blob: f78c8274b07658c9a21612c7650e18a7db4a90d1 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_ART_METHOD_H_
#define ART_RUNTIME_ART_METHOD_H_
#include "base/casts.h"
#include "dex_file.h"
#include "gc_root.h"
#include "invoke_type.h"
#include "method_reference.h"
#include "modifiers.h"
#include "mirror/object.h"
#include "quick/quick_method_frame_info.h"
#include "read_barrier_option.h"
#include "stack.h"
#include "stack_map.h"
#include "utils.h"
namespace art {
union JValue;
class ProfilingInfo;
class ScopedObjectAccessAlreadyRunnable;
class StringPiece;
class ShadowFrame;
namespace mirror {
class Array;
class Class;
class PointerArray;
} // namespace mirror
class ArtMethod FINAL {
public:
ArtMethod() : access_flags_(0), dex_code_item_offset_(0), dex_method_index_(0),
method_index_(0) { }
ArtMethod(const ArtMethod& src, size_t image_pointer_size) {
CopyFrom(&src, image_pointer_size);
}
static ArtMethod* FromReflectedMethod(const ScopedObjectAccessAlreadyRunnable& soa,
jobject jlr_method)
SHARED_REQUIRES(Locks::mutator_lock_);
ALWAYS_INLINE mirror::Class* GetDeclaringClass() SHARED_REQUIRES(Locks::mutator_lock_);
ALWAYS_INLINE mirror::Class* GetDeclaringClassNoBarrier()
SHARED_REQUIRES(Locks::mutator_lock_);
ALWAYS_INLINE mirror::Class* GetDeclaringClassUnchecked()
SHARED_REQUIRES(Locks::mutator_lock_);
void SetDeclaringClass(mirror::Class *new_declaring_class)
SHARED_REQUIRES(Locks::mutator_lock_);
bool CASDeclaringClass(mirror::Class* expected_class, mirror::Class* desired_class)
SHARED_REQUIRES(Locks::mutator_lock_);
static MemberOffset DeclaringClassOffset() {
return MemberOffset(OFFSETOF_MEMBER(ArtMethod, declaring_class_));
}
ALWAYS_INLINE uint32_t GetAccessFlags() SHARED_REQUIRES(Locks::mutator_lock_);
void SetAccessFlags(uint32_t new_access_flags) {
// Not called within a transaction.
access_flags_ = new_access_flags;
}
// Approximate what kind of method call would be used for this method.
InvokeType GetInvokeType() SHARED_REQUIRES(Locks::mutator_lock_);
// Returns true if the method is declared public.
bool IsPublic() SHARED_REQUIRES(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccPublic) != 0;
}
// Returns true if the method is declared private.
bool IsPrivate() SHARED_REQUIRES(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccPrivate) != 0;
}
// Returns true if the method is declared static.
bool IsStatic() SHARED_REQUIRES(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccStatic) != 0;
}
// Returns true if the method is a constructor.
bool IsConstructor() SHARED_REQUIRES(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccConstructor) != 0;
}
// Returns true if the method is a class initializer.
bool IsClassInitializer() SHARED_REQUIRES(Locks::mutator_lock_) {
return IsConstructor() && IsStatic();
}
// Returns true if the method is static, private, or a constructor.
bool IsDirect() SHARED_REQUIRES(Locks::mutator_lock_) {
return IsDirect(GetAccessFlags());
}
static bool IsDirect(uint32_t access_flags) {
return (access_flags & (kAccStatic | kAccPrivate | kAccConstructor)) != 0;
}
// Returns true if the method is declared synchronized.
