| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "fault_handler.h" |
| |
| #include <setjmp.h> |
| #include <sys/mman.h> |
| #include <sys/ucontext.h> |
| #include "base/stl_util.h" |
| #include "mirror/art_method.h" |
| #include "mirror/class.h" |
| #include "sigchain.h" |
| #include "thread-inl.h" |
| #include "verify_object-inl.h" |
| |
| // Note on nested signal support |
| // ----------------------------- |
| // |
| // Typically a signal handler should not need to deal with signals that occur within it. |
| // However, when a SIGSEGV occurs that is in generated code and is not one of the |
| // handled signals (implicit checks), we call a function to try to dump the stack |
| // to the log. This enhances the debugging experience but may have the side effect |
| // that it may not work. If the cause of the original SIGSEGV is a corrupted stack or other |
| // memory region, the stack backtrace code may run into trouble and may either crash |
| // or fail with an abort (SIGABRT). In either case we don't want that (new) signal to |
| // mask the original signal and thus prevent useful debug output from being presented. |
| // |
| // In order to handle this situation, before we call the stack tracer we do the following: |
| // |
| // 1. shutdown the fault manager so that we are talking to the real signal management |
| // functions rather than those in sigchain. |
| // 2. use pthread_sigmask to allow SIGSEGV and SIGABRT signals to be delivered to the |
| // thread running the signal handler. |
| // 3. set the handler for SIGSEGV and SIGABRT to a secondary signal handler. |
| // 4. save the thread's state to the TLS of the current thread using 'setjmp' |
| // |
| // We then call the stack tracer and one of two things may happen: |
| // a. it completes successfully |
| // b. it crashes and a signal is raised. |
| // |
| // In the former case, we fall through and everything is fine. In the latter case |
| // our secondary signal handler gets called in a signal context. This results in |
| // a call to FaultManager::HandledNestedSignal(), an archirecture specific function |
| // whose purpose is to call 'longjmp' on the jmp_buf saved in the TLS of the current |
| // thread. This results in a return with a non-zero value from 'setjmp'. We detect this |
| // and write something to the log to tell the user that it happened. |
| // |
| // Regardless of how we got there, we reach the code after the stack tracer and we |
| // restore the signal states to their original values, reinstate the fault manager (thus |
| // reestablishing the signal chain) and continue. |
| |
| // This is difficult to test with a runtime test. To invoke the nested signal code |
| // on any signal, uncomment the following line and run something that throws a |
| // NullPointerException. |
| // #define TEST_NESTED_SIGNAL |
| |
| namespace art { |
| // Static fault manger object accessed by signal handler. |
| FaultManager fault_manager; |
| |
| extern "C" { |
| void art_sigsegv_fault() { |
| // Set a breakpoint here to be informed when a SIGSEGV is unhandled by ART. |
| VLOG(signals)<< "Caught unknown SIGSEGV in ART fault handler - chaining to next handler."; |
| } |
| } |
| |
| // Signal handler called on SIGSEGV. |
| static void art_fault_handler(int sig, siginfo_t* info, void* context) { |
| fault_manager.HandleFault(sig, info, context); |
| } |
| |
| // Signal handler for dealing with a nested signal. |
| static void art_nested_signal_handler(int sig, siginfo_t* info, void* context) { |
| fault_manager.HandleNestedSignal(sig, info, context); |
| } |
| |
| FaultManager::FaultManager() : initialized_(false) { |
| sigaction(SIGSEGV, nullptr, &oldaction_); |
| } |
| |
| FaultManager::~FaultManager() { |
| } |
| |
| static void SetUpArtAction(struct sigaction* action) { |
| action->sa_sigaction = art_fault_handler; |
| sigemptyset(&action->sa_mask); |
| action->sa_flags = SA_SIGINFO | SA_ONSTACK; |
