| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "dex/compiler_ir.h" |
| #include "dex/compiler_internals.h" |
| #include "dex/quick/mir_to_lir-inl.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "mirror/array.h" |
| #include "verifier/method_verifier.h" |
| |
| namespace art { |
| |
| /* |
| * This source files contains "gen" codegen routines that should |
| * be applicable to most targets. Only mid-level support utilities |
| * and "op" calls may be used here. |
| */ |
| |
| /* |
| * Generate an kPseudoBarrier marker to indicate the boundary of special |
| * blocks. |
| */ |
| void Mir2Lir::GenBarrier() { |
| LIR* barrier = NewLIR0(kPseudoBarrier); |
| /* Mark all resources as being clobbered */ |
| barrier->def_mask = -1; |
| } |
| |
| // FIXME: need to do some work to split out targets with |
| // condition codes and those without |
| LIR* Mir2Lir::GenCheck(ConditionCode c_code, ThrowKind kind) { |
| DCHECK_NE(cu_->instruction_set, kMips); |
| LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_); |
| LIR* branch = OpCondBranch(c_code, tgt); |
| // Remember branch target - will process later |
| throw_launchpads_.Insert(tgt); |
| return branch; |
| } |
| |
| LIR* Mir2Lir::GenImmedCheck(ConditionCode c_code, int reg, int imm_val, ThrowKind kind) { |
| LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_, reg, imm_val); |
| LIR* branch; |
| if (c_code == kCondAl) { |
| branch = OpUnconditionalBranch(tgt); |
| } else { |
| branch = OpCmpImmBranch(c_code, reg, imm_val, tgt); |
| } |
| // Remember branch target - will process later |
| throw_launchpads_.Insert(tgt); |
| return branch; |
| } |
| |
| /* Perform null-check on a register. */ |
| LIR* Mir2Lir::GenNullCheck(int s_reg, int m_reg, int opt_flags) { |
| if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && |
| opt_flags & MIR_IGNORE_NULL_CHECK) { |
| return NULL; |
| } |
| return GenImmedCheck(kCondEq, m_reg, 0, kThrowNullPointer); |
| } |
| |
| /* Perform check on two registers */ |
| LIR* Mir2Lir::GenRegRegCheck(ConditionCode c_code, int reg1, int reg2, |
| ThrowKind kind) { |
| LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_, reg1, reg2); |
| LIR* branch = OpCmpBranch(c_code, reg1, reg2, tgt); |
| // Remember branch target - will process later |
| throw_launchpads_.Insert(tgt); |
| return branch; |
| } |
| |
| void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1, |
| RegLocation rl_src2, LIR* taken, |
| LIR* fall_through) { |
| ConditionCode cond; |
| switch (opcode) { |
| case Instruction::IF_EQ: |
| cond = kCondEq; |
| break; |
| case Instruction::IF_NE: |
| cond = kCondNe; |
| break; |
| case Instruction::IF_LT: |
| cond = kCondLt; |
| break; |
| case Instruction::IF_GE: |
| cond = kCondGe; |
| break; |
| case Instruction::IF_GT: |
| cond = kCondGt; |
| break; |
| case Instruction::IF_LE: |
| cond = kCondLe; |
| break; |
| default: |
| cond = static_cast<ConditionCode>(0); |
| LOG(FATAL) << "Unexpected opcode " << opcode; |
| } |
| |
| // Normalize such that if either operand is constant, src2 will be constant |
| if (rl_src1.is_const) { |
| RegLocation rl_temp = rl_src1; |
| rl_src1 = rl_src2; |
| rl_src2 = rl_temp; |
| cond = FlipComparisonOrder(cond); |
| } |
| |
| rl_src1 = LoadValue(rl_src1, kCoreReg); |
| // Is this really an immediate comparison? |
| if (rl_src2.is_const) { |
| // If it's already live in a register or not easily materialized, just keep going |
| RegLocation rl_temp = UpdateLoc(rl_src2); |
| if ((rl_temp.location == kLocDalvikFrame) && |
| InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src2))) { |
| // OK - convert this to a compare immediate and branch |
| OpCmpImmBranch(cond, rl_src1.low_reg, mir_graph_->ConstantValue(rl_src2), taken); |
| return; |
| } |
| } |
| rl_src2 = LoadValue(rl_src2, kCoreReg); |
| OpCmpBranch(cond, rl_src1.low_reg, rl_src2.low_reg, taken); |
| } |
| |
| void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken, |
| LIR* fall_through) { |
| ConditionCode cond; |
| rl_src = LoadValue(rl_src, kCoreReg); |
| switch (opcode) { |
| case Instruction::IF_EQZ: |
| cond = kCondEq; |
| break; |
| case Instruction::IF_NEZ: |
| cond = kCondNe; |
| break; |
| case Instruction::IF_LTZ: |
| cond = kCondLt; |
| break; |
| case Instruction::IF_GEZ: |
| cond = kCondGe; |
| break; |
| case Instruction::IF_GTZ: |
| cond = kCondGt; |
| break; |
| case Instruction::IF_LEZ: |
| cond = kCondLe; |
| break; |
| default: |
| cond = static_cast<ConditionCode>(0); |
| LOG(FATAL) << "Unexpected opcode " << opcode; |
| } |
| OpCmpImmBranch(cond, rl_src.low_reg, 0, taken); |
| } |
| |
| void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) { |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| if (rl_src.location == kLocPhysReg) { |
| OpRegCopy(rl_result.low_reg, rl_src.low_reg); |
| } else { |
| LoadValueDirect(rl_src, rl_result.low_reg); |
| } |
| OpRegRegImm(kOpAsr, rl_result.high_reg, rl_result.low_reg, 31); |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src) { |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpKind op = kOpInvalid; |
| switch (opcode) { |
| case Instruction::INT_TO_BYTE: |
| op = kOp2Byte; |
| break; |
| case Instruction::INT_TO_SHORT: |
| op = kOp2Short; |
| break; |
| case Instruction::INT_TO_CHAR: |
| op = kOp2Char; |
| break; |
| default: |
| LOG(ERROR) << "Bad int conversion type"; |
| } |
| OpRegReg(op, rl_result.low_reg, rl_src.low_reg); |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| /* |
| * Let helper function take care of everything. Will call |
| * Array::AllocFromCode(type_idx, method, count); |
| * Note: AllocFromCode will handle checks for errNegativeArraySize. |
| */ |
| void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest, |
| RegLocation rl_src) { |
| FlushAllRegs(); /* Everything to home location */ |
| ThreadOffset func_offset(-1); |
| if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, |
| type_idx)) { |
| func_offset = QUICK_ENTRYPOINT_OFFSET(pAllocArray); |
| } else { |
| func_offset= QUICK_ENTRYPOINT_OFFSET(pAllocArrayWithAccessCheck); |
| } |
| CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true); |
| RegLocation rl_result = GetReturn(false); |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| /* |
| * Similar to GenNewArray, but with post-allocation initialization. |
| * Verifier guarantees we're dealing with an array class. Current |
| * code throws runtime exception "bad Filled array req" for 'D' and 'J'. |
| * Current code also throws internal unimp if not 'L', '[' or 'I'. |
| */ |
| void Mir2Lir::GenFilledNewArray(CallInfo* info) { |
| int elems = info->num_arg_words; |
| int type_idx = info->index; |
| FlushAllRegs(); /* Everything to home location */ |
| ThreadOffset func_offset(-1); |
| if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, |
| type_idx)) { |
| func_offset = QUICK_ENTRYPOINT_OFFSET(pCheckAndAllocArray); |
| } else { |
| func_offset = QUICK_ENTRYPOINT_OFFSET(pCheckAndAllocArrayWithAccessCheck); |
| } |
| CallRuntimeHelperImmMethodImm(func_offset, type_idx, elems, true); |
| FreeTemp(TargetReg(kArg2)); |
| FreeTemp(TargetReg(kArg1)); |
| /* |
| * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the |
| * return region. Because AllocFromCode placed the new array |
| * in kRet0, we'll just lock it into place. When debugger support is |
| * added, it may be necessary to additionally copy all return |
| * values to a home location in thread-local storage |
| */ |
| LockTemp(TargetReg(kRet0)); |
| |
| // TODO: use the correct component size, currently all supported types |
| // share array alignment with ints (see comment at head of function) |
| size_t component_size = sizeof(int32_t); |
| |
| // Having a range of 0 is legal |
| if (info->is_range && (elems > 0)) { |