bool IsSynchronized() SHARED_REQUIRES(Locks::mutator_lock_) {
uint32_t synchonized = kAccSynchronized | kAccDeclaredSynchronized;
return (GetAccessFlags() & synchonized) != 0;
}
bool IsFinal() SHARED_REQUIRES(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccFinal) != 0;
}
bool IsMiranda() SHARED_REQUIRES(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccMiranda) != 0;
}
bool IsNative() SHARED_REQUIRES(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccNative) != 0;
}
bool IsFastNative() SHARED_REQUIRES(Locks::mutator_lock_) {
uint32_t mask = kAccFastNative | kAccNative;
return (GetAccessFlags() & mask) == mask;
}
bool IsAbstract() SHARED_REQUIRES(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccAbstract) != 0;
}
bool IsSynthetic() SHARED_REQUIRES(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccSynthetic) != 0;
}
bool IsProxyMethod() SHARED_REQUIRES(Locks::mutator_lock_);
bool IsPreverified() SHARED_REQUIRES(Locks::mutator_lock_) {
return (GetAccessFlags() & kAccPreverified) != 0;
}
void SetPreverified() SHARED_REQUIRES(Locks::mutator_lock_) {
DCHECK(!IsPreverified());
SetAccessFlags(GetAccessFlags() | kAccPreverified);
}
bool IsOptimized(size_t pointer_size) SHARED_REQUIRES(Locks::mutator_lock_) {
// Temporary solution for detecting if a method has been optimized: the compiler
// does not create a GC map. Instead, the vmap table contains the stack map
// (as in stack_map.h).
return !IsNative()
&& GetEntryPointFromQuickCompiledCodePtrSize(pointer_size) != nullptr
&& GetQuickOatCodePointer(pointer_size) != nullptr
&& GetNativeGcMap(pointer_size) == nullptr;
}
bool CheckIncompatibleClassChange(InvokeType type) SHARED_REQUIRES(Locks::mutator_lock_);
uint16_t GetMethodIndex() SHARED_REQUIRES(Locks::mutator_lock_);
// Doesn't do erroneous / unresolved class checks.
uint16_t GetMethodIndexDuringLinking() SHARED_REQUIRES(Locks::mutator_lock_);
size_t GetVtableIndex() SHARED_REQUIRES(Locks::mutator_lock_) {
return GetMethodIndex();
}
void SetMethodIndex(uint16_t new_method_index) SHARED_REQUIRES(Locks::mutator_lock_) {
// Not called within a transaction.
method_index_ = new_method_index;
}
static MemberOffset DexMethodIndexOffset() {
return OFFSET_OF_OBJECT_MEMBER(ArtMethod, dex_method_index_);
}
static MemberOffset MethodIndexOffset() {
return OFFSET_OF_OBJECT_MEMBER(ArtMethod, method_index_);
}
uint32_t GetCodeItemOffset() {
return dex_code_item_offset_;
}
void SetCodeItemOffset(uint32_t new_code_off) {
// Not called within a transaction.
dex_code_item_offset_ = new_code_off;
}
// Number of 32bit registers that would be required to hold all the arguments
static size_t NumArgRegisters(const StringPiece& shorty);
ALWAYS_INLINE uint32_t GetDexMethodIndex() SHARED_REQUIRES(Locks::mutator_lock_);
void SetDexMethodIndex(uint32_t new_idx) {
// Not called within a transaction.
dex_method_index_ = new_idx;
}
ALWAYS_INLINE ArtMethod** GetDexCacheResolvedMethods(size_t pointer_size)
SHARED_REQUIRES(Locks::mutator_lock_);
ALWAYS_INLINE ArtMethod* GetDexCacheResolvedMethod(uint16_t method_index, size_t ptr_size)
SHARED_REQUIRES(Locks::mutator_lock_);
ALWAYS_INLINE void SetDexCacheResolvedMethod(uint16_t method_index,
ArtMethod* new_method,
size_t ptr_size)
SHARED_REQUIRES(Locks::mutator_lock_);
ALWAYS_INLINE void SetDexCacheResolvedMethods(ArtMethod** new_dex_cache_methods, size_t ptr_size)
SHARED_REQUIRES(Locks::mutator_lock_);
bool HasDexCacheResolvedMethods(size_t pointer_size) SHARED_REQUIRES(Locks::mutator_lock_);
bool HasSameDexCacheResolvedMethods(ArtMethod* other, size_t pointer_size)
SHARED_REQUIRES(Locks::mutator_lock_);
bool HasSameDexCacheResolvedMethods(ArtMethod** other_cache, size_t pointer_size)
SHARED_REQUIRES(Locks::mutator_lock_);
template <bool kWithCheck = true>
mirror::Class* GetDexCacheResolvedType(uint32_t type_idx, size_t ptr_size)
SHARED_REQUIRES(Locks::mutator_lock_);
void SetDexCacheResolvedTypes(GcRoot<mirror::Class>* new_dex_cache_types, size_t ptr_size)
SHARED_REQUIRES(Locks::mutator_lock_);
bool HasDexCacheResolvedTypes(size_t pointer_size) SHARED_REQUIRES(Locks::mutator_lock_);
bool HasSameDexCacheResolvedTypes(ArtMethod* other, size_t pointer_size)
SHARED_REQUIRES(Locks::mutator_lock_);
bool HasSameDexCacheResolvedTypes(GcRoot<mirror::Class>* other_cache, size_t pointer_size)
SHARED_REQUIRES(Locks::mutator_lock_);
// Get the Class* from the type index into this method's dex cache.