| #if !defined(__APPLE__) && !defined(__mips__) |
| action->sa_restorer = nullptr; |
| #endif |
| } |
| |
| void FaultManager::EnsureArtActionInFrontOfSignalChain() { |
| if (initialized_) { |
| struct sigaction action; |
| SetUpArtAction(&action); |
| EnsureFrontOfChain(SIGSEGV, &action); |
| } else { |
| LOG(WARNING) << "Can't call " << __FUNCTION__ << " due to unitialized fault manager"; |
| } |
| } |
| |
| void FaultManager::Init() { |
| CHECK(!initialized_); |
| struct sigaction action; |
| SetUpArtAction(&action); |
| |
| // Set our signal handler now. |
| int e = sigaction(SIGSEGV, &action, &oldaction_); |
| if (e != 0) { |
| VLOG(signals) << "Failed to claim SEGV: " << strerror(errno); |
| } |
| // Make sure our signal handler is called before any user handlers. |
| ClaimSignalChain(SIGSEGV, &oldaction_); |
| initialized_ = true; |
| } |
| |
| void FaultManager::Release() { |
| if (initialized_) { |
| UnclaimSignalChain(SIGSEGV); |
| initialized_ = false; |
| } |
| } |
| |
| void FaultManager::Shutdown() { |
| if (initialized_) { |
| Release(); |
| |
| // Free all handlers. |
| STLDeleteElements(&generated_code_handlers_); |
| STLDeleteElements(&other_handlers_); |
| } |
| } |
| |
| void FaultManager::HandleFault(int sig, siginfo_t* info, void* context) { |
| // BE CAREFUL ALLOCATING HERE INCLUDING USING LOG(...) |
| // |
| // If malloc calls abort, it will be holding its lock. |
| // If the handler tries to call malloc, it will deadlock. |
| VLOG(signals) << "Handling fault"; |
| if (IsInGeneratedCode(info, context, true)) { |
| VLOG(signals) << "in generated code, looking for handler"; |
| for (const auto& handler : generated_code_handlers_) { |
| VLOG(signals) << "invoking Action on handler " << handler; |
| if (handler->Action(sig, info, context)) { |
| #ifdef TEST_NESTED_SIGNAL |
| // In test mode we want to fall through to stack trace handler |
| // on every signal (in reality this will cause a crash on the first |
| // signal). |
| break; |
| #else |
| // We have handled a signal so it's time to return from the |
| // signal handler to the appropriate place. |
| return; |
| #endif |
| } |
| } |
| } |
| |
| // We hit a signal we didn't handle. This might be something for which |
| // we can give more information about so call all registered handlers to see |
| // if it is. |
| |
| Thread* self = Thread::Current(); |
| |
| // If ART is not running, or the thread is not attached to ART pass the |
| // signal on to the next handler in the chain. |
| if (self == nullptr || Runtime::Current() == nullptr || !Runtime::Current()->IsStarted()) { |
| InvokeUserSignalHandler(sig, info, context); |
| return; |
| } |
| // Now set up the nested signal handler. |
| |
| // TODO: add SIGSEGV back to the nested signals when we can handle running out stack gracefully. |
| static const int handled_nested_signals[] = {SIGABRT}; |
| constexpr size_t num_handled_nested_signals = arraysize(handled_nested_signals); |
| |
| // Release the fault manager so that it will remove the signal chain for |
| // SIGSEGV and we call the real sigaction. |
| fault_manager.Release(); |
| |
| // The action for SIGSEGV should be the default handler now. |
| |
| // Unblock the signals we allow so that they can be delivered in the signal handler. |
| sigset_t sigset; |
| sigemptyset(&sigset); |
| for (int signal : handled_nested_signals) { |
| sigaddset(&sigset, signal); |
| } |
| pthread_sigmask(SIG_UNBLOCK, &sigset, nullptr); |
| |
| // If we get a signal in this code we want to invoke our nested signal |
| // handler. |
| struct sigaction action; |
| struct sigaction oldactions[num_handled_nested_signals]; |
| action.sa_sigaction = art_nested_signal_handler; |
| |
| // Explicitly mask out SIGSEGV and SIGABRT from the nested signal handler. This |
| // should be the default but we definitely don't want these happening in our |
| // nested signal handler. |
| sigemptyset(&action.sa_mask); |
