blob: 0de676e4385fb27d2c65550f416d10b7f0c69c43 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dlmalloc_space.h"
#include "dlmalloc_space-inl.h"
#include "gc/accounting/card_table.h"
#include "gc/heap.h"
#include "runtime.h"
#include "thread.h"
#include "utils.h"
#include <valgrind.h>
#include <memcheck/memcheck.h>
namespace art {
namespace gc {
namespace space {
// TODO: Remove define macro
#define CHECK_MEMORY_CALL(call, args, what) \
do { \
int rc = call args; \
if (UNLIKELY(rc != 0)) { \
errno = rc; \
PLOG(FATAL) << # call << " failed for " << what; \
} \
} while (false)
static const bool kPrefetchDuringDlMallocFreeList = true;
// Number of bytes to use as a red zone (rdz). A red zone of this size will be placed before and
// after each allocation. 8 bytes provides long/double alignment.
const size_t kValgrindRedZoneBytes = 8;
// A specialization of DlMallocSpace that provides information to valgrind wrt allocations.
class ValgrindDlMallocSpace : public DlMallocSpace {
public:
virtual mirror::Object* AllocWithGrowth(Thread* self, size_t num_bytes, size_t* bytes_allocated) {
void* obj_with_rdz = DlMallocSpace::AllocWithGrowth(self, num_bytes + 2 * kValgrindRedZoneBytes,
bytes_allocated);
if (obj_with_rdz == NULL) {
return NULL;
}
mirror::Object* result = reinterpret_cast<mirror::Object*>(
reinterpret_cast<byte*>(obj_with_rdz) + kValgrindRedZoneBytes);
// Make redzones as no access.
VALGRIND_MAKE_MEM_NOACCESS(obj_with_rdz, kValgrindRedZoneBytes);
VALGRIND_MAKE_MEM_NOACCESS(reinterpret_cast<byte*>(result) + num_bytes, kValgrindRedZoneBytes);
return result;
}
virtual mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated) {
void* obj_with_rdz = DlMallocSpace::Alloc(self, num_bytes + 2 * kValgrindRedZoneBytes,
bytes_allocated);
if (obj_with_rdz == NULL) {
return NULL;
}
mirror::Object* result = reinterpret_cast<mirror::Object*>(
reinterpret_cast<byte*>(obj_with_rdz) + kValgrindRedZoneBytes);
// Make redzones as no access.
VALGRIND_MAKE_MEM_NOACCESS(obj_with_rdz, kValgrindRedZoneBytes);
VALGRIND_MAKE_MEM_NOACCESS(reinterpret_cast<byte*>(result) + num_bytes, kValgrindRedZoneBytes);
return result;
}
virtual size_t AllocationSize(const mirror::Object* obj) {
size_t result = DlMallocSpace::AllocationSize(reinterpret_cast<const mirror::Object*>(
reinterpret_cast<const byte*>(obj) - kValgrindRedZoneBytes));
return result - 2 * kValgrindRedZoneBytes;
}
virtual size_t Free(Thread* self, mirror::Object* ptr) {
void* obj_after_rdz = reinterpret_cast<void*>(ptr);
void* obj_with_rdz = reinterpret_cast<byte*>(obj_after_rdz) - kValgrindRedZoneBytes;
// Make redzones undefined.
