| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "large_object_space.h" |
| |
| #include "base/time_utils.h" |
| #include "space_test.h" |
| |
| namespace art { |
| namespace gc { |
| namespace space { |
| |
| class LargeObjectSpaceTest : public SpaceTest<CommonRuntimeTest> { |
| public: |
| void LargeObjectTest(); |
| |
| static constexpr size_t kNumThreads = 10; |
| static constexpr size_t kNumIterations = 1000; |
| void RaceTest(); |
| }; |
| |
| |
| void LargeObjectSpaceTest::LargeObjectTest() { |
| size_t rand_seed = 0; |
| Thread* const self = Thread::Current(); |
| for (size_t i = 0; i < 2; ++i) { |
| LargeObjectSpace* los = nullptr; |
| const size_t capacity = 128 * MB; |
| if (i == 0) { |
| los = space::LargeObjectMapSpace::Create("large object space"); |
| } else { |
| los = space::FreeListSpace::Create("large object space", nullptr, capacity); |
| } |
| |
| // Make sure the bitmap is not empty and actually covers at least how much we expect. |
| CHECK_LT(static_cast<uintptr_t>(los->GetLiveBitmap()->HeapBegin()), |
| static_cast<uintptr_t>(los->GetLiveBitmap()->HeapLimit())); |
| CHECK_LE(static_cast<uintptr_t>(los->GetLiveBitmap()->HeapBegin() + capacity), |
| static_cast<uintptr_t>(los->GetLiveBitmap()->HeapLimit())); |
| |
| static const size_t num_allocations = 64; |
| static const size_t max_allocation_size = 0x100000; |
| std::vector<std::pair<mirror::Object*, size_t>> requests; |
| |
| for (size_t phase = 0; phase < 2; ++phase) { |
| while (requests.size() < num_allocations) { |
| size_t request_size = test_rand(&rand_seed) % max_allocation_size; |
| size_t allocation_size = 0; |
| size_t bytes_tl_bulk_allocated; |
| mirror::Object* obj = los->Alloc(self, request_size, &allocation_size, nullptr, |
| &bytes_tl_bulk_allocated); |
| ASSERT_TRUE(obj != nullptr); |
| ASSERT_EQ(allocation_size, los->AllocationSize(obj, nullptr)); |
| ASSERT_GE(allocation_size, request_size); |
| ASSERT_EQ(allocation_size, bytes_tl_bulk_allocated); |
| // Fill in our magic value. |
| uint8_t magic = (request_size & 0xFF) | 1; |
| memset(obj, magic, request_size); |
| requests.push_back(std::make_pair(obj, request_size)); |
| } |
| |
| // "Randomly" shuffle the requests. |
| for (size_t k = 0; k < 10; ++k) { |
| for (size_t j = 0; j < requests.size(); ++j) { |
| std::swap(requests[j], requests[test_rand(&rand_seed) % requests.size()]); |
| } |
| } |
| |
| // Check the zygote flag for the first phase. |
| if (phase == 0) { |
| for (const auto& pair : requests) { |
| mirror::Object* obj = pair.first; |
| ASSERT_FALSE(los->IsZygoteLargeObject(self, obj)); |
| } |
| los->SetAllLargeObjectsAsZygoteObjects(self); |
| for (const auto& pair : requests) { |
| mirror::Object* obj = pair.first; |
| ASSERT_TRUE(los->IsZygoteLargeObject(self, obj)); |
| } |
| } |
| |
| // Free 1 / 2 the allocations the first phase, and all the second phase. |
| size_t limit = phase == 0 ? requests.size() / 2 : 0; |
| while (requests.size() > limit) { |
| mirror::Object* obj = requests.back().first; |
| size_t request_size = requests.back().second; |
| requests.pop_back(); |
| uint8_t magic = (request_size & 0xFF) | 1; |
| for (size_t k = 0; k < request_size; ++k) { |
| ASSERT_EQ(reinterpret_cast<const uint8_t*>(obj)[k], magic); |
| } |
| ASSERT_GE(los->Free(Thread::Current(), obj), request_size); |
| } |
| } |
| // Test that dump doesn't crash. |
| std::ostringstream oss; |
| los->Dump(oss); |
| LOG(INFO) << oss.str(); |
| |
| size_t bytes_allocated = 0, bytes_tl_bulk_allocated; |
| // Checks that the coalescing works. |
| mirror::Object* obj = los->Alloc(self, 100 * MB, &bytes_allocated, nullptr, |
| &bytes_tl_bulk_allocated); |
| EXPECT_TRUE(obj != nullptr); |
| los->Free(Thread::Current(), obj); |
| |
| EXPECT_EQ(0U, los->GetBytesAllocated()); |
| EXPECT_EQ(0U, los->GetObjectsAllocated()); |
| delete los; |
| } |
| } |
| |
| class AllocRaceTask : public Task { |
| public: |
| AllocRaceTask(size_t id, size_t iterations, size_t size, LargeObjectSpace* los) : |
| id_(id), iterations_(iterations), size_(size), los_(los) {} |
| |
| void Run(Thread* self) { |
| for (size_t i = 0; i < iterations_ ; ++i) { |
| size_t alloc_size, bytes_tl_bulk_allocated; |
| mirror::Object* ptr = los_->Alloc(self, size_, &alloc_size, nullptr, |
| &bytes_tl_bulk_allocated); |
| |
| NanoSleep((id_ + 3) * 1000); // (3+id) mu s |
| |
| los_->Free(self, ptr); |
| } |
| } |
| |
| virtual void Finalize() { |
| delete this; |
| } |
| |
| private: |
| size_t id_; |
| size_t iterations_; |
| size_t size_; |
| LargeObjectSpace* los_; |
| }; |
| |
| void LargeObjectSpaceTest::RaceTest() { |
| for (size_t los_type = 0; los_type < 2; ++los_type) { |
| LargeObjectSpace* los = nullptr; |
| if (los_type == 0) { |
| los = space::LargeObjectMapSpace::Create("large object space"); |
| } else { |
| los = space::FreeListSpace::Create("large object space", nullptr, 128 * MB); |
| } |
| |
| Thread* self = Thread::Current(); |
| ThreadPool thread_pool("Large object space test thread pool", kNumThreads); |
| for (size_t i = 0; i < kNumThreads; ++i) { |
| thread_pool.AddTask(self, new AllocRaceTask(i, kNumIterations, 16 * KB, los)); |
| } |
| |
| thread_pool.StartWorkers(self); |
| |
| thread_pool.Wait(self, true, false); |
| |
| delete los; |
| } |
| } |
| |
| TEST_F(LargeObjectSpaceTest, LargeObjectTest) { |
| LargeObjectTest(); |
| } |
| |
| TEST_F(LargeObjectSpaceTest, RaceTest) { |
| RaceTest(); |
| } |
| |
| } // namespace space |
| } // namespace gc |
| } // namespace art |