| for (int signal : handled_nested_signals) { |
| sigaddset(&action.sa_mask, signal); |
| } |
| |
| action.sa_flags = SA_SIGINFO | SA_ONSTACK; |
| #if !defined(__APPLE__) && !defined(__mips__) |
| action.sa_restorer = nullptr; |
| #endif |
| |
| // Catch handled signals to invoke our nested handler. |
| bool success = true; |
| for (size_t i = 0; i < num_handled_nested_signals; ++i) { |
| success = sigaction(handled_nested_signals[i], &action, &oldactions[i]) == 0; |
| if (!success) { |
| PLOG(ERROR) << "Unable to set up nested signal handler"; |
| break; |
| } |
| } |
| if (success) { |
| // Save the current state and call the handlers. If anything causes a signal |
| // our nested signal handler will be invoked and this will longjmp to the saved |
| // state. |
| if (setjmp(*self->GetNestedSignalState()) == 0) { |
| for (const auto& handler : other_handlers_) { |
| if (handler->Action(sig, info, context)) { |
| // Restore the signal handlers, reinit the fault manager and return. Signal was |
| // handled. |
| for (size_t i = 0; i < num_handled_nested_signals; ++i) { |
| success = sigaction(handled_nested_signals[i], &oldactions[i], nullptr) == 0; |
| if (!success) { |
| PLOG(ERROR) << "Unable to restore signal handler"; |
| } |
| } |
| fault_manager.Init(); |
| return; |
| } |
| } |
| } else { |
| LOG(ERROR) << "Nested signal detected - original signal being reported"; |
| } |
| |
| // Restore the signal handlers. |
| for (size_t i = 0; i < num_handled_nested_signals; ++i) { |
| success = sigaction(handled_nested_signals[i], &oldactions[i], nullptr) == 0; |
| if (!success) { |
| PLOG(ERROR) << "Unable to restore signal handler"; |
| } |
| } |
| } |
| |
| // Now put the fault manager back in place. |
| fault_manager.Init(); |
| |
| // Set a breakpoint in this function to catch unhandled signals. |
| art_sigsegv_fault(); |
| |
| // Pass this on to the next handler in the chain, or the default if none. |
| InvokeUserSignalHandler(sig, info, context); |
| } |
| |
| void FaultManager::AddHandler(FaultHandler* handler, bool generated_code) { |
| DCHECK(initialized_); |
| if (generated_code) { |
| generated_code_handlers_.push_back(handler); |
| } else { |
| other_handlers_.push_back(handler); |
| } |
| } |
| |
| void FaultManager::RemoveHandler(FaultHandler* handler) { |
| auto it = std::find(generated_code_handlers_.begin(), generated_code_handlers_.end(), handler); |
| if (it != generated_code_handlers_.end()) { |
| generated_code_handlers_.erase(it); |
| return; |
| } |
| auto it2 = std::find(other_handlers_.begin(), other_handlers_.end(), handler); |
| if (it2 != other_handlers_.end()) { |
| other_handlers_.erase(it); |
| return; |
| } |
| LOG(FATAL) << "Attempted to remove non existent handler " << handler; |
| } |
| |
| // This function is called within the signal handler. It checks that |
| // the mutator_lock is held (shared). No annotalysis is done. |
| bool FaultManager::IsInGeneratedCode(siginfo_t* siginfo, void* context, bool check_dex_pc) { |
| // We can only be running Java code in the current thread if it |
| // is in Runnable state. |
| VLOG(signals) << "Checking for generated code"; |
| Thread* thread = Thread::Current(); |
| if (thread == nullptr) { |
| VLOG(signals) << "no current thread"; |
| return false; |
| } |
| |
| ThreadState state = thread->GetState(); |
| if (state != kRunnable) { |
| VLOG(signals) << "not runnable"; |
| return false; |
| } |
| |
| // Current thread is runnable. |
| // Make sure it has the mutator lock. |
| if (!Locks::mutator_lock_->IsSharedHeld(thread)) { |
| VLOG(signals) << "no lock"; |
| return false; |
| } |
| |
| mirror::ArtMethod* method_obj = 0; |
| uintptr_t return_pc = 0; |
| uintptr_t sp = 0; |
| |
| // Get the architecture specific method address and return address. These |
| // are in architecture specific files in arch/<arch>/fault_handler_<arch>. |
| GetMethodAndReturnPcAndSp(siginfo, context, &method_obj, &return_pc, &sp); |
