blob: bfbd4df537510362cf2dbe6c54acd2425e743c6f [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_
#define ART_RUNTIME_MIRROR_ARRAY_INL_H_
#include "array.h"
#include "android-base/stringprintf.h"
#include "base/bit_utils.h"
#include "base/casts.h"
#include "base/logging.h"
#include "class.h"
#include "gc/heap-inl.h"
#include "object-inl.h"
#include "obj_ptr-inl.h"
#include "thread.h"
namespace art {
namespace mirror {
inline uint32_t Array::ClassSize(PointerSize pointer_size) {
uint32_t vtable_entries = Object::kVTableLength;
return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size);
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline size_t Array::SizeOf() {
// This is safe from overflow because the array was already allocated, so we know it's sane.
size_t component_size_shift = GetClass<kVerifyFlags, kReadBarrierOption>()->
template GetComponentSizeShift<kReadBarrierOption>();
// Don't need to check this since we already check this in GetClass.
int32_t component_count =
GetLength<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>();
size_t header_size = DataOffset(1U << component_size_shift).SizeValue();
size_t data_size = component_count << component_size_shift;
return header_size + data_size;
}
inline MemberOffset Array::DataOffset(size_t component_size) {
DCHECK(IsPowerOfTwo(component_size)) << component_size;
size_t data_offset = RoundUp(OFFSETOF_MEMBER(Array, first_element_), component_size);
DCHECK_EQ(RoundUp(data_offset, component_size), data_offset)
<< "Array data offset isn't aligned with component size";
return MemberOffset(data_offset);
}
template<VerifyObjectFlags kVerifyFlags>
inline bool Array::CheckIsValidIndex(int32_t index) {
if (UNLIKELY(static_cast<uint32_t>(index) >=
static_cast<uint32_t>(GetLength<kVerifyFlags>()))) {
ThrowArrayIndexOutOfBoundsException(index);
return false;
}
return true;
}
static inline size_t ComputeArraySize(int32_t component_count, size_t component_size_shift) {
DCHECK_GE(component_count, 0);
size_t component_size = 1U << component_size_shift;
size_t header_size = Array::DataOffset(component_size).SizeValue();
size_t data_size = static_cast<size_t>(component_count) << component_size_shift;
size_t size = header_size + data_size;
// Check for size_t overflow if this was an unreasonable request
// but let the caller throw OutOfMemoryError.
#ifdef __LP64__
// 64-bit. No overflow as component_count is 32-bit and the maximum
// component size is 8.
DCHECK_LE((1U << component_size_shift), 8U);
#else
// 32-bit.
DCHECK_NE(header_size, 0U);
DCHECK_EQ(RoundUp(header_size, component_size), header_size);
// The array length limit (exclusive).
const size_t length_limit = (0U - header_size) >> component_size_shift;
if (UNLIKELY(length_limit <= static_cast<size_t>(component_count))) {
return 0; // failure
}
#endif
return size;
}
// Used for setting the array length in the allocation code path to ensure it is guarded by a
// StoreStore fence.
class SetLengthVisitor {
public:
explicit SetLengthVisitor(int32_t length) : length_(length) {
}
void operator()(ObjPtr<Object> obj, size_t usable_size ATTRIBUTE_UNUSED) const
REQUIRES_SHARED(Locks::mutator_lock_) {
// Avoid AsArray as object is not yet in live bitmap or allocation stack.
ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj);
// DCHECK(array->IsArrayInstance());
array->SetLength(length_);
}
private:
const int32_t length_;
DISALLOW_COPY_AND_ASSIGN(SetLengthVisitor);
};
// Similar to SetLengthVisitor, used for setting the array length to fill the usable size of an
// array.
class SetLengthToUsableSizeVisitor {
public:
SetLengthToUsableSizeVisitor(int32_t min_length, size_t header_size,
size_t component_size_shift) :
minimum_length_(min_length), header_size_(header_size),
component_size_shift_(component_size_shift) {
}
void operator()(ObjPtr<Object> obj, size_t usable_size) const
REQUIRES_SHARED(Locks::mutator_lock_) {
// Avoid AsArray as object is not yet in live bitmap or allocation stack.
ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj);
// DCHECK(array->IsArrayInstance());
int32_t length = (usable_size - header_size_) >> component_size_shift_;
DCHECK_GE(length, minimum_length_);
uint8_t* old_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
minimum_length_));
uint8_t* new_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
length));
// Ensure space beyond original allocation is zeroed.
memset(old_end, 0, new_end - old_end);
array->SetLength(length);
}
private:
const int32_t minimum_length_;
const size_t header_size_;
const size_t component_size_shift_;
DISALLOW_COPY_AND_ASSIGN(SetLengthToUsableSizeVisitor);
};
template <bool kIsInstrumented, bool kFillUsable>
inline Array* Array::Alloc(Thread* self,
ObjPtr<Class> array_class,
int32_t component_count,
size_t component_size_shift,
gc::AllocatorType allocator_type) {
DCHECK(allocator_type != gc::kAllocatorTypeLOS);
DCHECK(array_class != nullptr);
DCHECK(array_class->IsArrayClass());
DCHECK_EQ(array_class->GetComponentSizeShift(), component_size_shift);
DCHECK_EQ(array_class->GetComponentSize(), (1U << component_size_shift));
size_t size = ComputeArraySize(component_count, component_size_shift);
#ifdef __LP64__
// 64-bit. No size_t overflow.
DCHECK_NE(size, 0U);
#else
// 32-bit.
if (UNLIKELY(size == 0)) {
self->ThrowOutOfMemoryError(android::base::StringPrintf("%s of length %d would overflow",
array_class->PrettyDescriptor().c_str(),
component_count).c_str());
return nullptr;
}
#endif
gc::Heap* heap = Runtime::Current()->GetHeap();
Array* result;
if (!kFillUsable) {
SetLengthVisitor visitor(component_count);
result = down_cast<Array*>(
heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
allocator_type, visitor));
} else {
SetLengthToUsableSizeVisitor visitor(component_count,
DataOffset(1U << component_size_shift).SizeValue(),
component_size_shift);
result = down_cast<Array*>(
heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
allocator_type, visitor));
}
if (kIsDebugBuild && result != nullptr && Runtime::Current()->IsStarted()) {
array_class = result->GetClass(); // In case the array class moved.
CHECK_EQ(array_class->GetComponentSize(), 1U << component_size_shift);
if (!kFillUsable) {
CHECK_EQ(result->SizeOf(), size);
} else {
CHECK_GE(result->SizeOf(), size);
}
}
return result;
}
template<class T>
inline void PrimitiveArray<T>::VisitRoots(RootVisitor* visitor) {
array_class_.VisitRootIfNonNull(visitor, RootInfo(kRootStickyClass));
}
template<typename T>
inline PrimitiveArray<T>* PrimitiveArray<T>::AllocateAndFill(Thread* self,
const T* data,
size_t length) {
StackHandleScope<1> hs(self);
Handle<PrimitiveArray<T>> arr(hs.NewHandle(PrimitiveArray<T>::Alloc(self, length)));
if (!arr.IsNull()) {
// Copy it in. Just skip if it's null
memcpy(arr->GetData(), data, sizeof(T) * length);
}
return arr.Get();
}
template<typename T>
inline PrimitiveArray<T>* PrimitiveArray<T>::Alloc(Thread* self, size_t length) {
Array* raw_array = Array::Alloc<true>(self,
GetArrayClass(),
length,
ComponentSizeShiftWidth(sizeof(T)),
Runtime::Current()->GetHeap()->GetCurrentAllocator());
return down_cast<PrimitiveArray<T>*>(raw_array);
}
template<typename T>
inline T PrimitiveArray<T>::Get(int32_t i) {
if (!CheckIsValidIndex(i)) {
DCHECK(Thread::Current()->IsExceptionPending());
return T(0);
}
return GetWithoutChecks(i);
}
template<typename T>
inline void PrimitiveArray<T>::Set(int32_t i, T value) {
if (Runtime::Current()->IsActiveTransaction()) {
Set<true>(i, value);
} else {
Set<false>(i, value);
}
}
template<typename T>
template<bool kTransactionActive, bool kCheckTransaction>
inline void PrimitiveArray<T>::Set(int32_t i, T value) {
if (CheckIsValidIndex(i)) {
SetWithoutChecks<kTransactionActive, kCheckTransaction>(i, value);
} else {
DCHECK(Thread::Current()->IsExceptionPending());
}
}
template<typename T>
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
inline void PrimitiveArray<T>::SetWithoutChecks(int32_t i, T value) {
if (kCheckTransaction) {
DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
}
if (kTransactionActive) {
Runtime::Current()->RecordWriteArray(this, i, GetWithoutChecks(i));
}
DCHECK(CheckIsValidIndex<kVerifyFlags>(i));
GetData()[i] = value;
}
// Backward copy where elements are of aligned appropriately for T. Count is in T sized units.
// Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
template<typename T>
static inline void ArrayBackwardCopy(T* d, const T* s, int32_t count) {
d += count;
s += count;
for (int32_t i = 0; i < count; ++i) {
d--;
s--;
*d = *s;
}
}
// Forward copy where elements are of aligned appropriately for T. Count is in T sized units.
// Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
template<typename T>
static inline void ArrayForwardCopy(T* d, const T* s, int32_t count) {
for (int32_t i = 0; i < count; ++i) {
*d = *s;
d++;
s++;
}
}
template<class T>
inline void PrimitiveArray<T>::Memmove(int32_t dst_pos,
ObjPtr<PrimitiveArray<T>> src,
int32_t src_pos,
int32_t count) {
if (UNLIKELY(count == 0)) {
return;
}
DCHECK_GE(dst_pos, 0);
DCHECK_GE(src_pos, 0);
DCHECK_GT(count, 0);
DCHECK(src != nullptr);
DCHECK_LT(dst_pos, GetLength());
DCHECK_LE(dst_pos, GetLength() - count);
DCHECK_LT(src_pos, src->GetLength());
DCHECK_LE(src_pos, src->GetLength() - count);
// Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
// in our implementation, because they may copy byte-by-byte.
if (LIKELY(src != this)) {
// Memcpy ok for guaranteed non-overlapping distinct arrays.
Memcpy(dst_pos, src, src_pos, count);
} else {
// Handle copies within the same array using the appropriate direction copy.
void* dst_raw = GetRawData(sizeof(T), dst_pos);
const void* src_raw = src->GetRawData(sizeof(T), src_pos);
if (sizeof(T) == sizeof(uint8_t)) {
uint8_t* d = reinterpret_cast<uint8_t*>(dst_raw);
const uint8_t* s = reinterpret_cast<const uint8_t*>(src_raw);
memmove(d, s, count);
} else {
const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= count);
if (sizeof(T) == sizeof(uint16_t)) {
uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
if (copy_forward) {
ArrayForwardCopy<uint16_t>(d, s, count);
} else {
ArrayBackwardCopy<uint16_t>(d, s, count);
}
} else if (sizeof(T) == sizeof(uint32_t)) {
uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
if (copy_forward) {
ArrayForwardCopy<uint32_t>(d, s, count);
} else {
ArrayBackwardCopy<uint32_t>(d, s, count);
}
} else {
DCHECK_EQ(sizeof(T), sizeof(uint64_t));
uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
if (copy_forward) {
ArrayForwardCopy<uint64_t>(d, s, count);
} else {
ArrayBackwardCopy<uint64_t>(d, s, count);
}
}
}
}
}
template<class T>
inline void PrimitiveArray<T>::Memcpy(int32_t dst_pos,
ObjPtr<PrimitiveArray<T>> src,
int32_t src_pos,
int32_t count) {
if (UNLIKELY(count == 0)) {
return;
}
DCHECK_GE(dst_pos, 0);
DCHECK_GE(src_pos, 0);
DCHECK_GT(count, 0);
DCHECK(src != nullptr);
DCHECK_LT(dst_pos, GetLength());
DCHECK_LE(dst_pos, GetLength() - count);
DCHECK_LT(src_pos, src->GetLength());
DCHECK_LE(src_pos, src->GetLength() - count);
// Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
// in our implementation, because they may copy byte-by-byte.
