()) { |
| __ movsxb(out.AsRegister<CpuRegister>(), |
| Address(CpuRegister(RSP), in.GetStackIndex())); |
| } else { |
| __ movl(out.AsRegister<CpuRegister>(), |
| Immediate(static_cast<int8_t>(Int64FromConstant(in.GetConstant())))); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimShort: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to short is a result of code transformations. |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-short' instruction. |
| if (in.IsRegister()) { |
| __ movsxw(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>()); |
| } else if (in.IsStackSlot() || in.IsDoubleStackSlot()) { |
| __ movsxw(out.AsRegister<CpuRegister>(), |
| Address(CpuRegister(RSP), in.GetStackIndex())); |
| } else { |
| __ movl(out.AsRegister<CpuRegister>(), |
| Immediate(static_cast<int16_t>(Int64FromConstant(in.GetConstant())))); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimInt: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-int' instruction. |
| if (in.IsRegister()) { |
| __ movl(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>()); |
| } else if (in.IsDoubleStackSlot()) { |
| __ movl(out.AsRegister<CpuRegister>(), |
| Address(CpuRegister(RSP), in.GetStackIndex())); |
| } else { |
| DCHECK(in.IsConstant()); |
| DCHECK(in.GetConstant()->IsLongConstant()); |
| int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); |
| __ movl(out.AsRegister<CpuRegister>(), Immediate(static_cast<int32_t>(value))); |
| } |
| break; |
| |
| case Primitive::kPrimFloat: { |
| // Processing a Dex `float-to-int' instruction. |
| XmmRegister input = in.AsFpuRegister<XmmRegister>(); |
| CpuRegister output = out.AsRegister<CpuRegister>(); |
| NearLabel done, nan; |
| |
| __ movl(output, Immediate(kPrimIntMax)); |
| // if input >= (float)INT_MAX goto done |
| __ comiss(input, codegen_->LiteralFloatAddress(kPrimIntMax)); |
| __ j(kAboveEqual, &done); |
| // if input == NaN goto nan |
| __ j(kUnordered, &nan); |
| // output = float-to-int-truncate(input) |
| __ cvttss2si(output, input, false); |
| __ jmp(&done); |
| __ Bind(&nan); |
| // output = 0 |
| __ xorl(output, output); |
| __ Bind(&done); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| // Processing a Dex `double-to-int' instruction. |
| XmmRegister input = in.AsFpuRegister<XmmRegister>(); |
| CpuRegister output = out.AsRegister<CpuRegister>(); |
| NearLabel done, nan; |
| |
| __ movl(output, Immediate(kPrimIntMax)); |
| // if input >= (double)INT_MAX goto done |
| __ comisd(input, codegen_->LiteralDoubleAddress(kPrimIntMax)); |
| __ j(kAboveEqual, &done); |
| // if input == NaN goto nan |
| __ j(kUnordered, &nan); |
| // output = double-to-int-truncate(input) |
| __ cvttsd2si(output, input); |
| __ jmp(&done); |
| __ Bind(&nan); |
| // output = 0 |
| __ xorl(output, output); |
| __ Bind(&done); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimLong: |
| switch (input_type) { |
| DCHECK(out.IsRegister()); |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-long' instruction. |
| DCHECK(in.IsRegister()); |
| __ movsxd(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>()); |
| break; |
| |
| case Primitive::kPrimFloat: { |
| // Processing a Dex `float-to-long' instruction. |
| XmmRegister input = in.AsFpuRegister<XmmRegister>(); |
| CpuRegister output = out.AsRegister<CpuRegister>(); |
| NearLabel done, nan; |
| |
| codegen_->Load64BitValue(output, kPrimLongMax); |
| // if input >= (float)LONG_MAX goto done |
| __ comiss(input, codegen_->LiteralFloatAddress(kPrimLongMax)); |
| __ j(kAboveEqual, &done); |
| // if input == NaN goto nan |
| __ j(kUnordered, &nan); |
| // output = float-to-long-truncate(input) |
| __ cvttss2si(output, input, true); |
| __ jmp(&done); |
| __ Bind(&nan); |
| // output = 0 |
| __ xorl(output, output); |
| __ Bind(&done); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| // Processing a Dex `double-to-long' instruction. |
| XmmRegister input = in.AsFpuRegister<XmmRegister>(); |
| CpuRegister output = out.AsRegister<CpuRegister>(); |
| NearLabel done, nan; |
| |
| codegen_->Load64BitValue(output, kPrimLongMax); |
| // if input >= (double)LONG_MAX goto done |
| __ comisd(input, codegen_->LiteralDoubleAddress(kPrimLongMax)); |
| __ j(kAboveEqual, &done); |
| // if input == NaN goto nan |
| __ j(kUnordered, &nan); |
| // output = double-to-long-truncate(input) |
| __ cvttsd2si(output, input, true); |
| __ jmp(&done); |
| __ Bind(&nan); |
| // output = 0 |
| __ xorl(output, output); |
| __ Bind(&done); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimChar: |
| switch (input_type) { |
| case Primitive::kPrimLong: |
| // Type conversion from long to char is a result of code transformations. |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| // Processing a Dex `int-to-char' instruction. |
| if (in.IsRegister()) { |
| __ movzxw(out.AsRegister<CpuRegister>(), in.AsRegister<CpuRegister>()); |
| } else if (in.IsStackSlot() || in.IsDoubleStackSlot()) { |
| __ movzxw(out.AsRegister<CpuRegister>(), |
| Address(CpuRegister(RSP), in.GetStackIndex())); |
| } else { |
| __ movl(out.AsRegister<CpuRegister>(), |
| Immediate(static_cast<uint16_t>(Int64FromConstant(in.GetConstant())))); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| break; |
| |
| case Primitive::kPrimFloat: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-float' instruction. |
| if (in.IsRegister()) { |
| __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<CpuRegister>(), false); |
| } else if (in.IsConstant()) { |
| int32_t v = in.GetConstant()->AsIntConstant()->GetValue(); |
| XmmRegister dest = out.AsFpuRegister<XmmRegister>(); |
| codegen_->Load32BitValue(dest, static_cast<float>(v)); |
| } else { |
| __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), in.GetStackIndex()), false); |
| } |
| break; |
| |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-float' instruction. |
| if (in.IsRegister()) { |
| __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<CpuRegister>(), true); |
| } else if (in.IsConstant()) { |
| int64_t v = in.GetConstant()->AsLongConstant()->GetValue(); |
| XmmRegister dest = out.AsFpuRegister<XmmRegister>(); |
| codegen_->Load32BitValue(dest, static_cast<float>(v)); |
| } else { |
| __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), in.GetStackIndex()), true); |
| } |
| break; |
| |
| case Primitive::kPrimDouble: |
| // Processing a Dex `double-to-float' instruction. |
| if (in.IsFpuRegister()) { |
| __ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>()); |
| } else if (in.IsConstant()) { |
| double v = in.GetConstant()->AsDoubleConstant()->GetValue(); |
| XmmRegister dest = out.AsFpuRegister<XmmRegister>(); |
| codegen_->Load32BitValue(dest, static_cast<float>(v)); |
| } else { |
| __ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), in.GetStackIndex())); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| }; |
| break; |
| |
| case Primitive::kPrimDouble: |
| switch (input_type) { |
| case Primitive::kPrimBoolean: |
| // Boolean input is a result of code transformations. |
| case Primitive::kPrimByte: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: |
| case Primitive::kPrimChar: |
| // Processing a Dex `int-to-double' instruction. |
| if (in.IsRegister()) { |
| __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<CpuRegister>(), false); |
| } else if (in.IsConstant()) { |
| int32_t v = in.GetConstant()->AsIntConstant()->GetValue(); |
| XmmRegister dest = out.AsFpuRegister<XmmRegister>(); |
| codegen_->Load64BitValue(dest, static_cast<double>(v)); |
| } else { |
| __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), in.GetStackIndex()), false); |
| } |
| break; |
| |
| case Primitive::kPrimLong: |
| // Processing a Dex `long-to-double' instruction. |
| if (in.IsRegister()) { |
| __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<CpuRegister>(), true); |
| } else if (in.IsConstant()) { |
| int64_t v = in.GetConstant()->AsLongConstant()->GetValue(); |
| XmmRegister dest = out.AsFpuRegister<XmmRegister>(); |
| codegen_->Load64BitValue(dest, static_cast<double>(v)); |
| } else { |
| __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), in.GetStackIndex()), true); |
| } |
| break; |
| |
| case Primitive::kPrimFloat: |
| // Processing a Dex `float-to-double' instruction. |
| if (in.IsFpuRegister()) { |
| __ cvtss2sd(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>()); |
| } else if (in.IsConstant()) { |
| float v = in.GetConstant()->AsFloatConstant()->GetValue(); |
| XmmRegister dest = out.AsFpuRegister<XmmRegister>(); |
| codegen_->Load64BitValue(dest, static_cast<double>(v)); |
| } else { |
| __ cvtss2sd(out.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), in.GetStackIndex())); |
| } |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| }; |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitAdd(HAdd* add) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall); |
| switch (add->GetResultType()) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| // We can use a leaq or addq if the constant can fit in an immediate. |
| locations->SetInAt(1, Location::RegisterOrInt32Constant(add->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: |
| case Primitive::kPrimFloat: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected add type " << add->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitAdd(HAdd* add) { |
| LocationSummary* locations = add->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| Location out = locations->Out(); |
| |
| switch (add->GetResultType()) { |
| case Primitive::kPrimInt: { |
| if (second.IsRegister()) { |
| if (out.AsRegister<Register>() == first.AsRegister<Register>()) { |
| __ addl(out.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); |
| } else if (out.AsRegister<Register>() == second.AsRegister<Register>()) { |
| __ addl(out.AsRegister<CpuRegister>(), first.AsRegister<CpuRegister>()); |
| } else { |
| __ leal(out.AsRegister<CpuRegister>(), Address( |
| first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>(), TIMES_1, 0)); |
| } |
| } else if (second.IsConstant()) { |
| if (out.AsRegister<Register>() == first.AsRegister<Register>()) { |
| __ addl(out.AsRegister<CpuRegister>(), |
| Immediate(second.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ leal(out.AsRegister<CpuRegister>(), Address( |
| first.AsRegister<CpuRegister>(), second.GetConstant()->AsIntConstant()->GetValue())); |
| } |
| } else { |
| DCHECK(first.Equals(locations->Out())); |
| __ addl(first.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| if (second.IsRegister()) { |
| if (out.AsRegister<Register>() == first.AsRegister<Register>()) { |
| __ addq(out.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); |
| } else if (out.AsRegister<Register>() == second.AsRegister<Register>()) { |
| __ addq(out.AsRegister<CpuRegister>(), first.AsRegister<CpuRegister>()); |
| } else { |
| __ leaq(out.AsRegister<CpuRegister>(), Address( |
| first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>(), TIMES_1, 0)); |
| } |
| } else { |
| DCHECK(second.IsConstant()); |
| int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); |
| int32_t int32_value = Low32Bits(value); |
| DCHECK_EQ(int32_value, value); |
| if (out.AsRegister<Register>() == first.AsRegister<Register>()) { |
| __ addq(out.AsRegister<CpuRegister>(), Immediate(int32_value)); |
| } else { |
| __ leaq(out.AsRegister<CpuRegister>(), Address( |
| first.AsRegister<CpuRegister>(), int32_value)); |
| } |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| if (second.IsFpuRegister()) { |
| __ addss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (second.IsConstant()) { |
| __ addss(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| second.GetConstant()->AsFloatConstant()->GetValue())); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| __ addss(first.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| if (second.IsFpuRegister()) { |
| __ addsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (second.IsConstant()) { |
| __ addsd(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| second.GetConstant()->AsDoubleConstant()->GetValue())); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()); |
| __ addsd(first.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected add type " << add->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitSub(HSub* sub) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall); |
| switch (sub->GetResultType()) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrInt32Constant(sub->InputAt(1))); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitSub(HSub* sub) { |
| LocationSummary* locations = sub->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| DCHECK(first.Equals(locations->Out())); |
| switch (sub->GetResultType()) { |
| case Primitive::kPrimInt: { |
| if (second.IsRegister()) { |
| __ subl(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); |
| } else if (second.IsConstant()) { |
| Immediate imm(second.GetConstant()->AsIntConstant()->GetValue()); |
| __ subl(first.AsRegister<CpuRegister>(), imm); |
| } else { |
| __ subl(first.AsRegister<CpuRegister>(), Address(CpuRegister(RSP), second.GetStackIndex())); |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| if (second.IsConstant()) { |
| int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); |
| DCHECK(IsInt<32>(value)); |
| __ subq(first.AsRegister<CpuRegister>(), Immediate(static_cast<int32_t>(value))); |
| } else { |
| __ subq(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| if (second.IsFpuRegister()) { |
| __ subss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (second.IsConstant()) { |
| __ subss(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| second.GetConstant()->AsFloatConstant()->GetValue())); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| __ subss(first.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| if (second.IsFpuRegister()) { |
| __ subsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (second.IsConstant()) { |
| __ subsd(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| second.GetConstant()->AsDoubleConstant()->GetValue())); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()); |
| __ subsd(first.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitMul(HMul* mul) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall); |
| switch (mul->GetResultType()) { |
| case Primitive::kPrimInt: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| if (mul->InputAt(1)->IsIntConstant()) { |
| // Can use 3 operand multiply. |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } else { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| if (mul->InputAt(1)->IsLongConstant() && |
| IsInt<32>(mul->InputAt(1)->AsLongConstant()->GetValue())) { |
| // Can use 3 operand multiply. |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } else { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitMul(HMul* mul) { |
| LocationSummary* locations = mul->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| Location out = locations->Out(); |
| switch (mul->GetResultType()) { |
| case Primitive::kPrimInt: |
| // The constant may have ended up in a register, so test explicitly to avoid |
| // problems where the output may not be the same as the first operand. |
| if (mul->InputAt(1)->IsIntConstant()) { |
| Immediate imm(mul->InputAt(1)->AsIntConstant()->GetValue()); |
| __ imull(out.AsRegister<CpuRegister>(), first.AsRegister<CpuRegister>(), imm); |
| } else if (second.IsRegister()) { |
| DCHECK(first.Equals(out)); |
| __ imull(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); |
| } else { |
| DCHECK(first.Equals(out)); |
| DCHECK(second.IsStackSlot()); |
| __ imull(first.AsRegister<CpuRegister>(), |
| Address(CpuRegister(RSP), second.GetStackIndex())); |
| } |
| break; |
| case Primitive::kPrimLong: { |
| // The constant may have ended up in a register, so test explicitly to avoid |
| // problems where the output may not be the same as the first operand. |
| if (mul->InputAt(1)->IsLongConstant()) { |
| int64_t value = mul->InputAt(1)->AsLongConstant()->GetValue(); |
| if (IsInt<32>(value)) { |
| __ imulq(out.AsRegister<CpuRegister>(), first.AsRegister<CpuRegister>(), |
| Immediate(static_cast<int32_t>(value))); |
| } else { |
| // Have to use the constant area. |
| DCHECK(first.Equals(out)); |
| __ imulq(first.AsRegister<CpuRegister>(), codegen_->LiteralInt64Address(value)); |
| } |
| } else if (second.IsRegister()) { |
| DCHECK(first.Equals(out)); |
| __ imulq(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()); |
| DCHECK(first.Equals(out)); |
| __ imulq(first.AsRegister<CpuRegister>(), |
| Address(CpuRegister(RSP), second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| DCHECK(first.Equals(out)); |
| if (second.IsFpuRegister()) { |
| __ mulss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (second.IsConstant()) { |
| __ mulss(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| second.GetConstant()->AsFloatConstant()->GetValue())); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| __ mulss(first.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| DCHECK(first.Equals(out)); |
| if (second.IsFpuRegister()) { |