mirror::Class* GetClassFromTypeIndex(uint16_t type_idx, bool resolve, size_t ptr_size)
SHARED_REQUIRES(Locks::mutator_lock_);
// Find the method that this method overrides.
ArtMethod* FindOverriddenMethod(size_t pointer_size) SHARED_REQUIRES(Locks::mutator_lock_);
// Find the method index for this method within other_dexfile. If this method isn't present then
// return DexFile::kDexNoIndex. The name_and_signature_idx MUST refer to a MethodId with the same
// name and signature in the other_dexfile, such as the method index used to resolve this method
// in the other_dexfile.
uint32_t FindDexMethodIndexInOtherDexFile(const DexFile& other_dexfile,
uint32_t name_and_signature_idx)
SHARED_REQUIRES(Locks::mutator_lock_);
void Invoke(Thread* self, uint32_t* args, uint32_t args_size, JValue* result, const char* shorty)
SHARED_REQUIRES(Locks::mutator_lock_);
const void* GetEntryPointFromQuickCompiledCode() {
return GetEntryPointFromQuickCompiledCodePtrSize(sizeof(void*));
}
ALWAYS_INLINE const void* GetEntryPointFromQuickCompiledCodePtrSize(size_t pointer_size) {
return GetNativePointer<const void*>(
EntryPointFromQuickCompiledCodeOffset(pointer_size), pointer_size);
}
void SetEntryPointFromQuickCompiledCode(const void* entry_point_from_quick_compiled_code) {
SetEntryPointFromQuickCompiledCodePtrSize(entry_point_from_quick_compiled_code,
sizeof(void*));
}
ALWAYS_INLINE void SetEntryPointFromQuickCompiledCodePtrSize(
const void* entry_point_from_quick_compiled_code, size_t pointer_size) {
SetNativePointer(EntryPointFromQuickCompiledCodeOffset(pointer_size),
entry_point_from_quick_compiled_code, pointer_size);
}
uint32_t GetCodeSize() SHARED_REQUIRES(Locks::mutator_lock_);
// Check whether the given PC is within the quick compiled code associated with this method's
// quick entrypoint. This code isn't robust for instrumentation, etc. and is only used for
// debug purposes.
bool PcIsWithinQuickCode(uintptr_t pc) {
return PcIsWithinQuickCode(
reinterpret_cast<uintptr_t>(GetEntryPointFromQuickCompiledCode()), pc);
}
void AssertPcIsWithinQuickCode(uintptr_t pc) SHARED_REQUIRES(Locks::mutator_lock_);
// Returns true if the entrypoint points to the interpreter, as
// opposed to the compiled code, that is, this method will be
// interpretered on invocation.
bool IsEntrypointInterpreter() SHARED_REQUIRES(Locks::mutator_lock_);
uint32_t GetQuickOatCodeOffset();
void SetQuickOatCodeOffset(uint32_t code_offset);
ALWAYS_INLINE static const void* EntryPointToCodePointer(const void* entry_point) {
uintptr_t code = reinterpret_cast<uintptr_t>(entry_point);
// TODO: Make this Thumb2 specific. It is benign on other architectures as code is always at
// least 2 byte aligned.