| /* |
| * Bit of ugliness here. We're going generate a mem copy loop |
| * on the register range, but it is possible that some regs |
| * in the range have been promoted. This is unlikely, but |
| * before generating the copy, we'll just force a flush |
| * of any regs in the source range that have been promoted to |
| * home location. |
| */ |
| for (int i = 0; i < elems; i++) { |
| RegLocation loc = UpdateLoc(info->args[i]); |
| if (loc.location == kLocPhysReg) { |
| StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), |
| loc.low_reg, kWord); |
| } |
| } |
| /* |
| * TUNING note: generated code here could be much improved, but |
| * this is an uncommon operation and isn't especially performance |
| * critical. |
| */ |
| int r_src = AllocTemp(); |
| int r_dst = AllocTemp(); |
| int r_idx = AllocTemp(); |
| int r_val = INVALID_REG; |
| switch (cu_->instruction_set) { |
| case kThumb2: |
| r_val = TargetReg(kLr); |
| break; |
| case kX86: |
| FreeTemp(TargetReg(kRet0)); |
| r_val = AllocTemp(); |
| break; |
| case kMips: |
| r_val = AllocTemp(); |
| break; |
| default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set; |
| } |
| // Set up source pointer |
| RegLocation rl_first = info->args[0]; |
| OpRegRegImm(kOpAdd, r_src, TargetReg(kSp), SRegOffset(rl_first.s_reg_low)); |
| // Set up the target pointer |
| OpRegRegImm(kOpAdd, r_dst, TargetReg(kRet0), |
| mirror::Array::DataOffset(component_size).Int32Value()); |
| // Set up the loop counter (known to be > 0) |
| LoadConstant(r_idx, elems - 1); |
| // Generate the copy loop. Going backwards for convenience |
| LIR* target = NewLIR0(kPseudoTargetLabel); |
| // Copy next element |
| LoadBaseIndexed(r_src, r_idx, r_val, 2, kWord); |
| StoreBaseIndexed(r_dst, r_idx, r_val, 2, kWord); |
| FreeTemp(r_val); |
| OpDecAndBranch(kCondGe, r_idx, target); |
| if (cu_->instruction_set == kX86) { |
| // Restore the target pointer |
| OpRegRegImm(kOpAdd, TargetReg(kRet0), r_dst, |
| -mirror::Array::DataOffset(component_size).Int32Value()); |
| } |
| } else if (!info->is_range) { |
| // TUNING: interleave |
| for (int i = 0; i < elems; i++) { |
| RegLocation rl_arg = LoadValue(info->args[i], kCoreReg); |
| StoreBaseDisp(TargetReg(kRet0), |
| mirror::Array::DataOffset(component_size).Int32Value() + |
| i * 4, rl_arg.low_reg, kWord); |
| // If the LoadValue caused a temp to be allocated, free it |
| if (IsTemp(rl_arg.low_reg)) { |
| FreeTemp(rl_arg.low_reg); |
| } |
| } |
| } |
| if (info->result.location != kLocInvalid) { |
| StoreValue(info->result, GetReturn(false /* not fp */)); |
| } |
| } |
| |
| void Mir2Lir::GenSput(uint32_t field_idx, RegLocation rl_src, bool is_long_or_double, |
| bool is_object) { |
| int field_offset; |
| int ssb_index; |
| bool is_volatile; |
| bool is_referrers_class; |
| bool fast_path = cu_->compiler_driver->ComputeStaticFieldInfo( |
| field_idx, mir_graph_->GetCurrentDexCompilationUnit(), true, |
| &field_offset, &ssb_index, &is_referrers_class, &is_volatile); |
| if (fast_path && !SLOW_FIELD_PATH) { |
| DCHECK_GE(field_offset, 0); |
| int rBase; |
| if (is_referrers_class) { |
| // Fast path, static storage base is this method's class |
| RegLocation rl_method = LoadCurrMethod(); |
| rBase = AllocTemp(); |
| LoadWordDisp(rl_method.low_reg, |
| mirror::ArtMethod::DeclaringClassOffset().Int32Value(), rBase); |
| if (IsTemp(rl_method.low_reg)) { |
| FreeTemp(rl_method.low_reg); |
| } |
| } else { |
| // Medium path, static storage base in a different class which requires checks that the other |
| // class is initialized. |
| // TODO: remove initialized check now that we are initializing classes in the compiler driver. |
| DCHECK_GE(ssb_index, 0); |
| // May do runtime call so everything to home locations. |
| FlushAllRegs(); |
| // Using fixed register to sync with possible call to runtime support. |
| int r_method = TargetReg(kArg1); |
| LockTemp(r_method); |
| LoadCurrMethodDirect(r_method); |
| rBase = TargetReg(kArg0); |
| LockTemp(rBase); |
| LoadWordDisp(r_method, |
| mirror::ArtMethod::DexCacheInitializedStaticStorageOffset().Int32Value(), |
| rBase); |
| LoadWordDisp(rBase, |
| mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + |
| sizeof(int32_t*) * ssb_index, rBase); |
| // rBase now points at appropriate static storage base (Class*) |
| // or NULL if not initialized. Check for NULL and call helper if NULL. |
| // TUNING: fast path should fall through |
| LIR* branch_over = OpCmpImmBranch(kCondNe, rBase, 0, NULL); |
| LoadConstant(TargetReg(kArg0), ssb_index); |
| CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssb_index, true); |
| if (cu_->instruction_set == kMips) { |
| // For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy |
| OpRegCopy(rBase, TargetReg(kRet0)); |
| } |
| LIR* skip_target = NewLIR0(kPseudoTargetLabel); |
| branch_over->target = skip_target; |
| FreeTemp(r_method); |
| } |
| // rBase now holds static storage base |
| if (is_long_or_double) { |
| rl_src = LoadValueWide(rl_src, kAnyReg); |
| } else { |
| rl_src = LoadValue(rl_src, kAnyReg); |
| } |
| if (is_volatile) { |
| GenMemBarrier(kStoreStore); |
| } |
| if (is_long_or_double) { |
| StoreBaseDispWide(rBase, field_offset, rl_src.low_reg, |
| rl_src.high_reg); |
| } else { |
| StoreWordDisp(rBase, field_offset, rl_src.low_reg); |
| } |
| if (is_volatile) { |
| GenMemBarrier(kStoreLoad); |
| } |
| if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) { |
| MarkGCCard(rl_src.low_reg, rBase); |
| } |
| FreeTemp(rBase); |
| } else { |
| FlushAllRegs(); // Everything to home locations |
| ThreadOffset setter_offset = |
| is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pSet64Static) |
| : (is_object ? QUICK_ENTRYPOINT_OFFSET(pSetObjStatic) |
| : QUICK_ENTRYPOINT_OFFSET(pSet32Static)); |
| CallRuntimeHelperImmRegLocation(setter_offset, field_idx, rl_src, true); |
| } |
| } |
| |
| void Mir2Lir::GenSget(uint32_t field_idx, RegLocation rl_dest, |
| bool is_long_or_double, bool is_object) { |
| int field_offset; |
| int ssb_index; |
| bool is_volatile; |
| bool is_referrers_class; |
| bool fast_path = cu_->compiler_driver->ComputeStaticFieldInfo( |
| field_idx, mir_graph_->GetCurrentDexCompilationUnit(), false, |
| &field_offset, &ssb_index, &is_referrers_class, &is_volatile); |
| if (fast_path && !SLOW_FIELD_PATH) { |
| DCHECK_GE(field_offset, 0); |
| int rBase; |
| if (is_referrers_class) { |
| // Fast path, static storage base is this method's class |
| RegLocation rl_method = LoadCurrMethod(); |
| rBase = AllocTemp(); |
| LoadWordDisp(rl_method.low_reg, |
| mirror::ArtMethod::DeclaringClassOffset().Int32Value(), rBase); |
| } else { |
| // Medium path, static storage base in a different class which requires checks that the other |
| // class is initialized |
| // TODO: remove initialized check now that we are initializing classes in the compiler driver. |
| DCHECK_GE(ssb_index, 0); |
| // May do runtime call so everything to home locations. |
| FlushAllRegs(); |
| // Using fixed register to sync with possible call to runtime support. |
| int r_method = TargetReg(kArg1); |
| LockTemp(r_method); |
| LoadCurrMethodDirect(r_method); |
| rBase = TargetReg(kArg0); |
| LockTemp(rBase); |
| LoadWordDisp(r_method, |
| mirror::ArtMethod::DexCacheInitializedStaticStorageOffset().Int32Value(), |
| rBase); |
| LoadWordDisp(rBase, mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + |
| sizeof(int32_t*) * ssb_index, rBase); |
| // rBase now points at appropriate static storage base (Class*) |
| // or NULL if not initialized. Check for NULL and call helper if NULL. |
| // TUNING: fast path should fall through |
| LIR* branch_over = OpCmpImmBranch(kCondNe, rBase, 0, NULL); |
| CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssb_index, true); |
