| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "codegen_x86.h" |
| #include "dex/quick/mir_to_lir-inl.h" |
| #include "x86_lir.h" |
| |
| namespace art { |
| |
| #define MAX_ASSEMBLER_RETRIES 50 |
| |
| const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = { |
| { kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data", "0x!0d" }, |
| { kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" }, |
| { kX86Nop, kNop, IS_UNARY_OP, { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop", "" }, |
| |
| #define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \ |
| rm8_r8, rm32_r32, \ |
| r8_rm8, r32_rm32, \ |
| ax8_i8, ax32_i32, \ |
| rm8_i8, rm8_i8_modrm, \ |
| rm32_i32, rm32_i32_modrm, \ |
| rm32_i8, rm32_i8_modrm) \ |
| { kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8MR", "[!0r+!1d],!2r" }, \ |
| { kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \ |
| { kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8TR", "fs:[!0d],!1r" }, \ |
| { kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RR", "!0r,!1r" }, \ |
| { kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \ |
| { kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \ |
| { kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RT", "!0r,fs:[!1d]" }, \ |
| { kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \ |
| { kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8TI", "fs:[!0d],!1d" }, \ |
| \ |
| { kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16MR", "[!0r+!1d],!2r" }, \ |
| { kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \ |
| { kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16TR", "fs:[!0d],!1r" }, \ |
| { kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RR", "!0r,!1r" }, \ |
| { kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \ |
| { kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \ |
| { kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RT", "!0r,fs:[!1d]" }, \ |
| { kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \ |
| { kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16MI", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16TI", "fs:[!0d],!1d" }, \ |
| { kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16RI8", "!0r,!1d" }, \ |
| { kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16TI8", "fs:[!0d],!1d" }, \ |
| \ |
| { kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32MR", "[!0r+!1d],!2r" }, \ |
| { kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \ |
| { kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32TR", "fs:[!0d],!1r" }, \ |
| { kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RR", "!0r,!1r" }, \ |
| { kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \ |
| { kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \ |
| { kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RT", "!0r,fs:[!1d]" }, \ |
| { kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \ |
| { kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32MI", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32TI", "fs:[!0d],!1d" }, \ |
| { kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32RI8", "!0r,!1d" }, \ |
| { kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32TI8", "fs:[!0d],!1d" } |
| |
| ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0, |
| 0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */, |
| 0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */, |
| 0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */, |
| 0x80, 0x0 /* RegMem8/imm8 */, |
| 0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */), |
| ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0, |
| 0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */, |
| 0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */, |
| 0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */, |
| 0x80, 0x1 /* RegMem8/imm8 */, |
| 0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */), |
| ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES, |
| 0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */, |
| 0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */, |
| 0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */, |
| 0x80, 0x2 /* RegMem8/imm8 */, |
| 0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */), |
| ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES, |
| 0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */, |
| 0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */, |
| 0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */, |
| 0x80, 0x3 /* RegMem8/imm8 */, |
| 0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */), |
| ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0, |
| 0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */, |
| 0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */, |
| 0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */, |
| 0x80, 0x4 /* RegMem8/imm8 */, |
| 0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */), |
| ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0, |
| 0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */, |
| 0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */, |
| 0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */, |
| 0x80, 0x5 /* RegMem8/imm8 */, |
| 0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */), |
| ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0, |
| 0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */, |
| 0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */, |
| 0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */, |
| 0x80, 0x6 /* RegMem8/imm8 */, |
| 0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */), |
| ENCODING_MAP(Cmp, IS_LOAD, 0, 0, |
| 0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */, |
| 0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */, |
| 0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */, |
| 0x80, 0x7 /* RegMem8/imm8 */, |
| 0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */), |
| #undef ENCODING_MAP |
| |
| { kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" }, |
| { kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" }, |
| { kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" }, |
| |
| { kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" }, |
| { kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" }, |
| { kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" }, |
| { kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" }, |
| { kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" }, |
| { kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" }, |
| |
| { kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" }, |
| { kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" }, |
| { kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" }, |
| { kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" }, |
| { kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, |
| { kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" }, |
| { kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" }, |
| { kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" }, |
| { kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" }, |
| { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" }, |
| |
| { kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" }, |
| { kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" }, |
| { kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" }, |
| { kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" }, |
| { kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, |
| { kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" }, |
| { kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" }, |
| { kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" }, |
| { kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" }, |
| { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" }, |
| |
| { kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" }, |
| { kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" }, |
| { kX86Mov32RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" }, |
| { kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" }, |
| { kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, |
| { kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" }, |
| { kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" }, |
| { kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" }, |
| { kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" }, |
| { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" }, |
| |
| { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, |
| |
| #define SHIFT_ENCODING_MAP(opname, modrm_opcode) \ |
| { kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \ |
| { kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8RC", "!0r,cl" }, \ |
| { kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8MC", "[!0r+!1d],cl" }, \ |
| { kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \ |
| \ |
| { kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \ |
| { kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16RC", "!0r,cl" }, \ |
| { kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16MC", "[!0r+!1d],cl" }, \ |
| { kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \ |
| \ |
| { kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \ |
| { kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \ |
| { kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \ |
| { kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32RC", "!0r,cl" }, \ |
| { kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32MC", "[!0r+!1d],cl" }, \ |
| { kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" } |
| |
| SHIFT_ENCODING_MAP(Rol, 0x0), |
| SHIFT_ENCODING_MAP(Ror, 0x1), |
| SHIFT_ENCODING_MAP(Rcl, 0x2), |
| SHIFT_ENCODING_MAP(Rcr, 0x3), |
| SHIFT_ENCODING_MAP(Sal, 0x4), |
| SHIFT_ENCODING_MAP(Shr, 0x5), |
| SHIFT_ENCODING_MAP(Sar, 0x7), |
| #undef SHIFT_ENCODING_MAP |
| |
| { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" }, |
| |
| { kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" }, |
| { kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" }, |
| { kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" }, |
| { kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" }, |
| { kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" }, |
| { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" }, |
| { kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" }, |
| { kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" }, |
| { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" }, |
| { kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" }, |
| |
| #define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \ |
| reg, reg_kind, reg_flags, \ |
| mem, mem_kind, mem_flags, \ |
| arr, arr_kind, arr_flags, imm, \ |
| b_flags, hw_flags, w_flags, \ |
| b_format, hw_format, w_format) \ |
| { kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \ |
| { kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \ |
| { kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \ |
| { kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \ |
| { kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \ |
| { kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \ |
| { kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \ |
| { kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \ |
| { kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" } |
| |
| UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""), |
| UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""), |
| |
| UNARY_ENCODING_MAP(Mul, 0x4, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"), |
| UNARY_ENCODING_MAP(Imul, 0x5, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"), |
| UNARY_ENCODING_MAP(Divmod, 0x6, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"), |
| UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"), |
| #undef UNARY_ENCODING_MAP |
| |
| #define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \ |
| { kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \ |
| { kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \ |
| { kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" } |
