| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "intrinsics_arm64.h" |
| |
| #include "arch/arm64/instruction_set_features_arm64.h" |
| #include "art_method.h" |
| #include "code_generator_arm64.h" |
| #include "common_arm64.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "heap_poisoning.h" |
| #include "intrinsics.h" |
| #include "lock_word.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/reference.h" |
| #include "mirror/string-inl.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "thread-current-inl.h" |
| #include "utils/arm64/assembler_arm64.h" |
| |
| using namespace vixl::aarch64; // NOLINT(build/namespaces) |
| |
| // TODO(VIXL): Make VIXL compile with -Wshadow. |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wshadow" |
| #include "aarch64/disasm-aarch64.h" |
| #include "aarch64/macro-assembler-aarch64.h" |
| #pragma GCC diagnostic pop |
| |
| namespace art { |
| |
| namespace arm64 { |
| |
| using helpers::DRegisterFrom; |
| using helpers::FPRegisterFrom; |
| using helpers::HeapOperand; |
| using helpers::LocationFrom; |
| using helpers::OperandFrom; |
| using helpers::RegisterFrom; |
| using helpers::SRegisterFrom; |
| using helpers::WRegisterFrom; |
| using helpers::XRegisterFrom; |
| using helpers::InputRegisterAt; |
| using helpers::OutputRegister; |
| |
| namespace { |
| |
| ALWAYS_INLINE inline MemOperand AbsoluteHeapOperandFrom(Location location, size_t offset = 0) { |
| return MemOperand(XRegisterFrom(location), offset); |
| } |
| |
| } // namespace |
| |
| MacroAssembler* IntrinsicCodeGeneratorARM64::GetVIXLAssembler() { |
| return codegen_->GetVIXLAssembler(); |
| } |
| |
| ArenaAllocator* IntrinsicCodeGeneratorARM64::GetAllocator() { |
| return codegen_->GetGraph()->GetAllocator(); |
| } |
| |
| #define __ codegen->GetVIXLAssembler()-> |
| |
| static void MoveFromReturnRegister(Location trg, |
| DataType::Type type, |
| CodeGeneratorARM64* codegen) { |
| if (!trg.IsValid()) { |
| DCHECK(type == DataType::Type::kVoid); |
| return; |
| } |
| |
| DCHECK_NE(type, DataType::Type::kVoid); |
| |
| if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) { |
| Register trg_reg = RegisterFrom(trg, type); |
| Register res_reg = RegisterFrom(ARM64ReturnLocation(type), type); |
| __ Mov(trg_reg, res_reg, kDiscardForSameWReg); |
| } else { |
| FPRegister trg_reg = FPRegisterFrom(trg, type); |
| FPRegister res_reg = FPRegisterFrom(ARM64ReturnLocation(type), type); |
| __ Fmov(trg_reg, res_reg); |
| } |
| } |
| |
| static void MoveArguments(HInvoke* invoke, CodeGeneratorARM64* codegen) { |
| InvokeDexCallingConventionVisitorARM64 calling_convention_visitor; |
| IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor); |
| } |
| |
| // Slow-path for fallback (calling the managed code to handle the intrinsic) in an intrinsified |
| // call. This will copy the arguments into the positions for a regular call. |
| // |
| // Note: The actual parameters are required to be in the locations given by the invoke's location |
| // summary. If an intrinsic modifies those locations before a slowpath call, they must be |
| // restored! |
| class IntrinsicSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit IntrinsicSlowPathARM64(HInvoke* invoke) |
| : SlowPathCodeARM64(invoke), invoke_(invoke) { } |
| |
| void EmitNativeCode(CodeGenerator* codegen_in) OVERRIDE { |
| CodeGeneratorARM64* codegen = down_cast<CodeGeneratorARM64*>(codegen_in); |
| __ Bind(GetEntryLabel()); |
| |
| SaveLiveRegisters(codegen, invoke_->GetLocations()); |
| |
| MoveArguments(invoke_, codegen); |
| |
| { |
| // Ensure that between the BLR (emitted by Generate*Call) and RecordPcInfo there |
| // are no pools emitted. |
| vixl::EmissionCheckScope guard(codegen->GetVIXLAssembler(), kInvokeCodeMarginSizeInBytes); |
| if (invoke_->IsInvokeStaticOrDirect()) { |
| codegen->GenerateStaticOrDirectCall( |
| invoke_->AsInvokeStaticOrDirect(), LocationFrom(kArtMethodRegister), this); |
| } else { |
| codegen->GenerateVirtualCall( |
| invoke_->AsInvokeVirtual(), LocationFrom(kArtMethodRegister), this); |
| } |
| } |
| |
| // Copy the result back to the expected output. |
| Location out = invoke_->GetLocations()->Out(); |
| if (out.IsValid()) { |
| DCHECK(out.IsRegister()); // TODO: Replace this when we support output in memory. |
| DCHECK(!invoke_->GetLocations()->GetLiveRegisters()->ContainsCoreRegister(out.reg())); |
| MoveFromReturnRegister(out, invoke_->GetType(), codegen); |
| } |
| |
| RestoreLiveRegisters(codegen, invoke_->GetLocations()); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "IntrinsicSlowPathARM64"; } |
| |
| private: |
| // The instruction where this slow path is happening. |
| HInvoke* const invoke_; |
| |
| DISALLOW_COPY_AND_ASSIGN(IntrinsicSlowPathARM64); |
| }; |
| |
| // Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers. |
| class ReadBarrierSystemArrayCopySlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| ReadBarrierSystemArrayCopySlowPathARM64(HInstruction* instruction, Location tmp) |
| : SlowPathCodeARM64(instruction), tmp_(tmp) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen_in) OVERRIDE { |
| CodeGeneratorARM64* codegen = down_cast<CodeGeneratorARM64*>(codegen_in); |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(locations->CanCall()); |