| if (cu_->instruction_set == kMips) { |
| // For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy |
| OpRegCopy(rBase, TargetReg(kRet0)); |
| } |
| LIR* skip_target = NewLIR0(kPseudoTargetLabel); |
| branch_over->target = skip_target; |
| FreeTemp(r_method); |
| } |
| // rBase now holds static storage base |
| RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true); |
| if (is_volatile) { |
| GenMemBarrier(kLoadLoad); |
| } |
| if (is_long_or_double) { |
| LoadBaseDispWide(rBase, field_offset, rl_result.low_reg, |
| rl_result.high_reg, INVALID_SREG); |
| } else { |
| LoadWordDisp(rBase, field_offset, rl_result.low_reg); |
| } |
| FreeTemp(rBase); |
| if (is_long_or_double) { |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| StoreValue(rl_dest, rl_result); |
| } |
| } else { |
| FlushAllRegs(); // Everything to home locations |
| ThreadOffset getterOffset = |
| is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pGet64Static) |
| :(is_object ? QUICK_ENTRYPOINT_OFFSET(pGetObjStatic) |
| : QUICK_ENTRYPOINT_OFFSET(pGet32Static)); |
| CallRuntimeHelperImm(getterOffset, field_idx, true); |
| if (is_long_or_double) { |
| RegLocation rl_result = GetReturnWide(rl_dest.fp); |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| RegLocation rl_result = GetReturn(rl_dest.fp); |
| StoreValue(rl_dest, rl_result); |
| } |
| } |
| } |
| |
| void Mir2Lir::HandleSuspendLaunchPads() { |
| int num_elems = suspend_launchpads_.Size(); |
| ThreadOffset helper_offset = QUICK_ENTRYPOINT_OFFSET(pTestSuspend); |
| for (int i = 0; i < num_elems; i++) { |
| ResetRegPool(); |
| ResetDefTracking(); |
| LIR* lab = suspend_launchpads_.Get(i); |
| LIR* resume_lab = reinterpret_cast<LIR*>(lab->operands[0]); |
| current_dalvik_offset_ = lab->operands[1]; |
| AppendLIR(lab); |
| int r_tgt = CallHelperSetup(helper_offset); |
| CallHelper(r_tgt, helper_offset, true /* MarkSafepointPC */); |
| OpUnconditionalBranch(resume_lab); |
| } |
| } |
| |
| void Mir2Lir::HandleIntrinsicLaunchPads() { |
| int num_elems = intrinsic_launchpads_.Size(); |
| for (int i = 0; i < num_elems; i++) { |
| ResetRegPool(); |
| ResetDefTracking(); |
| LIR* lab = intrinsic_launchpads_.Get(i); |
| CallInfo* info = reinterpret_cast<CallInfo*>(lab->operands[0]); |
| current_dalvik_offset_ = info->offset; |
| AppendLIR(lab); |
| // NOTE: GenInvoke handles MarkSafepointPC |
| GenInvoke(info); |
| LIR* resume_lab = reinterpret_cast<LIR*>(lab->operands[2]); |
| if (resume_lab != NULL) { |
| OpUnconditionalBranch(resume_lab); |
| } |
| } |
| } |
| |
| void Mir2Lir::HandleThrowLaunchPads() { |
| int num_elems = throw_launchpads_.Size(); |
| for (int i = 0; i < num_elems; i++) { |
| ResetRegPool(); |
| ResetDefTracking(); |
| LIR* lab = throw_launchpads_.Get(i); |
| current_dalvik_offset_ = lab->operands[1]; |
| AppendLIR(lab); |
| ThreadOffset func_offset(-1); |
| int v1 = lab->operands[2]; |
| int v2 = lab->operands[3]; |
| bool target_x86 = (cu_->instruction_set == kX86); |
| switch (lab->operands[0]) { |
| case kThrowNullPointer: |
| func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowNullPointer); |
| break; |
| case kThrowConstantArrayBounds: // v1 is length reg (for Arm/Mips), v2 constant index |
| // v1 holds the constant array index. Mips/Arm uses v2 for length, x86 reloads. |
| if (target_x86) { |
| OpRegMem(kOpMov, TargetReg(kArg1), v1, mirror::Array::LengthOffset().Int32Value()); |
| } else { |
| OpRegCopy(TargetReg(kArg1), v1); |
| } |
| // Make sure the following LoadConstant doesn't mess with kArg1. |
| LockTemp(TargetReg(kArg1)); |
| LoadConstant(TargetReg(kArg0), v2); |
| func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowArrayBounds); |
| break; |
| case kThrowArrayBounds: |
| // Move v1 (array index) to kArg0 and v2 (array length) to kArg1 |
| if (v2 != TargetReg(kArg0)) { |
| OpRegCopy(TargetReg(kArg0), v1); |
| if (target_x86) { |
| // x86 leaves the array pointer in v2, so load the array length that the handler expects |
| OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value()); |
| } else { |
| OpRegCopy(TargetReg(kArg1), v2); |
| } |
| } else { |
| if (v1 == TargetReg(kArg1)) { |
| // Swap v1 and v2, using kArg2 as a temp |
| OpRegCopy(TargetReg(kArg2), v1); |
| if (target_x86) { |
| // x86 leaves the array pointer in v2; load the array length that the handler expects |
| OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value()); |
| } else { |
| OpRegCopy(TargetReg(kArg1), v2); |
| } |
| OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); |
| } else { |
| if (target_x86) { |
| // x86 leaves the array pointer in v2; load the array length that the handler expects |
| OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value()); |
| } else { |
| OpRegCopy(TargetReg(kArg1), v2); |
| } |
| OpRegCopy(TargetReg(kArg0), v1); |
| } |
| } |
| func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowArrayBounds); |
| break; |
| case kThrowDivZero: |
| func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowDivZero); |
| break; |
| case kThrowNoSuchMethod: |
| OpRegCopy(TargetReg(kArg0), v1); |
| func_offset = |
| QUICK_ENTRYPOINT_OFFSET(pThrowNoSuchMethod); |
| break; |
| case kThrowStackOverflow: |
| func_offset = QUICK_ENTRYPOINT_OFFSET(pThrowStackOverflow); |
| // Restore stack alignment |
| if (target_x86) { |
| OpRegImm(kOpAdd, TargetReg(kSp), frame_size_); |
| } else { |
| OpRegImm(kOpAdd, TargetReg(kSp), (num_core_spills_ + num_fp_spills_) * 4); |
| } |
| break; |
| default: |
| LOG(FATAL) << "Unexpected throw kind: " << lab->operands[0]; |
| } |
| ClobberCalleeSave(); |
| int r_tgt = CallHelperSetup(func_offset); |
| CallHelper(r_tgt, func_offset, true /* MarkSafepointPC */); |
| } |
| } |
| |
| void Mir2Lir::GenIGet(uint32_t field_idx, int opt_flags, OpSize size, |
| RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, |
| bool is_object) { |
| int field_offset; |
| bool is_volatile; |
| |
| bool fast_path = FastInstance(field_idx, false, &field_offset, &is_volatile); |
| |
| if (fast_path && !SLOW_FIELD_PATH) { |
| RegLocation rl_result; |
| RegisterClass reg_class = oat_reg_class_by_size(size); |
| DCHECK_GE(field_offset, 0); |
| rl_obj = LoadValue(rl_obj, kCoreReg); |
| if (is_long_or_double) { |
| DCHECK(rl_dest.wide); |
| GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); |
| if (cu_->instruction_set == kX86) { |
| rl_result = EvalLoc(rl_dest, reg_class, true); |
| GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); |
| LoadBaseDispWide(rl_obj.low_reg, field_offset, rl_result.low_reg, |
| rl_result.high_reg, rl_obj.s_reg_low); |
| if (is_volatile) { |
| GenMemBarrier(kLoadLoad); |
| } |
| } else { |
| int reg_ptr = AllocTemp(); |
| OpRegRegImm(kOpAdd, reg_ptr, rl_obj.low_reg, field_offset); |
| rl_result = EvalLoc(rl_dest, reg_class, true); |
| LoadBaseDispWide(reg_ptr, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG); |
| if (is_volatile) { |
| GenMemBarrier(kLoadLoad); |
| } |
| FreeTemp(reg_ptr); |
| } |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| rl_result = EvalLoc(rl_dest, reg_class, true); |
| GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); |
| LoadBaseDisp(rl_obj.low_reg, field_offset, rl_result.low_reg, |
| kWord, rl_obj.s_reg_low); |
| if (is_volatile) { |
| GenMemBarrier(kLoadLoad); |
| } |
| StoreValue(rl_dest, rl_result); |
| } |
| } else { |
| ThreadOffset getterOffset = |
| is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pGet64Instance) |
| : (is_object ? QUICK_ENTRYPOINT_OFFSET(pGetObjInstance) |
| : QUICK_ENTRYPOINT_OFFSET(pGet32Instance)); |
| CallRuntimeHelperImmRegLocation(getterOffset, field_idx, rl_obj, true); |
| if (is_long_or_double) { |