code &= ~0x1;
return reinterpret_cast<const void*>(code);
}
// Actual entry point pointer to compiled oat code or null.
const void* GetQuickOatEntryPoint(size_t pointer_size)
SHARED_REQUIRES(Locks::mutator_lock_);
// Actual pointer to compiled oat code or null.
const void* GetQuickOatCodePointer(size_t pointer_size)
SHARED_REQUIRES(Locks::mutator_lock_) {
return EntryPointToCodePointer(GetQuickOatEntryPoint(pointer_size));
}
// Callers should wrap the uint8_t* in a MappingTable instance for convenient access.
const uint8_t* GetMappingTable(size_t pointer_size)
SHARED_REQUIRES(Locks::mutator_lock_);
const uint8_t* GetMappingTable(const void* code_pointer, size_t pointer_size)
SHARED_REQUIRES(Locks::mutator_lock_);
// Callers should wrap the uint8_t* in a VmapTable instance for convenient access.
const uint8_t* GetVmapTable(size_t pointer_size)
SHARED_REQUIRES(Locks::mutator_lock_);
const uint8_t* GetVmapTable(const void* code_pointer, size_t pointer_size)
SHARED_REQUIRES(Locks::mutator_lock_);
const uint8_t* GetQuickenedInfo() SHARED_REQUIRES(Locks::mutator_lock_);
CodeInfo GetOptimizedCodeInfo() SHARED_REQUIRES(Locks::mutator_lock_);
// Callers should wrap the uint8_t* in a GcMap instance for convenient access.
const uint8_t* GetNativeGcMap(size_t pointer_size)
SHARED_REQUIRES(Locks::mutator_lock_);
const uint8_t* GetNativeGcMap(const void* code_pointer, size_t pointer_size)
SHARED_REQUIRES(Locks::mutator_lock_);
template <bool kCheckFrameSize = true>
uint32_t GetFrameSizeInBytes() SHARED_REQUIRES(Locks::mutator_lock_) {
uint32_t result = GetQuickFrameInfo().FrameSizeInBytes();
if (kCheckFrameSize) {
DCHECK_LE(static_cast<size_t>(kStackAlignment), result);
}
return result;
}
QuickMethodFrameInfo GetQuickFrameInfo() SHARED_REQUIRES(Locks::mutator_lock_);
QuickMethodFrameInfo GetQuickFrameInfo(const void* code_pointer)
SHARED_REQUIRES(Locks::mutator_lock_);
FrameOffset GetReturnPcOffset() SHARED_REQUIRES(Locks::mutator_lock_) {
return GetReturnPcOffset(GetFrameSizeInBytes());
}
FrameOffset GetReturnPcOffset(uint32_t frame_size_in_bytes)
SHARED_REQUIRES(Locks::mutator_lock_) {
DCHECK_EQ(frame_size_in_bytes, GetFrameSizeInBytes());
return FrameOffset(frame_size_in_bytes - sizeof(void*));
}
FrameOffset GetHandleScopeOffset() SHARED_REQUIRES(Locks::mutator_lock_) {
constexpr size_t handle_scope_offset = sizeof(ArtMethod*);
DCHECK_LT(handle_scope_offset, GetFrameSizeInBytes());
return FrameOffset(handle_scope_offset);
}
void RegisterNative(const void* native_method, bool is_fast)
SHARED_REQUIRES(Locks::mutator_lock_);
void UnregisterNative() SHARED_REQUIRES(Locks::mutator_lock_);
static MemberOffset DexCacheResolvedMethodsOffset(size_t pointer_size) {
return MemberOffset(PtrSizedFieldsOffset(pointer_size) + OFFSETOF_MEMBER(
PtrSizedFields, dex_cache_resolved_methods_) / sizeof(void*) * pointer_size);
}
static MemberOffset DexCacheResolvedTypesOffset(size_t pointer_size) {
return MemberOffset(PtrSizedFieldsOffset(pointer_size) + OFFSETOF_MEMBER(
PtrSizedFields, dex_cache_resolved_types_) / sizeof(void*) * pointer_size);
}
static MemberOffset EntryPointFromJniOffset(size_t pointer_size) {