| DCHECK(instruction_->IsInvokeStaticOrDirect()) |
| << "Unexpected instruction in read barrier arraycopy slow path: " |
| << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy); |
| |
| const int32_t element_size = DataType::Size(DataType::Type::kReference); |
| |
| Register src_curr_addr = XRegisterFrom(locations->GetTemp(0)); |
| Register dst_curr_addr = XRegisterFrom(locations->GetTemp(1)); |
| Register src_stop_addr = XRegisterFrom(locations->GetTemp(2)); |
| Register tmp_reg = WRegisterFrom(tmp_); |
| |
| __ Bind(GetEntryLabel()); |
| vixl::aarch64::Label slow_copy_loop; |
| __ Bind(&slow_copy_loop); |
| __ Ldr(tmp_reg, MemOperand(src_curr_addr, element_size, PostIndex)); |
| codegen->GetAssembler()->MaybeUnpoisonHeapReference(tmp_reg); |
| // TODO: Inline the mark bit check before calling the runtime? |
| // tmp_reg = ReadBarrier::Mark(tmp_reg); |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| // (See ReadBarrierMarkSlowPathARM64::EmitNativeCode for more |
| // explanations.) |
| DCHECK_NE(tmp_.reg(), LR); |
| DCHECK_NE(tmp_.reg(), WSP); |
| DCHECK_NE(tmp_.reg(), WZR); |
| // IP0 is used internally by the ReadBarrierMarkRegX entry point |
| // as a temporary (and not preserved). It thus cannot be used by |
| // any live register in this slow path. |
| DCHECK_NE(LocationFrom(src_curr_addr).reg(), IP0); |
| DCHECK_NE(LocationFrom(dst_curr_addr).reg(), IP0); |
| DCHECK_NE(LocationFrom(src_stop_addr).reg(), IP0); |
| DCHECK_NE(tmp_.reg(), IP0); |
| DCHECK(0 <= tmp_.reg() && tmp_.reg() < kNumberOfWRegisters) << tmp_.reg(); |
| // TODO: Load the entrypoint once before the loop, instead of |
| // loading it at every iteration. |
| int32_t entry_point_offset = |
| Thread::ReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(tmp_.reg()); |
| // This runtime call does not require a stack map. |
| codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); |
| codegen->GetAssembler()->MaybePoisonHeapReference(tmp_reg); |
| __ Str(tmp_reg, MemOperand(dst_curr_addr, element_size, PostIndex)); |
| __ Cmp(src_curr_addr, src_stop_addr); |
| __ B(&slow_copy_loop, ne); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierSystemArrayCopySlowPathARM64"; } |
| |
| private: |
| Location tmp_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathARM64); |
| }; |
| #undef __ |
| |
| bool IntrinsicLocationsBuilderARM64::TryDispatch(HInvoke* invoke) { |
| Dispatch(invoke); |
| LocationSummary* res = invoke->GetLocations(); |
| if (res == nullptr) { |
| return false; |
| } |
| return res->Intrinsified(); |
| } |
| |
| #define __ masm-> |
| |
| static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } |
| |
| static void MoveFPToInt(LocationSummary* locations, bool is64bit, MacroAssembler* masm) { |
| Location input = locations->InAt(0); |
| Location output = locations->Out(); |
| __ Fmov(is64bit ? XRegisterFrom(output) : WRegisterFrom(output), |
| is64bit ? DRegisterFrom(input) : SRegisterFrom(input)); |
| } |
| |
| static void MoveIntToFP(LocationSummary* locations, bool is64bit, MacroAssembler* masm) { |
| Location input = locations->InAt(0); |
| Location output = locations->Out(); |
| __ Fmov(is64bit ? DRegisterFrom(output) : SRegisterFrom(output), |
| is64bit ? XRegisterFrom(input) : WRegisterFrom(input)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitDoubleLongBitsToDouble(HInvoke* invoke) { |
| CreateIntToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { |
| MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetVIXLAssembler()); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitDoubleLongBitsToDouble(HInvoke* invoke) { |
| MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitFloatFloatToRawIntBits(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitFloatIntBitsToFloat(HInvoke* invoke) { |
| CreateIntToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitFloatFloatToRawIntBits(HInvoke* invoke) { |
| MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetVIXLAssembler()); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitFloatIntBitsToFloat(HInvoke* invoke) { |
| MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetVIXLAssembler()); |
| } |
| |
| static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| static void GenReverseBytes(LocationSummary* locations, |
| DataType::Type type, |
| MacroAssembler* masm) { |
| Location in = locations->InAt(0); |
| Location out = locations->Out(); |
| |
| switch (type) { |
| case DataType::Type::kInt16: |
| __ Rev16(WRegisterFrom(out), WRegisterFrom(in)); |
| __ Sxth(WRegisterFrom(out), WRegisterFrom(out)); |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| __ Rev(RegisterFrom(out, type), RegisterFrom(in, type)); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected size for reverse-bytes: " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitIntegerReverseBytes(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitIntegerReverseBytes(HInvoke* invoke) { |
| GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt32, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitLongReverseBytes(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitLongReverseBytes(HInvoke* invoke) { |
| GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt64, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitShortReverseBytes(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitShortReverseBytes(HInvoke* invoke) { |
| GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt16, GetVIXLAssembler()); |
| } |
| |
| static void GenNumberOfLeadingZeros(LocationSummary* locations, |
| DataType::Type type, |
| MacroAssembler* masm) { |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); |
| |
| Location in = locations->InAt(0); |
| Location out = locations->Out(); |
| |
| __ Clz(RegisterFrom(out, type), RegisterFrom(in, type)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { |
| GenNumberOfLeadingZeros(invoke->GetLocations(), DataType::Type::kInt32, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { |
| GenNumberOfLeadingZeros(invoke->GetLocations(), DataType::Type::kInt64, GetVIXLAssembler()); |
| } |
| |
| static void GenNumberOfTrailingZeros(LocationSummary* locations, |
| DataType::Type type, |
| MacroAssembler* masm) { |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); |
| |
| Location in = locations->InAt(0); |
| Location out = locations->Out(); |
| |
| __ Rbit(RegisterFrom(out, type), RegisterFrom(in, type)); |
| __ Clz(RegisterFrom(out, type), RegisterFrom(out, type)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { |
| GenNumberOfTrailingZeros(invoke->GetLocations(), DataType::Type::kInt32, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { |
| GenNumberOfTrailingZeros(invoke->GetLocations(), DataType::Type::kInt64, GetVIXLAssembler()); |
| } |
| |
| static void GenReverse(LocationSummary* locations, |
| DataType::Type type, |
| MacroAssembler* masm) { |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); |
| |
| Location in = locations->InAt(0); |
| Location out = locations->Out(); |
| |
| __ Rbit(RegisterFrom(out, type), RegisterFrom(in, type)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitIntegerReverse(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitIntegerReverse(HInvoke* invoke) { |
| GenReverse(invoke->GetLocations(), DataType::Type::kInt32, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitLongReverse(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitLongReverse(HInvoke* invoke) { |
| GenReverse(invoke->GetLocations(), DataType::Type::kInt64, GetVIXLAssembler()); |
| } |
| |
| static void GenBitCount(HInvoke* instr, DataType::Type type, MacroAssembler* masm) { |
| DCHECK(DataType::IsIntOrLongType(type)) << type; |
| DCHECK_EQ(instr->GetType(), DataType::Type::kInt32); |
| DCHECK_EQ(DataType::Kind(instr->InputAt(0)->GetType()), type); |
| |
| UseScratchRegisterScope temps(masm); |
| |
| Register src = InputRegisterAt(instr, 0); |
| Register dst = RegisterFrom(instr->GetLocations()->Out(), type); |
| FPRegister fpr = (type == DataType::Type::kInt64) ? temps.AcquireD() : temps.AcquireS(); |
| |
| __ Fmov(fpr, src); |
| __ Cnt(fpr.V8B(), fpr.V8B()); |
| __ Addv(fpr.B(), fpr.V8B()); |
| __ Fmov(dst, fpr); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitLongBitCount(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitLongBitCount(HInvoke* invoke) { |
| GenBitCount(invoke, DataType::Type::kInt64, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitIntegerBitCount(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitIntegerBitCount(HInvoke* invoke) { |
| GenBitCount(invoke, DataType::Type::kInt32, GetVIXLAssembler()); |
| } |
| |
| static void GenHighestOneBit(HInvoke* invoke, DataType::Type type, MacroAssembler* masm) { |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); |
| |
| UseScratchRegisterScope temps(masm); |
| |
| Register src = InputRegisterAt(invoke, 0); |
| Register dst = RegisterFrom(invoke->GetLocations()->Out(), type); |
| Register temp = (type == DataType::Type::kInt64) ? temps.AcquireX() : temps.AcquireW(); |
| size_t high_bit = (type == DataType::Type::kInt64) ? 63u : 31u; |
| size_t clz_high_bit = (type == DataType::Type::kInt64) ? 6u : 5u; |
| |
| __ Clz(temp, src); |
| __ Mov(dst, UINT64_C(1) << high_bit); // MOV (bitmask immediate) |
| __ Bic(dst, dst, Operand(temp, LSL, high_bit - clz_high_bit)); // Clear dst if src was 0. |
| __ Lsr(dst, dst, temp); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitIntegerHighestOneBit(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitIntegerHighestOneBit(HInvoke* invoke) { |
| GenHighestOneBit(invoke, DataType::Type::kInt32, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitLongHighestOneBit(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitLongHighestOneBit(HInvoke* invoke) { |
| GenHighestOneBit(invoke, DataType::Type::kInt64, GetVIXLAssembler()); |
| } |
| |
| static void GenLowestOneBit(HInvoke* invoke, DataType::Type type, MacroAssembler* masm) { |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); |
| |
| UseScratchRegisterScope temps(masm); |
| |
| Register src = InputRegisterAt(invoke, 0); |
| Register dst = RegisterFrom(invoke->GetLocations()->Out(), type); |
| Register temp = (type == DataType::Type::kInt64) ? temps.AcquireX() : temps.AcquireW(); |
| |
| __ Neg(temp, src); |
| __ And(dst, temp, src); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitIntegerLowestOneBit(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitIntegerLowestOneBit(HInvoke* invoke) { |