| RegLocation rl_result = GetReturnWide(rl_dest.fp); |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| RegLocation rl_result = GetReturn(rl_dest.fp); |
| StoreValue(rl_dest, rl_result); |
| } |
| } |
| } |
| |
| void Mir2Lir::GenIPut(uint32_t field_idx, int opt_flags, OpSize size, |
| RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, |
| bool is_object) { |
| int field_offset; |
| bool is_volatile; |
| |
| bool fast_path = FastInstance(field_idx, true, &field_offset, &is_volatile); |
| if (fast_path && !SLOW_FIELD_PATH) { |
| RegisterClass reg_class = oat_reg_class_by_size(size); |
| DCHECK_GE(field_offset, 0); |
| rl_obj = LoadValue(rl_obj, kCoreReg); |
| if (is_long_or_double) { |
| int reg_ptr; |
| rl_src = LoadValueWide(rl_src, kAnyReg); |
| GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); |
| reg_ptr = AllocTemp(); |
| OpRegRegImm(kOpAdd, reg_ptr, rl_obj.low_reg, field_offset); |
| if (is_volatile) { |
| GenMemBarrier(kStoreStore); |
| } |
| StoreBaseDispWide(reg_ptr, 0, rl_src.low_reg, rl_src.high_reg); |
| if (is_volatile) { |
| GenMemBarrier(kLoadLoad); |
| } |
| FreeTemp(reg_ptr); |
| } else { |
| rl_src = LoadValue(rl_src, reg_class); |
| GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); |
| if (is_volatile) { |
| GenMemBarrier(kStoreStore); |
| } |
| StoreBaseDisp(rl_obj.low_reg, field_offset, rl_src.low_reg, kWord); |
| if (is_volatile) { |
| GenMemBarrier(kLoadLoad); |
| } |
| if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) { |
| MarkGCCard(rl_src.low_reg, rl_obj.low_reg); |
| } |
| } |
| } else { |
| ThreadOffset setter_offset = |
| is_long_or_double ? QUICK_ENTRYPOINT_OFFSET(pSet64Instance) |
| : (is_object ? QUICK_ENTRYPOINT_OFFSET(pSetObjInstance) |
| : QUICK_ENTRYPOINT_OFFSET(pSet32Instance)); |
| CallRuntimeHelperImmRegLocationRegLocation(setter_offset, field_idx, rl_obj, rl_src, true); |
| } |
| } |
| |
| void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) { |
| RegLocation rl_method = LoadCurrMethod(); |
| int res_reg = AllocTemp(); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, |
| *cu_->dex_file, |
| type_idx)) { |
| // Call out to helper which resolves type and verifies access. |
| // Resolved type returned in kRet0. |
| CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess), |
| type_idx, rl_method.low_reg, true); |
| RegLocation rl_result = GetReturn(false); |
| StoreValue(rl_dest, rl_result); |
| } else { |
| // We're don't need access checks, load type from dex cache |
| int32_t dex_cache_offset = |
| mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(); |
| LoadWordDisp(rl_method.low_reg, dex_cache_offset, res_reg); |
| int32_t offset_of_type = |
| mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*) |
| * type_idx); |
| LoadWordDisp(res_reg, offset_of_type, rl_result.low_reg); |
| if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, |
| type_idx) || SLOW_TYPE_PATH) { |
| // Slow path, at runtime test if type is null and if so initialize |
| FlushAllRegs(); |
| LIR* branch1 = OpCmpImmBranch(kCondEq, rl_result.low_reg, 0, NULL); |
| // Resolved, store and hop over following code |
| StoreValue(rl_dest, rl_result); |
| /* |
| * Because we have stores of the target value on two paths, |
| * clobber temp tracking for the destination using the ssa name |
| */ |
| ClobberSReg(rl_dest.s_reg_low); |
| LIR* branch2 = OpUnconditionalBranch(0); |
| // TUNING: move slow path to end & remove unconditional branch |
| LIR* target1 = NewLIR0(kPseudoTargetLabel); |
| // Call out to helper, which will return resolved type in kArg0 |
| CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, |
| rl_method.low_reg, true); |
| RegLocation rl_result = GetReturn(false); |
| StoreValue(rl_dest, rl_result); |
| /* |
| * Because we have stores of the target value on two paths, |
| * clobber temp tracking for the destination using the ssa name |
| */ |
| ClobberSReg(rl_dest.s_reg_low); |
| // Rejoin code paths |
| LIR* target2 = NewLIR0(kPseudoTargetLabel); |
| branch1->target = target1; |
| branch2->target = target2; |
| } else { |
| // Fast path, we're done - just store result |
| StoreValue(rl_dest, rl_result); |
| } |
| } |
| } |
| |
| void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) { |
| /* NOTE: Most strings should be available at compile time */ |
| int32_t offset_of_string = mirror::Array::DataOffset(sizeof(mirror::String*)).Int32Value() + |
| (sizeof(mirror::String*) * string_idx); |
| if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache( |
| *cu_->dex_file, string_idx) || SLOW_STRING_PATH) { |
| // slow path, resolve string if not in dex cache |
| FlushAllRegs(); |
| LockCallTemps(); // Using explicit registers |
| LoadCurrMethodDirect(TargetReg(kArg2)); |
| LoadWordDisp(TargetReg(kArg2), |
| mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), TargetReg(kArg0)); |
| // Might call out to helper, which will return resolved string in kRet0 |
| int r_tgt = CallHelperSetup(QUICK_ENTRYPOINT_OFFSET(pResolveString)); |
| LoadWordDisp(TargetReg(kArg0), offset_of_string, TargetReg(kRet0)); |
| LoadConstant(TargetReg(kArg1), string_idx); |
| if (cu_->instruction_set == kThumb2) { |
| OpRegImm(kOpCmp, TargetReg(kRet0), 0); // Is resolved? |
| GenBarrier(); |
| // For testing, always force through helper |
| if (!EXERCISE_SLOWEST_STRING_PATH) { |
| OpIT(kCondEq, "T"); |
| } |
| OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .eq |
| LIR* call_inst = OpReg(kOpBlx, r_tgt); // .eq, helper(Method*, string_idx) |
| MarkSafepointPC(call_inst); |
| FreeTemp(r_tgt); |
| } else if (cu_->instruction_set == kMips) { |
| LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kRet0), 0, NULL); |
| OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .eq |
| LIR* call_inst = OpReg(kOpBlx, r_tgt); |
| MarkSafepointPC(call_inst); |
| FreeTemp(r_tgt); |
| LIR* target = NewLIR0(kPseudoTargetLabel); |
| branch->target = target; |
| } else { |
| DCHECK_EQ(cu_->instruction_set, kX86); |
| CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(pResolveString), TargetReg(kArg2), |
| TargetReg(kArg1), true); |
| } |
| GenBarrier(); |
| StoreValue(rl_dest, GetReturn(false)); |
| } else { |
| RegLocation rl_method = LoadCurrMethod(); |
| int res_reg = AllocTemp(); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| LoadWordDisp(rl_method.low_reg, |
| mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), res_reg); |
| LoadWordDisp(res_reg, offset_of_string, rl_result.low_reg); |
| StoreValue(rl_dest, rl_result); |
| } |
| } |
| |
| /* |
| * Let helper function take care of everything. Will |
| * call Class::NewInstanceFromCode(type_idx, method); |
| */ |
| void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) { |
| FlushAllRegs(); /* Everything to home location */ |
| // alloc will always check for resolution, do we also need to verify |
| // access because the verifier was unable to? |
| ThreadOffset func_offset(-1); |
| if (cu_->compiler_driver->CanAccessInstantiableTypeWithoutChecks( |
| cu_->method_idx, *cu_->dex_file, type_idx)) { |
| func_offset = QUICK_ENTRYPOINT_OFFSET(pAllocObject); |
| } else { |
| func_offset = QUICK_ENTRYPOINT_OFFSET(pAllocObjectWithAccessCheck); |
| } |
| CallRuntimeHelperImmMethod(func_offset, type_idx, true); |
| RegLocation rl_result = GetReturn(false); |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| void Mir2Lir::GenThrow(RegLocation rl_src) { |
| FlushAllRegs(); |
| CallRuntimeHelperRegLocation(QUICK_ENTRYPOINT_OFFSET(pDeliverException), rl_src, true); |
| } |
| |
| // For final classes there are no sub-classes to check and so we can answer the instance-of |
| // question with simple comparisons. |
| void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest, |
| RegLocation rl_src) { |