return MemberOffset(PtrSizedFieldsOffset(pointer_size) + OFFSETOF_MEMBER(
PtrSizedFields, entry_point_from_jni_) / sizeof(void*) * pointer_size);
}
static MemberOffset EntryPointFromQuickCompiledCodeOffset(size_t pointer_size) {
return MemberOffset(PtrSizedFieldsOffset(pointer_size) + OFFSETOF_MEMBER(
PtrSizedFields, entry_point_from_quick_compiled_code_) / sizeof(void*) * pointer_size);
}
ProfilingInfo* CreateProfilingInfo() SHARED_REQUIRES(Locks::mutator_lock_);
ProfilingInfo* GetProfilingInfo(size_t pointer_size) {
return reinterpret_cast<ProfilingInfo*>(GetEntryPointFromJniPtrSize(pointer_size));
}
void* GetEntryPointFromJni() {
return GetEntryPointFromJniPtrSize(sizeof(void*));
}
ALWAYS_INLINE void* GetEntryPointFromJniPtrSize(size_t pointer_size) {
return GetNativePointer<void*>(EntryPointFromJniOffset(pointer_size), pointer_size);
}
void SetEntryPointFromJni(const void* entrypoint) SHARED_REQUIRES(Locks::mutator_lock_) {
DCHECK(IsNative());
SetEntryPointFromJniPtrSize(entrypoint, sizeof(void*));
}
ALWAYS_INLINE void SetEntryPointFromJniPtrSize(const void* entrypoint, size_t pointer_size) {
SetNativePointer(EntryPointFromJniOffset(pointer_size), entrypoint, pointer_size);
}
// Is this a CalleSaveMethod or ResolutionMethod and therefore doesn't adhere to normal
// conventions for a method of managed code. Returns false for Proxy methods.
ALWAYS_INLINE bool IsRuntimeMethod();
// Is this a hand crafted method used for something like describing callee saves?
bool IsCalleeSaveMethod() SHARED_REQUIRES(Locks::mutator_lock_);
bool IsResolutionMethod() SHARED_REQUIRES(Locks::mutator_lock_);
bool IsImtConflictMethod() SHARED_REQUIRES(Locks::mutator_lock_);
bool IsImtUnimplementedMethod() SHARED_REQUIRES(Locks::mutator_lock_);
uintptr_t NativeQuickPcOffset(const uintptr_t pc) SHARED_REQUIRES(Locks::mutator_lock_);
#ifdef NDEBUG
uintptr_t NativeQuickPcOffset(const uintptr_t pc, const void* quick_entry_point)
SHARED_REQUIRES(Locks::mutator_lock_) {
return pc - reinterpret_cast<uintptr_t>(quick_entry_point);
}
#else
uintptr_t NativeQuickPcOffset(const uintptr_t pc, const void* quick_entry_point)
SHARED_REQUIRES(Locks::mutator_lock_);
#endif
// Converts a native PC to a dex PC.
uint32_t ToDexPc(const uintptr_t pc, bool abort_on_failure = true)
SHARED_REQUIRES(Locks::mutator_lock_);
// Converts a dex PC to a native PC.
uintptr_t ToNativeQuickPc(const uint32_t dex_pc,
bool is_for_catch_handler,
bool abort_on_failure = true)
SHARED_REQUIRES(Locks::mutator_lock_);
MethodReference ToMethodReference() SHARED_REQUIRES(Locks::mutator_lock_) {
return MethodReference(GetDexFile(), GetDexMethodIndex());
}
// Find the catch block for the given exception type and dex_pc. When a catch block is found,
// indicates whether the found catch block is responsible for clearing the exception or whether
// a move-exception instruction is present.
uint32_t FindCatchBlock(Handle<mirror::Class> exception_type, uint32_t dex_pc,
bool* has_no_move_exception)
SHARED_REQUIRES(Locks::mutator_lock_);
// NO_THREAD_SAFETY_ANALYSIS since we don't know what the callback requires.