| __ mulsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (second.IsConstant()) { |
| __ mulsd(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| second.GetConstant()->AsDoubleConstant()->GetValue())); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()); |
| __ mulsd(first.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::PushOntoFPStack(Location source, uint32_t temp_offset, |
| uint32_t stack_adjustment, bool is_float) { |
| if (source.IsStackSlot()) { |
| DCHECK(is_float); |
| __ flds(Address(CpuRegister(RSP), source.GetStackIndex() + stack_adjustment)); |
| } else if (source.IsDoubleStackSlot()) { |
| DCHECK(!is_float); |
| __ fldl(Address(CpuRegister(RSP), source.GetStackIndex() + stack_adjustment)); |
| } else { |
| // Write the value to the temporary location on the stack and load to FP stack. |
| if (is_float) { |
| Location stack_temp = Location::StackSlot(temp_offset); |
| codegen_->Move(stack_temp, source); |
| __ flds(Address(CpuRegister(RSP), temp_offset)); |
| } else { |
| Location stack_temp = Location::DoubleStackSlot(temp_offset); |
| codegen_->Move(stack_temp, source); |
| __ fldl(Address(CpuRegister(RSP), temp_offset)); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::GenerateRemFP(HRem *rem) { |
| Primitive::Type type = rem->GetResultType(); |
| bool is_float = type == Primitive::kPrimFloat; |
| size_t elem_size = Primitive::ComponentSize(type); |
| LocationSummary* locations = rem->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| Location out = locations->Out(); |
| |
| // Create stack space for 2 elements. |
| // TODO: enhance register allocator to ask for stack temporaries. |
| __ subq(CpuRegister(RSP), Immediate(2 * elem_size)); |
| |
| // Load the values to the FP stack in reverse order, using temporaries if needed. |
| PushOntoFPStack(second, elem_size, 2 * elem_size, is_float); |
| PushOntoFPStack(first, 0, 2 * elem_size, is_float); |
| |
| // Loop doing FPREM until we stabilize. |
| NearLabel retry; |
| __ Bind(&retry); |
| __ fprem(); |
| |
| // Move FP status to AX. |
| __ fstsw(); |
| |
| // And see if the argument reduction is complete. This is signaled by the |
| // C2 FPU flag bit set to 0. |
| __ andl(CpuRegister(RAX), Immediate(kC2ConditionMask)); |
| __ j(kNotEqual, &retry); |
| |
| // We have settled on the final value. Retrieve it into an XMM register. |
| // Store FP top of stack to real stack. |
| if (is_float) { |
| __ fsts(Address(CpuRegister(RSP), 0)); |
| } else { |
| __ fstl(Address(CpuRegister(RSP), 0)); |
| } |
| |
| // Pop the 2 items from the FP stack. |
| __ fucompp(); |
| |
| // Load the value from the stack into an XMM register. |
| DCHECK(out.IsFpuRegister()) << out; |
| if (is_float) { |
| __ movss(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), 0)); |
| } else { |
| __ movsd(out.AsFpuRegister<XmmRegister>(), Address(CpuRegister(RSP), 0)); |
| } |
| |
| // And remove the temporary stack space we allocated. |
| __ addq(CpuRegister(RSP), Immediate(2 * elem_size)); |
| } |
| |
| void InstructionCodeGeneratorX86_64::DivRemOneOrMinusOne(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| CpuRegister output_register = locations->Out().AsRegister<CpuRegister>(); |
| CpuRegister input_register = locations->InAt(0).AsRegister<CpuRegister>(); |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| |
| DCHECK(imm == 1 || imm == -1); |
| |
| switch (instruction->GetResultType()) { |
| case Primitive::kPrimInt: { |
| if (instruction->IsRem()) { |
| __ xorl(output_register, output_register); |
| } else { |
| __ movl(output_register, input_register); |
| if (imm == -1) { |
| __ negl(output_register); |
| } |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| if (instruction->IsRem()) { |
| __ xorl(output_register, output_register); |
| } else { |
| __ movq(output_register, input_register); |
| if (imm == -1) { |
| __ negq(output_register); |
| } |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected type for div by (-)1 " << instruction->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::DivByPowerOfTwo(HDiv* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| |
| CpuRegister output_register = locations->Out().AsRegister<CpuRegister>(); |
| CpuRegister numerator = locations->InAt(0).AsRegister<CpuRegister>(); |
| |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| DCHECK(IsPowerOfTwo(AbsOrMin(imm))); |
| uint64_t abs_imm = AbsOrMin(imm); |
| |
| CpuRegister tmp = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| |
| if (instruction->GetResultType() == Primitive::kPrimInt) { |
| __ leal(tmp, Address(numerator, abs_imm - 1)); |
| __ testl(numerator, numerator); |
| __ cmov(kGreaterEqual, tmp, numerator); |
| int shift = CTZ(imm); |
| __ sarl(tmp, Immediate(shift)); |
| |
| if (imm < 0) { |
| __ negl(tmp); |
| } |
| |
| __ movl(output_register, tmp); |
| } else { |
| DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); |
| CpuRegister rdx = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| |
| codegen_->Load64BitValue(rdx, abs_imm - 1); |
| __ addq(rdx, numerator); |
| __ testq(numerator, numerator); |
| __ cmov(kGreaterEqual, rdx, numerator); |
| int shift = CTZ(imm); |
| __ sarq(rdx, Immediate(shift)); |
| |
| if (imm < 0) { |
| __ negq(rdx); |
| } |
| |
| __ movq(output_register, rdx); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| |
| CpuRegister numerator = instruction->IsDiv() ? locations->GetTemp(1).AsRegister<CpuRegister>() |
| : locations->GetTemp(0).AsRegister<CpuRegister>(); |
| CpuRegister eax = locations->InAt(0).AsRegister<CpuRegister>(); |
| CpuRegister edx = instruction->IsDiv() ? locations->GetTemp(0).AsRegister<CpuRegister>() |
| : locations->Out().AsRegister<CpuRegister>(); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| |
| DCHECK_EQ(RAX, eax.AsRegister()); |
| DCHECK_EQ(RDX, edx.AsRegister()); |
| if (instruction->IsDiv()) { |
| DCHECK_EQ(RAX, out.AsRegister()); |
| } else { |
| DCHECK_EQ(RDX, out.AsRegister()); |
| } |
| |
| int64_t magic; |
| int shift; |
| |
| // TODO: can these branches be written as one? |
| if (instruction->GetResultType() == Primitive::kPrimInt) { |
| int imm = second.GetConstant()->AsIntConstant()->GetValue(); |
| |
| CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift); |
| |
| __ movl(numerator, eax); |
| |
| __ movl(eax, Immediate(magic)); |
| __ imull(numerator); |
| |
| if (imm > 0 && magic < 0) { |
| __ addl(edx, numerator); |
| } else if (imm < 0 && magic > 0) { |
| __ subl(edx, numerator); |
| } |
| |
| if (shift != 0) { |
| __ sarl(edx, Immediate(shift)); |
| } |
| |
| __ movl(eax, edx); |
| __ shrl(edx, Immediate(31)); |
| __ addl(edx, eax); |
| |
| if (instruction->IsRem()) { |
| __ movl(eax, numerator); |
| __ imull(edx, Immediate(imm)); |
| __ subl(eax, edx); |
| __ movl(edx, eax); |
| } else { |
| __ movl(eax, edx); |
| } |
| } else { |
| int64_t imm = second.GetConstant()->AsLongConstant()->GetValue(); |
| |
| DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); |
| |
| CpuRegister rax = eax; |
| CpuRegister rdx = edx; |
| |
| CalculateMagicAndShiftForDivRem(imm, true /* is_long */, &magic, &shift); |
| |
| // Save the numerator. |
| __ movq(numerator, rax); |
| |
| // RAX = magic |
| codegen_->Load64BitValue(rax, magic); |
| |
| // RDX:RAX = magic * numerator |
| __ imulq(numerator); |
| |
| if (imm > 0 && magic < 0) { |
| // RDX += numerator |
| __ addq(rdx, numerator); |
| } else if (imm < 0 && magic > 0) { |
| // RDX -= numerator |
| __ subq(rdx, numerator); |
| } |
| |
| // Shift if needed. |
| if (shift != 0) { |
| __ sarq(rdx, Immediate(shift)); |
| } |
| |
| // RDX += 1 if RDX < 0 |
| __ movq(rax, rdx); |
| __ shrq(rdx, Immediate(63)); |
| __ addq(rdx, rax); |
| |
| if (instruction->IsRem()) { |
| __ movq(rax, numerator); |
| |
| if (IsInt<32>(imm)) { |
| __ imulq(rdx, Immediate(static_cast<int32_t>(imm))); |
| } else { |
| __ imulq(rdx, codegen_->LiteralInt64Address(imm)); |
| } |
| |
| __ subq(rax, rdx); |
| __ movq(rdx, rax); |
| } else { |
| __ movq(rax, rdx); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::GenerateDivRemIntegral(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| Primitive::Type type = instruction->GetResultType(); |
| DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong); |
| |
| bool is_div = instruction->IsDiv(); |
| LocationSummary* locations = instruction->GetLocations(); |
| |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| Location second = locations->InAt(1); |
| |
| DCHECK_EQ(RAX, locations->InAt(0).AsRegister<CpuRegister>().AsRegister()); |
| DCHECK_EQ(is_div ? RAX : RDX, out.AsRegister()); |
| |
| if (second.IsConstant()) { |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| |
| if (imm == 0) { |
| // Do not generate anything. DivZeroCheck would prevent any code to be executed. |
| } else if (imm == 1 || imm == -1) { |
| DivRemOneOrMinusOne(instruction); |
| } else if (instruction->IsDiv() && IsPowerOfTwo(AbsOrMin(imm))) { |
| DivByPowerOfTwo(instruction->AsDiv()); |
| } else { |
| DCHECK(imm <= -2 || imm >= 2); |
| GenerateDivRemWithAnyConstant(instruction); |
| } |
| } else { |
| SlowPathCode* slow_path = |
| new (GetGraph()->GetArena()) DivRemMinusOneSlowPathX86_64( |
| instruction, out.AsRegister(), type, is_div); |
| codegen_->AddSlowPath(slow_path); |
| |
| CpuRegister second_reg = second.AsRegister<CpuRegister>(); |
| // 0x80000000(00000000)/-1 triggers an arithmetic exception! |
| // Dividing by -1 is actually negation and -0x800000000(00000000) = 0x80000000(00000000) |
| // so it's safe to just use negl instead of more complex comparisons. |
| if (type == Primitive::kPrimInt) { |
| __ cmpl(second_reg, Immediate(-1)); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| // edx:eax <- sign-extended of eax |
| __ cdq(); |
| // eax = quotient, edx = remainder |
| __ idivl(second_reg); |
| } else { |
| __ cmpq(second_reg, Immediate(-1)); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| // rdx:rax <- sign-extended of rax |
| __ cqo(); |
| // rax = quotient, rdx = remainder |
| __ idivq(second_reg); |
| } |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitDiv(HDiv* div) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(div, LocationSummary::kNoCall); |
| switch (div->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RegisterLocation(RAX)); |
| locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1))); |
| locations->SetOut(Location::SameAsFirstInput()); |
| // Intel uses edx:eax as the dividend. |
| locations->AddTemp(Location::RegisterLocation(RDX)); |
| // We need to save the numerator while we tweak rax and rdx. As we are using imul in a way |
| // which enforces results to be in RAX and RDX, things are simpler if we use RDX also as |
| // output and request another temp. |
| if (div->InputAt(1)->IsConstant()) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << div->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitDiv(HDiv* div) { |
| LocationSummary* locations = div->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| DCHECK(first.Equals(locations->Out())); |
| |
| Primitive::Type type = div->GetResultType(); |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| GenerateDivRemIntegral(div); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| if (second.IsFpuRegister()) { |
| __ divss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (second.IsConstant()) { |
| __ divss(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralFloatAddress( |
| second.GetConstant()->AsFloatConstant()->GetValue())); |
| } else { |
| DCHECK(second.IsStackSlot()); |
| __ divss(first.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| if (second.IsFpuRegister()) { |
| __ divsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); |
| } else if (second.IsConstant()) { |
| __ divsd(first.AsFpuRegister<XmmRegister>(), |
| codegen_->LiteralDoubleAddress( |
| second.GetConstant()->AsDoubleConstant()->GetValue())); |
| } else { |
| DCHECK(second.IsDoubleStackSlot()); |
| __ divsd(first.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), second.GetStackIndex())); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << div->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitRem(HRem* rem) { |
| Primitive::Type type = rem->GetResultType(); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(rem, LocationSummary::kNoCall); |
| |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RegisterLocation(RAX)); |
| locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1))); |
| // Intel uses rdx:rax as the dividend and puts the remainder in rdx |
| locations->SetOut(Location::RegisterLocation(RDX)); |
| // We need to save the numerator while we tweak eax and edx. As we are using imul in a way |
| // which enforces results to be in RAX and RDX, things are simpler if we use EAX also as |
| // output and request another temp. |
| if (rem->InputAt(1)->IsConstant()) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| locations->SetInAt(0, Location::Any()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RegisterLocation(RAX)); |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitRem(HRem* rem) { |
| Primitive::Type type = rem->GetResultType(); |
| switch (type) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| GenerateDivRemIntegral(rem); |
| break; |
| } |
| case Primitive::kPrimFloat: |
| case Primitive::kPrimDouble: { |
| GenerateRemFP(rem); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected rem type " << rem->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); |
| locations->SetInAt(0, Location::Any()); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| SlowPathCode* slow_path = |
| new (GetGraph()->GetArena()) DivZeroCheckSlowPathX86_64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location value = locations->InAt(0); |
| |
| switch (instruction->GetType()) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: |
| case Primitive::kPrimChar: |
| case Primitive::kPrimShort: |
| case Primitive::kPrimInt: { |
| if (value.IsRegister()) { |
| __ testl(value.AsRegister<CpuRegister>(), value.AsRegister<CpuRegister>()); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } else if (value.IsStackSlot()) { |
| __ cmpl(Address(CpuRegister(RSP), value.GetStackIndex()), Immediate(0)); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } else { |
| DCHECK(value.IsConstant()) << value; |
| if (value.GetConstant()->AsIntConstant()->GetValue() == 0) { |
| __ jmp(slow_path->GetEntryLabel()); |
| } |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| if (value.IsRegister()) { |
| __ testq(value.AsRegister<CpuRegister>(), value.AsRegister<CpuRegister>()); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } else if (value.IsDoubleStackSlot()) { |
| __ cmpq(Address(CpuRegister(RSP), value.GetStackIndex()), Immediate(0)); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } else { |
| DCHECK(value.IsConstant()) << value; |
| if (value.GetConstant()->AsLongConstant()->GetValue() == 0) { |
| __ jmp(slow_path->GetEntryLabel()); |
| } |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType(); |
| } |
| } |
| |
| void LocationsBuilderX86_64::HandleShift(HBinaryOperation* op) { |
| DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall); |
| |
| switch (op->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| // The shift count needs to be in CL. |
| locations->SetInAt(1, Location::ByteRegisterOrConstant(RCX, op->InputAt(1))); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected operation type " << op->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::HandleShift(HBinaryOperation* op) { |
| DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); |
| |
| LocationSummary* locations = op->GetLocations(); |
| CpuRegister first_reg = locations->InAt(0).AsRegister<CpuRegister>(); |
| Location second = locations->InAt(1); |
| |
| switch (op->GetResultType()) { |
| case Primitive::kPrimInt: { |
| if (second.IsRegister()) { |
| CpuRegister second_reg = second.AsRegister<CpuRegister>(); |
| if (op->IsShl()) { |
| __ shll(first_reg, second_reg); |
| } else if (op->IsShr()) { |
| __ sarl(first_reg, second_reg); |
| } else { |
| __ shrl(first_reg, second_reg); |
| } |
| } else { |
| Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance); |
| if (op->IsShl()) { |
| __ shll(first_reg, imm); |
| } else if (op->IsShr()) { |
| __ sarl(first_reg, imm); |
| } else { |
| __ shrl(first_reg, imm); |
| } |
| } |
| break; |
| } |
| case Primitive::kPrimLong: { |
| if (second.IsRegister()) { |
| CpuRegister second_reg = second.AsRegister<CpuRegister>(); |
| if (op->IsShl()) { |
| __ shlq(first_reg, second_reg); |
| } else if (op->IsShr()) { |
| __ sarq(first_reg, second_reg); |
| } else { |
| __ shrq(first_reg, second_reg); |
| } |
| } else { |
| Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance); |
| if (op->IsShl()) { |
| __ shlq(first_reg, imm); |
| } else if (op->IsShr()) { |
| __ sarq(first_reg, imm); |
| } else { |
| __ shrq(first_reg, imm); |
| } |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected operation type " << op->GetResultType(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitRor(HRor* ror) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall); |