| RegLocation object = LoadValue(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| int result_reg = rl_result.low_reg; |
| if (result_reg == object.low_reg) { |
| result_reg = AllocTypedTemp(false, kCoreReg); |
| } |
| LoadConstant(result_reg, 0); // assume false |
| LIR* null_branchover = OpCmpImmBranch(kCondEq, object.low_reg, 0, NULL); |
| |
| int check_class = AllocTypedTemp(false, kCoreReg); |
| int object_class = AllocTypedTemp(false, kCoreReg); |
| |
| LoadCurrMethodDirect(check_class); |
| if (use_declaring_class) { |
| LoadWordDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), |
| check_class); |
| LoadWordDisp(object.low_reg, mirror::Object::ClassOffset().Int32Value(), object_class); |
| } else { |
| LoadWordDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), |
| check_class); |
| LoadWordDisp(object.low_reg, mirror::Object::ClassOffset().Int32Value(), object_class); |
| int32_t offset_of_type = |
| mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + |
| (sizeof(mirror::Class*) * type_idx); |
| LoadWordDisp(check_class, offset_of_type, check_class); |
| } |
| |
| LIR* ne_branchover = NULL; |
| if (cu_->instruction_set == kThumb2) { |
| OpRegReg(kOpCmp, check_class, object_class); // Same? |
| OpIT(kCondEq, ""); // if-convert the test |
| LoadConstant(result_reg, 1); // .eq case - load true |
| } else { |
| ne_branchover = OpCmpBranch(kCondNe, check_class, object_class, NULL); |
| LoadConstant(result_reg, 1); // eq case - load true |
| } |
| LIR* target = NewLIR0(kPseudoTargetLabel); |
| null_branchover->target = target; |
| if (ne_branchover != NULL) { |
| ne_branchover->target = target; |
| } |
| FreeTemp(object_class); |
| FreeTemp(check_class); |
| if (IsTemp(result_reg)) { |
| OpRegCopy(rl_result.low_reg, result_reg); |
| FreeTemp(result_reg); |
| } |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final, |
| bool type_known_abstract, bool use_declaring_class, |
| bool can_assume_type_is_in_dex_cache, |
| uint32_t type_idx, RegLocation rl_dest, |
| RegLocation rl_src) { |
| FlushAllRegs(); |
| // May generate a call - use explicit registers |
| LockCallTemps(); |
| LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 <= current Method* |
| int class_reg = TargetReg(kArg2); // kArg2 will hold the Class* |
| if (needs_access_check) { |
| // Check we have access to type_idx and if not throw IllegalAccessError, |
| // returns Class* in kArg0 |
| CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess), |
| type_idx, true); |
| OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path |
| LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref |
| } else if (use_declaring_class) { |
| LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref |
| LoadWordDisp(TargetReg(kArg1), |
| mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg); |
| } else { |
| // Load dex cache entry into class_reg (kArg2) |
| LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref |
| LoadWordDisp(TargetReg(kArg1), |
| mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg); |
| int32_t offset_of_type = |
| mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*) |
| * type_idx); |
| LoadWordDisp(class_reg, offset_of_type, class_reg); |
| if (!can_assume_type_is_in_dex_cache) { |
| // Need to test presence of type in dex cache at runtime |
| LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL); |
| // Not resolved |
| // Call out to helper, which will return resolved type in kRet0 |
| CallRuntimeHelperImm(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, true); |
| OpRegCopy(TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path |
| LoadValueDirectFixed(rl_src, TargetReg(kArg0)); /* reload Ref */ |
| // Rejoin code paths |
| LIR* hop_target = NewLIR0(kPseudoTargetLabel); |
| hop_branch->target = hop_target; |
| } |
| } |
| /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */ |
| RegLocation rl_result = GetReturn(false); |
| if (cu_->instruction_set == kMips) { |
| // On MIPS rArg0 != rl_result, place false in result if branch is taken. |
| LoadConstant(rl_result.low_reg, 0); |
| } |
| LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL); |
| |
| /* load object->klass_ */ |
| DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0); |
| LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1)); |
| /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */ |
| LIR* branchover = NULL; |
| if (type_known_final) { |
| // rl_result == ref == null == 0. |
| if (cu_->instruction_set == kThumb2) { |
| OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2)); // Same? |
| OpIT(kCondEq, "E"); // if-convert the test |
| LoadConstant(rl_result.low_reg, 1); // .eq case - load true |
| LoadConstant(rl_result.low_reg, 0); // .ne case - load false |
| } else { |
| LoadConstant(rl_result.low_reg, 0); // ne case - load false |
| branchover = OpCmpBranch(kCondNe, TargetReg(kArg1), TargetReg(kArg2), NULL); |
| LoadConstant(rl_result.low_reg, 1); // eq case - load true |
| } |
| } else { |
| if (cu_->instruction_set == kThumb2) { |
| int r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial)); |
| if (!type_known_abstract) { |
| /* Uses conditional nullification */ |
| OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2)); // Same? |
| OpIT(kCondEq, "EE"); // if-convert the test |
| LoadConstant(TargetReg(kArg0), 1); // .eq case - load true |
| } |
| OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .ne case - arg0 <= class |
| OpReg(kOpBlx, r_tgt); // .ne case: helper(class, ref->class) |
| FreeTemp(r_tgt); |
| } else { |
| if (!type_known_abstract) { |
| /* Uses branchovers */ |
| LoadConstant(rl_result.low_reg, 1); // assume true |
| branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL); |
| } |
| if (cu_->instruction_set != kX86) { |
| int r_tgt = LoadHelper(QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial)); |
| OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .ne case - arg0 <= class |
| OpReg(kOpBlx, r_tgt); // .ne case: helper(class, ref->class) |
| FreeTemp(r_tgt); |
| } else { |
| OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); |
| OpThreadMem(kOpBlx, QUICK_ENTRYPOINT_OFFSET(pInstanceofNonTrivial)); |
| } |
| } |
| } |
| // TODO: only clobber when type isn't final? |
| ClobberCalleeSave(); |
| /* branch targets here */ |
| LIR* target = NewLIR0(kPseudoTargetLabel); |
| StoreValue(rl_dest, rl_result); |
| branch1->target = target; |
| if (branchover != NULL) { |
| branchover->target = target; |
| } |
| } |
| |
| void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) { |
| bool type_known_final, type_known_abstract, use_declaring_class; |
| bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, |
| *cu_->dex_file, |
| type_idx, |
| &type_known_final, |
| &type_known_abstract, |
| &use_declaring_class); |
| bool can_assume_type_is_in_dex_cache = !needs_access_check && |
| cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx); |
| |
| if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) { |
| GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src); |
| } else { |
| GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract, |
| use_declaring_class, can_assume_type_is_in_dex_cache, |
| type_idx, rl_dest, rl_src); |
| } |
| } |
| |
| void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) { |
| bool type_known_final, type_known_abstract, use_declaring_class; |
| bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, |
| *cu_->dex_file, |
| type_idx, |
| &type_known_final, |
| &type_known_abstract, |
| &use_declaring_class); |
| // Note: currently type_known_final is unused, as optimizing will only improve the performance |
| // of the exception throw path. |
| DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit(); |
| const MethodReference mr(cu->GetDexFile(), cu->GetDexMethodIndex()); |