template<typename RootVisitorType>
void VisitRoots(RootVisitorType& visitor, size_t pointer_size) NO_THREAD_SAFETY_ANALYSIS;
const DexFile* GetDexFile() SHARED_REQUIRES(Locks::mutator_lock_);
const char* GetDeclaringClassDescriptor() SHARED_REQUIRES(Locks::mutator_lock_);
const char* GetShorty() SHARED_REQUIRES(Locks::mutator_lock_) {
uint32_t unused_length;
return GetShorty(&unused_length);
}
const char* GetShorty(uint32_t* out_length) SHARED_REQUIRES(Locks::mutator_lock_);
const Signature GetSignature() SHARED_REQUIRES(Locks::mutator_lock_);
ALWAYS_INLINE const char* GetName() SHARED_REQUIRES(Locks::mutator_lock_);
mirror::String* GetNameAsString(Thread* self) SHARED_REQUIRES(Locks::mutator_lock_);
const DexFile::CodeItem* GetCodeItem() SHARED_REQUIRES(Locks::mutator_lock_);
bool IsResolvedTypeIdx(uint16_t type_idx, size_t ptr_size) SHARED_REQUIRES(Locks::mutator_lock_);
int32_t GetLineNumFromDexPC(uint32_t dex_pc) SHARED_REQUIRES(Locks::mutator_lock_);
const DexFile::ProtoId& GetPrototype() SHARED_REQUIRES(Locks::mutator_lock_);
const DexFile::TypeList* GetParameterTypeList() SHARED_REQUIRES(Locks::mutator_lock_);
const char* GetDeclaringClassSourceFile() SHARED_REQUIRES(Locks::mutator_lock_);
uint16_t GetClassDefIndex() SHARED_REQUIRES(Locks::mutator_lock_);
const DexFile::ClassDef& GetClassDef() SHARED_REQUIRES(Locks::mutator_lock_);
const char* GetReturnTypeDescriptor() SHARED_REQUIRES(Locks::mutator_lock_);
const char* GetTypeDescriptorFromTypeIdx(uint16_t type_idx)
SHARED_REQUIRES(Locks::mutator_lock_);
// May cause thread suspension due to GetClassFromTypeIdx calling ResolveType this caused a large
// number of bugs at call sites.
mirror::Class* GetReturnType(bool resolve, size_t ptr_size)
SHARED_REQUIRES(Locks::mutator_lock_);
mirror::ClassLoader* GetClassLoader() SHARED_REQUIRES(Locks::mutator_lock_);
mirror::DexCache* GetDexCache() SHARED_REQUIRES(Locks::mutator_lock_);
ALWAYS_INLINE ArtMethod* GetInterfaceMethodIfProxy(size_t pointer_size)
SHARED_REQUIRES(Locks::mutator_lock_);
// May cause thread suspension due to class resolution.
bool EqualParameters(Handle<mirror::ObjectArray<mirror::Class>> params)
SHARED_REQUIRES(Locks::mutator_lock_);
// Size of an instance of this native class.
static size_t Size(size_t pointer_size) {
return RoundUp(OFFSETOF_MEMBER(ArtMethod, ptr_sized_fields_), pointer_size) +
(sizeof(PtrSizedFields) / sizeof(void*)) * pointer_size;
}
// Alignment of an instance of this native class.
static size_t Alignment(size_t pointer_size) {
// The ArtMethod alignment is the same as image pointer size. This differs from
// alignof(ArtMethod) if cross-compiling with pointer_size != sizeof(void*).
return pointer_size;
}
void CopyFrom(const ArtMethod* src, size_t image_pointer_size)
SHARED_REQUIRES(Locks::mutator_lock_);
ALWAYS_INLINE GcRoot<mirror::Class>* GetDexCacheResolvedTypes(size_t pointer_size)
SHARED_REQUIRES(Locks::mutator_lock_);
uint16_t IncrementCounter() {
return ++hotness_count_;
}
protected:
// Field order required by test "ValidateFieldOrderOfJavaCppUnionClasses".
// The class we are a part of.