| |
| switch (ror->GetResultType()) { |
| case Primitive::kPrimInt: |
| case Primitive::kPrimLong: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| // The shift count needs to be in CL (unless it is a constant). |
| locations->SetInAt(1, Location::ByteRegisterOrConstant(RCX, ror->InputAt(1))); |
| locations->SetOut(Location::SameAsFirstInput()); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected operation type " << ror->GetResultType(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitRor(HRor* ror) { |
| LocationSummary* locations = ror->GetLocations(); |
| CpuRegister first_reg = locations->InAt(0).AsRegister<CpuRegister>(); |
| Location second = locations->InAt(1); |
| |
| switch (ror->GetResultType()) { |
| case Primitive::kPrimInt: |
| if (second.IsRegister()) { |
| CpuRegister second_reg = second.AsRegister<CpuRegister>(); |
| __ rorl(first_reg, second_reg); |
| } else { |
| Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance); |
| __ rorl(first_reg, imm); |
| } |
| break; |
| case Primitive::kPrimLong: |
| if (second.IsRegister()) { |
| CpuRegister second_reg = second.AsRegister<CpuRegister>(); |
| __ rorq(first_reg, second_reg); |
| } else { |
| Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance); |
| __ rorq(first_reg, imm); |
| } |
| break; |
| default: |
| LOG(FATAL) << "Unexpected operation type " << ror->GetResultType(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void LocationsBuilderX86_64::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void LocationsBuilderX86_64::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void LocationsBuilderX86_64::VisitNewInstance(HNewInstance* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| if (instruction->IsStringAlloc()) { |
| locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument)); |
| } else { |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| locations->SetOut(Location::RegisterLocation(RAX)); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitNewInstance(HNewInstance* instruction) { |
| // Note: if heap poisoning is enabled, the entry point takes cares |
| // of poisoning the reference. |
| if (instruction->IsStringAlloc()) { |
| // String is allocated through StringFactory. Call NewEmptyString entry point. |
| CpuRegister temp = instruction->GetLocations()->GetTemp(0).AsRegister<CpuRegister>(); |
| MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86_64PointerSize); |
| __ gs()->movq(temp, Address::Absolute(QUICK_ENTRY_POINT(pNewEmptyString), /* no_rip */ true)); |
| __ call(Address(temp, code_offset.SizeValue())); |
| codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); |
| } else { |
| codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitNewArray(HNewArray* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetOut(Location::RegisterLocation(RAX)); |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitNewArray(HNewArray* instruction) { |
| // Note: if heap poisoning is enabled, the entry point takes cares |
| // of poisoning the reference. |
| QuickEntrypointEnum entrypoint = |
| CodeGenerator::GetArrayAllocationEntrypoint(instruction->GetLoadClass()->GetClass()); |
| codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>(); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| |
| void LocationsBuilderX86_64::VisitParameterValue(HParameterValue* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); |
| if (location.IsStackSlot()) { |
| location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } else if (location.IsDoubleStackSlot()) { |
| location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } |
| locations->SetOut(location); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitParameterValue( |
| HParameterValue* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, the parameter is already at its location. |
| } |
| |
| void LocationsBuilderX86_64::VisitCurrentMethod(HCurrentMethod* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument)); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitCurrentMethod( |
| HCurrentMethod* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, the method is already at its location. |
| } |
| |
| void LocationsBuilderX86_64::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { |
| uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| instruction->GetIndex(), kX86_64PointerSize).SizeValue(); |
| __ movq(locations->Out().AsRegister<CpuRegister>(), |
| Address(locations->InAt(0).AsRegister<CpuRegister>(), method_offset)); |
| } else { |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| instruction->GetIndex(), kX86_64PointerSize)); |
| __ movq(locations->Out().AsRegister<CpuRegister>(), |
| Address(locations->InAt(0).AsRegister<CpuRegister>(), |
| mirror::Class::ImtPtrOffset(kX86_64PointerSize).Uint32Value())); |
| __ movq(locations->Out().AsRegister<CpuRegister>(), |
| Address(locations->Out().AsRegister<CpuRegister>(), method_offset)); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitNot(HNot* not_) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitNot(HNot* not_) { |
| LocationSummary* locations = not_->GetLocations(); |
| DCHECK_EQ(locations->InAt(0).AsRegister<CpuRegister>().AsRegister(), |
| locations->Out().AsRegister<CpuRegister>().AsRegister()); |
| Location out = locations->Out(); |
| switch (not_->GetResultType()) { |
| case Primitive::kPrimInt: |
| __ notl(out.AsRegister<CpuRegister>()); |
| break; |
| |
| case Primitive::kPrimLong: |
| __ notq(out.AsRegister<CpuRegister>()); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitBooleanNot(HBooleanNot* bool_not) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitBooleanNot(HBooleanNot* bool_not) { |
| LocationSummary* locations = bool_not->GetLocations(); |
| DCHECK_EQ(locations->InAt(0).AsRegister<CpuRegister>().AsRegister(), |
| locations->Out().AsRegister<CpuRegister>().AsRegister()); |
| Location out = locations->Out(); |
| __ xorl(out.AsRegister<CpuRegister>(), Immediate(1)); |
| } |
| |
| void LocationsBuilderX86_64::VisitPhi(HPhi* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { |
| locations->SetInAt(i, Location::Any()); |
| } |
| locations->SetOut(Location::Any()); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void CodeGeneratorX86_64::GenerateMemoryBarrier(MemBarrierKind kind) { |
| /* |
| * According to the JSR-133 Cookbook, for x86-64 only StoreLoad/AnyAny barriers need memory fence. |
| * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86-64 memory model. |
| * For those cases, all we need to ensure is that there is a scheduling barrier in place. |
| */ |
| switch (kind) { |
| case MemBarrierKind::kAnyAny: { |
| MemoryFence(); |
| break; |
| } |
| case MemBarrierKind::kAnyStore: |
| case MemBarrierKind::kLoadAny: |
| case MemBarrierKind::kStoreStore: { |
| // nop |
| break; |
| } |
| case MemBarrierKind::kNTStoreStore: |
| // Non-Temporal Store/Store needs an explicit fence. |
| MemoryFence(/* non-temporal */ true); |
| break; |
| } |
| } |
| |
| void LocationsBuilderX86_64::HandleFieldGet(HInstruction* instruction) { |
| DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); |
| |
| bool object_field_get_with_read_barrier = |
| kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, |
| object_field_get_with_read_barrier ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (Primitive::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } else { |
| // The output overlaps for an object field get when read barriers |
| // are enabled: we do not want the move to overwrite the object's |
| // location, as we need it to emit the read barrier. |
| locations->SetOut( |
| Location::RequiresRegister(), |
| object_field_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::HandleFieldGet(HInstruction* instruction, |
| const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location base_loc = locations->InAt(0); |
| CpuRegister base = base_loc.AsRegister<CpuRegister>(); |
| Location out = locations->Out(); |
| bool is_volatile = field_info.IsVolatile(); |
| Primitive::Type field_type = field_info.GetFieldType(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| |
| switch (field_type) { |
| case Primitive::kPrimBoolean: { |
| __ movzxb(out.AsRegister<CpuRegister>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimByte: { |
| __ movsxb(out.AsRegister<CpuRegister>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimShort: { |
| __ movsxw(out.AsRegister<CpuRegister>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimChar: { |
| __ movzxw(out.AsRegister<CpuRegister>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimInt: { |
| __ movl(out.AsRegister<CpuRegister>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimNot: { |
| // /* HeapReference<Object> */ out = *(base + offset) |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // Note that a potential implicit null check is handled in this |
| // CodeGeneratorX86_64::GenerateFieldLoadWithBakerReadBarrier call. |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| instruction, out, base, offset, /* needs_null_check */ true); |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| } else { |
| __ movl(out.AsRegister<CpuRegister>(), Address(base, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| __ movq(out.AsRegister<CpuRegister>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| __ movss(out.AsFpuRegister<XmmRegister>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| __ movsd(out.AsFpuRegister<XmmRegister>(), Address(base, offset)); |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << field_type; |
| UNREACHABLE(); |
| } |
| |
| if (field_type == Primitive::kPrimNot) { |
| // Potential implicit null checks, in the case of reference |
| // fields, are handled in the previous switch statement. |
| } else { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| if (is_volatile) { |
| if (field_type == Primitive::kPrimNot) { |
| // Memory barriers, in the case of references, are also handled |
| // in the previous switch statement. |
| } else { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| } |
| } |
| } |
| |
| void LocationsBuilderX86_64::HandleFieldSet(HInstruction* instruction, |
| const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| Primitive::Type field_type = field_info.GetFieldType(); |
| bool is_volatile = field_info.IsVolatile(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1)); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (Primitive::IsFloatingPointType(instruction->InputAt(1)->GetType())) { |
| if (is_volatile) { |
| // In order to satisfy the semantics of volatile, this must be a single instruction store. |
| locations->SetInAt(1, Location::FpuRegisterOrInt32Constant(instruction->InputAt(1))); |
| } else { |
| locations->SetInAt(1, Location::FpuRegisterOrConstant(instruction->InputAt(1))); |
| } |
| } else { |
| if (is_volatile) { |
| // In order to satisfy the semantics of volatile, this must be a single instruction store. |
| locations->SetInAt(1, Location::RegisterOrInt32Constant(instruction->InputAt(1))); |
| } else { |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| } |
| } |
| if (needs_write_barrier) { |
| // Temporary registers for the write barrier. |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. |
| locations->AddTemp(Location::RequiresRegister()); |
| } else if (kPoisonHeapReferences && field_type == Primitive::kPrimNot) { |
| // Temporary register for the reference poisoning. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::HandleFieldSet(HInstruction* instruction, |
| const FieldInfo& field_info, |
| bool value_can_be_null) { |
| DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| CpuRegister base = locations->InAt(0).AsRegister<CpuRegister>(); |
| Location value = locations->InAt(1); |
| bool is_volatile = field_info.IsVolatile(); |
| Primitive::Type field_type = field_info.GetFieldType(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); |
| } |
| |
| bool maybe_record_implicit_null_check_done = false; |
| |
| switch (field_type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: { |
| if (value.IsConstant()) { |
| int8_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); |
| __ movb(Address(base, offset), Immediate(v)); |
| } else { |
| __ movb(Address(base, offset), value.AsRegister<CpuRegister>()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: { |
| if (value.IsConstant()) { |
| int16_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); |
| __ movw(Address(base, offset), Immediate(v)); |
| } else { |
| __ movw(Address(base, offset), value.AsRegister<CpuRegister>()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimInt: |
| case Primitive::kPrimNot: { |
| if (value.IsConstant()) { |
| int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); |
| // `field_type == Primitive::kPrimNot` implies `v == 0`. |
| DCHECK((field_type != Primitive::kPrimNot) || (v == 0)); |
| // Note: if heap poisoning is enabled, no need to poison |
| // (negate) `v` if it is a reference, as it would be null. |
| __ movl(Address(base, offset), Immediate(v)); |
| } else { |
| if (kPoisonHeapReferences && field_type == Primitive::kPrimNot) { |
| CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| __ movl(temp, value.AsRegister<CpuRegister>()); |
| __ PoisonHeapReference(temp); |
| __ movl(Address(base, offset), temp); |
| } else { |
| __ movl(Address(base, offset), value.AsRegister<CpuRegister>()); |
| } |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| if (value.IsConstant()) { |
| int64_t v = value.GetConstant()->AsLongConstant()->GetValue(); |
| codegen_->MoveInt64ToAddress(Address(base, offset), |
| Address(base, offset + sizeof(int32_t)), |
| v, |
| instruction); |
| maybe_record_implicit_null_check_done = true; |
| } else { |
| __ movq(Address(base, offset), value.AsRegister<CpuRegister>()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| if (value.IsConstant()) { |
| int32_t v = |
| bit_cast<int32_t, float>(value.GetConstant()->AsFloatConstant()->GetValue()); |
| __ movl(Address(base, offset), Immediate(v)); |
| } else { |
| __ movss(Address(base, offset), value.AsFpuRegister<XmmRegister>()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| if (value.IsConstant()) { |
| int64_t v = |
| bit_cast<int64_t, double>(value.GetConstant()->AsDoubleConstant()->GetValue()); |
| codegen_->MoveInt64ToAddress(Address(base, offset), |
| Address(base, offset + sizeof(int32_t)), |
| v, |
| instruction); |
| maybe_record_implicit_null_check_done = true; |
| } else { |
| __ movsd(Address(base, offset), value.AsFpuRegister<XmmRegister>()); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << field_type; |
| UNREACHABLE(); |
| } |
| |
| if (!maybe_record_implicit_null_check_done) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { |
| CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| CpuRegister card = locations->GetTemp(1).AsRegister<CpuRegister>(); |
| codegen_->MarkGCCard(temp, card, base, value.AsRegister<CpuRegister>(), value_can_be_null); |
| } |
| |
| if (is_volatile) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); |
| } |
| |
| void LocationsBuilderX86_64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderX86_64::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderX86_64::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); |
| } |
| |
| void LocationsBuilderX86_64::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionX86_64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionX86_64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderX86_64::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionX86_64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionX86_64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderX86_64::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionX86_64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionX86_64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderX86_64::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionX86_64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionX86_64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderX86_64::VisitNullCheck(HNullCheck* instruction) { |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); |
| Location loc = codegen_->GetCompilerOptions().GetImplicitNullChecks() |
| ? Location::RequiresRegister() |
| : Location::Any(); |
| locations->SetInAt(0, loc); |
| } |
| |
| void CodeGeneratorX86_64::GenerateImplicitNullCheck(HNullCheck* instruction) { |
| if (CanMoveNullCheckToUser(instruction)) { |
| return; |
| } |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj = locations->InAt(0); |
| |
| __ testl(CpuRegister(RAX), Address(obj.AsRegister<CpuRegister>(), 0)); |
| RecordPcInfo(instruction, instruction->GetDexPc()); |
| } |
| |
| void CodeGeneratorX86_64::GenerateExplicitNullCheck(HNullCheck* instruction) { |
| SlowPathCode* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathX86_64(instruction); |
| AddSlowPath(slow_path); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj = locations->InAt(0); |
| |
| if (obj.IsRegister()) { |
| __ testl(obj.AsRegister<CpuRegister>(), obj.AsRegister<CpuRegister>()); |
| } else if (obj.IsStackSlot()) { |