| |
| EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0), |
| { kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" }, |
| { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| |
| EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0), |
| { kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" }, |
| { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| |
| EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E, SETS_CCODES), |
| EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E, SETS_CCODES), |
| EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F, SETS_CCODES), |
| EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F, SETS_CCODES), |
| EXT_0F_ENCODING_MAP(Orps, 0x00, 0x56, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Xorps, 0x00, 0x57, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF2, 0x5A, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF3, 0x5A, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E, REG_DEF0), |
| |
| { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" }, |
| { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" }, |
| |
| EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E, REG_DEF0), |
| { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" }, |
| { kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" }, |
| { kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" }, |
| |
| { kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" }, |
| { kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" }, |
| { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" }, |
| |
| // TODO: load/store? |
| // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly. |
| { kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" }, |
| |
| EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF, REG_DEF0 | SETS_CCODES), |
| EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF, REG_DEF0 | SETS_CCODES), |
| |
| { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" }, |
| { kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" }, |
| { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" }, |
| { kX86LockCmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "!0r,!1r" }, |
| { kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" }, |
| { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" }, |
| |
| EXT_0F_ENCODING_MAP(Movzx8, 0x00, 0xB6, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Movsx8, 0x00, 0xBE, REG_DEF0), |
| EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0), |
| #undef EXT_0F_ENCODING_MAP |
| |
| { kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0 }, "Jcc8", "!1c !0t" }, |
| { kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" }, |
| { kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0 }, "Jmp8", "!0t" }, |
| { kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0 }, "Jmp32", "!0t" }, |
| { kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpR", "!0r" }, |
| { kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0 }, "CallR", "!0r" }, |
| { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallM", "[!0r+!1d]" }, |
| { kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" }, |
| { kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallT", "fs:[!0d]" }, |
| { kX86Ret, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0 }, "Ret", "" }, |
| |
| { kX86StartOfMethod, kMacro, IS_UNARY_OP | SETS_CCODES, { 0, 0, 0, 0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" }, |
| { kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" }, |
| { kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr", "!0r,!1d" }, |
| }; |
| |
| static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) { |
| size_t size = 0; |
| if (entry->skeleton.prefix1 > 0) { |
| ++size; |
| if (entry->skeleton.prefix2 > 0) { |
| ++size; |
| } |
| } |
| ++size; // opcode |
| if (entry->skeleton.opcode == 0x0F) { |
| ++size; |
| if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) { |
| ++size; |
| } |
| } |
| ++size; // modrm |
| if (has_sib || base == rX86_SP) { |
| // SP requires a SIB byte. |
| ++size; |
| } |
| if (displacement != 0 || base == rBP) { |
| // BP requires an explicit displacement, even when it's 0. |
| if (entry->opcode != kX86Lea32RA) { |
| DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name; |
| } |
| size += IS_SIMM8(displacement) ? 1 : 4; |
| } |
| size += entry->skeleton.immediate_bytes; |
| return size; |
| } |
| |
| int X86Mir2Lir::GetInsnSize(LIR* lir) { |
| const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode]; |
| switch (entry->kind) { |
| case kData: |
| return 4; // 4 bytes of data |
| case kNop: |
| return lir->operands[0]; // length of nop is sole operand |
| case kNullary: |
| return 1; // 1 byte of opcode |
| case kReg: // lir operands - 0: reg |
| return ComputeSize(entry, 0, 0, false); |
| case kMem: // lir operands - 0: base, 1: disp |
| return ComputeSize(entry, lir->operands[0], lir->operands[1], false); |
| case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp |
| return ComputeSize(entry, lir->operands[0], lir->operands[3], true); |
| case kMemReg: // lir operands - 0: base, 1: disp, 2: reg |
| return ComputeSize(entry, lir->operands[0], lir->operands[1], false); |
| case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg |
| return ComputeSize(entry, lir->operands[0], lir->operands[3], true); |
| case kThreadReg: // lir operands - 0: disp, 1: reg |
| return ComputeSize(entry, 0, lir->operands[0], false); |
| case kRegReg: |
| return ComputeSize(entry, 0, 0, false); |
| case kRegRegStore: |
| return ComputeSize(entry, 0, 0, false); |
| case kRegMem: // lir operands - 0: reg, 1: base, 2: disp |
| return ComputeSize(entry, lir->operands[1], lir->operands[2], false); |
| case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp |
| return ComputeSize(entry, lir->operands[1], lir->operands[4], true); |
| case kRegThread: // lir operands - 0: reg, 1: disp |
| return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit |
| case kRegImm: { // lir operands - 0: reg, 1: immediate |