| GenLowestOneBit(invoke, DataType::Type::kInt32, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitLongLowestOneBit(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitLongLowestOneBit(HInvoke* invoke) { |
| GenLowestOneBit(invoke, DataType::Type::kInt64, GetVIXLAssembler()); |
| } |
| |
| static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathSqrt(HInvoke* invoke) { |
| CreateFPToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathSqrt(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Fsqrt(DRegisterFrom(locations->Out()), DRegisterFrom(locations->InAt(0))); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathCeil(HInvoke* invoke) { |
| CreateFPToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathCeil(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Frintp(DRegisterFrom(locations->Out()), DRegisterFrom(locations->InAt(0))); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathFloor(HInvoke* invoke) { |
| CreateFPToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathFloor(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Frintm(DRegisterFrom(locations->Out()), DRegisterFrom(locations->InAt(0))); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathRint(HInvoke* invoke) { |
| CreateFPToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathRint(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Frintn(DRegisterFrom(locations->Out()), DRegisterFrom(locations->InAt(0))); |
| } |
| |
| static void CreateFPToIntPlusFPTempLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| } |
| |
| static void GenMathRound(HInvoke* invoke, bool is_double, vixl::aarch64::MacroAssembler* masm) { |
| // Java 8 API definition for Math.round(): |
| // Return the closest long or int to the argument, with ties rounding to positive infinity. |
| // |
| // There is no single instruction in ARMv8 that can support the above definition. |
| // We choose to use FCVTAS here, because it has closest semantic. |
| // FCVTAS performs rounding to nearest integer, ties away from zero. |
| // For most inputs (positive values, zero or NaN), this instruction is enough. |
| // We only need a few handling code after FCVTAS if the input is negative half value. |
| // |
| // The reason why we didn't choose FCVTPS instruction here is that |
| // although it performs rounding toward positive infinity, it doesn't perform rounding to nearest. |
| // For example, FCVTPS(-1.9) = -1 and FCVTPS(1.1) = 2. |
| // If we were using this instruction, for most inputs, more handling code would be needed. |
| LocationSummary* l = invoke->GetLocations(); |
| FPRegister in_reg = is_double ? DRegisterFrom(l->InAt(0)) : SRegisterFrom(l->InAt(0)); |
| FPRegister tmp_fp = is_double ? DRegisterFrom(l->GetTemp(0)) : SRegisterFrom(l->GetTemp(0)); |
| Register out_reg = is_double ? XRegisterFrom(l->Out()) : WRegisterFrom(l->Out()); |
| vixl::aarch64::Label done; |
| |
| // Round to nearest integer, ties away from zero. |
| __ Fcvtas(out_reg, in_reg); |
| |
| // For positive values, zero or NaN inputs, rounding is done. |
| __ Tbz(out_reg, out_reg.GetSizeInBits() - 1, &done); |
| |
| // Handle input < 0 cases. |
| // If input is negative but not a tie, previous result (round to nearest) is valid. |
| // If input is a negative tie, out_reg += 1. |
| __ Frinta(tmp_fp, in_reg); |
| __ Fsub(tmp_fp, in_reg, tmp_fp); |
| __ Fcmp(tmp_fp, 0.5); |
| __ Cinc(out_reg, out_reg, eq); |
| |
| __ Bind(&done); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathRoundDouble(HInvoke* invoke) { |
| CreateFPToIntPlusFPTempLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathRoundDouble(HInvoke* invoke) { |
| GenMathRound(invoke, /* is_double */ true, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathRoundFloat(HInvoke* invoke) { |
| CreateFPToIntPlusFPTempLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathRoundFloat(HInvoke* invoke) { |
| GenMathRound(invoke, /* is_double */ false, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMemoryPeekByte(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMemoryPeekByte(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Ldrsb(WRegisterFrom(invoke->GetLocations()->Out()), |
| AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMemoryPeekIntNative(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMemoryPeekIntNative(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Ldr(WRegisterFrom(invoke->GetLocations()->Out()), |
| AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMemoryPeekLongNative(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMemoryPeekLongNative(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Ldr(XRegisterFrom(invoke->GetLocations()->Out()), |
| AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMemoryPeekShortNative(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMemoryPeekShortNative(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Ldrsh(WRegisterFrom(invoke->GetLocations()->Out()), |
| AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0)); |
| } |
| |
| static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMemoryPokeByte(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMemoryPokeByte(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Strb(WRegisterFrom(invoke->GetLocations()->InAt(1)), |
| AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMemoryPokeIntNative(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMemoryPokeIntNative(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Str(WRegisterFrom(invoke->GetLocations()->InAt(1)), |
| AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMemoryPokeLongNative(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMemoryPokeLongNative(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Str(XRegisterFrom(invoke->GetLocations()->InAt(1)), |
| AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMemoryPokeShortNative(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMemoryPokeShortNative(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Strh(WRegisterFrom(invoke->GetLocations()->InAt(1)), |
| AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitThreadCurrentThread(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitThreadCurrentThread(HInvoke* invoke) { |
| codegen_->Load(DataType::Type::kReference, WRegisterFrom(invoke->GetLocations()->Out()), |
| MemOperand(tr, Thread::PeerOffset<kArm64PointerSize>().Int32Value())); |
| } |
| |
| static void GenUnsafeGet(HInvoke* invoke, |
| DataType::Type type, |
| bool is_volatile, |
| CodeGeneratorARM64* codegen) { |
| LocationSummary* locations = invoke->GetLocations(); |
| DCHECK((type == DataType::Type::kInt32) || |
| (type == DataType::Type::kInt64) || |
| (type == DataType::Type::kReference)); |
| Location base_loc = locations->InAt(1); |
| Register base = WRegisterFrom(base_loc); // Object pointer. |
| Location offset_loc = locations->InAt(2); |
| Register offset = XRegisterFrom(offset_loc); // Long offset. |
| Location trg_loc = locations->Out(); |
| Register trg = RegisterFrom(trg_loc, type); |
| |
| if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // UnsafeGetObject/UnsafeGetObjectVolatile with Baker's read barrier case. |
| Register temp = WRegisterFrom(locations->GetTemp(0)); |
| MacroAssembler* masm = codegen->GetVIXLAssembler(); |
| // Piggy-back on the field load path using introspection for the Baker read barrier. |
| __ Add(temp, base, offset.W()); // Offset should not exceed 32 bits. |
| codegen->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| trg_loc, |
| base, |
| MemOperand(temp.X()), |
| /* needs_null_check */ false, |
| is_volatile); |
| } else { |
| // Other cases. |
| MemOperand mem_op(base.X(), offset); |
| if (is_volatile) { |
| codegen->LoadAcquire(invoke, trg, mem_op, /* needs_null_check */ true); |
| } else { |
| codegen->Load(type, trg, mem_op); |
| } |
| |
| if (type == DataType::Type::kReference) { |
| DCHECK(trg.IsW()); |
| codegen->MaybeGenerateReadBarrierSlow(invoke, trg_loc, trg_loc, base_loc, 0u, offset_loc); |
| } |
| } |
| } |
| |
| static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| bool can_call = kEmitCompilerReadBarrier && |
| (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject || |
| invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, |
| can_call |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall, |
| kIntrinsified); |
| if (can_call && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| // We need a temporary register for the read barrier load in order to use |
| // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(). |
| locations->AddTemp(FixedTempLocation()); |
| } |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), |
| (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap)); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitUnsafeGet(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafeGetVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafeGetLong(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafeGetLongVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafeGetObject(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitUnsafeGet(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafeGetVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile */ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafeGetLong(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafeGetLongVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile */ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafeGetObject(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile */ true, codegen_); |
| } |
| |
| static void CreateIntIntIntIntToVoid(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitUnsafePut(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafePutOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafePutVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafePutObject(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafePutObjectOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafePutObjectVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafePutLong(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafePutLongOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafePutLongVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoid(allocator_, invoke); |
| } |
| |
| static void GenUnsafePut(HInvoke* invoke, |
| DataType::Type type, |
| bool is_volatile, |
| bool is_ordered, |
| CodeGeneratorARM64* codegen) { |
| LocationSummary* locations = invoke->GetLocations(); |
| MacroAssembler* masm = codegen->GetVIXLAssembler(); |