| __ cmpl(Address(CpuRegister(RSP), obj.GetStackIndex()), Immediate(0)); |
| } else { |
| DCHECK(obj.IsConstant()) << obj; |
| DCHECK(obj.GetConstant()->IsNullConstant()); |
| __ jmp(slow_path->GetEntryLabel()); |
| return; |
| } |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitNullCheck(HNullCheck* instruction) { |
| codegen_->GenerateNullCheck(instruction); |
| } |
| |
| void LocationsBuilderX86_64::VisitArrayGet(HArrayGet* instruction) { |
| bool object_array_get_with_read_barrier = |
| kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot); |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, |
| object_array_get_with_read_barrier ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (Primitive::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| // The output overlaps for an object array get when read barriers |
| // are enabled: we do not want the move to overwrite the array's |
| // location, as we need it to emit the read barrier. |
| locations->SetOut( |
| Location::RequiresRegister(), |
| object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitArrayGet(HArrayGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| CpuRegister obj = obj_loc.AsRegister<CpuRegister>(); |
| Location index = locations->InAt(1); |
| Location out_loc = locations->Out(); |
| uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction); |
| |
| Primitive::Type type = instruction->GetType(); |
| switch (type) { |
| case Primitive::kPrimBoolean: { |
| CpuRegister out = out_loc.AsRegister<CpuRegister>(); |
| __ movzxb(out, CodeGeneratorX86_64::ArrayAddress(obj, index, TIMES_1, data_offset)); |
| break; |
| } |
| |
| case Primitive::kPrimByte: { |
| CpuRegister out = out_loc.AsRegister<CpuRegister>(); |
| __ movsxb(out, CodeGeneratorX86_64::ArrayAddress(obj, index, TIMES_1, data_offset)); |
| break; |
| } |
| |
| case Primitive::kPrimShort: { |
| CpuRegister out = out_loc.AsRegister<CpuRegister>(); |
| __ movsxw(out, CodeGeneratorX86_64::ArrayAddress(obj, index, TIMES_2, data_offset)); |
| break; |
| } |
| |
| case Primitive::kPrimChar: { |
| CpuRegister out = out_loc.AsRegister<CpuRegister>(); |
| if (mirror::kUseStringCompression && instruction->IsStringCharAt()) { |
| // Branch cases into compressed and uncompressed for each index's type. |
| uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| NearLabel done, not_compressed; |
| __ testb(Address(obj, count_offset), Immediate(1)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ j(kNotZero, ¬_compressed); |
| __ movzxb(out, CodeGeneratorX86_64::ArrayAddress(obj, index, TIMES_1, data_offset)); |
| __ jmp(&done); |
| __ Bind(¬_compressed); |
| __ movzxw(out, CodeGeneratorX86_64::ArrayAddress(obj, index, TIMES_2, data_offset)); |
| __ Bind(&done); |
| } else { |
| __ movzxw(out, CodeGeneratorX86_64::ArrayAddress(obj, index, TIMES_2, data_offset)); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimInt: { |
| CpuRegister out = out_loc.AsRegister<CpuRegister>(); |
| __ movl(out, CodeGeneratorX86_64::ArrayAddress(obj, index, TIMES_4, data_offset)); |
| break; |
| } |
| |
| case Primitive::kPrimNot: { |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| // /* HeapReference<Object> */ out = |
| // *(obj + data_offset + index * sizeof(HeapReference<Object>)) |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // Note that a potential implicit null check is handled in this |
| // CodeGeneratorX86_64::GenerateArrayLoadWithBakerReadBarrier call. |
| codegen_->GenerateArrayLoadWithBakerReadBarrier( |
| instruction, out_loc, obj, data_offset, index, /* needs_null_check */ true); |
| } else { |
| CpuRegister out = out_loc.AsRegister<CpuRegister>(); |
| __ movl(out, CodeGeneratorX86_64::ArrayAddress(obj, index, TIMES_4, data_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| if (index.IsConstant()) { |
| uint32_t offset = |
| (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset); |
| } else { |
| codegen_->MaybeGenerateReadBarrierSlow( |
| instruction, out_loc, out_loc, obj_loc, data_offset, index); |
| } |
| } |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| CpuRegister out = out_loc.AsRegister<CpuRegister>(); |
| __ movq(out, CodeGeneratorX86_64::ArrayAddress(obj, index, TIMES_8, data_offset)); |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| XmmRegister out = out_loc.AsFpuRegister<XmmRegister>(); |
| __ movss(out, CodeGeneratorX86_64::ArrayAddress(obj, index, TIMES_4, data_offset)); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| XmmRegister out = out_loc.AsFpuRegister<XmmRegister>(); |
| __ movsd(out, CodeGeneratorX86_64::ArrayAddress(obj, index, TIMES_8, data_offset)); |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| UNREACHABLE(); |
| } |
| |
| if (type == Primitive::kPrimNot) { |
| // Potential implicit null checks, in the case of reference |
| // arrays, are handled in the previous switch statement. |
| } else { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitArraySet(HArraySet* instruction) { |
| Primitive::Type value_type = instruction->GetComponentType(); |
| |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( |
| instruction, |
| may_need_runtime_call_for_type_check ? |
| LocationSummary::kCallOnSlowPath : |
| LocationSummary::kNoCall); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (Primitive::IsFloatingPointType(value_type)) { |
| locations->SetInAt(2, Location::FpuRegisterOrConstant(instruction->InputAt(2))); |
| } else { |
| locations->SetInAt(2, Location::RegisterOrConstant(instruction->InputAt(2))); |
| } |
| |
| if (needs_write_barrier) { |
| // Temporary registers for the write barrier. |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitArraySet(HArraySet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location array_loc = locations->InAt(0); |
| CpuRegister array = array_loc.AsRegister<CpuRegister>(); |
| Location index = locations->InAt(1); |
| Location value = locations->InAt(2); |
| Primitive::Type value_type = instruction->GetComponentType(); |
| bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| |
| switch (value_type) { |
| case Primitive::kPrimBoolean: |
| case Primitive::kPrimByte: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); |
| Address address = CodeGeneratorX86_64::ArrayAddress(array, index, TIMES_1, offset); |
| if (value.IsRegister()) { |
| __ movb(address, value.AsRegister<CpuRegister>()); |
| } else { |
| __ movb(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue())); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| break; |
| } |
| |
| case Primitive::kPrimShort: |
| case Primitive::kPrimChar: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); |
| Address address = CodeGeneratorX86_64::ArrayAddress(array, index, TIMES_2, offset); |
| if (value.IsRegister()) { |
| __ movw(address, value.AsRegister<CpuRegister>()); |
| } else { |
| DCHECK(value.IsConstant()) << value; |
| __ movw(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue())); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| break; |
| } |
| |
| case Primitive::kPrimNot: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); |
| Address address = CodeGeneratorX86_64::ArrayAddress(array, index, TIMES_4, offset); |
| |
| if (!value.IsRegister()) { |
| // Just setting null. |
| DCHECK(instruction->InputAt(2)->IsNullConstant()); |
| DCHECK(value.IsConstant()) << value; |
| __ movl(address, Immediate(0)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| DCHECK(!needs_write_barrier); |
| DCHECK(!may_need_runtime_call_for_type_check); |
| break; |
| } |
| |
| DCHECK(needs_write_barrier); |
| CpuRegister register_value = value.AsRegister<CpuRegister>(); |
| // We cannot use a NearLabel for `done`, as its range may be too |
| // short when Baker read barriers are enabled. |
| Label done; |
| NearLabel not_null, do_put; |
| SlowPathCode* slow_path = nullptr; |
| Location temp_loc = locations->GetTemp(0); |
| CpuRegister temp = temp_loc.AsRegister<CpuRegister>(); |
| if (may_need_runtime_call_for_type_check) { |
| slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathX86_64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| if (instruction->GetValueCanBeNull()) { |
| __ testl(register_value, register_value); |
| __ j(kNotEqual, ¬_null); |
| __ movl(address, Immediate(0)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ jmp(&done); |
| __ Bind(¬_null); |
| } |
| |
| // Note that when Baker read barriers are enabled, the type |
| // checks are performed without read barriers. This is fine, |
| // even in the case where a class object is in the from-space |
| // after the flip, as a comparison involving such a type would |
| // not produce a false positive; it may of course produce a |
| // false negative, in which case we would take the ArraySet |
| // slow path. |
| |
| // /* HeapReference<Class> */ temp = array->klass_ |
| __ movl(temp, Address(array, class_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| __ MaybeUnpoisonHeapReference(temp); |
| |
| // /* HeapReference<Class> */ temp = temp->component_type_ |
| __ movl(temp, Address(temp, component_offset)); |
| // If heap poisoning is enabled, no need to unpoison `temp` |
| // nor the object reference in `register_value->klass`, as |
| // we are comparing two poisoned references. |
| __ cmpl(temp, Address(register_value, class_offset)); |
| |
| if (instruction->StaticTypeOfArrayIsObjectArray()) { |
| __ j(kEqual, &do_put); |
| // If heap poisoning is enabled, the `temp` reference has |
| // not been unpoisoned yet; unpoison it now. |
| __ MaybeUnpoisonHeapReference(temp); |
| |
| // If heap poisoning is enabled, no need to unpoison the |
| // heap reference loaded below, as it is only used for a |
| // comparison with null. |
| __ cmpl(Address(temp, super_offset), Immediate(0)); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| __ Bind(&do_put); |
| } else { |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| } |
| } |
| |
| if (kPoisonHeapReferences) { |
| __ movl(temp, register_value); |
| __ PoisonHeapReference(temp); |
| __ movl(address, temp); |
| } else { |
| __ movl(address, register_value); |
| } |
| if (!may_need_runtime_call_for_type_check) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| CpuRegister card = locations->GetTemp(1).AsRegister<CpuRegister>(); |
| codegen_->MarkGCCard( |
| temp, card, array, value.AsRegister<CpuRegister>(), instruction->GetValueCanBeNull()); |
| __ Bind(&done); |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| break; |
| } |
| |
| case Primitive::kPrimInt: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); |
| Address address = CodeGeneratorX86_64::ArrayAddress(array, index, TIMES_4, offset); |
| if (value.IsRegister()) { |
| __ movl(address, value.AsRegister<CpuRegister>()); |
| } else { |
| DCHECK(value.IsConstant()) << value; |
| int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); |
| __ movl(address, Immediate(v)); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| break; |
| } |
| |
| case Primitive::kPrimLong: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); |
| Address address = CodeGeneratorX86_64::ArrayAddress(array, index, TIMES_8, offset); |
| if (value.IsRegister()) { |
| __ movq(address, value.AsRegister<CpuRegister>()); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } else { |
| int64_t v = value.GetConstant()->AsLongConstant()->GetValue(); |
| Address address_high = |
| CodeGeneratorX86_64::ArrayAddress(array, index, TIMES_8, offset + sizeof(int32_t)); |
| codegen_->MoveInt64ToAddress(address, address_high, v, instruction); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimFloat: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); |
| Address address = CodeGeneratorX86_64::ArrayAddress(array, index, TIMES_4, offset); |
| if (value.IsFpuRegister()) { |
| __ movss(address, value.AsFpuRegister<XmmRegister>()); |
| } else { |
| DCHECK(value.IsConstant()); |
| int32_t v = bit_cast<int32_t, float>(value.GetConstant()->AsFloatConstant()->GetValue()); |
| __ movl(address, Immediate(v)); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| break; |
| } |
| |
| case Primitive::kPrimDouble: { |
| uint32_t offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); |
| Address address = CodeGeneratorX86_64::ArrayAddress(array, index, TIMES_8, offset); |
| if (value.IsFpuRegister()) { |
| __ movsd(address, value.AsFpuRegister<XmmRegister>()); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } else { |
| int64_t v = |
| bit_cast<int64_t, double>(value.GetConstant()->AsDoubleConstant()->GetValue()); |
| Address address_high = |
| CodeGeneratorX86_64::ArrayAddress(array, index, TIMES_8, offset + sizeof(int32_t)); |
| codegen_->MoveInt64ToAddress(address, address_high, v, instruction); |
| } |
| break; |
| } |
| |
| case Primitive::kPrimVoid: |
| LOG(FATAL) << "Unreachable type " << instruction->GetType(); |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitArrayLength(HArrayLength* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (!instruction->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitArrayLength(HArrayLength* instruction) { |
| if (instruction->IsEmittedAtUseSite()) { |
| return; |
| } |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); |
| CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>(); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| __ movl(out, Address(obj, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| // Mask out most significant bit in case the array is String's array of char. |
| if (mirror::kUseStringCompression && instruction->IsStringLength()) { |
| __ shrl(out, Immediate(1)); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitBoundsCheck(HBoundsCheck* instruction) { |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| InvokeRuntimeCallingConvention calling_convention; |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves); |
| locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); |
| HInstruction* length = instruction->InputAt(1); |
| if (!length->IsEmittedAtUseSite()) { |
| locations->SetInAt(1, Location::RegisterOrConstant(length)); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitBoundsCheck(HBoundsCheck* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location index_loc = locations->InAt(0); |
| Location length_loc = locations->InAt(1); |
| SlowPathCode* slow_path = new (GetGraph()->GetArena()) BoundsCheckSlowPathX86_64(instruction); |
| |
| if (length_loc.IsConstant()) { |
| int32_t length = CodeGenerator::GetInt32ValueOf(length_loc.GetConstant()); |
| if (index_loc.IsConstant()) { |
| // BCE will remove the bounds check if we are guarenteed to pass. |
| int32_t index = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant()); |
| if (index < 0 || index >= length) { |
| codegen_->AddSlowPath(slow_path); |
| __ jmp(slow_path->GetEntryLabel()); |
| } else { |
| // Some optimization after BCE may have generated this, and we should not |
| // generate a bounds check if it is a valid range. |
| } |
| return; |
| } |
| |
| // We have to reverse the jump condition because the length is the constant. |
| CpuRegister index_reg = index_loc.AsRegister<CpuRegister>(); |
| __ cmpl(index_reg, Immediate(length)); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kAboveEqual, slow_path->GetEntryLabel()); |
| } else { |
| HInstruction* array_length = instruction->InputAt(1); |
| if (array_length->IsEmittedAtUseSite()) { |
| // Address the length field in the array. |
| DCHECK(array_length->IsArrayLength()); |
| uint32_t len_offset = CodeGenerator::GetArrayLengthOffset(array_length->AsArrayLength()); |
| Location array_loc = array_length->GetLocations()->InAt(0); |
| Address array_len(array_loc.AsRegister<CpuRegister>(), len_offset); |
| if (mirror::kUseStringCompression && instruction->IsStringCharAt()) { |
| // TODO: if index_loc.IsConstant(), compare twice the index (to compensate for |
| // the string compression flag) with the in-memory length and avoid the temporary. |
| CpuRegister length_reg = CpuRegister(TMP); |
| __ movl(length_reg, array_len); |
| codegen_->MaybeRecordImplicitNullCheck(array_length); |
| __ shrl(length_reg, Immediate(1)); |
| codegen_->GenerateIntCompare(length_reg, index_loc); |
| } else { |
| // Checking the bound for general case: |
| // Array of char or String's array when the compression feature off. |
| if (index_loc.IsConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant()); |
| __ cmpl(array_len, Immediate(value)); |
| } else { |
| __ cmpl(array_len, index_loc.AsRegister<CpuRegister>()); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(array_length); |
| } |
| } else { |
| codegen_->GenerateIntCompare(length_loc, index_loc); |
| } |
| codegen_->AddSlowPath(slow_path); |
| __ j(kBelowEqual, slow_path->GetEntryLabel()); |
| } |
| } |
| |
| void CodeGeneratorX86_64::MarkGCCard(CpuRegister temp, |
| CpuRegister card, |
| CpuRegister object, |
| CpuRegister value, |
| bool value_can_be_null) { |
| NearLabel is_null; |
| if (value_can_be_null) { |
| __ testl(value, value); |
| __ j(kEqual, &is_null); |
| } |
| __ gs()->movq(card, Address::Absolute(Thread::CardTableOffset<kX86_64PointerSize>().Int32Value(), |
| /* no_rip */ true)); |
| __ movq(temp, object); |