| size_t size = ComputeSize(entry, 0, 0, false); |
| if (entry->skeleton.ax_opcode == 0) { |
| return size; |
| } else { |
| // AX opcodes don't require the modrm byte. |
| int reg = lir->operands[0]; |
| return size - (reg == rAX ? 1 : 0); |
| } |
| } |
| case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate |
| return ComputeSize(entry, lir->operands[0], lir->operands[1], false); |
| case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate |
| return ComputeSize(entry, lir->operands[0], lir->operands[3], true); |
| case kThreadImm: // lir operands - 0: disp, 1: imm |
| return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit |
| case kRegRegImm: // lir operands - 0: reg, 1: reg, 2: imm |
| return ComputeSize(entry, 0, 0, false); |
| case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm |
| return ComputeSize(entry, lir->operands[1], lir->operands[2], false); |
| case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm |
| return ComputeSize(entry, lir->operands[1], lir->operands[4], true); |
| case kMovRegImm: // lir operands - 0: reg, 1: immediate |
| return 1 + entry->skeleton.immediate_bytes; |
| case kShiftRegImm: // lir operands - 0: reg, 1: immediate |
| // Shift by immediate one has a shorter opcode. |
| return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0); |
| case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate |
| // Shift by immediate one has a shorter opcode. |
| return ComputeSize(entry, lir->operands[0], lir->operands[1], false) - |
| (lir->operands[2] == 1 ? 1 : 0); |
| case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate |
| // Shift by immediate one has a shorter opcode. |
| return ComputeSize(entry, lir->operands[0], lir->operands[3], true) - |
| (lir->operands[4] == 1 ? 1 : 0); |
| case kShiftRegCl: |
| return ComputeSize(entry, 0, 0, false); |
| case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl |
| return ComputeSize(entry, lir->operands[0], lir->operands[1], false); |
| case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg |
| return ComputeSize(entry, lir->operands[0], lir->operands[3], true); |
| case kRegCond: // lir operands - 0: reg, 1: cond |
| return ComputeSize(entry, 0, 0, false); |
| case kMemCond: // lir operands - 0: base, 1: disp, 2: cond |
| return ComputeSize(entry, lir->operands[0], lir->operands[1], false); |
| case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond |
| return ComputeSize(entry, lir->operands[0], lir->operands[3], true); |
| case kJcc: |
| if (lir->opcode == kX86Jcc8) { |
| return 2; // opcode + rel8 |
| } else { |
| DCHECK(lir->opcode == kX86Jcc32); |
| return 6; // 2 byte opcode + rel32 |
| } |
| case kJmp: |
| if (lir->opcode == kX86Jmp8) { |
| return 2; // opcode + rel8 |
| } else if (lir->opcode == kX86Jmp32) { |
| return 5; // opcode + rel32 |
| } else { |
| DCHECK(lir->opcode == kX86JmpR); |
| return 2; // opcode + modrm |
| } |
| case kCall: |
| switch (lir->opcode) { |
| case kX86CallR: return 2; // opcode modrm |
| case kX86CallM: // lir operands - 0: base, 1: disp |
| return ComputeSize(entry, lir->operands[0], lir->operands[1], false); |
| case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp |
| return ComputeSize(entry, lir->operands[0], lir->operands[3], true); |
| case kX86CallT: // lir operands - 0: disp |
| return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit |
| default: |
| break; |
| } |
| break; |
| case kPcRel: |
| if (entry->opcode == kX86PcRelLoadRA) { |
| // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table |
| return ComputeSize(entry, lir->operands[1], 0x12345678, true); |
| } else { |
| DCHECK(entry->opcode == kX86PcRelAdr); |
| return 5; // opcode with reg + 4 byte immediate |
| } |
| case kMacro: |
| DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod)); |
| return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ + |
| ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) - |
| (lir->operands[0] == rAX ? 1 : 0); // shorter ax encoding |
| default: |
| break; |
| } |
| UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name; |
| return 0; |
| } |
| |
| static uint8_t ModrmForDisp(int base, int disp) { |
| // BP requires an explicit disp, so do not omit it in the 0 case |
| if (disp == 0 && base != rBP) { |
| return 0; |
| } else if (IS_SIMM8(disp)) { |
| return 1; |
| } else { |
| return 2; |
| } |
| } |
| |
| void X86Mir2Lir::EmitDisp(int base, int disp) { |
| // BP requires an explicit disp, so do not omit it in the 0 case |
| if (disp == 0 && base != rBP) { |
| return; |
| } else if (IS_SIMM8(disp)) { |
| code_buffer_.push_back(disp & 0xFF); |
| } else { |
| code_buffer_.push_back(disp & 0xFF); |
| code_buffer_.push_back((disp >> 8) & 0xFF); |
| code_buffer_.push_back((disp >> 16) & 0xFF); |
| code_buffer_.push_back((disp >> 24) & 0xFF); |
| } |
| } |
| |
| void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) { |
| if (entry->skeleton.prefix1 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix1); |
| if (entry->skeleton.prefix2 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.prefix2); |
| } |
| code_buffer_.push_back(entry->skeleton.opcode); |
| if (entry->skeleton.opcode == 0x0F) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode1); |
| if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode2); |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| if (X86_FPREG(reg)) { |
| reg = reg & X86_FP_REG_MASK; |
| } |
| if (reg >= 4) { |
| DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg) |
| << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file); |
| } |
| DCHECK_LT(reg, 8); |
| uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg; |
| code_buffer_.push_back(modrm); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) { |
| if (entry->skeleton.prefix1 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix1); |
| if (entry->skeleton.prefix2 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.prefix2); |
| } |
| code_buffer_.push_back(entry->skeleton.opcode); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| DCHECK_LT(entry->skeleton.modrm_opcode, 8); |