GcRoot<mirror::Class> declaring_class_;
// Access flags; low 16 bits are defined by spec.
uint32_t access_flags_;
/* Dex file fields. The defining dex file is available via declaring_class_->dex_cache_ */
// Offset to the CodeItem.
uint32_t dex_code_item_offset_;
// Index into method_ids of the dex file associated with this method.
uint32_t dex_method_index_;
/* End of dex file fields. */
// Entry within a dispatch table for this method. For static/direct methods the index is into
// the declaringClass.directMethods, for virtual methods the vtable and for interface methods the
// ifTable.
uint16_t method_index_;
// The hotness we measure for this method. Incremented by the interpreter. Not atomic, as we allow
// missing increments: if the method is hot, we will see it eventually.
uint16_t hotness_count_;
// Fake padding field gets inserted here.
// Must be the last fields in the method.
// PACKED(4) is necessary for the correctness of
// RoundUp(OFFSETOF_MEMBER(ArtMethod, ptr_sized_fields_), pointer_size).
struct PACKED(4) PtrSizedFields {
// Short cuts to declaring_class_->dex_cache_ member for fast compiled code access.
ArtMethod** dex_cache_resolved_methods_;
// Short cuts to declaring_class_->dex_cache_ member for fast compiled code access.
GcRoot<mirror::Class>* dex_cache_resolved_types_;
// Pointer to JNI function registered to this method, or a function to resolve the JNI function,
// or the profiling data for non-native methods.
void* entry_point_from_jni_;
// Method dispatch from quick compiled code invokes this pointer which may cause bridging into
// the interpreter.
void* entry_point_from_quick_compiled_code_;
} ptr_sized_fields_;
private:
static size_t PtrSizedFieldsOffset(size_t pointer_size) {
// Round up to pointer size for padding field.
return RoundUp(OFFSETOF_MEMBER(ArtMethod, ptr_sized_fields_), pointer_size);
}
template<typename T>
ALWAYS_INLINE T GetNativePointer(MemberOffset offset, size_t pointer_size) const {
static_assert(std::is_pointer<T>::value, "T must be a pointer type");
DCHECK(ValidPointerSize(pointer_size)) << pointer_size;
const auto addr = reinterpret_cast<uintptr_t>(this) + offset.Uint32Value();
if (pointer_size == sizeof(uint32_t)) {
return reinterpret_cast<T>(*reinterpret_cast<const uint32_t*>(addr));
} else {
auto v = *reinterpret_cast<const uint64_t*>(addr);
return reinterpret_cast<T>(dchecked_integral_cast<uintptr_t>(v));
}
}
template<typename T>
ALWAYS_INLINE void SetNativePointer(MemberOffset offset, T new_value, size_t pointer_size) {
static_assert(std::is_pointer<T>::value, "T must be a pointer type");
DCHECK(ValidPointerSize(pointer_size)) << pointer_size;
const auto addr = reinterpret_cast<uintptr_t>(this) + offset.Uint32Value();
if (pointer_size == sizeof(uint32_t)) {
uintptr_t ptr = reinterpret_cast<uintptr_t>(new_value);
*reinterpret_cast<uint32_t*>(addr) = dchecked_integral_cast<uint32_t>(ptr);
} else {
*reinterpret_cast<uint64_t*>(addr) = reinterpret_cast<uintptr_t>(new_value);
}
}
// Code points to the start of the quick code.
static uint32_t GetCodeSize(const void* code);
static bool PcIsWithinQuickCode(uintptr_t code, uintptr_t pc) {
if (code == 0) {
return pc == 0;
}
/*
* During a stack walk, a return PC may point past-the-end of the code
* in the case that the last instruction is a call that isn't expected to
* return. Thus, we check <= code + GetCodeSize().
*
* NOTE: For Thumb both pc and code are offset by 1 indicating the Thumb state.
*/
return code <= pc && pc <= code + GetCodeSize(
EntryPointToCodePointer(reinterpret_cast<const void*>(code)));
}
DISALLOW_COPY_AND_ASSIGN(ArtMethod); // Need to use CopyFrom to deal with 32 vs 64 bits.
};
} // namespace art
#endif // ART_RUNTIME_ART_METHOD_H_