size_t allocation_size = DlMallocSpace::AllocationSize(
reinterpret_cast<mirror::Object*>(obj_with_rdz));
VALGRIND_MAKE_MEM_UNDEFINED(obj_with_rdz, allocation_size);
size_t freed = DlMallocSpace::Free(self, reinterpret_cast<mirror::Object*>(obj_with_rdz));
return freed - 2 * kValgrindRedZoneBytes;
}
virtual size_t FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) {
size_t freed = 0;
for (size_t i = 0; i < num_ptrs; i++) {
freed += Free(self, ptrs[i]);
}
return freed;
}
ValgrindDlMallocSpace(const std::string& name, MemMap* mem_map, void* mspace, byte* begin,
byte* end, size_t growth_limit, size_t initial_size) :
DlMallocSpace(name, mem_map, mspace, begin, end, growth_limit) {
VALGRIND_MAKE_MEM_UNDEFINED(mem_map->Begin() + initial_size, mem_map->Size() - initial_size);
}
virtual ~ValgrindDlMallocSpace() {
}
private:
DISALLOW_COPY_AND_ASSIGN(ValgrindDlMallocSpace);
};
size_t DlMallocSpace::bitmap_index_ = 0;
DlMallocSpace::DlMallocSpace(const std::string& name, MemMap* mem_map, void* mspace, byte* begin,
byte* end, size_t growth_limit)
: MemMapSpace(name, mem_map, end - begin, kGcRetentionPolicyAlwaysCollect),
num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0),
total_objects_allocated_(0), lock_("allocation space lock", kAllocSpaceLock), mspace_(mspace),
growth_limit_(growth_limit) {
CHECK(mspace != NULL);
size_t bitmap_index = bitmap_index_++;
static const uintptr_t kGcCardSize = static_cast<uintptr_t>(accounting::CardTable::kCardSize);
CHECK(IsAligned<kGcCardSize>(reinterpret_cast<uintptr_t>(mem_map->Begin())));
CHECK(IsAligned<kGcCardSize>(reinterpret_cast<uintptr_t>(mem_map->End())));
live_bitmap_.reset(accounting::SpaceBitmap::Create(
StringPrintf("allocspace %s live-bitmap %d", name.c_str(), static_cast<int>(bitmap_index)),
Begin(), Capacity()));
DCHECK(live_bitmap_.get() != NULL) << "could not create allocspace live bitmap #" << bitmap_index;
mark_bitmap_.reset(accounting::SpaceBitmap::Create(
StringPrintf("allocspace %s mark-bitmap %d", name.c_str(), static_cast<int>(bitmap_index)),
Begin(), Capacity()));
DCHECK(live_bitmap_.get() != NULL) << "could not create allocspace mark bitmap #" << bitmap_index;
}
DlMallocSpace* DlMallocSpace::Create(const std::string& name, size_t initial_size, size_t
growth_limit, size_t capacity, byte* requested_begin) {
// Memory we promise to dlmalloc before it asks for morecore.
// Note: making this value large means that large allocations are unlikely to succeed as dlmalloc
// will ask for this memory from sys_alloc which will fail as the footprint (this value plus the
// size of the large allocation) will be greater than the footprint limit.
size_t starting_size = kPageSize;
uint64_t start_time = 0;
if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
start_time = NanoTime();
VLOG(startup) << "Space::CreateAllocSpace entering " << name
<< " initial_size=" << PrettySize(initial_size)
<< " growth_limit=" << PrettySize(growth_limit)
<< " capacity=" << PrettySize(capacity)
<< " requested_begin=" << reinterpret_cast<void*>(requested_begin);
}
// Sanity check arguments
if (starting_size > initial_size) {
initial_size = starting_size;
}
if (initial_size > growth_limit) {
LOG(ERROR) << "Failed to create alloc space (" << name << ") where the initial size ("
<< PrettySize(initial_size) << ") is larger than its capacity ("
<< PrettySize(growth_limit) << ")";
return NULL;
}
if (growth_limit > capacity) {
LOG(ERROR) << "Failed to create alloc space (" << name << ") where the growth limit capacity ("
<< PrettySize(growth_limit) << ") is larger than the capacity ("
<< PrettySize(capacity) << ")";
return NULL;
}
// Page align growth limit and capacity which will be used to manage mmapped storage
growth_limit = RoundUp(growth_limit, kPageSize);
capacity = RoundUp(capacity, kPageSize);
UniquePtr<MemMap> mem_map(MemMap::MapAnonymous(name.c_str(), requested_begin, capacity,
PROT_READ | PROT_WRITE));
if (mem_map.get() == NULL) {
LOG(ERROR) << "Failed to allocate pages for alloc space (" << name << ") of size "
<< PrettySize(capacity);
return NULL;
}
void* mspace = CreateMallocSpace(mem_map->Begin(), starting_size, initial_size);
if (mspace == NULL) {
LOG(ERROR) << "Failed to initialize mspace for alloc space (" << name << ")";
return NULL;
}
// Protect memory beyond the initial size.