| DCHECK_LT(base, 8); |
| uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base; |
| code_buffer_.push_back(modrm); |
| EmitDisp(base, disp); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry, |
| uint8_t base, int disp, uint8_t reg) { |
| if (entry->skeleton.prefix1 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix1); |
| if (entry->skeleton.prefix2 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.prefix2); |
| } |
| code_buffer_.push_back(entry->skeleton.opcode); |
| if (entry->skeleton.opcode == 0x0F) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode1); |
| if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode2); |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| if (X86_FPREG(reg)) { |
| reg = reg & X86_FP_REG_MASK; |
| } |
| if (reg >= 4) { |
| DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg) |
| << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file); |
| } |
| DCHECK_LT(reg, 8); |
| DCHECK_LT(base, 8); |
| uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | base; |
| code_buffer_.push_back(modrm); |
| if (base == rX86_SP) { |
| // Special SIB for SP base |
| code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP); |
| } |
| EmitDisp(base, disp); |
| DCHECK_EQ(0, entry->skeleton.modrm_opcode); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry, |
| uint8_t reg, uint8_t base, int disp) { |
| // Opcode will flip operands. |
| EmitMemReg(entry, base, disp, reg); |
| } |
| |
| void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index, |
| int scale, int disp) { |
| if (entry->skeleton.prefix1 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix1); |
| if (entry->skeleton.prefix2 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.prefix2); |
| } |
| code_buffer_.push_back(entry->skeleton.opcode); |
| if (entry->skeleton.opcode == 0x0F) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode1); |
| if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode2); |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| if (X86_FPREG(reg)) { |
| reg = reg & X86_FP_REG_MASK; |
| } |
| DCHECK_LT(reg, 8); |
| uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg << 3) | rX86_SP; |
| code_buffer_.push_back(modrm); |
| DCHECK_LT(scale, 4); |
| DCHECK_LT(index, 8); |
| DCHECK_LT(base, 8); |
| uint8_t sib = (scale << 6) | (index << 3) | base; |
| code_buffer_.push_back(sib); |
| EmitDisp(base, disp); |
| DCHECK_EQ(0, entry->skeleton.modrm_opcode); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp, |
| uint8_t reg) { |
| // Opcode will flip operands. |
| EmitRegArray(entry, reg, base, index, scale, disp); |
| } |
| |
| void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) { |
| DCHECK_NE(entry->skeleton.prefix1, 0); |
| code_buffer_.push_back(entry->skeleton.prefix1); |
| if (entry->skeleton.prefix2 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix2); |
| } |
| code_buffer_.push_back(entry->skeleton.opcode); |
| if (entry->skeleton.opcode == 0x0F) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode1); |
| if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode2); |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| if (X86_FPREG(reg)) { |
| reg = reg & X86_FP_REG_MASK; |
| } |
| if (reg >= 4) { |
| DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg) |
| << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file); |
| } |
| DCHECK_LT(reg, 8); |
| uint8_t modrm = (0 << 6) | (reg << 3) | rBP; |
| code_buffer_.push_back(modrm); |
| code_buffer_.push_back(disp & 0xFF); |
| code_buffer_.push_back((disp >> 8) & 0xFF); |
| code_buffer_.push_back((disp >> 16) & 0xFF); |
| code_buffer_.push_back((disp >> 24) & 0xFF); |
| DCHECK_EQ(0, entry->skeleton.modrm_opcode); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) { |
| if (entry->skeleton.prefix1 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix1); |
| if (entry->skeleton.prefix2 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.prefix2); |
| } |
| code_buffer_.push_back(entry->skeleton.opcode); |
| if (entry->skeleton.opcode == 0x0F) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode1); |
| if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode2); |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| if (X86_FPREG(reg1)) { |
| reg1 = reg1 & X86_FP_REG_MASK; |
| } |
| if (X86_FPREG(reg2)) { |
| reg2 = reg2 & X86_FP_REG_MASK; |
| } |
| DCHECK_LT(reg1, 8); |
| DCHECK_LT(reg2, 8); |
| uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2; |
| code_buffer_.push_back(modrm); |
| DCHECK_EQ(0, entry->skeleton.modrm_opcode); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry, |
| uint8_t reg1, uint8_t reg2, int32_t imm) { |
| if (entry->skeleton.prefix1 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix1); |
| if (entry->skeleton.prefix2 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.prefix2); |
| } |
| code_buffer_.push_back(entry->skeleton.opcode); |
| if (entry->skeleton.opcode == 0x0F) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode1); |
| if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode2); |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| if (X86_FPREG(reg1)) { |
| reg1 = reg1 & X86_FP_REG_MASK; |
| } |
| if (X86_FPREG(reg2)) { |
| reg2 = reg2 & X86_FP_REG_MASK; |
| } |
| DCHECK_LT(reg1, 8); |
| DCHECK_LT(reg2, 8); |
| uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2; |
| code_buffer_.push_back(modrm); |
| DCHECK_EQ(0, entry->skeleton.modrm_opcode); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| switch (entry->skeleton.immediate_bytes) { |
| case 1: |
| DCHECK(IS_SIMM8(imm)); |
| code_buffer_.push_back(imm & 0xFF); |
| break; |
| case 2: |
| DCHECK(IS_SIMM16(imm)); |
| code_buffer_.push_back(imm & 0xFF); |
| code_buffer_.push_back((imm >> 8) & 0xFF); |
| break; |
| case 4: |
| code_buffer_.push_back(imm & 0xFF); |
| code_buffer_.push_back((imm >> 8) & 0xFF); |
| code_buffer_.push_back((imm >> 16) & 0xFF); |
| code_buffer_.push_back((imm >> 24) & 0xFF); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes |
| << ") for instruction: " << entry->name; |
| break; |
| } |
| } |
| |