| if (!needs_access_check && cu_->compiler_driver->IsSafeCast(mr, insn_idx)) { |
| // Verifier type analysis proved this check cast would never cause an exception. |
| return; |
| } |
| FlushAllRegs(); |
| // May generate a call - use explicit registers |
| LockCallTemps(); |
| LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 <= current Method* |
| int class_reg = TargetReg(kArg2); // kArg2 will hold the Class* |
| if (needs_access_check) { |
| // Check we have access to type_idx and if not throw IllegalAccessError, |
| // returns Class* in kRet0 |
| // InitializeTypeAndVerifyAccess(idx, method) |
| CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccess), |
| type_idx, TargetReg(kArg1), true); |
| OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path |
| } else if (use_declaring_class) { |
| LoadWordDisp(TargetReg(kArg1), |
| mirror::ArtMethod::DeclaringClassOffset().Int32Value(), class_reg); |
| } else { |
| // Load dex cache entry into class_reg (kArg2) |
| LoadWordDisp(TargetReg(kArg1), |
| mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg); |
| int32_t offset_of_type = |
| mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + |
| (sizeof(mirror::Class*) * type_idx); |
| LoadWordDisp(class_reg, offset_of_type, class_reg); |
| if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) { |
| // Need to test presence of type in dex cache at runtime |
| LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL); |
| // Not resolved |
| // Call out to helper, which will return resolved type in kArg0 |
| // InitializeTypeFromCode(idx, method) |
| CallRuntimeHelperImmReg(QUICK_ENTRYPOINT_OFFSET(pInitializeType), type_idx, |
| TargetReg(kArg1), true); |
| OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path |
| // Rejoin code paths |
| LIR* hop_target = NewLIR0(kPseudoTargetLabel); |
| hop_branch->target = hop_target; |
| } |
| } |
| // At this point, class_reg (kArg2) has class |
| LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref |
| /* Null is OK - continue */ |
| LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL); |
| /* load object->klass_ */ |
| DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0); |
| LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1)); |
| /* kArg1 now contains object->klass_ */ |
| LIR* branch2 = NULL; |
| if (!type_known_abstract) { |
| branch2 = OpCmpBranch(kCondEq, TargetReg(kArg1), class_reg, NULL); |
| } |
| CallRuntimeHelperRegReg(QUICK_ENTRYPOINT_OFFSET(pCheckCast), TargetReg(kArg1), |
| TargetReg(kArg2), true); |
| /* branch target here */ |
| LIR* target = NewLIR0(kPseudoTargetLabel); |
| branch1->target = target; |
| if (branch2 != NULL) { |
| branch2->target = target; |
| } |
| } |
| |
| void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2) { |
| RegLocation rl_result; |
| if (cu_->instruction_set == kThumb2) { |
| /* |
| * NOTE: This is the one place in the code in which we might have |
| * as many as six live temporary registers. There are 5 in the normal |
| * set for Arm. Until we have spill capabilities, temporarily add |
| * lr to the temp set. It is safe to do this locally, but note that |
| * lr is used explicitly elsewhere in the code generator and cannot |
| * normally be used as a general temp register. |
| */ |
| MarkTemp(TargetReg(kLr)); // Add lr to the temp pool |
| FreeTemp(TargetReg(kLr)); // and make it available |
| } |
| rl_src1 = LoadValueWide(rl_src1, kCoreReg); |
| rl_src2 = LoadValueWide(rl_src2, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| // The longs may overlap - use intermediate temp if so |
| if ((rl_result.low_reg == rl_src1.high_reg) || (rl_result.low_reg == rl_src2.high_reg)) { |
| int t_reg = AllocTemp(); |
| OpRegRegReg(first_op, t_reg, rl_src1.low_reg, rl_src2.low_reg); |
| OpRegRegReg(second_op, rl_result.high_reg, rl_src1.high_reg, rl_src2.high_reg); |
| OpRegCopy(rl_result.low_reg, t_reg); |
| FreeTemp(t_reg); |
| } else { |
| OpRegRegReg(first_op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg); |
| OpRegRegReg(second_op, rl_result.high_reg, rl_src1.high_reg, |
| rl_src2.high_reg); |
| } |
| /* |
| * NOTE: If rl_dest refers to a frame variable in a large frame, the |
| * following StoreValueWide might need to allocate a temp register. |
| * To further work around the lack of a spill capability, explicitly |
| * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result. |
| * Remove when spill is functional. |
| */ |
| FreeRegLocTemps(rl_result, rl_src1); |
| FreeRegLocTemps(rl_result, rl_src2); |
| StoreValueWide(rl_dest, rl_result); |
| if (cu_->instruction_set == kThumb2) { |
| Clobber(TargetReg(kLr)); |
| UnmarkTemp(TargetReg(kLr)); // Remove lr from the temp pool |
| } |
| } |
| |
| |
| void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_shift) { |
| ThreadOffset func_offset(-1); |
| |
| switch (opcode) { |
| case Instruction::SHL_LONG: |
| case Instruction::SHL_LONG_2ADDR: |
| func_offset = QUICK_ENTRYPOINT_OFFSET(pShlLong); |
| break; |
| case Instruction::SHR_LONG: |
| case Instruction::SHR_LONG_2ADDR: |
| func_offset = QUICK_ENTRYPOINT_OFFSET(pShrLong); |
| break; |
| case Instruction::USHR_LONG: |
| case Instruction::USHR_LONG_2ADDR: |
| func_offset = QUICK_ENTRYPOINT_OFFSET(pUshrLong); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected case"; |
| } |
| FlushAllRegs(); /* Send everything to home location */ |
| CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_shift, false); |
| RegLocation rl_result = GetReturnWide(false); |
| StoreValueWide(rl_dest, rl_result); |
| } |
| |
| |
| void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2) { |
| OpKind op = kOpBkpt; |
| bool is_div_rem = false; |
| bool check_zero = false; |
| bool unary = false; |
| RegLocation rl_result; |
| bool shift_op = false; |
| switch (opcode) { |
| case Instruction::NEG_INT: |
| op = kOpNeg; |
| unary = true; |
| break; |
| case Instruction::NOT_INT: |
| op = kOpMvn; |
| unary = true; |
| break; |
| case Instruction::ADD_INT: |
| case Instruction::ADD_INT_2ADDR: |
| op = kOpAdd; |
| break; |
| case Instruction::SUB_INT: |
| case Instruction::SUB_INT_2ADDR: |
| op = kOpSub; |
| break; |
| case Instruction::MUL_INT: |
| case Instruction::MUL_INT_2ADDR: |
| op = kOpMul; |
| break; |
| case Instruction::DIV_INT: |
| case Instruction::DIV_INT_2ADDR: |
| check_zero = true; |
| op = kOpDiv; |
| is_div_rem = true; |
| break; |
| /* NOTE: returns in kArg1 */ |
| case Instruction::REM_INT: |
| case Instruction::REM_INT_2ADDR: |
| check_zero = true; |
| op = kOpRem; |
| is_div_rem = true; |
| break; |
| case Instruction::AND_INT: |
| case Instruction::AND_INT_2ADDR: |
| op = kOpAnd; |
| break; |
| case Instruction::OR_INT: |
| case Instruction::OR_INT_2ADDR: |
| op = kOpOr; |
| break; |
| case Instruction::XOR_INT: |
| case Instruction::XOR_INT_2ADDR: |
| op = kOpXor; |
| break; |
| case Instruction::SHL_INT: |
| case Instruction::SHL_INT_2ADDR: |
| shift_op = true; |
| op = kOpLsl; |
| break; |
| case Instruction::SHR_INT: |
| case Instruction::SHR_INT_2ADDR: |
| shift_op = true; |
| op = kOpAsr; |
| break; |
| case Instruction::USHR_INT: |
| case Instruction::USHR_INT_2ADDR: |
| shift_op = true; |
| op = kOpLsr; |
| break; |
| default: |
| LOG(FATAL) << "Invalid word arith op: " << opcode; |
| } |
| if (!is_div_rem) { |
| if (unary) { |
| rl_src1 = LoadValue(rl_src1, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegReg(op, rl_result.low_reg, rl_src1.low_reg); |
| } else { |
| if (shift_op) { |
| int t_reg = INVALID_REG; |
| if (cu_->instruction_set == kX86) { |
| // X86 doesn't require masking and must use ECX |
| t_reg = TargetReg(kCount); // rCX |
| LoadValueDirectFixed(rl_src2, t_reg); |
| } else { |
| rl_src2 = LoadValue(rl_src2, kCoreReg); |