| |
| Register base = WRegisterFrom(locations->InAt(1)); // Object pointer. |
| Register offset = XRegisterFrom(locations->InAt(2)); // Long offset. |
| Register value = RegisterFrom(locations->InAt(3), type); |
| Register source = value; |
| MemOperand mem_op(base.X(), offset); |
| |
| { |
| // We use a block to end the scratch scope before the write barrier, thus |
| // freeing the temporary registers so they can be used in `MarkGCCard`. |
| UseScratchRegisterScope temps(masm); |
| |
| if (kPoisonHeapReferences && type == DataType::Type::kReference) { |
| DCHECK(value.IsW()); |
| Register temp = temps.AcquireW(); |
| __ Mov(temp.W(), value.W()); |
| codegen->GetAssembler()->PoisonHeapReference(temp.W()); |
| source = temp; |
| } |
| |
| if (is_volatile || is_ordered) { |
| codegen->StoreRelease(invoke, type, source, mem_op, /* needs_null_check */ false); |
| } else { |
| codegen->Store(type, source, mem_op); |
| } |
| } |
| |
| if (type == DataType::Type::kReference) { |
| bool value_can_be_null = true; // TODO: Worth finding out this information? |
| codegen->MarkGCCard(base, value, value_can_be_null); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitUnsafePut(HInvoke* invoke) { |
| GenUnsafePut(invoke, |
| DataType::Type::kInt32, |
| /* is_volatile */ false, |
| /* is_ordered */ false, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafePutOrdered(HInvoke* invoke) { |
| GenUnsafePut(invoke, |
| DataType::Type::kInt32, |
| /* is_volatile */ false, |
| /* is_ordered */ true, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafePutVolatile(HInvoke* invoke) { |
| GenUnsafePut(invoke, |
| DataType::Type::kInt32, |
| /* is_volatile */ true, |
| /* is_ordered */ false, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafePutObject(HInvoke* invoke) { |
| GenUnsafePut(invoke, |
| DataType::Type::kReference, |
| /* is_volatile */ false, |
| /* is_ordered */ false, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafePutObjectOrdered(HInvoke* invoke) { |
| GenUnsafePut(invoke, |
| DataType::Type::kReference, |
| /* is_volatile */ false, |
| /* is_ordered */ true, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafePutObjectVolatile(HInvoke* invoke) { |
| GenUnsafePut(invoke, |
| DataType::Type::kReference, |
| /* is_volatile */ true, |
| /* is_ordered */ false, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafePutLong(HInvoke* invoke) { |
| GenUnsafePut(invoke, |
| DataType::Type::kInt64, |
| /* is_volatile */ false, |
| /* is_ordered */ false, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafePutLongOrdered(HInvoke* invoke) { |
| GenUnsafePut(invoke, |
| DataType::Type::kInt64, |
| /* is_volatile */ false, |
| /* is_ordered */ true, |
| codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafePutLongVolatile(HInvoke* invoke) { |
| GenUnsafePut(invoke, |
| DataType::Type::kInt64, |
| /* is_volatile */ true, |
| /* is_ordered */ false, |
| codegen_); |
| } |
| |
| static void CreateIntIntIntIntIntToInt(ArenaAllocator* allocator, |
| HInvoke* invoke, |
| DataType::Type type) { |
| bool can_call = kEmitCompilerReadBarrier && |
| kUseBakerReadBarrier && |
| (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, |
| can_call |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall, |
| kIntrinsified); |
| if (can_call) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| locations->SetInAt(4, Location::RequiresRegister()); |
| |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // We need two non-scratch temporary registers for (Baker) read barrier. |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| class BakerReadBarrierCasSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit BakerReadBarrierCasSlowPathARM64(HInvoke* invoke) |
| : SlowPathCodeARM64(invoke) {} |
| |
| const char* GetDescription() const OVERRIDE { return "BakerReadBarrierCasSlowPathARM64"; } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| Arm64Assembler* assembler = arm64_codegen->GetAssembler(); |
| MacroAssembler* masm = assembler->GetVIXLAssembler(); |
| __ Bind(GetEntryLabel()); |
| |
| // Get the locations. |
| LocationSummary* locations = instruction_->GetLocations(); |
| Register base = WRegisterFrom(locations->InAt(1)); // Object pointer. |
| Register offset = XRegisterFrom(locations->InAt(2)); // Long offset. |
| Register expected = WRegisterFrom(locations->InAt(3)); // Expected. |
| Register value = WRegisterFrom(locations->InAt(4)); // Value. |
| |
| Register old_value = WRegisterFrom(locations->GetTemp(0)); // The old value from main path. |
| Register marked = WRegisterFrom(locations->GetTemp(1)); // The marked old value. |
| |
| // Mark the `old_value` from the main path and compare with `expected`. This clobbers the |
| // `tmp_ptr` scratch register but we do not want to allocate another non-scratch temporary. |
| arm64_codegen->GenerateUnsafeCasOldValueMovWithBakerReadBarrier(marked, old_value); |
| __ Cmp(marked, expected); |
| __ B(GetExitLabel(), ne); // If taken, Z=false indicates failure. |
| |
| // The `old_value` we have read did not match `expected` (which is always a to-space reference) |
| // but after the read barrier in GenerateUnsafeCasOldValueMovWithBakerReadBarrier() the marked |
| // to-space value matched, so the `old_value` must be a from-space reference to the same |