| __ shrq(temp, Immediate(gc::accounting::CardTable::kCardShift)); |
| __ movb(Address(temp, card, TIMES_1, 0), card); |
| if (value_can_be_null) { |
| __ Bind(&is_null); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unimplemented"; |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitParallelMove(HParallelMove* instruction) { |
| codegen_->GetMoveResolver()->EmitNativeCode(instruction); |
| } |
| |
| void LocationsBuilderX86_64::VisitSuspendCheck(HSuspendCheck* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath); |
| // In suspend check slow path, usually there are no caller-save registers at all. |
| // If SIMD instructions are present, however, we force spilling all live SIMD |
| // registers in full width (since the runtime only saves/restores lower part). |
| locations->SetCustomSlowPathCallerSaves( |
| GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty()); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitSuspendCheck(HSuspendCheck* instruction) { |
| HBasicBlock* block = instruction->GetBlock(); |
| if (block->GetLoopInformation() != nullptr) { |
| DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); |
| // The back edge will generate the suspend check. |
| return; |
| } |
| if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { |
| // The goto will generate the suspend check. |
| return; |
| } |
| GenerateSuspendCheck(instruction, nullptr); |
| } |
| |
| void InstructionCodeGeneratorX86_64::GenerateSuspendCheck(HSuspendCheck* instruction, |
| HBasicBlock* successor) { |
| SuspendCheckSlowPathX86_64* slow_path = |
| down_cast<SuspendCheckSlowPathX86_64*>(instruction->GetSlowPath()); |
| if (slow_path == nullptr) { |
| slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathX86_64(instruction, successor); |
| instruction->SetSlowPath(slow_path); |
| codegen_->AddSlowPath(slow_path); |
| if (successor != nullptr) { |
| DCHECK(successor->IsLoopHeader()); |
| codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction); |
| } |
| } else { |
| DCHECK_EQ(slow_path->GetSuccessor(), successor); |
| } |
| |
| __ gs()->cmpw(Address::Absolute(Thread::ThreadFlagsOffset<kX86_64PointerSize>().Int32Value(), |
| /* no_rip */ true), |
| Immediate(0)); |
| if (successor == nullptr) { |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetReturnLabel()); |
| } else { |
| __ j(kEqual, codegen_->GetLabelOf(successor)); |
| __ jmp(slow_path->GetEntryLabel()); |
| } |
| } |
| |
| X86_64Assembler* ParallelMoveResolverX86_64::GetAssembler() const { |
| return codegen_->GetAssembler(); |
| } |
| |
| void ParallelMoveResolverX86_64::EmitMove(size_t index) { |
| MoveOperands* move = moves_[index]; |
| Location source = move->GetSource(); |
| Location destination = move->GetDestination(); |
| |
| if (source.IsRegister()) { |
| if (destination.IsRegister()) { |
| __ movq(destination.AsRegister<CpuRegister>(), source.AsRegister<CpuRegister>()); |
| } else if (destination.IsStackSlot()) { |
| __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), |
| source.AsRegister<CpuRegister>()); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()); |
| __ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), |
| source.AsRegister<CpuRegister>()); |
| } |
| } else if (source.IsStackSlot()) { |
| if (destination.IsRegister()) { |
| __ movl(destination.AsRegister<CpuRegister>(), |
| Address(CpuRegister(RSP), source.GetStackIndex())); |
| } else if (destination.IsFpuRegister()) { |
| __ movss(destination.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), source.GetStackIndex())); |
| } else { |
| DCHECK(destination.IsStackSlot()); |
| __ movl(CpuRegister(TMP), Address(CpuRegister(RSP), source.GetStackIndex())); |
| __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP)); |
| } |
| } else if (source.IsDoubleStackSlot()) { |
| if (destination.IsRegister()) { |
| __ movq(destination.AsRegister<CpuRegister>(), |
| Address(CpuRegister(RSP), source.GetStackIndex())); |
| } else if (destination.IsFpuRegister()) { |
| __ movsd(destination.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), source.GetStackIndex())); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| __ movq(CpuRegister(TMP), Address(CpuRegister(RSP), source.GetStackIndex())); |
| __ movq(Address(CpuRegister(RSP), destination.GetStackIndex()), CpuRegister(TMP)); |
| } |
| } else if (source.IsSIMDStackSlot()) { |
| DCHECK(destination.IsFpuRegister()); |
| __ movups(destination.AsFpuRegister<XmmRegister>(), |
| Address(CpuRegister(RSP), source.GetStackIndex())); |
| } else if (source.IsConstant()) { |
| HConstant* constant = source.GetConstant(); |
| if (constant->IsIntConstant() || constant->IsNullConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(constant); |
| if (destination.IsRegister()) { |
| if (value == 0) { |
| __ xorl(destination.AsRegister<CpuRegister>(), destination.AsRegister<CpuRegister>()); |
| } else { |
| __ movl(destination.AsRegister<CpuRegister>(), Immediate(value)); |
| } |
| } else { |
| DCHECK(destination.IsStackSlot()) << destination; |
| __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), Immediate(value)); |
| } |
| } else if (constant->IsLongConstant()) { |
| int64_t value = constant->AsLongConstant()->GetValue(); |
| if (destination.IsRegister()) { |
| codegen_->Load64BitValue(destination.AsRegister<CpuRegister>(), value); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| codegen_->Store64BitValueToStack(destination, value); |
| } |
| } else if (constant->IsFloatConstant()) { |
| float fp_value = constant->AsFloatConstant()->GetValue(); |
| if (destination.IsFpuRegister()) { |
| XmmRegister dest = destination.AsFpuRegister<XmmRegister>(); |
| codegen_->Load32BitValue(dest, fp_value); |
| } else { |
| DCHECK(destination.IsStackSlot()) << destination; |
| Immediate imm(bit_cast<int32_t, float>(fp_value)); |
| __ movl(Address(CpuRegister(RSP), destination.GetStackIndex()), imm); |
| } |
| } else { |
| DCHECK(constant->IsDoubleConstant()) << constant->DebugName(); |
| double fp_value = constant->AsDoubleConstant()->GetValue(); |
| int64_t value = bit_cast<int64_t, double>(fp_value); |
| if (destination.IsFpuRegister()) { |
| XmmRegister dest = destination.AsFpuRegister<XmmRegister>(); |
| codegen_->Load64BitValue(dest, fp_value); |
| } else { |
| DCHECK(destination.IsDoubleStackSlot()) << destination; |
| codegen_->Store64BitValueToStack(destination, value); |
| } |
| } |
| } else if (source.IsFpuRegister()) { |
| if (destination.IsFpuRegister()) { |
| __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); |
| } else if (destination.IsStackSlot()) { |
| __ movss(Address(CpuRegister(RSP), destination.GetStackIndex()), |
| source.AsFpuRegister<XmmRegister>()); |
| } else if (destination.IsDoubleStackSlot()) { |
| __ movsd(Address(CpuRegister(RSP), destination.GetStackIndex()), |
| source.AsFpuRegister<XmmRegister>()); |
| } else { |
| DCHECK(destination.IsSIMDStackSlot()); |
| __ movups(Address(CpuRegister(RSP), destination.GetStackIndex()), |
| source.AsFpuRegister<XmmRegister>()); |
| } |
| } |
| } |
| |
| void ParallelMoveResolverX86_64::Exchange32(CpuRegister reg, int mem) { |
| __ movl(CpuRegister(TMP), Address(CpuRegister(RSP), mem)); |
| __ movl(Address(CpuRegister(RSP), mem), reg); |
| __ movl(reg, CpuRegister(TMP)); |
| } |
| |
| void ParallelMoveResolverX86_64::Exchange32(int mem1, int mem2) { |
| ScratchRegisterScope ensure_scratch( |
| this, TMP, RAX, codegen_->GetNumberOfCoreRegisters()); |
| |
| int stack_offset = ensure_scratch.IsSpilled() ? kX86_64WordSize : 0; |
| __ movl(CpuRegister(TMP), Address(CpuRegister(RSP), mem1 + stack_offset)); |
| __ movl(CpuRegister(ensure_scratch.GetRegister()), |
| Address(CpuRegister(RSP), mem2 + stack_offset)); |
| __ movl(Address(CpuRegister(RSP), mem2 + stack_offset), CpuRegister(TMP)); |
| __ movl(Address(CpuRegister(RSP), mem1 + stack_offset), |
| CpuRegister(ensure_scratch.GetRegister())); |
| } |
| |
| void ParallelMoveResolverX86_64::Exchange64(CpuRegister reg1, CpuRegister reg2) { |
| __ movq(CpuRegister(TMP), reg1); |
| __ movq(reg1, reg2); |
| __ movq(reg2, CpuRegister(TMP)); |
| } |
| |
| void ParallelMoveResolverX86_64::Exchange64(CpuRegister reg, int mem) { |
| __ movq(CpuRegister(TMP), Address(CpuRegister(RSP), mem)); |
| __ movq(Address(CpuRegister(RSP), mem), reg); |
| __ movq(reg, CpuRegister(TMP)); |
| } |
| |
| void ParallelMoveResolverX86_64::Exchange64(int mem1, int mem2) { |
| ScratchRegisterScope ensure_scratch( |
| this, TMP, RAX, codegen_->GetNumberOfCoreRegisters()); |
| |
| int stack_offset = ensure_scratch.IsSpilled() ? kX86_64WordSize : 0; |
| __ movq(CpuRegister(TMP), Address(CpuRegister(RSP), mem1 + stack_offset)); |
| __ movq(CpuRegister(ensure_scratch.GetRegister()), |
| Address(CpuRegister(RSP), mem2 + stack_offset)); |
| __ movq(Address(CpuRegister(RSP), mem2 + stack_offset), CpuRegister(TMP)); |
| __ movq(Address(CpuRegister(RSP), mem1 + stack_offset), |
| CpuRegister(ensure_scratch.GetRegister())); |
| } |
| |
| void ParallelMoveResolverX86_64::Exchange32(XmmRegister reg, int mem) { |
| __ movl(CpuRegister(TMP), Address(CpuRegister(RSP), mem)); |
| __ movss(Address(CpuRegister(RSP), mem), reg); |
| __ movd(reg, CpuRegister(TMP)); |
| } |
| |
| void ParallelMoveResolverX86_64::Exchange64(XmmRegister reg, int mem) { |
| __ movq(CpuRegister(TMP), Address(CpuRegister(RSP), mem)); |
| __ movsd(Address(CpuRegister(RSP), mem), reg); |
| __ movd(reg, CpuRegister(TMP)); |
| } |
| |
| void ParallelMoveResolverX86_64::EmitSwap(size_t index) { |
| MoveOperands* move = moves_[index]; |
| Location source = move->GetSource(); |
| Location destination = move->GetDestination(); |
| |
| if (source.IsRegister() && destination.IsRegister()) { |
| Exchange64(source.AsRegister<CpuRegister>(), destination.AsRegister<CpuRegister>()); |
| } else if (source.IsRegister() && destination.IsStackSlot()) { |
| Exchange32(source.AsRegister<CpuRegister>(), destination.GetStackIndex()); |
| } else if (source.IsStackSlot() && destination.IsRegister()) { |
| Exchange32(destination.AsRegister<CpuRegister>(), source.GetStackIndex()); |
| } else if (source.IsStackSlot() && destination.IsStackSlot()) { |
| Exchange32(destination.GetStackIndex(), source.GetStackIndex()); |
| } else if (source.IsRegister() && destination.IsDoubleStackSlot()) { |
| Exchange64(source.AsRegister<CpuRegister>(), destination.GetStackIndex()); |
| } else if (source.IsDoubleStackSlot() && destination.IsRegister()) { |
| Exchange64(destination.AsRegister<CpuRegister>(), source.GetStackIndex()); |
| } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) { |
| Exchange64(destination.GetStackIndex(), source.GetStackIndex()); |
| } else if (source.IsFpuRegister() && destination.IsFpuRegister()) { |
| __ movd(CpuRegister(TMP), source.AsFpuRegister<XmmRegister>()); |
| __ movaps(source.AsFpuRegister<XmmRegister>(), destination.AsFpuRegister<XmmRegister>()); |
| __ movd(destination.AsFpuRegister<XmmRegister>(), CpuRegister(TMP)); |
| } else if (source.IsFpuRegister() && destination.IsStackSlot()) { |
| Exchange32(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex()); |
| } else if (source.IsStackSlot() && destination.IsFpuRegister()) { |
| Exchange32(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex()); |
| } else if (source.IsFpuRegister() && destination.IsDoubleStackSlot()) { |
| Exchange64(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex()); |
| } else if (source.IsDoubleStackSlot() && destination.IsFpuRegister()) { |
| Exchange64(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex()); |
| } else { |
| LOG(FATAL) << "Unimplemented swap between " << source << " and " << destination; |
| } |
| } |
| |
| |
| void ParallelMoveResolverX86_64::SpillScratch(int reg) { |
| __ pushq(CpuRegister(reg)); |
| } |
| |
| |
| void ParallelMoveResolverX86_64::RestoreScratch(int reg) { |
| __ popq(CpuRegister(reg)); |
| } |
| |
| void InstructionCodeGeneratorX86_64::GenerateClassInitializationCheck( |
| SlowPathCode* slow_path, CpuRegister class_reg) { |
| __ cmpl(Address(class_reg, mirror::Class::StatusOffset().Int32Value()), |
| Immediate(mirror::Class::kStatusInitialized)); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| // No need for memory fence, thanks to the x86-64 memory model. |
| } |
| |
| HLoadClass::LoadKind CodeGeneratorX86_64::GetSupportedLoadClassKind( |
| HLoadClass::LoadKind desired_class_load_kind) { |
| switch (desired_class_load_kind) { |
| case HLoadClass::LoadKind::kInvalid: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| case HLoadClass::LoadKind::kReferrersClass: |
| break; |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadClass::LoadKind::kBssEntry: |
| DCHECK(!Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadClass::LoadKind::kJitTableAddress: |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadClass::LoadKind::kBootImageAddress: |
| case HLoadClass::LoadKind::kRuntimeCall: |
| break; |
| } |
| return desired_class_load_kind; |
| } |
| |
| void LocationsBuilderX86_64::VisitLoadClass(HLoadClass* cls) { |
| HLoadClass::LoadKind load_kind = cls->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { |
| // Custom calling convention: RAX serves as both input and output. |
| CodeGenerator::CreateLoadClassRuntimeCallLocationSummary( |
| cls, |
| Location::RegisterLocation(RAX), |
| Location::RegisterLocation(RAX)); |
| return; |
| } |
| DCHECK(!cls->NeedsAccessCheck()); |
| |
| const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage(); |
| LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier) |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind); |
| if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| |
| if (load_kind == HLoadClass::LoadKind::kReferrersClass) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| if (load_kind == HLoadClass::LoadKind::kBssEntry) { |
| if (!kUseReadBarrier || kUseBakerReadBarrier) { |
| // Rely on the type resolution and/or initialization to save everything. |
| // Custom calling convention: RAX serves as both input and output. |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| caller_saves.Add(Location::RegisterLocation(RAX)); |
| locations->SetCustomSlowPathCallerSaves(caller_saves); |
| } else { |
| // For non-Baker read barrier we have a temp-clobbering call. |
| } |
| } |
| } |
| |
| Label* CodeGeneratorX86_64::NewJitRootClassPatch(const DexFile& dex_file, |
| dex::TypeIndex dex_index, |
| Handle<mirror::Class> handle) { |
| jit_class_roots_.Overwrite( |
| TypeReference(&dex_file, dex_index), reinterpret_cast64<uint64_t>(handle.GetReference())); |
| // Add a patch entry and return the label. |
| jit_class_patches_.emplace_back(dex_file, dex_index.index_); |
| PatchInfo<Label>* info = &jit_class_patches_.back(); |
| return &info->label; |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not |
| // move. |
| void InstructionCodeGeneratorX86_64::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS { |
| HLoadClass::LoadKind load_kind = cls->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { |
| codegen_->GenerateLoadClassRuntimeCall(cls); |
| return; |
| } |
| DCHECK(!cls->NeedsAccessCheck()); |
| |
| LocationSummary* locations = cls->GetLocations(); |
| Location out_loc = locations->Out(); |
| CpuRegister out = out_loc.AsRegister<CpuRegister>(); |
| |
| const ReadBarrierOption read_barrier_option = cls->IsInBootImage() |
| ? kWithoutReadBarrier |
| : kCompilerReadBarrierOption; |
| bool generate_null_check = false; |
| switch (load_kind) { |
| case HLoadClass::LoadKind::kReferrersClass: { |
| DCHECK(!cls->CanCallRuntime()); |
| DCHECK(!cls->MustGenerateClinitCheck()); |
| // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ |
| CpuRegister current_method = locations->InAt(0).AsRegister<CpuRegister>(); |
| GenerateGcRootFieldLoad( |
| cls, |
| out_loc, |
| Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value()), |
| /* fixup_label */ nullptr, |
| read_barrier_option); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage()); |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| __ leal(out, Address::Absolute(CodeGeneratorX86_64::kDummy32BitOffset, /* no_rip */ false)); |
| codegen_->RecordBootTypePatch(cls); |
| break; |
| case HLoadClass::LoadKind::kBootImageAddress: { |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| uint32_t address = dchecked_integral_cast<uint32_t>( |
| reinterpret_cast<uintptr_t>(cls->GetClass().Get())); |
| DCHECK_NE(address, 0u); |
| __ movl(out, Immediate(static_cast<int32_t>(address))); // Zero-extended. |
| break; |
| } |
| case HLoadClass::LoadKind::kBssEntry: { |
| Address address = Address::Absolute(CodeGeneratorX86_64::kDummy32BitOffset, |
| /* no_rip */ false); |
| Label* fixup_label = codegen_->NewTypeBssEntryPatch(cls); |
| // /* GcRoot<mirror::Class> */ out = *address /* PC-relative */ |
| GenerateGcRootFieldLoad(cls, out_loc, address, fixup_label, read_barrier_option); |
| generate_null_check = true; |
| break; |
| } |
| case HLoadClass::LoadKind::kJitTableAddress: { |
| Address address = Address::Absolute(CodeGeneratorX86_64::kDummy32BitOffset, |
| /* no_rip */ true); |
| Label* fixup_label = |