byte* end = mem_map->Begin() + starting_size;
if (capacity - initial_size > 0) {
CHECK_MEMORY_CALL(mprotect, (end, capacity - initial_size, PROT_NONE), name);
}
// Everything is set so record in immutable structure and leave
MemMap* mem_map_ptr = mem_map.release();
DlMallocSpace* space;
if (RUNNING_ON_VALGRIND > 0) {
space = new ValgrindDlMallocSpace(name, mem_map_ptr, mspace, mem_map_ptr->Begin(), end,
growth_limit, initial_size);
} else {
space = new DlMallocSpace(name, mem_map_ptr, mspace, mem_map_ptr->Begin(), end, growth_limit);
}
if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
LOG(INFO) << "Space::CreateAllocSpace exiting (" << PrettyDuration(NanoTime() - start_time)
<< " ) " << *space;
}
return space;
}
void* DlMallocSpace::CreateMallocSpace(void* begin, size_t morecore_start, size_t initial_size) {
// clear errno to allow PLOG on error
errno = 0;
// create mspace using our backing storage starting at begin and with a footprint of
// morecore_start. Don't use an internal dlmalloc lock (as we already hold heap lock). When
// morecore_start bytes of memory is exhaused morecore will be called.
void* msp = create_mspace_with_base(begin, morecore_start, false /*locked*/);
if (msp != NULL) {
// Do not allow morecore requests to succeed beyond the initial size of the heap
mspace_set_footprint_limit(msp, initial_size);
} else {
PLOG(ERROR) << "create_mspace_with_base failed";
}
return msp;
}
void DlMallocSpace::SwapBitmaps() {
live_bitmap_.swap(mark_bitmap_);
// Swap names to get more descriptive diagnostics.
std::string temp_name(live_bitmap_->GetName());
live_bitmap_->SetName(mark_bitmap_->GetName());
mark_bitmap_->SetName(temp_name);
}
mirror::Object* DlMallocSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated) {
return AllocNonvirtual(self, num_bytes, bytes_allocated);
}
mirror::Object* DlMallocSpace::AllocWithGrowth(Thread* self, size_t num_bytes, size_t* bytes_allocated) {
mirror::Object* result;
{
MutexLock mu(self, lock_);
// Grow as much as possible within the mspace.
size_t max_allowed = Capacity();
mspace_set_footprint_limit(mspace_, max_allowed);
// Try the allocation.
result = AllocWithoutGrowthLocked(num_bytes, bytes_allocated);
// Shrink back down as small as possible.
size_t footprint = mspace_footprint(mspace_);
mspace_set_footprint_limit(mspace_, footprint);
}
if (result != NULL) {
// Zero freshly allocated memory, done while not holding the space's lock.
memset(result, 0, num_bytes);
}
// Return the new allocation or NULL.
CHECK(!kDebugSpaces || result == NULL || Contains(result));
return result;
}
void DlMallocSpace::SetGrowthLimit(size_t growth_limit) {
growth_limit = RoundUp(growth_limit, kPageSize);
growth_limit_ = growth_limit;
if (Size() > growth_limit_) {
end_ = begin_ + growth_limit;
}
}
DlMallocSpace* DlMallocSpace::CreateZygoteSpace(const char* alloc_space_name) {
end_ = reinterpret_cast<byte*>(RoundUp(reinterpret_cast<uintptr_t>(end_), kPageSize));
DCHECK(IsAligned<accounting::CardTable::kCardSize>(begin_));
DCHECK(IsAligned<accounting::CardTable::kCardSize>(end_));
DCHECK(IsAligned<kPageSize>(begin_));
DCHECK(IsAligned<kPageSize>(end_));
size_t size = RoundUp(Size(), kPageSize);
// Trim the heap so that we minimize the size of the Zygote space.
Trim();
// Trim our mem-map to free unused pages.