| void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) { |
| if (entry->skeleton.prefix1 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix1); |
| if (entry->skeleton.prefix2 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.prefix2); |
| } |
| if (reg == rAX && entry->skeleton.ax_opcode != 0) { |
| code_buffer_.push_back(entry->skeleton.ax_opcode); |
| } else { |
| code_buffer_.push_back(entry->skeleton.opcode); |
| if (entry->skeleton.opcode == 0x0F) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode1); |
| if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode2); |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| if (X86_FPREG(reg)) { |
| reg = reg & X86_FP_REG_MASK; |
| } |
| uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg; |
| code_buffer_.push_back(modrm); |
| } |
| switch (entry->skeleton.immediate_bytes) { |
| case 1: |
| DCHECK(IS_SIMM8(imm)); |
| code_buffer_.push_back(imm & 0xFF); |
| break; |
| case 2: |
| DCHECK(IS_SIMM16(imm)); |
| code_buffer_.push_back(imm & 0xFF); |
| code_buffer_.push_back((imm >> 8) & 0xFF); |
| break; |
| case 4: |
| code_buffer_.push_back(imm & 0xFF); |
| code_buffer_.push_back((imm >> 8) & 0xFF); |
| code_buffer_.push_back((imm >> 16) & 0xFF); |
| code_buffer_.push_back((imm >> 24) & 0xFF); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes |
| << ") for instruction: " << entry->name; |
| break; |
| } |
| } |
| |
| void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) { |
| if (entry->skeleton.prefix1 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix1); |
| if (entry->skeleton.prefix2 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.prefix2); |
| } |
| code_buffer_.push_back(entry->skeleton.opcode); |
| if (entry->skeleton.opcode == 0x0F) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode1); |
| if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode2); |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP; |
| code_buffer_.push_back(modrm); |
| code_buffer_.push_back(disp & 0xFF); |
| code_buffer_.push_back((disp >> 8) & 0xFF); |
| code_buffer_.push_back((disp >> 16) & 0xFF); |
| code_buffer_.push_back((disp >> 24) & 0xFF); |
| switch (entry->skeleton.immediate_bytes) { |
| case 1: |
| DCHECK(IS_SIMM8(imm)); |
| code_buffer_.push_back(imm & 0xFF); |
| break; |
| case 2: |
| DCHECK(IS_SIMM16(imm)); |
| code_buffer_.push_back(imm & 0xFF); |
| code_buffer_.push_back((imm >> 8) & 0xFF); |
| break; |
| case 4: |
| code_buffer_.push_back(imm & 0xFF); |
| code_buffer_.push_back((imm >> 8) & 0xFF); |
| code_buffer_.push_back((imm >> 16) & 0xFF); |
| code_buffer_.push_back((imm >> 24) & 0xFF); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes |
| << ") for instruction: " << entry->name; |
| break; |
| } |
| DCHECK_EQ(entry->skeleton.ax_opcode, 0); |
| } |
| |
| void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) { |
| DCHECK_LT(reg, 8); |
| code_buffer_.push_back(0xB8 + reg); |
| code_buffer_.push_back(imm & 0xFF); |
| code_buffer_.push_back((imm >> 8) & 0xFF); |
| code_buffer_.push_back((imm >> 16) & 0xFF); |
| code_buffer_.push_back((imm >> 24) & 0xFF); |
| } |
| |
| void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) { |
| if (entry->skeleton.prefix1 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix1); |
| if (entry->skeleton.prefix2 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.prefix2); |
| } |
| if (imm != 1) { |
| code_buffer_.push_back(entry->skeleton.opcode); |
| } else { |
| // Shorter encoding for 1 bit shift |
| code_buffer_.push_back(entry->skeleton.ax_opcode); |
| } |
| if (entry->skeleton.opcode == 0x0F) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode1); |
| if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode2); |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| if (reg >= 4) { |
| DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg) |
| << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file); |
| } |
| DCHECK_LT(reg, 8); |
| uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg; |
| code_buffer_.push_back(modrm); |
| if (imm != 1) { |
| DCHECK_EQ(entry->skeleton.immediate_bytes, 1); |
| DCHECK(IS_SIMM8(imm)); |
| code_buffer_.push_back(imm & 0xFF); |
| } |
| } |
| |
| void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) { |
| DCHECK_EQ(cl, static_cast<uint8_t>(rCX)); |
| if (entry->skeleton.prefix1 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix1); |
| if (entry->skeleton.prefix2 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.prefix2); |
| } |
| code_buffer_.push_back(entry->skeleton.opcode); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| DCHECK_LT(reg, 8); |
| uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg; |
| code_buffer_.push_back(modrm); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) { |
| if (entry->skeleton.prefix1 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix1); |
| if (entry->skeleton.prefix2 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.prefix2); |
| } |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0x0F, entry->skeleton.opcode); |
| code_buffer_.push_back(0x0F); |
| DCHECK_EQ(0x90, entry->skeleton.extra_opcode1); |
| code_buffer_.push_back(0x90 | condition); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| DCHECK_LT(reg, 8); |
| uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg; |
| code_buffer_.push_back(modrm); |
| DCHECK_EQ(entry->skeleton.immediate_bytes, 0); |
| } |
| |
| void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) { |
| if (entry->opcode == kX86Jmp8) { |
| DCHECK(IS_SIMM8(rel)); |
| code_buffer_.push_back(0xEB); |
| code_buffer_.push_back(rel & 0xFF); |
| } else if (entry->opcode == kX86Jmp32) { |
| code_buffer_.push_back(0xE9); |
| code_buffer_.push_back(rel & 0xFF); |
| code_buffer_.push_back((rel >> 8) & 0xFF); |
| code_buffer_.push_back((rel >> 16) & 0xFF); |
| code_buffer_.push_back((rel >> 24) & 0xFF); |
| } else { |
| DCHECK(entry->opcode == kX86JmpR); |
| code_buffer_.push_back(entry->skeleton.opcode); |
| uint8_t reg = static_cast<uint8_t>(rel); |
| DCHECK_LT(reg, 8); |
| uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg; |
| code_buffer_.push_back(modrm); |
| } |
| } |
| |
| void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) { |
| DCHECK_LT(cc, 16); |
| if (entry->opcode == kX86Jcc8) { |
| DCHECK(IS_SIMM8(rel)); |
| code_buffer_.push_back(0x70 | cc); |
| code_buffer_.push_back(rel & 0xFF); |
| } else { |
| DCHECK(entry->opcode == kX86Jcc32); |
| code_buffer_.push_back(0x0F); |
| code_buffer_.push_back(0x80 | cc); |
| code_buffer_.push_back(rel & 0xFF); |
| code_buffer_.push_back((rel >> 8) & 0xFF); |
| code_buffer_.push_back((rel >> 16) & 0xFF); |
| code_buffer_.push_back((rel >> 24) & 0xFF); |
| } |
| } |
| |
| void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) { |
| if (entry->skeleton.prefix1 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix1); |
| if (entry->skeleton.prefix2 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.prefix2); |
| } |
| code_buffer_.push_back(entry->skeleton.opcode); |
| if (entry->skeleton.opcode == 0x0F) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode1); |
| if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode2); |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (entry->skeleton.modrm_opcode << 3) | base; |
| code_buffer_.push_back(modrm); |
| if (base == rX86_SP) { |
| // Special SIB for SP base |
| code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP); |
| } |
| EmitDisp(base, disp); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) { |
| DCHECK_NE(entry->skeleton.prefix1, 0); |
| code_buffer_.push_back(entry->skeleton.prefix1); |
| if (entry->skeleton.prefix2 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix2); |
| } |
| code_buffer_.push_back(entry->skeleton.opcode); |
| if (entry->skeleton.opcode == 0x0F) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode1); |
| if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode2 == 0x3A) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode2); |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP; |
| code_buffer_.push_back(modrm); |
| code_buffer_.push_back(disp & 0xFF); |
| code_buffer_.push_back((disp >> 8) & 0xFF); |
| code_buffer_.push_back((disp >> 16) & 0xFF); |
| code_buffer_.push_back((disp >> 24) & 0xFF); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } |
| |
| void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg, |
| int base_or_table, uint8_t index, int scale, int table_or_disp) { |
| int disp; |
| if (entry->opcode == kX86PcRelLoadRA) { |
| Mir2Lir::SwitchTable *tab_rec = reinterpret_cast<Mir2Lir::SwitchTable*>(table_or_disp); |
| disp = tab_rec->offset; |
| } else { |
| DCHECK(entry->opcode == kX86PcRelAdr); |
| Mir2Lir::FillArrayData *tab_rec = reinterpret_cast<Mir2Lir::FillArrayData*>(base_or_table); |
| disp = tab_rec->offset; |
| } |
| if (entry->skeleton.prefix1 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix1); |
| if (entry->skeleton.prefix2 != 0) { |
| code_buffer_.push_back(entry->skeleton.prefix2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.prefix2); |
| } |
| if (X86_FPREG(reg)) { |
| reg = reg & X86_FP_REG_MASK; |
| } |
| DCHECK_LT(reg, 8); |
| if (entry->opcode == kX86PcRelLoadRA) { |
| code_buffer_.push_back(entry->skeleton.opcode); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode1); |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP; |
| code_buffer_.push_back(modrm); |
| DCHECK_LT(scale, 4); |
| DCHECK_LT(index, 8); |
| DCHECK_LT(base_or_table, 8); |
| uint8_t base = static_cast<uint8_t>(base_or_table); |
| uint8_t sib = (scale << 6) | (index << 3) | base; |
| code_buffer_.push_back(sib); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| } else { |
| code_buffer_.push_back(entry->skeleton.opcode + reg); |
| } |
| code_buffer_.push_back(disp & 0xFF); |
| code_buffer_.push_back((disp >> 8) & 0xFF); |
| code_buffer_.push_back((disp >> 16) & 0xFF); |
| code_buffer_.push_back((disp >> 24) & 0xFF); |
| DCHECK_EQ(0, entry->skeleton.modrm_opcode); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| } |
| |
| void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) { |
| DCHECK(entry->opcode == kX86StartOfMethod) << entry->name; |
| code_buffer_.push_back(0xE8); // call +0 |
| code_buffer_.push_back(0); |
| code_buffer_.push_back(0); |
| code_buffer_.push_back(0); |
| code_buffer_.push_back(0); |
| |
| DCHECK_LT(reg, 8); |
| code_buffer_.push_back(0x58 + reg); // pop reg |
| |
| EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */); |
| } |
| |
| void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) { |
| UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " " |
| << BuildInsnString(entry->fmt, lir, 0); |
| for (int i = 0; i < GetInsnSize(lir); ++i) { |
| code_buffer_.push_back(0xCC); // push breakpoint instruction - int 3 |
| } |
| } |
| |
| /* |
| * Assemble the LIR into binary instruction format. Note that we may |
| * discover that pc-relative displacements may not fit the selected |
| * instruction. In those cases we will try to substitute a new code |
| * sequence or request that the trace be shortened and retried. |
| */ |
| AssemblerStatus X86Mir2Lir::AssembleInstructions(uintptr_t start_addr) { |
| LIR *lir; |
| AssemblerStatus res = kSuccess; // Assume success |
| |
| const bool kVerbosePcFixup = false; |
| for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) { |
| if (lir->opcode < 0) { |
| continue; |
| } |
| |
| if (lir->flags.is_nop) { |
| continue; |
| } |
| |
| if (lir->flags.pcRelFixup) { |
| switch (lir->opcode) { |
| case kX86Jcc8: { |
| LIR *target_lir = lir->target; |
| DCHECK(target_lir != NULL); |
| int delta = 0; |
| uintptr_t pc; |
| if (IS_SIMM8(lir->operands[0])) { |
| pc = lir->offset + 2 /* opcode + rel8 */; |
| } else { |
| pc = lir->offset + 6 /* 2 byte opcode + rel32 */; |
| } |
| uintptr_t target = target_lir->offset; |
| delta = target - pc; |
| if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) { |
| if (kVerbosePcFixup) { |
| LOG(INFO) << "Retry for JCC growth at " << lir->offset |
| << " delta: " << delta << " old delta: " << lir->operands[0]; |
| } |
| lir->opcode = kX86Jcc32; |