void* dst_raw = GetRawData(sizeof(T), dst_pos);
const void* src_raw = src->GetRawData(sizeof(T), src_pos);
if (sizeof(T) == sizeof(uint8_t)) {
memcpy(dst_raw, src_raw, count);
} else if (sizeof(T) == sizeof(uint16_t)) {
uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
ArrayForwardCopy<uint16_t>(d, s, count);
} else if (sizeof(T) == sizeof(uint32_t)) {
uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
ArrayForwardCopy<uint32_t>(d, s, count);
} else {
DCHECK_EQ(sizeof(T), sizeof(uint64_t));
uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
ArrayForwardCopy<uint64_t>(d, s, count);
}
}
template<typename T, VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline T PointerArray::GetElementPtrSize(uint32_t idx, PointerSize ptr_size) {
// C style casts here since we sometimes have T be a pointer, or sometimes an integer
// (for stack traces).
if (ptr_size == PointerSize::k64) {
return (T)static_cast<uintptr_t>(
AsLongArray<kVerifyFlags, kReadBarrierOption>()->GetWithoutChecks(idx));
}
return (T)static_cast<uintptr_t>(static_cast<uint32_t>(
AsIntArray<kVerifyFlags, kReadBarrierOption>()->GetWithoutChecks(idx)));
}
template<bool kTransactionActive, bool kUnchecked>
inline void PointerArray::SetElementPtrSize(uint32_t idx, uint64_t element, PointerSize ptr_size) {
if (ptr_size == PointerSize::k64) {
(kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this)) : AsLongArray())->
SetWithoutChecks<kTransactionActive>(idx, element);
} else {
DCHECK_LE(element, static_cast<uint64_t>(0xFFFFFFFFu));
(kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this)) : AsIntArray())
->SetWithoutChecks<kTransactionActive>(idx, static_cast<uint32_t>(element));
}
}
template<bool kTransactionActive, bool kUnchecked, typename T>
inline void PointerArray::SetElementPtrSize(uint32_t idx, T* element, PointerSize ptr_size) {
SetElementPtrSize<kTransactionActive, kUnchecked>(idx,
reinterpret_cast<uintptr_t>(element),
ptr_size);
}
template <VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption, typename Visitor>
inline void PointerArray::Fixup(mirror::PointerArray* dest,
PointerSize pointer_size,
const Visitor& visitor) {
for (size_t i = 0, count = GetLength(); i < count; ++i) {
void* ptr = GetElementPtrSize<void*, kVerifyFlags, kReadBarrierOption>(i, pointer_size);
void* new_ptr = visitor(ptr);
if (ptr != new_ptr) {
dest->SetElementPtrSize<false, true>(i, new_ptr, pointer_size);
}
}
}
template<bool kUnchecked>
void PointerArray::Memcpy(int32_t dst_pos,
ObjPtr<PointerArray> src,
int32_t src_pos,
int32_t count,
PointerSize ptr_size) {
DCHECK(!Runtime::Current()->IsActiveTransaction());
DCHECK(!src.IsNull());
if (ptr_size == PointerSize::k64) {
LongArray* l_this = (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this))
: AsLongArray());
LongArray* l_src = (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(src.Ptr()))
: src->AsLongArray());
l_this->Memcpy(dst_pos, l_src, src_pos, count);
} else {
IntArray* i_this = (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this))
: AsIntArray());
IntArray* i_src = (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(src.Ptr()))
: src->AsIntArray());
i_this->Memcpy(dst_pos, i_src, src_pos, count);
}
}
template<typename T>
inline void PrimitiveArray<T>::SetArrayClass(ObjPtr<Class> array_class) {
CHECK(array_class_.IsNull());
CHECK(array_class != nullptr);
array_class_ = GcRoot<Class>(array_class);
}
} // namespace mirror
} // namespace art
#endif // ART_RUNTIME_MIRROR_ARRAY_INL_H_