GetMemMap()->UnMapAtEnd(end_);
// TODO: Not hardcode these in?
const size_t starting_size = kPageSize;
const size_t initial_size = 2 * MB;
// Remaining size is for the new alloc space.
const size_t growth_limit = growth_limit_ - size;
const size_t capacity = Capacity() - size;
VLOG(heap) << "Begin " << reinterpret_cast<const void*>(begin_) << "\n"
<< "End " << reinterpret_cast<const void*>(end_) << "\n"
<< "Size " << size << "\n"
<< "GrowthLimit " << growth_limit_ << "\n"
<< "Capacity " << Capacity();
SetGrowthLimit(RoundUp(size, kPageSize));
SetFootprintLimit(RoundUp(size, kPageSize));
// FIXME: Do we need reference counted pointers here?
// Make the two spaces share the same mark bitmaps since the bitmaps span both of the spaces.
VLOG(heap) << "Creating new AllocSpace: ";
VLOG(heap) << "Size " << GetMemMap()->Size();
VLOG(heap) << "GrowthLimit " << PrettySize(growth_limit);
VLOG(heap) << "Capacity " << PrettySize(capacity);
UniquePtr<MemMap> mem_map(MemMap::MapAnonymous(alloc_space_name, End(), capacity, PROT_READ | PROT_WRITE));
void* mspace = CreateMallocSpace(end_, starting_size, initial_size);
// Protect memory beyond the initial size.
byte* end = mem_map->Begin() + starting_size;
if (capacity - initial_size > 0) {
CHECK_MEMORY_CALL(mprotect, (end, capacity - initial_size, PROT_NONE), alloc_space_name);
}
DlMallocSpace* alloc_space =
new DlMallocSpace(alloc_space_name, mem_map.release(), mspace, end_, end, growth_limit);
live_bitmap_->SetHeapLimit(reinterpret_cast<uintptr_t>(End()));
CHECK_EQ(live_bitmap_->HeapLimit(), reinterpret_cast<uintptr_t>(End()));
mark_bitmap_->SetHeapLimit(reinterpret_cast<uintptr_t>(End()));
CHECK_EQ(mark_bitmap_->HeapLimit(), reinterpret_cast<uintptr_t>(End()));
VLOG(heap) << "zygote space creation done";
return alloc_space;
}
size_t DlMallocSpace::Free(Thread* self, mirror::Object* ptr) {
MutexLock mu(self, lock_);
if (kDebugSpaces) {
CHECK(ptr != NULL);
CHECK(Contains(ptr)) << "Free (" << ptr << ") not in bounds of heap " << *this;
}
const size_t bytes_freed = InternalAllocationSize(ptr);
num_bytes_allocated_ -= bytes_freed;
--num_objects_allocated_;
mspace_free(mspace_, ptr);
return bytes_freed;
}
size_t DlMallocSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) {
DCHECK(ptrs != NULL);
// Don't need the lock to calculate the size of the freed pointers.
size_t bytes_freed = 0;
for (size_t i = 0; i < num_ptrs; i++) {
mirror::Object* ptr = ptrs[i];
const size_t look_ahead = 8;
if (kPrefetchDuringDlMallocFreeList && i + look_ahead < num_ptrs) {
// The head of chunk for the allocation is sizeof(size_t) behind the allocation.
__builtin_prefetch(reinterpret_cast<char*>(ptrs[i + look_ahead]) - sizeof(size_t));
}
bytes_freed += InternalAllocationSize(ptr);
}
if (kDebugSpaces) {
size_t num_broken_ptrs = 0;
for (size_t i = 0; i < num_ptrs; i++) {
if (!Contains(ptrs[i])) {
num_broken_ptrs++;
LOG(ERROR) << "FreeList[" << i << "] (" << ptrs[i] << ") not in bounds of heap " << *this;
} else {
size_t size = mspace_usable_size(ptrs[i]);
memset(ptrs[i], 0xEF, size);
}
}
CHECK_EQ(num_broken_ptrs, 0u);
}
{
MutexLock mu(self, lock_);
num_bytes_allocated_ -= bytes_freed;
num_objects_allocated_ -= num_ptrs;
mspace_bulk_free(mspace_, reinterpret_cast<void**>(ptrs), num_ptrs);
return bytes_freed;
}
}
// Callback from dlmalloc when it needs to increase the footprint
extern "C" void* art_heap_morecore(void* mspace, intptr_t increment) {
Heap* heap = Runtime::Current()->GetHeap();
DCHECK_EQ(heap->GetAllocSpace()->GetMspace(), mspace);
return heap->GetAllocSpace()->MoreCore(increment);
}
void* DlMallocSpace::MoreCore(intptr_t increment) {
lock_.AssertHeld(Thread::Current());
byte* original_end = end_;
if (increment != 0) {
VLOG(heap) << "DlMallocSpace::MoreCore " << PrettySize(increment);
byte* new_end = original_end + increment;
if (increment > 0) {
// Should never be asked to increase the allocation beyond the capacity of the space. Enforced
// by mspace_set_footprint_limit.