| SetupResourceMasks(lir); |
| res = kRetryAll; |
| } |
| if (kVerbosePcFixup) { |
| LOG(INFO) << "Source:"; |
| DumpLIRInsn(lir, 0); |
| LOG(INFO) << "Target:"; |
| DumpLIRInsn(target_lir, 0); |
| LOG(INFO) << "Delta " << delta; |
| } |
| lir->operands[0] = delta; |
| break; |
| } |
| case kX86Jcc32: { |
| LIR *target_lir = lir->target; |
| DCHECK(target_lir != NULL); |
| uintptr_t pc = lir->offset + 6 /* 2 byte opcode + rel32 */; |
| uintptr_t target = target_lir->offset; |
| int delta = target - pc; |
| if (kVerbosePcFixup) { |
| LOG(INFO) << "Source:"; |
| DumpLIRInsn(lir, 0); |
| LOG(INFO) << "Target:"; |
| DumpLIRInsn(target_lir, 0); |
| LOG(INFO) << "Delta " << delta; |
| } |
| lir->operands[0] = delta; |
| break; |
| } |
| case kX86Jmp8: { |
| LIR *target_lir = lir->target; |
| DCHECK(target_lir != NULL); |
| int delta = 0; |
| uintptr_t pc; |
| if (IS_SIMM8(lir->operands[0])) { |
| pc = lir->offset + 2 /* opcode + rel8 */; |
| } else { |
| pc = lir->offset + 5 /* opcode + rel32 */; |
| } |
| uintptr_t target = target_lir->offset; |
| delta = target - pc; |
| if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) { |
| // Useless branch |
| NopLIR(lir); |
| if (kVerbosePcFixup) { |
| LOG(INFO) << "Retry for useless branch at " << lir->offset; |
| } |
| res = kRetryAll; |
| } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) { |
| if (kVerbosePcFixup) { |
| LOG(INFO) << "Retry for JMP growth at " << lir->offset; |
| } |
| lir->opcode = kX86Jmp32; |
| SetupResourceMasks(lir); |
| res = kRetryAll; |
| } |
| lir->operands[0] = delta; |
| break; |
| } |
| case kX86Jmp32: { |
| LIR *target_lir = lir->target; |
| DCHECK(target_lir != NULL); |
| uintptr_t pc = lir->offset + 5 /* opcode + rel32 */; |
| uintptr_t target = target_lir->offset; |
| int delta = target - pc; |
| lir->operands[0] = delta; |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| /* |
| * If one of the pc-relative instructions expanded we'll have |
| * to make another pass. Don't bother to fully assemble the |
| * instruction. |
| */ |
| if (res != kSuccess) { |
| continue; |
| } |
| CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size()); |
| const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode]; |
| size_t starting_cbuf_size = code_buffer_.size(); |
| switch (entry->kind) { |
| case kData: // 4 bytes of data |
| code_buffer_.push_back(lir->operands[0]); |
| break; |
| case kNullary: // 1 byte of opcode |
| DCHECK_EQ(0, entry->skeleton.prefix1); |
| DCHECK_EQ(0, entry->skeleton.prefix2); |
| code_buffer_.push_back(entry->skeleton.opcode); |
| if (entry->skeleton.extra_opcode1 != 0) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode1); |
| if (entry->skeleton.extra_opcode2 != 0) { |
| code_buffer_.push_back(entry->skeleton.extra_opcode2); |
| } |
| } else { |
| DCHECK_EQ(0, entry->skeleton.extra_opcode2); |
| } |
| DCHECK_EQ(0, entry->skeleton.modrm_opcode); |
| DCHECK_EQ(0, entry->skeleton.ax_opcode); |
| DCHECK_EQ(0, entry->skeleton.immediate_bytes); |
| break; |
| case kReg: // lir operands - 0: reg |
| EmitOpReg(entry, lir->operands[0]); |
| break; |
| case kMem: // lir operands - 0: base, 1: disp |
| EmitOpMem(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kMemReg: // lir operands - 0: base, 1: disp, 2: reg |
| EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]); |
| break; |
| case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg |
| EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2], |
| lir->operands[3], lir->operands[4]); |
| break; |
| case kRegMem: // lir operands - 0: reg, 1: base, 2: disp |
| EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]); |
| break; |
| case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp |
| EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], |
| lir->operands[3], lir->operands[4]); |
| break; |
| case kRegThread: // lir operands - 0: reg, 1: disp |
| EmitRegThread(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kRegReg: // lir operands - 0: reg1, 1: reg2 |
| EmitRegReg(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kRegRegStore: // lir operands - 0: reg2, 1: reg1 |
| EmitRegReg(entry, lir->operands[1], lir->operands[0]); |
| break; |
| case kRegRegImm: |
| EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]); |
| break; |
| case kRegImm: // lir operands - 0: reg, 1: immediate |
| EmitRegImm(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kThreadImm: // lir operands - 0: disp, 1: immediate |
| EmitThreadImm(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kMovRegImm: // lir operands - 0: reg, 1: immediate |
| EmitMovRegImm(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kShiftRegImm: // lir operands - 0: reg, 1: immediate |
| EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kShiftRegCl: // lir operands - 0: reg, 1: cl |
| EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kRegCond: // lir operands - 0: reg, 1: condition |
| EmitRegCond(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kJmp: // lir operands - 0: rel |
| EmitJmp(entry, lir->operands[0]); |
| break; |
| case kJcc: // lir operands - 0: rel, 1: CC, target assigned |
| EmitJcc(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kCall: |
| switch (entry->opcode) { |
| case kX86CallM: // lir operands - 0: base, 1: disp |
| EmitCallMem(entry, lir->operands[0], lir->operands[1]); |
| break; |
| case kX86CallT: // lir operands - 0: disp |
| EmitCallThread(entry, lir->operands[0]); |
| break; |
| default: |
| EmitUnimplemented(entry, lir); |
| break; |
| } |
| break; |
| case kPcRel: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table |
| EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2], |
| lir->operands[3], lir->operands[4]); |
| break; |
| case kMacro: |
| EmitMacro(entry, lir->operands[0], lir->offset); |
| break; |
| default: |
| EmitUnimplemented(entry, lir); |
| break; |
| } |
| CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)), |
| code_buffer_.size() - starting_cbuf_size) |
| << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name; |
| } |
| return res; |
| } |
| |
| } // namespace art |