| t_reg = AllocTemp(); |
| OpRegRegImm(kOpAnd, t_reg, rl_src2.low_reg, 31); |
| } |
| rl_src1 = LoadValue(rl_src1, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegRegReg(op, rl_result.low_reg, rl_src1.low_reg, t_reg); |
| FreeTemp(t_reg); |
| } else { |
| rl_src1 = LoadValue(rl_src1, kCoreReg); |
| rl_src2 = LoadValue(rl_src2, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| OpRegRegReg(op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg); |
| } |
| } |
| StoreValue(rl_dest, rl_result); |
| } else { |
| if (cu_->instruction_set == kMips) { |
| rl_src1 = LoadValue(rl_src1, kCoreReg); |
| rl_src2 = LoadValue(rl_src2, kCoreReg); |
| if (check_zero) { |
| GenImmedCheck(kCondEq, rl_src2.low_reg, 0, kThrowDivZero); |
| } |
| rl_result = GenDivRem(rl_dest, rl_src1.low_reg, rl_src2.low_reg, op == kOpDiv); |
| } else { |
| ThreadOffset func_offset = QUICK_ENTRYPOINT_OFFSET(pIdivmod); |
| FlushAllRegs(); /* Send everything to home location */ |
| LoadValueDirectFixed(rl_src2, TargetReg(kArg1)); |
| int r_tgt = CallHelperSetup(func_offset); |
| LoadValueDirectFixed(rl_src1, TargetReg(kArg0)); |
| if (check_zero) { |
| GenImmedCheck(kCondEq, TargetReg(kArg1), 0, kThrowDivZero); |
| } |
| // NOTE: callout here is not a safepoint |
| CallHelper(r_tgt, func_offset, false /* not a safepoint */); |
| if (op == kOpDiv) |
| rl_result = GetReturn(false); |
| else |
| rl_result = GetReturnAlt(); |
| } |
| StoreValue(rl_dest, rl_result); |
| } |
| } |
| |
| /* |
| * The following are the first-level codegen routines that analyze the format |
| * of each bytecode then either dispatch special purpose codegen routines |
| * or produce corresponding Thumb instructions directly. |
| */ |
| |
| static bool IsPowerOfTwo(int x) { |
| return (x & (x - 1)) == 0; |
| } |
| |
| // Returns true if no more than two bits are set in 'x'. |
| static bool IsPopCountLE2(unsigned int x) { |
| x &= x - 1; |
| return (x & (x - 1)) == 0; |
| } |
| |
| // Returns the index of the lowest set bit in 'x'. |
| static int LowestSetBit(unsigned int x) { |
| int bit_posn = 0; |
| while ((x & 0xf) == 0) { |
| bit_posn += 4; |
| x >>= 4; |
| } |
| while ((x & 1) == 0) { |
| bit_posn++; |
| x >>= 1; |
| } |
| return bit_posn; |
| } |
| |
| // Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit' |
| // and store the result in 'rl_dest'. |
| bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div, |
| RegLocation rl_src, RegLocation rl_dest, int lit) { |
| if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) { |
| return false; |
| } |
| // No divide instruction for Arm, so check for more special cases |
| if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) { |
| return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit); |
| } |
| int k = LowestSetBit(lit); |
| if (k >= 30) { |
| // Avoid special cases. |
| return false; |
| } |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| if (is_div) { |
| int t_reg = AllocTemp(); |
| if (lit == 2) { |
| // Division by 2 is by far the most common division by constant. |
| OpRegRegImm(kOpLsr, t_reg, rl_src.low_reg, 32 - k); |
| OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.low_reg); |
| OpRegRegImm(kOpAsr, rl_result.low_reg, t_reg, k); |
| } else { |
| OpRegRegImm(kOpAsr, t_reg, rl_src.low_reg, 31); |
| OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k); |
| OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.low_reg); |
| OpRegRegImm(kOpAsr, rl_result.low_reg, t_reg, k); |
| } |
| } else { |
| int t_reg1 = AllocTemp(); |
| int t_reg2 = AllocTemp(); |
| if (lit == 2) { |
| OpRegRegImm(kOpLsr, t_reg1, rl_src.low_reg, 32 - k); |
| OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.low_reg); |
| OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1); |
| OpRegRegReg(kOpSub, rl_result.low_reg, t_reg2, t_reg1); |
| } else { |
| OpRegRegImm(kOpAsr, t_reg1, rl_src.low_reg, 31); |
| OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k); |
| OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.low_reg); |
| OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1); |
| OpRegRegReg(kOpSub, rl_result.low_reg, t_reg2, t_reg1); |
| } |
| } |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| // Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit' |
| // and store the result in 'rl_dest'. |
| bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) { |
| // Can we simplify this multiplication? |
| bool power_of_two = false; |
| bool pop_count_le2 = false; |
| bool power_of_two_minus_one = false; |
| if (lit < 2) { |
| // Avoid special cases. |
| return false; |
| } else if (IsPowerOfTwo(lit)) { |
| power_of_two = true; |
| } else if (IsPopCountLE2(lit)) { |
| pop_count_le2 = true; |
| } else if (IsPowerOfTwo(lit + 1)) { |
| power_of_two_minus_one = true; |
| } else { |
| return false; |
| } |
| rl_src = LoadValue(rl_src, kCoreReg); |
| RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| if (power_of_two) { |
| // Shift. |
| OpRegRegImm(kOpLsl, rl_result.low_reg, rl_src.low_reg, LowestSetBit(lit)); |
| } else if (pop_count_le2) { |
| // Shift and add and shift. |
| int first_bit = LowestSetBit(lit); |
| int second_bit = LowestSetBit(lit ^ (1 << first_bit)); |
| GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit); |
| } else { |
| // Reverse subtract: (src << (shift + 1)) - src. |
| DCHECK(power_of_two_minus_one); |
| // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1) |
| int t_reg = AllocTemp(); |
| OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, LowestSetBit(lit + 1)); |
| OpRegRegReg(kOpSub, rl_result.low_reg, t_reg, rl_src.low_reg); |
| } |
| StoreValue(rl_dest, rl_result); |
| return true; |
| } |
| |
| void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src, |
| int lit) { |
| RegLocation rl_result; |
| OpKind op = static_cast<OpKind>(0); /* Make gcc happy */ |
| int shift_op = false; |
| bool is_div = false; |
| |
| switch (opcode) { |
| case Instruction::RSUB_INT_LIT8: |
| case Instruction::RSUB_INT: { |
| rl_src = LoadValue(rl_src, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| if (cu_->instruction_set == kThumb2) { |
| OpRegRegImm(kOpRsub, rl_result.low_reg, rl_src.low_reg, lit); |
| } else { |
| OpRegReg(kOpNeg, rl_result.low_reg, rl_src.low_reg); |
| OpRegImm(kOpAdd, rl_result.low_reg, lit); |
| } |
| StoreValue(rl_dest, rl_result); |
| return; |
| } |
| |
| case Instruction::SUB_INT: |
| case Instruction::SUB_INT_2ADDR: |
| lit = -lit; |
| // Intended fallthrough |
| case Instruction::ADD_INT: |
| case Instruction::ADD_INT_2ADDR: |
| case Instruction::ADD_INT_LIT8: |
| case Instruction::ADD_INT_LIT16: |
| op = kOpAdd; |
| break; |
| case Instruction::MUL_INT: |
| case Instruction::MUL_INT_2ADDR: |
| case Instruction::MUL_INT_LIT8: |
| case Instruction::MUL_INT_LIT16: { |
| if (HandleEasyMultiply(rl_src, rl_dest, lit)) { |
| return; |
| } |
| op = kOpMul; |
| break; |
| } |
| case Instruction::AND_INT: |
| case Instruction::AND_INT_2ADDR: |
| case Instruction::AND_INT_LIT8: |
| case Instruction::AND_INT_LIT16: |
| op = kOpAnd; |
| break; |
| case Instruction::OR_INT: |
| case Instruction::OR_INT_2ADDR: |
| case Instruction::OR_INT_LIT8: |
| case Instruction::OR_INT_LIT16: |
| op = kOpOr; |
| break; |
| case Instruction::XOR_INT: |
| case Instruction::XOR_INT_2ADDR: |
| case Instruction::XOR_INT_LIT8: |
| case Instruction::XOR_INT_LIT16: |
| op = kOpXor; |
| break; |
| case Instruction::SHL_INT_LIT8: |
| case Instruction::SHL_INT: |
| case Instruction::SHL_INT_2ADDR: |
| lit &= 31; |
| shift_op = true; |
| op = kOpLsl; |
| break; |
| case Instruction::SHR_INT_LIT8: |
| case Instruction::SHR_INT: |
| case Instruction::SHR_INT_2ADDR: |
| lit &= 31; |
| shift_op = true; |
| op = kOpAsr; |
| break; |
| case Instruction::USHR_INT_LIT8: |