| codegen_->NewJitRootClassPatch(cls->GetDexFile(), cls->GetTypeIndex(), cls->GetClass()); |
| // /* GcRoot<mirror::Class> */ out = *address |
| GenerateGcRootFieldLoad(cls, out_loc, address, fixup_label, read_barrier_option); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected load kind: " << cls->GetLoadKind(); |
| UNREACHABLE(); |
| } |
| |
| if (generate_null_check || cls->MustGenerateClinitCheck()) { |
| DCHECK(cls->CanCallRuntime()); |
| SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86_64( |
| cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck()); |
| codegen_->AddSlowPath(slow_path); |
| if (generate_null_check) { |
| __ testl(out, out); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| } |
| if (cls->MustGenerateClinitCheck()) { |
| GenerateClassInitializationCheck(slow_path, out); |
| } else { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitClinitCheck(HClinitCheck* check) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (check->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitClinitCheck(HClinitCheck* check) { |
| // We assume the class to not be null. |
| SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86_64( |
| check->GetLoadClass(), check, check->GetDexPc(), true); |
| codegen_->AddSlowPath(slow_path); |
| GenerateClassInitializationCheck(slow_path, |
| check->GetLocations()->InAt(0).AsRegister<CpuRegister>()); |
| } |
| |
| HLoadString::LoadKind CodeGeneratorX86_64::GetSupportedLoadStringKind( |
| HLoadString::LoadKind desired_string_load_kind) { |
| switch (desired_string_load_kind) { |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadString::LoadKind::kBssEntry: |
| DCHECK(!Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadString::LoadKind::kJitTableAddress: |
| DCHECK(Runtime::Current()->UseJitCompilation()); |
| break; |
| case HLoadString::LoadKind::kBootImageAddress: |
| case HLoadString::LoadKind::kRuntimeCall: |
| break; |
| } |
| return desired_string_load_kind; |
| } |
| |
| void LocationsBuilderX86_64::VisitLoadString(HLoadString* load) { |
| LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load); |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind); |
| if (load->GetLoadKind() == HLoadString::LoadKind::kRuntimeCall) { |
| locations->SetOut(Location::RegisterLocation(RAX)); |
| } else { |
| locations->SetOut(Location::RequiresRegister()); |
| if (load->GetLoadKind() == HLoadString::LoadKind::kBssEntry) { |
| if (!kUseReadBarrier || kUseBakerReadBarrier) { |
| // Rely on the pResolveString to save everything. |
| // Custom calling convention: RAX serves as both input and output. |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| caller_saves.Add(Location::RegisterLocation(RAX)); |
| locations->SetCustomSlowPathCallerSaves(caller_saves); |
| } else { |
| // For non-Baker read barrier we have a temp-clobbering call. |
| } |
| } |
| } |
| } |
| |
| Label* CodeGeneratorX86_64::NewJitRootStringPatch(const DexFile& dex_file, |
| dex::StringIndex dex_index, |
| Handle<mirror::String> handle) { |
| jit_string_roots_.Overwrite( |
| StringReference(&dex_file, dex_index), reinterpret_cast64<uint64_t>(handle.GetReference())); |
| // Add a patch entry and return the label. |
| jit_string_patches_.emplace_back(dex_file, dex_index.index_); |
| PatchInfo<Label>* info = &jit_string_patches_.back(); |
| return &info->label; |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not |
| // move. |
| void InstructionCodeGeneratorX86_64::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS { |
| LocationSummary* locations = load->GetLocations(); |
| Location out_loc = locations->Out(); |
| CpuRegister out = out_loc.AsRegister<CpuRegister>(); |
| |
| switch (load->GetLoadKind()) { |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage()); |
| __ leal(out, Address::Absolute(CodeGeneratorX86_64::kDummy32BitOffset, /* no_rip */ false)); |
| codegen_->RecordBootStringPatch(load); |
| return; // No dex cache slow path. |
| } |
| case HLoadString::LoadKind::kBootImageAddress: { |
| uint32_t address = dchecked_integral_cast<uint32_t>( |
| reinterpret_cast<uintptr_t>(load->GetString().Get())); |
| DCHECK_NE(address, 0u); |
| __ movl(out, Immediate(static_cast<int32_t>(address))); // Zero-extended. |
| return; // No dex cache slow path. |
| } |
| case HLoadString::LoadKind::kBssEntry: { |
| Address address = Address::Absolute(CodeGeneratorX86_64::kDummy32BitOffset, |
| /* no_rip */ false); |
| Label* fixup_label = codegen_->NewStringBssEntryPatch(load); |
| // /* GcRoot<mirror::Class> */ out = *address /* PC-relative */ |
| GenerateGcRootFieldLoad(load, out_loc, address, fixup_label, kCompilerReadBarrierOption); |
| SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathX86_64(load); |
| codegen_->AddSlowPath(slow_path); |
| __ testl(out, out); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| return; |
| } |
| case HLoadString::LoadKind::kJitTableAddress: { |
| Address address = Address::Absolute(CodeGeneratorX86_64::kDummy32BitOffset, |
| /* no_rip */ true); |
| Label* fixup_label = codegen_->NewJitRootStringPatch( |
| load->GetDexFile(), load->GetStringIndex(), load->GetString()); |
| // /* GcRoot<mirror::String> */ out = *address |
| GenerateGcRootFieldLoad(load, out_loc, address, fixup_label, kCompilerReadBarrierOption); |
| return; |
| } |
| default: |
| break; |
| } |
| |
| // TODO: Re-add the compiler code to do string dex cache lookup again. |
| // Custom calling convention: RAX serves as both input and output. |
| __ movl(CpuRegister(RAX), Immediate(load->GetStringIndex().index_)); |
| codegen_->InvokeRuntime(kQuickResolveString, |
| load, |
| load->GetDexPc()); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| } |
| |
| static Address GetExceptionTlsAddress() { |
| return Address::Absolute(Thread::ExceptionOffset<kX86_64PointerSize>().Int32Value(), |
| /* no_rip */ true); |
| } |
| |
| void LocationsBuilderX86_64::VisitLoadException(HLoadException* load) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitLoadException(HLoadException* load) { |
| __ gs()->movl(load->GetLocations()->Out().AsRegister<CpuRegister>(), GetExceptionTlsAddress()); |
| } |
| |
| void LocationsBuilderX86_64::VisitClearException(HClearException* clear) { |
| new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { |
| __ gs()->movl(GetExceptionTlsAddress(), Immediate(0)); |
| } |
| |
| void LocationsBuilderX86_64::VisitThrow(HThrow* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitThrow(HThrow* instruction) { |
| codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); |
| } |
| |
| static bool CheckCastTypeCheckNeedsATemporary(TypeCheckKind type_check_kind) { |
| if (type_check_kind == TypeCheckKind::kInterfaceCheck && !kPoisonHeapReferences) { |
| // We need a temporary for holding the iftable length. |
| return true; |
| } |
| return kEmitCompilerReadBarrier && |
| !kUseBakerReadBarrier && |
| (type_check_kind == TypeCheckKind::kAbstractClassCheck || |
| type_check_kind == TypeCheckKind::kClassHierarchyCheck || |
| type_check_kind == TypeCheckKind::kArrayObjectCheck); |
| } |
| |
| static bool InstanceOfTypeCheckNeedsATemporary(TypeCheckKind type_check_kind) { |
| return kEmitCompilerReadBarrier && |
| !kUseBakerReadBarrier && |
| (type_check_kind == TypeCheckKind::kAbstractClassCheck || |
| type_check_kind == TypeCheckKind::kClassHierarchyCheck || |
| type_check_kind == TypeCheckKind::kArrayObjectCheck); |
| } |
| |
| void LocationsBuilderX86_64::VisitInstanceOf(HInstanceOf* instruction) { |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| bool baker_read_barrier_slow_path = false; |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kAbstractClassCheck: |
| case TypeCheckKind::kClassHierarchyCheck: |
| case TypeCheckKind::kArrayObjectCheck: |
| call_kind = |
| kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; |
| baker_read_barrier_slow_path = kUseBakerReadBarrier; |
| break; |
| case TypeCheckKind::kArrayCheck: |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: |
| call_kind = LocationSummary::kCallOnSlowPath; |
| break; |
| } |
| |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| if (baker_read_barrier_slow_path) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| // Note that TypeCheckSlowPathX86_64 uses this "out" register too. |
| locations->SetOut(Location::RequiresRegister()); |
| // When read barriers are enabled, we need a temporary register for |
| // some cases. |
| if (InstanceOfTypeCheckNeedsATemporary(type_check_kind)) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitInstanceOf(HInstanceOf* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| CpuRegister obj = obj_loc.AsRegister<CpuRegister>(); |
| Location cls = locations->InAt(1); |
| Location out_loc = locations->Out(); |
| CpuRegister out = out_loc.AsRegister<CpuRegister>(); |
| Location maybe_temp_loc = InstanceOfTypeCheckNeedsATemporary(type_check_kind) ? |
| locations->GetTemp(0) : |
| Location::NoLocation(); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| SlowPathCode* slow_path = nullptr; |
| NearLabel done, zero; |
| |
| // Return 0 if `obj` is null. |
| // Avoid null check if we know obj is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ testl(obj, obj); |
| __ j(kEqual, &zero); |
| } |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: { |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| kCompilerReadBarrierOption); |
| if (cls.IsRegister()) { |
| __ cmpl(out, cls.AsRegister<CpuRegister>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(out, Address(CpuRegister(RSP), cls.GetStackIndex())); |
| } |
| if (zero.IsLinked()) { |
| // Classes must be equal for the instanceof to succeed. |
| __ j(kNotEqual, &zero); |
| __ movl(out, Immediate(1)); |
| __ jmp(&done); |
| } else { |
| __ setcc(kEqual, out); |
| // setcc only sets the low byte. |
| __ andl(out, Immediate(1)); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| kCompilerReadBarrierOption); |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| NearLabel loop, success; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| super_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| __ testl(out, out); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ j(kEqual, &done); |
| if (cls.IsRegister()) { |
| __ cmpl(out, cls.AsRegister<CpuRegister>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(out, Address(CpuRegister(RSP), cls.GetStackIndex())); |
| } |
| __ j(kNotEqual, &loop); |
| __ movl(out, Immediate(1)); |
| if (zero.IsLinked()) { |
| __ jmp(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| kCompilerReadBarrierOption); |
| // Walk over the class hierarchy to find a match. |
| NearLabel loop, success; |
| __ Bind(&loop); |
| if (cls.IsRegister()) { |
| __ cmpl(out, cls.AsRegister<CpuRegister>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(out, Address(CpuRegister(RSP), cls.GetStackIndex())); |
| } |
| __ j(kEqual, &success); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| super_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| __ testl(out, out); |
| __ j(kNotEqual, &loop); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ jmp(&done); |
| __ Bind(&success); |
| __ movl(out, Immediate(1)); |
| if (zero.IsLinked()) { |
| __ jmp(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| kCompilerReadBarrierOption); |
| // Do an exact check. |
| NearLabel exact_check; |
| if (cls.IsRegister()) { |
| __ cmpl(out, cls.AsRegister<CpuRegister>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(out, Address(CpuRegister(RSP), cls.GetStackIndex())); |
| } |
| __ j(kEqual, &exact_check); |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ out = out->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| component_offset, |
| maybe_temp_loc, |
| kCompilerReadBarrierOption); |
| __ testl(out, out); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ j(kEqual, &done); |
| __ cmpw(Address(out, primitive_offset), Immediate(Primitive::kPrimNot)); |
| __ j(kNotEqual, &zero); |
| __ Bind(&exact_check); |
| __ movl(out, Immediate(1)); |
| __ jmp(&done); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayCheck: { |
| // No read barrier since the slow path will retry upon failure. |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| kWithoutReadBarrier); |
| if (cls.IsRegister()) { |
| __ cmpl(out, cls.AsRegister<CpuRegister>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(out, Address(CpuRegister(RSP), cls.GetStackIndex())); |
| } |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86_64(instruction, |
| /* is_fatal */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| __ movl(out, Immediate(1)); |
| if (zero.IsLinked()) { |
| __ jmp(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: { |
| // Note that we indeed only call on slow path, but we always go |
| // into the slow path for the unresolved and interface check |
| // cases. |
| // |
| // We cannot directly call the InstanceofNonTrivial runtime |
| // entry point without resorting to a type checking slow path |
| // here (i.e. by calling InvokeRuntime directly), as it would |
| // require to assign fixed registers for the inputs of this |
| // HInstanceOf instruction (following the runtime calling |
| // convention), which might be cluttered by the potential first |
| // read barrier emission at the beginning of this method. |
| // |
| // TODO: Introduce a new runtime entry point taking the object |
| // to test (instead of its class) as argument, and let it deal |
| // with the read barrier issues. This will let us refactor this |
| // case of the `switch` code as it was previously (with a direct |
| // call to the runtime not using a type checking slow path). |
| // This should also be beneficial for the other cases above. |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86_64(instruction, |
| /* is_fatal */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ jmp(slow_path->GetEntryLabel()); |
| if (zero.IsLinked()) { |
| __ jmp(&done); |
| } |
| break; |
| } |
| } |
| |
| if (zero.IsLinked()) { |
| __ Bind(&zero); |
| __ xorl(out, out); |
| } |
| |
| if (done.IsLinked()) { |
| __ Bind(&done); |
| } |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| static bool IsTypeCheckSlowPathFatal(TypeCheckKind type_check_kind, bool throws_into_catch) { |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kAbstractClassCheck: |
| case TypeCheckKind::kClassHierarchyCheck: |
| case TypeCheckKind::kArrayObjectCheck: |
| return !throws_into_catch && !kEmitCompilerReadBarrier; |
| case TypeCheckKind::kInterfaceCheck: |
| return !throws_into_catch && !kEmitCompilerReadBarrier && !kPoisonHeapReferences; |
| case TypeCheckKind::kArrayCheck: |
| case TypeCheckKind::kUnresolvedCheck: |
| return false; |
| } |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| void LocationsBuilderX86_64::VisitCheckCast(HCheckCast* instruction) { |
| bool throws_into_catch = instruction->CanThrowIntoCatchBlock(); |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| bool is_fatal_slow_path = IsTypeCheckSlowPathFatal(type_check_kind, throws_into_catch); |
| LocationSummary::CallKind call_kind = is_fatal_slow_path |
| ? LocationSummary::kNoCall |
| : LocationSummary::kCallOnSlowPath; |
| LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (type_check_kind == TypeCheckKind::kInterfaceCheck) { |
| // Require a register for the interface check since there is a loop that compares the class to |
| // a memory address. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } else { |
| locations->SetInAt(1, Location::Any()); |
| } |
| |
| // Note that TypeCheckSlowPathX86_64 uses this "temp" register too. |
| locations->AddTemp(Location::RequiresRegister()); |
| // When read barriers are enabled, we need an additional temporary |
| // register for some cases. |
| if (CheckCastTypeCheckNeedsATemporary(type_check_kind)) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitCheckCast(HCheckCast* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| CpuRegister obj = obj_loc.AsRegister<CpuRegister>(); |
| Location cls = locations->InAt(1); |
| Location temp_loc = locations->GetTemp(0); |
| CpuRegister temp = temp_loc.AsRegister<CpuRegister>(); |
| Location maybe_temp2_loc = CheckCastTypeCheckNeedsATemporary(type_check_kind) ? |
| locations->GetTemp(1) : |
| Location::NoLocation(); |
| const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value(); |
| const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value(); |
| const uint32_t object_array_data_offset = |
| mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); |
| |
| // Always false for read barriers since we may need to go to the entrypoint for non-fatal cases |
| // from false negatives. The false negatives may come from avoiding read barriers below. Avoiding |
| // read barriers is done for performance and code size reasons. |
| bool is_type_check_slow_path_fatal = |
| IsTypeCheckSlowPathFatal(type_check_kind, instruction->CanThrowIntoCatchBlock()); |
| SlowPathCode* type_check_slow_path = |
| new (GetGraph()->GetArena()) TypeCheckSlowPathX86_64(instruction, |
| is_type_check_slow_path_fatal); |
| codegen_->AddSlowPath(type_check_slow_path); |
| |
| |
| NearLabel done; |