| |
| // If we don't have a potential method, we're outta here. |
| VLOG(signals) << "potential method: " << method_obj; |
| if (method_obj == 0 || !IsAligned<kObjectAlignment>(method_obj)) { |
| VLOG(signals) << "no method"; |
| return false; |
| } |
| |
| // Verify that the potential method is indeed a method. |
| // TODO: check the GC maps to make sure it's an object. |
| // Check that the class pointer inside the object is not null and is aligned. |
| // TODO: Method might be not a heap address, and GetClass could fault. |
| mirror::Class* cls = method_obj->GetClass<kVerifyNone>(); |
| if (cls == nullptr) { |
| VLOG(signals) << "not a class"; |
| return false; |
| } |
| if (!IsAligned<kObjectAlignment>(cls)) { |
| VLOG(signals) << "not aligned"; |
| return false; |
| } |
| |
| |
| if (!VerifyClassClass(cls)) { |
| VLOG(signals) << "not a class class"; |
| return false; |
| } |
| |
| // Now make sure the class is a mirror::ArtMethod. |
| if (!cls->IsArtMethodClass()) { |
| VLOG(signals) << "not a method"; |
| return false; |
| } |
| |
| // We can be certain that this is a method now. Check if we have a GC map |
| // at the return PC address. |
| if (true || kIsDebugBuild) { |
| VLOG(signals) << "looking for dex pc for return pc " << std::hex << return_pc; |
| const void* code = Runtime::Current()->GetInstrumentation()->GetQuickCodeFor(method_obj, |
| sizeof(void*)); |
| uint32_t sought_offset = return_pc - reinterpret_cast<uintptr_t>(code); |
| VLOG(signals) << "pc offset: " << std::hex << sought_offset; |
| } |
| uint32_t dexpc = method_obj->ToDexPc(return_pc, false); |
| VLOG(signals) << "dexpc: " << dexpc; |
| return !check_dex_pc || dexpc != DexFile::kDexNoIndex; |
| } |
| |
| FaultHandler::FaultHandler(FaultManager* manager) : manager_(manager) { |
| } |
| |
| // |
| // Null pointer fault handler |
| // |
| NullPointerHandler::NullPointerHandler(FaultManager* manager) : FaultHandler(manager) { |
| manager_->AddHandler(this, true); |
| } |
| |
| // |
| // Suspension fault handler |
| // |
| SuspensionHandler::SuspensionHandler(FaultManager* manager) : FaultHandler(manager) { |
| manager_->AddHandler(this, true); |
| } |
| |
| // |
| // Stack overflow fault handler |
| // |
| StackOverflowHandler::StackOverflowHandler(FaultManager* manager) : FaultHandler(manager) { |
| manager_->AddHandler(this, true); |
| } |
| |
| // |
| // Stack trace handler, used to help get a stack trace from SIGSEGV inside of compiled code. |
| // |
| JavaStackTraceHandler::JavaStackTraceHandler(FaultManager* manager) : FaultHandler(manager) { |
| manager_->AddHandler(this, false); |
| } |
| |
| bool JavaStackTraceHandler::Action(int sig, siginfo_t* siginfo, void* context) { |
| // Make sure that we are in the generated code, but we may not have a dex pc. |
| UNUSED(sig); |
| #ifdef TEST_NESTED_SIGNAL |
| bool in_generated_code = true; |
| #else |
| bool in_generated_code = manager_->IsInGeneratedCode(siginfo, context, false); |
| #endif |
| if (in_generated_code) { |
| LOG(ERROR) << "Dumping java stack trace for crash in generated code"; |
| mirror::ArtMethod* method = nullptr; |
| uintptr_t return_pc = 0; |
| uintptr_t sp = 0; |
| Thread* self = Thread::Current(); |
| |
| manager_->GetMethodAndReturnPcAndSp(siginfo, context, &method, &return_pc, &sp); |
| // Inside of generated code, sp[0] is the method, so sp is the frame. |
| StackReference<mirror::ArtMethod>* frame = |
| reinterpret_cast<StackReference<mirror::ArtMethod>*>(sp); |
| self->SetTopOfStack(frame); |
| #ifdef TEST_NESTED_SIGNAL |
| // To test the nested signal handler we raise a signal here. This will cause the |
| // nested signal handler to be called and perform a longjmp back to the setjmp |
| // above. |
| abort(); |
| #endif |
| self->DumpJavaStack(LOG(ERROR)); |
| } |
| |
| return false; // Return false since we want to propagate the fault to the main signal handler. |
| } |
| |
| } // namespace art |
| |