| case Instruction::USHR_INT: |
| case Instruction::USHR_INT_2ADDR: |
| lit &= 31; |
| shift_op = true; |
| op = kOpLsr; |
| break; |
| |
| case Instruction::DIV_INT: |
| case Instruction::DIV_INT_2ADDR: |
| case Instruction::DIV_INT_LIT8: |
| case Instruction::DIV_INT_LIT16: |
| case Instruction::REM_INT: |
| case Instruction::REM_INT_2ADDR: |
| case Instruction::REM_INT_LIT8: |
| case Instruction::REM_INT_LIT16: { |
| if (lit == 0) { |
| GenImmedCheck(kCondAl, 0, 0, kThrowDivZero); |
| return; |
| } |
| if ((opcode == Instruction::DIV_INT) || |
| (opcode == Instruction::DIV_INT_2ADDR) || |
| (opcode == Instruction::DIV_INT_LIT8) || |
| (opcode == Instruction::DIV_INT_LIT16)) { |
| is_div = true; |
| } else { |
| is_div = false; |
| } |
| if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) { |
| return; |
| } |
| if (cu_->instruction_set == kMips) { |
| rl_src = LoadValue(rl_src, kCoreReg); |
| rl_result = GenDivRemLit(rl_dest, rl_src.low_reg, lit, is_div); |
| } else { |
| FlushAllRegs(); /* Everything to home location */ |
| LoadValueDirectFixed(rl_src, TargetReg(kArg0)); |
| Clobber(TargetReg(kArg0)); |
| ThreadOffset func_offset = QUICK_ENTRYPOINT_OFFSET(pIdivmod); |
| CallRuntimeHelperRegImm(func_offset, TargetReg(kArg0), lit, false); |
| if (is_div) |
| rl_result = GetReturn(false); |
| else |
| rl_result = GetReturnAlt(); |
| } |
| StoreValue(rl_dest, rl_result); |
| return; |
| } |
| default: |
| LOG(FATAL) << "Unexpected opcode " << opcode; |
| } |
| rl_src = LoadValue(rl_src, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| // Avoid shifts by literal 0 - no support in Thumb. Change to copy |
| if (shift_op && (lit == 0)) { |
| OpRegCopy(rl_result.low_reg, rl_src.low_reg); |
| } else { |
| OpRegRegImm(op, rl_result.low_reg, rl_src.low_reg, lit); |
| } |
| StoreValue(rl_dest, rl_result); |
| } |
| |
| void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, |
| RegLocation rl_src1, RegLocation rl_src2) { |
| RegLocation rl_result; |
| OpKind first_op = kOpBkpt; |
| OpKind second_op = kOpBkpt; |
| bool call_out = false; |
| bool check_zero = false; |
| ThreadOffset func_offset(-1); |
| int ret_reg = TargetReg(kRet0); |
| |
| switch (opcode) { |
| case Instruction::NOT_LONG: |
| rl_src2 = LoadValueWide(rl_src2, kCoreReg); |
| rl_result = EvalLoc(rl_dest, kCoreReg, true); |
| // Check for destructive overlap |
| if (rl_result.low_reg == rl_src2.high_reg) { |
| int t_reg = AllocTemp(); |
| OpRegCopy(t_reg, rl_src2.high_reg); |
| OpRegReg(kOpMvn, rl_result.low_reg, rl_src2.low_reg); |
| OpRegReg(kOpMvn, rl_result.high_reg, t_reg); |
| FreeTemp(t_reg); |
| } else { |
| OpRegReg(kOpMvn, rl_result.low_reg, rl_src2.low_reg); |
| OpRegReg(kOpMvn, rl_result.high_reg, rl_src2.high_reg); |
| } |
| StoreValueWide(rl_dest, rl_result); |
| return; |
| case Instruction::ADD_LONG: |
| case Instruction::ADD_LONG_2ADDR: |
| if (cu_->instruction_set != kThumb2) { |
| GenAddLong(rl_dest, rl_src1, rl_src2); |
| return; |
| } |
| first_op = kOpAdd; |
| second_op = kOpAdc; |
| break; |
| case Instruction::SUB_LONG: |
| case Instruction::SUB_LONG_2ADDR: |
| if (cu_->instruction_set != kThumb2) { |
| GenSubLong(rl_dest, rl_src1, rl_src2); |
| return; |
| } |
| first_op = kOpSub; |
| second_op = kOpSbc; |
| break; |
| case Instruction::MUL_LONG: |
| case Instruction::MUL_LONG_2ADDR: |
| if (cu_->instruction_set == kThumb2) { |
| GenMulLong(rl_dest, rl_src1, rl_src2); |
| return; |
| } else { |
| call_out = true; |
| ret_reg = TargetReg(kRet0); |
| func_offset = QUICK_ENTRYPOINT_OFFSET(pLmul); |
| } |
| break; |
| case Instruction::DIV_LONG: |
| case Instruction::DIV_LONG_2ADDR: |
| call_out = true; |
| check_zero = true; |
| ret_reg = TargetReg(kRet0); |
| func_offset = QUICK_ENTRYPOINT_OFFSET(pLdiv); |
| break; |
| case Instruction::REM_LONG: |
| case Instruction::REM_LONG_2ADDR: |
| call_out = true; |
| check_zero = true; |
| func_offset = QUICK_ENTRYPOINT_OFFSET(pLdivmod); |
| /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */ |
| ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2) : TargetReg(kRet0); |
| break; |
| case Instruction::AND_LONG_2ADDR: |
| case Instruction::AND_LONG: |
| if (cu_->instruction_set == kX86) { |
| return GenAndLong(rl_dest, rl_src1, rl_src2); |
| } |
| first_op = kOpAnd; |
| second_op = kOpAnd; |
| break; |
| case Instruction::OR_LONG: |
| case Instruction::OR_LONG_2ADDR: |
| if (cu_->instruction_set == kX86) { |
| GenOrLong(rl_dest, rl_src1, rl_src2); |
| return; |
| } |
| first_op = kOpOr; |
| second_op = kOpOr; |
| break; |
| case Instruction::XOR_LONG: |
| case Instruction::XOR_LONG_2ADDR: |
| if (cu_->instruction_set == kX86) { |
| GenXorLong(rl_dest, rl_src1, rl_src2); |
| return; |
| } |
| first_op = kOpXor; |
| second_op = kOpXor; |
| break; |
| case Instruction::NEG_LONG: { |
| GenNegLong(rl_dest, rl_src2); |
| return; |
| } |
| default: |
| LOG(FATAL) << "Invalid long arith op"; |
| } |
| if (!call_out) { |
| GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2); |
| } else { |
| FlushAllRegs(); /* Send everything to home location */ |
| if (check_zero) { |
| LoadValueDirectWideFixed(rl_src2, TargetReg(kArg2), TargetReg(kArg3)); |
| int r_tgt = CallHelperSetup(func_offset); |
| GenDivZeroCheck(TargetReg(kArg2), TargetReg(kArg3)); |
| LoadValueDirectWideFixed(rl_src1, TargetReg(kArg0), TargetReg(kArg1)); |
| // NOTE: callout here is not a safepoint |
| CallHelper(r_tgt, func_offset, false /* not safepoint */); |
| } else { |
| CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_src2, false); |
| } |
| // Adjust return regs in to handle case of rem returning kArg2/kArg3 |
| if (ret_reg == TargetReg(kRet0)) |
| rl_result = GetReturnWide(false); |
| else |
| rl_result = GetReturnWideAlt(); |
| StoreValueWide(rl_dest, rl_result); |
| } |
| } |
| |
| void Mir2Lir::GenConversionCall(ThreadOffset func_offset, |
| RegLocation rl_dest, RegLocation rl_src) { |
| /* |
| * Don't optimize the register usage since it calls out to support |
| * functions |
| */ |
| FlushAllRegs(); /* Send everything to home location */ |
| if (rl_src.wide) { |
| LoadValueDirectWideFixed(rl_src, rl_src.fp ? TargetReg(kFArg0) : TargetReg(kArg0), |
| rl_src.fp ? TargetReg(kFArg1) : TargetReg(kArg1)); |
| } else { |
| LoadValueDirectFixed(rl_src, rl_src.fp ? TargetReg(kFArg0) : TargetReg(kArg0)); |
| } |
| CallRuntimeHelperRegLocation(func_offset, rl_src, false); |
| if (rl_dest.wide) { |
| RegLocation rl_result; |
| rl_result = GetReturnWide(rl_dest.fp); |
| StoreValueWide(rl_dest, rl_result); |
| } else { |
| RegLocation rl_result; |
| rl_result = GetReturn(rl_dest.fp); |
| StoreValue(rl_dest, rl_result); |
| } |
| } |
| |
| /* Check if we need to check for pending suspend request */ |
| void Mir2Lir::GenSuspendTest(int opt_flags) { |
| if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) { |
| return; |
| } |
| FlushAllRegs(); |
| LIR* branch = OpTestSuspend(NULL); |
| LIR* ret_lab = NewLIR0(kPseudoTargetLabel); |
| LIR* target = RawLIR(current_dalvik_offset_, kPseudoSuspendTarget, |
| reinterpret_cast<uintptr_t>(ret_lab), current_dalvik_offset_); |
| branch->target = target; |
| suspend_launchpads_.Insert(target); |
| } |
| |
| /* Check if we need to check for pending suspend request */ |
| void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) { |
| if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) { |
| OpUnconditionalBranch(target); |
| return; |
| } |
| OpTestSuspend(target); |
| LIR* launch_pad = |
| RawLIR(current_dalvik_offset_, kPseudoSuspendTarget, |
| reinterpret_cast<uintptr_t>(target), current_dalvik_offset_); |
| FlushAllRegs(); |
| OpUnconditionalBranch(launch_pad); |
| suspend_launchpads_.Insert(launch_pad); |
| } |
| |
| } // namespace art |