| // Avoid null check if we know obj is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ testl(obj, obj); |
| __ j(kEqual, &done); |
| } |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kArrayCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| kWithoutReadBarrier); |
| if (cls.IsRegister()) { |
| __ cmpl(temp, cls.AsRegister<CpuRegister>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(temp, Address(CpuRegister(RSP), cls.GetStackIndex())); |
| } |
| // Jump to slow path for throwing the exception or doing a |
| // more involved array check. |
| __ j(kNotEqual, type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| kWithoutReadBarrier); |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| NearLabel loop; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| super_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the class reference currently in `temp` is null, jump to the slow path to throw the |
| // exception. |
| __ testl(temp, temp); |
| // Otherwise, compare the classes. |
| __ j(kZero, type_check_slow_path->GetEntryLabel()); |
| if (cls.IsRegister()) { |
| __ cmpl(temp, cls.AsRegister<CpuRegister>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(temp, Address(CpuRegister(RSP), cls.GetStackIndex())); |
| } |
| __ j(kNotEqual, &loop); |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| kWithoutReadBarrier); |
| // Walk over the class hierarchy to find a match. |
| NearLabel loop; |
| __ Bind(&loop); |
| if (cls.IsRegister()) { |
| __ cmpl(temp, cls.AsRegister<CpuRegister>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(temp, Address(CpuRegister(RSP), cls.GetStackIndex())); |
| } |
| __ j(kEqual, &done); |
| |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| super_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the class reference currently in `temp` is not null, jump |
| // back at the beginning of the loop. |
| __ testl(temp, temp); |
| __ j(kNotZero, &loop); |
| // Otherwise, jump to the slow path to throw the exception. |
| __ jmp(type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| kWithoutReadBarrier); |
| // Do an exact check. |
| NearLabel check_non_primitive_component_type; |
| if (cls.IsRegister()) { |
| __ cmpl(temp, cls.AsRegister<CpuRegister>()); |
| } else { |
| DCHECK(cls.IsStackSlot()) << cls; |
| __ cmpl(temp, Address(CpuRegister(RSP), cls.GetStackIndex())); |
| } |
| __ j(kEqual, &done); |
| |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ temp = temp->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| component_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the component type is not null (i.e. the object is indeed |
| // an array), jump to label `check_non_primitive_component_type` |
| // to further check that this component type is not a primitive |
| // type. |
| __ testl(temp, temp); |
| // Otherwise, jump to the slow path to throw the exception. |
| __ j(kZero, type_check_slow_path->GetEntryLabel()); |
| __ cmpw(Address(temp, primitive_offset), Immediate(Primitive::kPrimNot)); |
| __ j(kNotEqual, type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: { |
| // We always go into the type check slow path for the unresolved case. |
| // |
| // We cannot directly call the CheckCast runtime entry point |
| // without resorting to a type checking slow path here (i.e. by |
| // calling InvokeRuntime directly), as it would require to |
| // assign fixed registers for the inputs of this HInstanceOf |
| // instruction (following the runtime calling convention), which |
| // might be cluttered by the potential first read barrier |
| // emission at the beginning of this method. |
| __ jmp(type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kInterfaceCheck: |
| // Fast path for the interface check. We always go slow path for heap poisoning since |
| // unpoisoning cls would require an extra temp. |
| if (!kPoisonHeapReferences) { |
| // Try to avoid read barriers to improve the fast path. We can not get false positives by |
| // doing this. |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| kWithoutReadBarrier); |
| |
| // /* HeapReference<Class> */ temp = temp->iftable_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| temp_loc, |
| iftable_offset, |
| kWithoutReadBarrier); |
| // Iftable is never null. |
| __ movl(maybe_temp2_loc.AsRegister<CpuRegister>(), Address(temp, array_length_offset)); |
| // Loop through the iftable and check if any class matches. |
| NearLabel start_loop; |
| __ Bind(&start_loop); |
| // Need to subtract first to handle the empty array case. |
| __ subl(maybe_temp2_loc.AsRegister<CpuRegister>(), Immediate(2)); |
| __ j(kNegative, type_check_slow_path->GetEntryLabel()); |
| // Go to next interface if the classes do not match. |
| __ cmpl(cls.AsRegister<CpuRegister>(), |
| CodeGeneratorX86_64::ArrayAddress(temp, |
| maybe_temp2_loc, |
| TIMES_4, |
| object_array_data_offset)); |
| __ j(kNotEqual, &start_loop); // Return if same class. |
| } else { |
| __ jmp(type_check_slow_path->GetEntryLabel()); |
| } |
| break; |
| } |
| |
| if (done.IsLinked()) { |
| __ Bind(&done); |
| } |
| |
| __ Bind(type_check_slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderX86_64::VisitMonitorOperation(HMonitorOperation* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitMonitorOperation(HMonitorOperation* instruction) { |
| codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject, |
| instruction, |
| instruction->GetDexPc()); |
| if (instruction->IsEnter()) { |
| CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); |
| } else { |
| CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); |
| } |
| } |
| |
| void LocationsBuilderX86_64::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); } |
| void LocationsBuilderX86_64::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); } |
| void LocationsBuilderX86_64::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); } |
| |
| void LocationsBuilderX86_64::HandleBitwiseOperation(HBinaryOperation* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); |
| DCHECK(instruction->GetResultType() == Primitive::kPrimInt |
| || instruction->GetResultType() == Primitive::kPrimLong); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::Any()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitAnd(HAnd* instruction) { |
| HandleBitwiseOperation(instruction); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitOr(HOr* instruction) { |
| HandleBitwiseOperation(instruction); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitXor(HXor* instruction) { |
| HandleBitwiseOperation(instruction); |
| } |
| |
| void InstructionCodeGeneratorX86_64::HandleBitwiseOperation(HBinaryOperation* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location first = locations->InAt(0); |
| Location second = locations->InAt(1); |
| DCHECK(first.Equals(locations->Out())); |
| |
| if (instruction->GetResultType() == Primitive::kPrimInt) { |
| if (second.IsRegister()) { |
| if (instruction->IsAnd()) { |
| __ andl(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); |
| } else if (instruction->IsOr()) { |
| __ orl(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ xorl(first.AsRegister<CpuRegister>(), second.AsRegister<CpuRegister>()); |
| } |
| } else if (second.IsConstant()) { |
| Immediate imm(second.GetConstant()->AsIntConstant()->GetValue()); |
| if (instruction->IsAnd()) { |
| __ andl(first.AsRegister<CpuRegister>(), imm); |
| } else if (instruction->IsOr()) { |
| __ orl(first.AsRegister<CpuRegister>(), imm); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ xorl(first.AsRegister<CpuRegister>(), imm); |
| } |
| } else { |
| Address address(CpuRegister(RSP), second.GetStackIndex()); |
| if (instruction->IsAnd()) { |
| __ andl(first.AsRegister<CpuRegister>(), address); |
| } else if (instruction->IsOr()) { |
| __ orl(first.AsRegister<CpuRegister>(), address); |
| } else { |
| DCHECK(instruction->IsXor()); |
| __ xorl(first.AsRegister<CpuRegister>(), address); |
| } |
| } |
| } else { |
| DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); |
| CpuRegister first_reg = first.AsRegister<CpuRegister>(); |
| bool second_is_constant = false; |
| int64_t value = 0; |
| if (second.IsConstant()) { |
| second_is_constant = true; |
| value = second.GetConstant()->AsLongConstant()->GetValue(); |
| } |
| bool is_int32_value = IsInt<32>(value); |
| |
| if (instruction->IsAnd()) { |
| if (second_is_constant) { |
| if (is_int32_value) { |
| __ andq(first_reg, Immediate(static_cast<int32_t>(value))); |
| } else { |
| __ andq(first_reg, codegen_->LiteralInt64Address(value)); |
| } |
| } else if (second.IsDoubleStackSlot()) { |
| __ andq(first_reg, Address(CpuRegister(RSP), second.GetStackIndex())); |
| } else { |
| __ andq(first_reg, second.AsRegister<CpuRegister>()); |
| } |
| } else if (instruction->IsOr()) { |
| if (second_is_constant) { |
| if (is_int32_value) { |
| __ orq(first_reg, Immediate(static_cast<int32_t>(value))); |
| } else { |
| __ orq(first_reg, codegen_->LiteralInt64Address(value)); |
| } |
| } else if (second.IsDoubleStackSlot()) { |
| __ orq(first_reg, Address(CpuRegister(RSP), second.GetStackIndex())); |
| } else { |
| __ orq(first_reg, second.AsRegister<CpuRegister>()); |
| } |
| } else { |
| DCHECK(instruction->IsXor()); |
| if (second_is_constant) { |
| if (is_int32_value) { |
| __ xorq(first_reg, Immediate(static_cast<int32_t>(value))); |
| } else { |
| __ xorq(first_reg, codegen_->LiteralInt64Address(value)); |
| } |
| } else if (second.IsDoubleStackSlot()) { |
| __ xorq(first_reg, Address(CpuRegister(RSP), second.GetStackIndex())); |
| } else { |
| __ xorq(first_reg, second.AsRegister<CpuRegister>()); |
| } |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::GenerateReferenceLoadOneRegister( |
| HInstruction* instruction, |
| Location out, |
| uint32_t offset, |
| Location maybe_temp, |
| ReadBarrierOption read_barrier_option) { |
| CpuRegister out_reg = out.AsRegister<CpuRegister>(); |
| if (read_barrier_option == kWithReadBarrier) { |
| CHECK(kEmitCompilerReadBarrier); |
| if (kUseBakerReadBarrier) { |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| instruction, out, out_reg, offset, /* needs_null_check */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // Save the value of `out` into `maybe_temp` before overwriting it |
| // in the following move operation, as we will need it for the |
| // read barrier below. |
| DCHECK(maybe_temp.IsRegister()) << maybe_temp; |
| __ movl(maybe_temp.AsRegister<CpuRegister>(), out_reg); |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ movl(out_reg, Address(out_reg, offset)); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ movl(out_reg, Address(out_reg, offset)); |
| __ MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::GenerateReferenceLoadTwoRegisters( |
| HInstruction* instruction, |
| Location out, |
| Location obj, |
| uint32_t offset, |
| ReadBarrierOption read_barrier_option) { |
| CpuRegister out_reg = out.AsRegister<CpuRegister>(); |
| CpuRegister obj_reg = obj.AsRegister<CpuRegister>(); |
| if (read_barrier_option == kWithReadBarrier) { |
| CHECK(kEmitCompilerReadBarrier); |
| if (kUseBakerReadBarrier) { |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| instruction, out, obj_reg, offset, /* needs_null_check */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ movl(out_reg, Address(obj_reg, offset)); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ movl(out_reg, Address(obj_reg, offset)); |
| __ MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void InstructionCodeGeneratorX86_64::GenerateGcRootFieldLoad( |
| HInstruction* instruction, |
| Location root, |
| const Address& address, |
| Label* fixup_label, |
| ReadBarrierOption read_barrier_option) { |
| CpuRegister root_reg = root.AsRegister<CpuRegister>(); |
| if (read_barrier_option == kWithReadBarrier) { |
| DCHECK(kEmitCompilerReadBarrier); |
| if (kUseBakerReadBarrier) { |
| // Fast path implementation of art::ReadBarrier::BarrierForRoot when |
| // Baker's read barrier are used: |
| // |
| // root = obj.field; |
| // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg() |
| // if (temp != null) { |
| // root = temp(root) |
| // } |
| |
| // /* GcRoot<mirror::Object> */ root = *address |
| __ movl(root_reg, address); |
| if (fixup_label != nullptr) { |
| __ Bind(fixup_label); |
| } |
| static_assert( |
| sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>), |
| "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> " |
| "have different sizes."); |
| static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::CompressedReference<mirror::Object> and int32_t " |
| "have different sizes."); |
| |
| // Slow path marking the GC root `root`. |
| SlowPathCode* slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86_64( |
| instruction, root, /* unpoison_ref_before_marking */ false); |
| codegen_->AddSlowPath(slow_path); |
| |
| // Test the `Thread::Current()->pReadBarrierMarkReg ## root.reg()` entrypoint. |
| const int32_t entry_point_offset = |
| CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kX86_64PointerSize>(root.reg()); |
| __ gs()->cmpl(Address::Absolute(entry_point_offset, /* no_rip */ true), Immediate(0)); |
| // The entrypoint is null when the GC is not marking. |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } else { |
| // GC root loaded through a slow path for read barriers other |
| // than Baker's. |
| // /* GcRoot<mirror::Object>* */ root = address |
| __ leaq(root_reg, address); |
| if (fixup_label != nullptr) { |
| __ Bind(fixup_label); |
| } |
| // /* mirror::Object* */ root = root->Read() |
| codegen_->GenerateReadBarrierForRootSlow(instruction, root, root); |
| } |
| } else { |
| // Plain GC root load with no read barrier. |
| // /* GcRoot<mirror::Object> */ root = *address |
| __ movl(root_reg, address); |
| if (fixup_label != nullptr) { |
| __ Bind(fixup_label); |
| } |
| // Note that GC roots are not affected by heap poisoning, thus we |
| // do not have to unpoison `root_reg` here. |
| } |
| } |
| |
| void CodeGeneratorX86_64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| CpuRegister obj, |
| uint32_t offset, |
| bool needs_null_check) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| // /* HeapReference<Object> */ ref = *(obj + offset) |
| Address src(obj, offset); |
| GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, needs_null_check); |
| } |
| |
| void CodeGeneratorX86_64::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| CpuRegister obj, |
| uint32_t data_offset, |
| Location index, |
| bool needs_null_check) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| // /* HeapReference<Object> */ ref = |
| // *(obj + data_offset + index * sizeof(HeapReference<Object>)) |
| Address src = CodeGeneratorX86_64::ArrayAddress(obj, index, TIMES_4, data_offset); |
| GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, needs_null_check); |
| } |
| |
| void CodeGeneratorX86_64::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| CpuRegister obj, |
| const Address& src, |
| bool needs_null_check, |
| bool always_update_field, |
| CpuRegister* temp1, |
| CpuRegister* temp2) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| // In slow path based read barriers, the read barrier call is |
| // inserted after the original load. However, in fast path based |
| // Baker's read barriers, we need to perform the load of |
| // mirror::Object::monitor_ *before* the original reference load. |
| // This load-load ordering is required by the read barrier. |
| // The fast path/slow path (for Baker's algorithm) should look like: |
| // |
| // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // HeapReference<Object> ref = *src; // Original reference load. |
| // bool is_gray = (rb_state == ReadBarrier::GrayState()); |
| // if (is_gray) { |
| // ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path. |
| // } |
| // |
| // Note: the original implementation in ReadBarrier::Barrier is |
| // slightly more complex as: |
| // - it implements the load-load fence using a data dependency on |
| // the high-bits of rb_state, which are expected to be all zeroes |
| // (we use CodeGeneratorX86_64::GenerateMemoryBarrier instead |
| // here, which is a no-op thanks to the x86-64 memory model); |
| // - it performs additional checks that we do not do here for |
| // performance reasons. |
| |
| CpuRegister ref_reg = ref.AsRegister<CpuRegister>(); |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| |
| // Given the numeric representation, it's enough to check the low bit of the rb_state. |
| static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0"); |
| static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); |
| constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte; |
| constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte; |
| constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position); |
| |
| // if (rb_state == ReadBarrier::GrayState()) |
| // ref = ReadBarrier::Mark(ref); |
| // At this point, just do the "if" and make sure that flags are preserved until the branch. |
| __ testb(Address(obj, monitor_offset + gray_byte_position), Immediate(test_value)); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| // Load fence to prevent load-load reordering. |