CHECK_LE(new_end, Begin() + Capacity());
CHECK_MEMORY_CALL(mprotect, (original_end, increment, PROT_READ | PROT_WRITE), GetName());
} else {
// Should never be asked for negative footprint (ie before begin)
CHECK_GT(original_end + increment, Begin());
// Advise we don't need the pages and protect them
// TODO: by removing permissions to the pages we may be causing TLB shoot-down which can be
// expensive (note the same isn't true for giving permissions to a page as the protected
// page shouldn't be in a TLB). We should investigate performance impact of just
// removing ignoring the memory protection change here and in Space::CreateAllocSpace. It's
// likely just a useful debug feature.
size_t size = -increment;
CHECK_MEMORY_CALL(madvise, (new_end, size, MADV_DONTNEED), GetName());
CHECK_MEMORY_CALL(mprotect, (new_end, size, PROT_NONE), GetName());
}
// Update end_
end_ = new_end;
}
return original_end;
}
// Virtual functions can't get inlined.
inline size_t DlMallocSpace::InternalAllocationSize(const mirror::Object* obj) {
return AllocationSizeNonvirtual(obj);
}
size_t DlMallocSpace::AllocationSize(const mirror::Object* obj) {
return InternalAllocationSize(obj);
}
size_t DlMallocSpace::Trim() {
MutexLock mu(Thread::Current(), lock_);
// Trim to release memory at the end of the space.
mspace_trim(mspace_, 0);
// Visit space looking for page-sized holes to advise the kernel we don't need.
size_t reclaimed = 0;
mspace_inspect_all(mspace_, DlmallocMadviseCallback, &reclaimed);
return reclaimed;
}
void DlMallocSpace::Walk(void(*callback)(void *start, void *end, size_t num_bytes, void* callback_arg),
void* arg) {
MutexLock mu(Thread::Current(), lock_);
mspace_inspect_all(mspace_, callback, arg);
callback(NULL, NULL, 0, arg); // Indicate end of a space.
}
size_t DlMallocSpace::GetFootprint() {
MutexLock mu(Thread::Current(), lock_);
return mspace_footprint(mspace_);
}
size_t DlMallocSpace::GetFootprintLimit() {
MutexLock mu(Thread::Current(), lock_);
return mspace_footprint_limit(mspace_);
}
void DlMallocSpace::SetFootprintLimit(size_t new_size) {
MutexLock mu(Thread::Current(), lock_);
VLOG(heap) << "DLMallocSpace::SetFootprintLimit " << PrettySize(new_size);
// Compare against the actual footprint, rather than the Size(), because the heap may not have
// grown all the way to the allowed size yet.
size_t current_space_size = mspace_footprint(mspace_);
if (new_size < current_space_size) {
// Don't let the space grow any more.
new_size = current_space_size;
}
mspace_set_footprint_limit(mspace_, new_size);
}
void DlMallocSpace::Dump(std::ostream& os) const {
os << GetType()
<< " begin=" << reinterpret_cast<void*>(Begin())
<< ",end=" << reinterpret_cast<void*>(End())
<< ",size=" << PrettySize(Size()) << ",capacity=" << PrettySize(Capacity())
<< ",name=\"" << GetName() << "\"]";
}
} // namespace space
} // namespace gc
} // namespace art