| // Note that this is a no-op, thanks to the x86-64 memory model. |
| GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| |
| // The actual reference load. |
| // /* HeapReference<Object> */ ref = *src |
| __ movl(ref_reg, src); // Flags are unaffected. |
| |
| // Note: Reference unpoisoning modifies the flags, so we need to delay it after the branch. |
| // Slow path marking the object `ref` when it is gray. |
| SlowPathCode* slow_path; |
| if (always_update_field) { |
| DCHECK(temp1 != nullptr); |
| DCHECK(temp2 != nullptr); |
| slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkAndUpdateFieldSlowPathX86_64( |
| instruction, ref, obj, src, /* unpoison_ref_before_marking */ true, *temp1, *temp2); |
| } else { |
| slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86_64( |
| instruction, ref, /* unpoison_ref_before_marking */ true); |
| } |
| AddSlowPath(slow_path); |
| |
| // We have done the "if" of the gray bit check above, now branch based on the flags. |
| __ j(kNotZero, slow_path->GetEntryLabel()); |
| |
| // Object* ref = ref_addr->AsMirrorPtr() |
| __ MaybeUnpoisonHeapReference(ref_reg); |
| |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorX86_64::GenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| DCHECK(kEmitCompilerReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the reference load. |
| // |
| // If heap poisoning is enabled, the unpoisoning of the loaded |
| // reference will be carried out by the runtime within the slow |
| // path. |
| // |
| // Note that `ref` currently does not get unpoisoned (when heap |
| // poisoning is enabled), which is alright as the `ref` argument is |
| // not used by the artReadBarrierSlow entry point. |
| // |
| // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. |
| SlowPathCode* slow_path = new (GetGraph()->GetArena()) |
| ReadBarrierForHeapReferenceSlowPathX86_64(instruction, out, ref, obj, offset, index); |
| AddSlowPath(slow_path); |
| |
| __ jmp(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorX86_64::MaybeGenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| if (kEmitCompilerReadBarrier) { |
| // Baker's read barriers shall be handled by the fast path |
| // (CodeGeneratorX86_64::GenerateReferenceLoadWithBakerReadBarrier). |
| DCHECK(!kUseBakerReadBarrier); |
| // If heap poisoning is enabled, unpoisoning will be taken care of |
| // by the runtime within the slow path. |
| GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); |
| } else if (kPoisonHeapReferences) { |
| __ UnpoisonHeapReference(out.AsRegister<CpuRegister>()); |
| } |
| } |
| |
| void CodeGeneratorX86_64::GenerateReadBarrierForRootSlow(HInstruction* instruction, |
| Location out, |
| Location root) { |
| DCHECK(kEmitCompilerReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the GC root load. |
| // |
| // Note that GC roots are not affected by heap poisoning, so we do |
| // not need to do anything special for this here. |
| SlowPathCode* slow_path = |
| new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathX86_64(instruction, out, root); |
| AddSlowPath(slow_path); |
| |
| __ jmp(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderX86_64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| // Simple implementation of packed switch - generate cascaded compare/jumps. |
| void LocationsBuilderX86_64::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorX86_64::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| int32_t lower_bound = switch_instr->GetStartValue(); |
| uint32_t num_entries = switch_instr->GetNumEntries(); |
| LocationSummary* locations = switch_instr->GetLocations(); |
| CpuRegister value_reg_in = locations->InAt(0).AsRegister<CpuRegister>(); |
| CpuRegister temp_reg = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| CpuRegister base_reg = locations->GetTemp(1).AsRegister<CpuRegister>(); |
| HBasicBlock* default_block = switch_instr->GetDefaultBlock(); |
| |
| // Should we generate smaller inline compare/jumps? |
| if (num_entries <= kPackedSwitchJumpTableThreshold) { |
| // Figure out the correct compare values and jump conditions. |
| // Handle the first compare/branch as a special case because it might |
| // jump to the default case. |
| DCHECK_GT(num_entries, 2u); |
| Condition first_condition; |
| uint32_t index; |
| const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors(); |
| if (lower_bound != 0) { |
| first_condition = kLess; |
| __ cmpl(value_reg_in, Immediate(lower_bound)); |
| __ j(first_condition, codegen_->GetLabelOf(default_block)); |
| __ j(kEqual, codegen_->GetLabelOf(successors[0])); |
| |
| index = 1; |
| } else { |
| // Handle all the compare/jumps below. |
| first_condition = kBelow; |
| index = 0; |
| } |
| |
| // Handle the rest of the compare/jumps. |
| for (; index + 1 < num_entries; index += 2) { |
| int32_t compare_to_value = lower_bound + index + 1; |
| __ cmpl(value_reg_in, Immediate(compare_to_value)); |
| // Jump to successors[index] if value < case_value[index]. |
| __ j(first_condition, codegen_->GetLabelOf(successors[index])); |
| // Jump to successors[index + 1] if value == case_value[index + 1]. |
| __ j(kEqual, codegen_->GetLabelOf(successors[index + 1])); |
| } |
| |
| if (index != num_entries) { |
| // There are an odd number of entries. Handle the last one. |
| DCHECK_EQ(index + 1, num_entries); |
| __ cmpl(value_reg_in, Immediate(static_cast<int32_t>(lower_bound + index))); |
| __ j(kEqual, codegen_->GetLabelOf(successors[index])); |
| } |
| |
| // And the default for any other value. |
| if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) { |
| __ jmp(codegen_->GetLabelOf(default_block)); |
| } |
| return; |
| } |
| |
| // Remove the bias, if needed. |
| Register value_reg_out = value_reg_in.AsRegister(); |
| if (lower_bound != 0) { |
| __ leal(temp_reg, Address(value_reg_in, -lower_bound)); |
| value_reg_out = temp_reg.AsRegister(); |
| } |
| CpuRegister value_reg(value_reg_out); |
| |
| // Is the value in range? |
| __ cmpl(value_reg, Immediate(num_entries - 1)); |
| __ j(kAbove, codegen_->GetLabelOf(default_block)); |
| |
| // We are in the range of the table. |
| // Load the address of the jump table in the constant area. |
| __ leaq(base_reg, codegen_->LiteralCaseTable(switch_instr)); |
| |
| // Load the (signed) offset from the jump table. |
| __ movsxd(temp_reg, Address(base_reg, value_reg, TIMES_4, 0)); |
| |
| // Add the offset to the address of the table base. |
| __ addq(temp_reg, base_reg); |
| |
| // And jump. |
| __ jmp(temp_reg); |
| } |
| |
| void CodeGeneratorX86_64::Load32BitValue(CpuRegister dest, int32_t value) { |
| if (value == 0) { |
| __ xorl(dest, dest); |
| } else { |
| __ movl(dest, Immediate(value)); |
| } |
| } |
| |
| void CodeGeneratorX86_64::Load64BitValue(CpuRegister dest, int64_t value) { |
| if (value == 0) { |
| // Clears upper bits too. |
| __ xorl(dest, dest); |
| } else if (IsUint<32>(value)) { |
| // We can use a 32 bit move, as it will zero-extend and is shorter. |
| __ movl(dest, Immediate(static_cast<int32_t>(value))); |
| } else { |
| __ movq(dest, Immediate(value)); |
| } |
| } |
| |
| void CodeGeneratorX86_64::Load32BitValue(XmmRegister dest, int32_t value) { |
| if (value == 0) { |
| __ xorps(dest, dest); |
| } else { |
| __ movss(dest, LiteralInt32Address(value)); |
| } |
| } |
| |
| void CodeGeneratorX86_64::Load64BitValue(XmmRegister dest, int64_t value) { |
| if (value == 0) { |
| __ xorpd(dest, dest); |
| } else { |
| __ movsd(dest, LiteralInt64Address(value)); |
| } |
| } |
| |
| void CodeGeneratorX86_64::Load32BitValue(XmmRegister dest, float value) { |
| Load32BitValue(dest, bit_cast<int32_t, float>(value)); |
| } |
| |
| void CodeGeneratorX86_64::Load64BitValue(XmmRegister dest, double value) { |
| Load64BitValue(dest, bit_cast<int64_t, double>(value)); |
| } |
| |
| void CodeGeneratorX86_64::Compare32BitValue(CpuRegister dest, int32_t value) { |
| if (value == 0) { |
| __ testl(dest, dest); |
| } else { |
| __ cmpl(dest, Immediate(value)); |
| } |
| } |
| |
| void CodeGeneratorX86_64::Compare64BitValue(CpuRegister dest, int64_t value) { |
| if (IsInt<32>(value)) { |
| if (value == 0) { |
| __ testq(dest, dest); |
| } else { |
| __ cmpq(dest, Immediate(static_cast<int32_t>(value))); |
| } |
| } else { |
| // Value won't fit in an int. |
| __ cmpq(dest, LiteralInt64Address(value)); |
| } |
| } |
| |
| void CodeGeneratorX86_64::GenerateIntCompare(Location lhs, Location rhs) { |
| CpuRegister lhs_reg = lhs.AsRegister<CpuRegister>(); |
| GenerateIntCompare(lhs_reg, rhs); |
| } |
| |
| void CodeGeneratorX86_64::GenerateIntCompare(CpuRegister lhs, Location rhs) { |
| if (rhs.IsConstant()) { |
| int32_t value = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()); |
| Compare32BitValue(lhs, value); |
| } else if (rhs.IsStackSlot()) { |
| __ cmpl(lhs, Address(CpuRegister(RSP), rhs.GetStackIndex())); |
| } else { |
| __ cmpl(lhs, rhs.AsRegister<CpuRegister>()); |
| } |
| } |
| |
| void CodeGeneratorX86_64::GenerateLongCompare(Location lhs, Location rhs) { |
| CpuRegister lhs_reg = lhs.AsRegister<CpuRegister>(); |
| if (rhs.IsConstant()) { |
| int64_t value = rhs.GetConstant()->AsLongConstant()->GetValue(); |
| Compare64BitValue(lhs_reg, value); |
| } else if (rhs.IsDoubleStackSlot()) { |
| __ cmpq(lhs_reg, Address(CpuRegister(RSP), rhs.GetStackIndex())); |
| } else { |
| __ cmpq(lhs_reg, rhs.AsRegister<CpuRegister>()); |
| } |
| } |
| |
| Address CodeGeneratorX86_64::ArrayAddress(CpuRegister obj, |
| Location index, |
| ScaleFactor scale, |
| uint32_t data_offset) { |
| return index.IsConstant() ? |
| Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << scale) + data_offset) : |
| Address(obj, index.AsRegister<CpuRegister>(), scale, data_offset); |
| } |
| |
| void CodeGeneratorX86_64::Store64BitValueToStack(Location dest, int64_t value) { |
| DCHECK(dest.IsDoubleStackSlot()); |
| if (IsInt<32>(value)) { |
| // Can move directly as an int32 constant. |
| __ movq(Address(CpuRegister(RSP), dest.GetStackIndex()), |
| Immediate(static_cast<int32_t>(value))); |
| } else { |
| Load64BitValue(CpuRegister(TMP), value); |
| __ movq(Address(CpuRegister(RSP), dest.GetStackIndex()), CpuRegister(TMP)); |
| } |
| } |
| |
| /** |
| * Class to handle late fixup of offsets into constant area. |
| */ |
| class RIPFixup : public AssemblerFixup, public ArenaObject<kArenaAllocCodeGenerator> { |
| public: |
| RIPFixup(CodeGeneratorX86_64& codegen, size_t offset) |
| : codegen_(&codegen), offset_into_constant_area_(offset) {} |
| |
| protected: |
| void SetOffset(size_t offset) { offset_into_constant_area_ = offset; } |
| |
| CodeGeneratorX86_64* codegen_; |
| |
| private: |
| void Process(const MemoryRegion& region, int pos) OVERRIDE { |
| // Patch the correct offset for the instruction. We use the address of the |
| // 'next' instruction, which is 'pos' (patch the 4 bytes before). |
| int32_t constant_offset = codegen_->ConstantAreaStart() + offset_into_constant_area_; |
| int32_t relative_position = constant_offset - pos; |
| |
| // Patch in the right value. |
| region.StoreUnaligned<int32_t>(pos - 4, relative_position); |
| } |
| |
| // Location in constant area that the fixup refers to. |
| size_t offset_into_constant_area_; |
| }; |
| |
| /** |
| t * Class to handle late fixup of offsets to a jump table that will be created in the |
| * constant area. |
| */ |
| class JumpTableRIPFixup : public RIPFixup { |
| public: |
| JumpTableRIPFixup(CodeGeneratorX86_64& codegen, HPackedSwitch* switch_instr) |
| : RIPFixup(codegen, -1), switch_instr_(switch_instr) {} |
| |
| void CreateJumpTable() { |
| X86_64Assembler* assembler = codegen_->GetAssembler(); |
| |
| // Ensure that the reference to the jump table has the correct offset. |
| const int32_t offset_in_constant_table = assembler->ConstantAreaSize(); |
| SetOffset(offset_in_constant_table); |
| |
| // Compute the offset from the start of the function to this jump table. |
| const int32_t current_table_offset = assembler->CodeSize() + offset_in_constant_table; |
| |
| // Populate the jump table with the correct values for the jump table. |
| int32_t num_entries = switch_instr_->GetNumEntries(); |
| HBasicBlock* block = switch_instr_->GetBlock(); |
| const ArenaVector<HBasicBlock*>& successors = block->GetSuccessors(); |
| // The value that we want is the target offset - the position of the table. |
| for (int32_t i = 0; i < num_entries; i++) { |
| HBasicBlock* b = successors[i]; |
| Label* l = codegen_->GetLabelOf(b); |
| DCHECK(l->IsBound()); |
| int32_t offset_to_block = l->Position() - current_table_offset; |
| assembler->AppendInt32(offset_to_block); |
| } |
| } |
| |
| private: |
| const HPackedSwitch* switch_instr_; |
| }; |
| |
| void CodeGeneratorX86_64::Finalize(CodeAllocator* allocator) { |
| // Generate the constant area if needed. |
| X86_64Assembler* assembler = GetAssembler(); |
| if (!assembler->IsConstantAreaEmpty() || !fixups_to_jump_tables_.empty()) { |
| // Align to 4 byte boundary to reduce cache misses, as the data is 4 and 8 byte values. |
| assembler->Align(4, 0); |
| constant_area_start_ = assembler->CodeSize(); |
| |
| // Populate any jump tables. |
| for (JumpTableRIPFixup* jump_table : fixups_to_jump_tables_) { |
| jump_table->CreateJumpTable(); |
| } |
| |
| // And now add the constant area to the generated code. |
| assembler->AddConstantArea(); |
| } |
| |
| // And finish up. |
| CodeGenerator::Finalize(allocator); |
| } |
| |
| Address CodeGeneratorX86_64::LiteralDoubleAddress(double v) { |
| AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddDouble(v)); |
| return Address::RIP(fixup); |
| } |
| |
| Address CodeGeneratorX86_64::LiteralFloatAddress(float v) { |
| AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddFloat(v)); |
| return Address::RIP(fixup); |
| } |
| |
| Address CodeGeneratorX86_64::LiteralInt32Address(int32_t v) { |
| AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt32(v)); |
| return Address::RIP(fixup); |
| } |
| |
| Address CodeGeneratorX86_64::LiteralInt64Address(int64_t v) { |
| AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt64(v)); |
| return Address::RIP(fixup); |
| } |
| |
| // TODO: trg as memory. |
| void CodeGeneratorX86_64::MoveFromReturnRegister(Location trg, Primitive::Type type) { |
| if (!trg.IsValid()) { |
| DCHECK_EQ(type, Primitive::kPrimVoid); |
| return; |
| } |
| |
| DCHECK_NE(type, Primitive::kPrimVoid); |
| |
| Location return_loc = InvokeDexCallingConventionVisitorX86_64().GetReturnLocation(type); |
| if (trg.Equals(return_loc)) { |
| return; |
| } |
| |
| // Let the parallel move resolver take care of all of this. |
| HParallelMove parallel_move(GetGraph()->GetArena()); |
| parallel_move.AddMove(return_loc, trg, type, nullptr); |
| GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } |
| |
| Address CodeGeneratorX86_64::LiteralCaseTable(HPackedSwitch* switch_instr) { |
| // Create a fixup to be used to create and address the jump table. |
| JumpTableRIPFixup* table_fixup = |
| new (GetGraph()->GetArena()) JumpTableRIPFixup(*this, switch_instr); |
| |
| // We have to populate the jump tables. |
| fixups_to_jump_tables_.push_back(table_fixup); |
| return Address::RIP(table_fixup); |
| } |
| |
| void CodeGeneratorX86_64::MoveInt64ToAddress(const Address& addr_low, |
| const Address& addr_high, |
| int64_t v, |
| HInstruction* instruction) { |
| if (IsInt<32>(v)) { |
| int32_t v_32 = v; |
| __ movq(addr_low, Immediate(v_32)); |
| MaybeRecordImplicitNullCheck(instruction); |
| } else { |
| // Didn't fit in a register. Do it in pieces. |
| int32_t low_v = Low32Bits(v); |
| int32_t high_v = High32Bits(v); |
| __ movl(addr_low, Immediate(low_v)); |
| MaybeRecordImplicitNullCheck(instruction); |
| __ movl(addr_high, Immediate(high_v)); |
| } |
| } |
| |
| void CodeGeneratorX86_64::PatchJitRootUse(uint8_t* code, |
| const uint8_t* roots_data, |
| const PatchInfo<Label>& info, |
| uint64_t index_in_table) const { |
| uint32_t code_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; |
| uintptr_t address = |
| reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>); |
| typedef __attribute__((__aligned__(1))) uint32_t unaligned_uint32_t; |
| reinterpret_cast<unaligned_uint32_t*>(code + code_offset)[0] = |
| dchecked_integral_cast<uint32_t>(address); |
| } |
| |
| void CodeGeneratorX86_64::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) { |
| for (const PatchInfo<Label>& info : jit_string_patches_) { |
| const auto it = jit_string_roots_.find( |
| StringReference(&info.dex_file, dex::StringIndex(info.index))); |
| DCHECK(it != jit_string_roots_.end()); |
| uint64_t index_in_table = it->second; |
| PatchJitRootUse(code, roots_data, info, index_in_table); |
| } |
| |
| for (const PatchInfo<Label>& info : jit_class_patches_) { |
| const auto it = jit_class_roots_.find( |
| TypeReference(&info.dex_file, dex::TypeIndex(info.index))); |
| DCHECK(it != jit_class_roots_.end()); |
| uint64_t index_in_table = it->second; |
| PatchJitRootUse(code, roots_data, info, index_in_table); |
| } |
| } |
| |
| #undef __ |
| |
| } // namespace x86_64 |
| } // namespace art |