| // object. Do the same CAS loop as the main path but check for both `expected` and the unmarked |
| // old value representing the to-space and from-space references for the same object. |
| |
| UseScratchRegisterScope temps(masm); |
| Register tmp_ptr = temps.AcquireX(); |
| Register tmp = temps.AcquireSameSizeAs(value); |
| |
| // Recalculate the `tmp_ptr` clobbered above. |
| __ Add(tmp_ptr, base.X(), Operand(offset)); |
| |
| // do { |
| // tmp_value = [tmp_ptr]; |
| // } while ((tmp_value == expected || tmp == old_value) && failure([tmp_ptr] <- r_new_value)); |
| // result = (tmp_value == expected || tmp == old_value); |
| |
| vixl::aarch64::Label loop_head; |
| __ Bind(&loop_head); |
| __ Ldaxr(tmp, MemOperand(tmp_ptr)); |
| assembler->MaybeUnpoisonHeapReference(tmp); |
| __ Cmp(tmp, expected); |
| __ Ccmp(tmp, old_value, ZFlag, ne); |
| __ B(GetExitLabel(), ne); // If taken, Z=false indicates failure. |
| assembler->MaybePoisonHeapReference(value); |
| __ Stlxr(tmp.W(), value, MemOperand(tmp_ptr)); |
| assembler->MaybeUnpoisonHeapReference(value); |
| __ Cbnz(tmp.W(), &loop_head); |
| |
| // Z=true from the above CMP+CCMP indicates success. |
| __ B(GetExitLabel()); |
| } |
| }; |
| |
| static void GenCas(HInvoke* invoke, DataType::Type type, CodeGeneratorARM64* codegen) { |
| Arm64Assembler* assembler = codegen->GetAssembler(); |
| MacroAssembler* masm = assembler->GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register out = WRegisterFrom(locations->Out()); // Boolean result. |
| Register base = WRegisterFrom(locations->InAt(1)); // Object pointer. |
| Register offset = XRegisterFrom(locations->InAt(2)); // Long offset. |
| Register expected = RegisterFrom(locations->InAt(3), type); // Expected. |
| Register value = RegisterFrom(locations->InAt(4), type); // Value. |
| |
| // This needs to be before the temp registers, as MarkGCCard also uses VIXL temps. |
| if (type == DataType::Type::kReference) { |
| // Mark card for object assuming new value is stored. |
| bool value_can_be_null = true; // TODO: Worth finding out this information? |
| codegen->MarkGCCard(base, value, value_can_be_null); |
| } |
| |
| UseScratchRegisterScope temps(masm); |
| Register tmp_ptr = temps.AcquireX(); // Pointer to actual memory. |
| Register old_value; // Value in memory. |
| |
| vixl::aarch64::Label exit_loop_label; |
| vixl::aarch64::Label* exit_loop = &exit_loop_label; |
| vixl::aarch64::Label* failure = &exit_loop_label; |
| |
| if (kEmitCompilerReadBarrier && type == DataType::Type::kReference) { |
| // The only read barrier implementation supporting the |
| // UnsafeCASObject intrinsic is the Baker-style read barriers. |
| DCHECK(kUseBakerReadBarrier); |
| |
| BakerReadBarrierCasSlowPathARM64* slow_path = |
| new (codegen->GetScopedAllocator()) BakerReadBarrierCasSlowPathARM64(invoke); |
| codegen->AddSlowPath(slow_path); |
| exit_loop = slow_path->GetExitLabel(); |
| failure = slow_path->GetEntryLabel(); |
| // We need to store the `old_value` in a non-scratch register to make sure |
| // the Baker read barrier in the slow path does not clobber it. |
| old_value = WRegisterFrom(locations->GetTemp(0)); |
| } else { |
| old_value = temps.AcquireSameSizeAs(value); |
| } |
| |
| __ Add(tmp_ptr, base.X(), Operand(offset)); |
| |
| // do { |
| // tmp_value = [tmp_ptr]; |
| // } while (tmp_value == expected && failure([tmp_ptr] <- r_new_value)); |
| // result = tmp_value == expected; |
| |
| vixl::aarch64::Label loop_head; |
| __ Bind(&loop_head); |
| __ Ldaxr(old_value, MemOperand(tmp_ptr)); |
| if (type == DataType::Type::kReference) { |
| assembler->MaybeUnpoisonHeapReference(old_value); |
| } |
| __ Cmp(old_value, expected); |
| __ B(failure, ne); |
| if (type == DataType::Type::kReference) { |
| assembler->MaybePoisonHeapReference(value); |
| } |
| __ Stlxr(old_value.W(), value, MemOperand(tmp_ptr)); // Reuse `old_value` for STLXR result. |
| if (type == DataType::Type::kReference) { |
| assembler->MaybeUnpoisonHeapReference(value); |
| } |
| __ Cbnz(old_value.W(), &loop_head); |
| __ Bind(exit_loop); |
| __ Cset(out, eq); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitUnsafeCASInt(HInvoke* invoke) { |
| CreateIntIntIntIntIntToInt(allocator_, invoke, DataType::Type::kInt32); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafeCASLong(HInvoke* invoke) { |
| CreateIntIntIntIntIntToInt(allocator_, invoke, DataType::Type::kInt64); |
| } |
| void IntrinsicLocationsBuilderARM64::VisitUnsafeCASObject(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // UnsafeCASObject intrinsic is the Baker-style read barriers. |
| if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { |
| return; |
| } |
| |
| CreateIntIntIntIntIntToInt(allocator_, invoke, DataType::Type::kReference); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitUnsafeCASInt(HInvoke* invoke) { |
| GenCas(invoke, DataType::Type::kInt32, codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafeCASLong(HInvoke* invoke) { |
| GenCas(invoke, DataType::Type::kInt64, codegen_); |
| } |
| void IntrinsicCodeGeneratorARM64::VisitUnsafeCASObject(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // UnsafeCASObject intrinsic is the Baker-style read barriers. |
| DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); |
| |
| GenCas(invoke, DataType::Type::kReference, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitStringCompareTo(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, |
| invoke->InputAt(1)->CanBeNull() |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| // Need temporary registers for String compression's feature. |
| if (mirror::kUseStringCompression) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitStringCompareTo(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register str = InputRegisterAt(invoke, 0); |
| Register arg = InputRegisterAt(invoke, 1); |
| DCHECK(str.IsW()); |
| DCHECK(arg.IsW()); |
| Register out = OutputRegister(invoke); |
| |
| Register temp0 = WRegisterFrom(locations->GetTemp(0)); |
| Register temp1 = WRegisterFrom(locations->GetTemp(1)); |
| Register temp2 = WRegisterFrom(locations->GetTemp(2)); |
| Register temp3; |
| if (mirror::kUseStringCompression) { |
| temp3 = WRegisterFrom(locations->GetTemp(3)); |
| } |
| |
| vixl::aarch64::Label loop; |
| vixl::aarch64::Label find_char_diff; |
| vixl::aarch64::Label end; |
| vixl::aarch64::Label different_compression; |
| |
| // Get offsets of count and value fields within a string object. |
| const int32_t count_offset = mirror::String::CountOffset().Int32Value(); |
| const int32_t value_offset = mirror::String::ValueOffset().Int32Value(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| // Take slow path and throw if input can be and is null. |
| SlowPathCodeARM64* slow_path = nullptr; |
| const bool can_slow_path = invoke->InputAt(1)->CanBeNull(); |
| if (can_slow_path) { |
| slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ Cbz(arg, slow_path->GetEntryLabel()); |
| } |
| |
| // Reference equality check, return 0 if same reference. |
| __ Subs(out, str, arg); |
| __ B(&end, eq); |
| |
| if (mirror::kUseStringCompression) { |
| // Load `count` fields of this and argument strings. |
| __ Ldr(temp3, HeapOperand(str, count_offset)); |
| __ Ldr(temp2, HeapOperand(arg, count_offset)); |
| // Clean out compression flag from lengths. |
| __ Lsr(temp0, temp3, 1u); |
| __ Lsr(temp1, temp2, 1u); |
| } else { |
| // Load lengths of this and argument strings. |
| __ Ldr(temp0, HeapOperand(str, count_offset)); |
| __ Ldr(temp1, HeapOperand(arg, count_offset)); |
| } |
| // out = length diff. |
| __ Subs(out, temp0, temp1); |
| // temp0 = min(len(str), len(arg)). |
| __ Csel(temp0, temp1, temp0, ge); |
| // Shorter string is empty? |
| __ Cbz(temp0, &end); |
| |
| if (mirror::kUseStringCompression) { |
| // Check if both strings using same compression style to use this comparison loop. |
| __ Eor(temp2, temp2, Operand(temp3)); |
| // Interleave with compression flag extraction which is needed for both paths |
| // and also set flags which is needed only for the different compressions path. |
| __ Ands(temp3.W(), temp3.W(), Operand(1)); |
| __ Tbnz(temp2, 0, &different_compression); // Does not use flags. |
| } |
| // Store offset of string value in preparation for comparison loop. |
| __ Mov(temp1, value_offset); |
| if (mirror::kUseStringCompression) { |
| // For string compression, calculate the number of bytes to compare (not chars). |
| // This could in theory exceed INT32_MAX, so treat temp0 as unsigned. |
| __ Lsl(temp0, temp0, temp3); |
| } |
| |
| UseScratchRegisterScope scratch_scope(masm); |
| Register temp4 = scratch_scope.AcquireX(); |
| |
| // Assertions that must hold in order to compare strings 8 bytes at a time. |
| DCHECK_ALIGNED(value_offset, 8); |
| static_assert(IsAligned<8>(kObjectAlignment), "String of odd length is not zero padded"); |
| |
| const size_t char_size = DataType::Size(DataType::Type::kUint16); |
| DCHECK_EQ(char_size, 2u); |
| |
| // Promote temp2 to an X reg, ready for LDR. |
| temp2 = temp2.X(); |
| |
| // Loop to compare 4x16-bit characters at a time (ok because of string data alignment). |
| __ Bind(&loop); |
| __ Ldr(temp4, MemOperand(str.X(), temp1.X())); |
| __ Ldr(temp2, MemOperand(arg.X(), temp1.X())); |
| __ Cmp(temp4, temp2); |
| __ B(ne, &find_char_diff); |
| __ Add(temp1, temp1, char_size * 4); |
| // With string compression, we have compared 8 bytes, otherwise 4 chars. |
| __ Subs(temp0, temp0, (mirror::kUseStringCompression) ? 8 : 4); |
| __ B(&loop, hi); |
| __ B(&end); |
| |
| // Promote temp1 to an X reg, ready for EOR. |
| temp1 = temp1.X(); |
| |
| // Find the single character difference. |
| __ Bind(&find_char_diff); |
| // Get the bit position of the first character that differs. |
| __ Eor(temp1, temp2, temp4); |
| __ Rbit(temp1, temp1); |
| __ Clz(temp1, temp1); |
| |
| // If the number of chars remaining <= the index where the difference occurs (0-3), then |
| // the difference occurs outside the remaining string data, so just return length diff (out). |
| // Unlike ARM, we're doing the comparison in one go here, without the subtraction at the |
| // find_char_diff_2nd_cmp path, so it doesn't matter whether the comparison is signed or |
| // unsigned when string compression is disabled. |
| // When it's enabled, the comparison must be unsigned. |
| __ Cmp(temp0, Operand(temp1.W(), LSR, (mirror::kUseStringCompression) ? 3 : 4)); |
| __ B(ls, &end); |
| |
| // Extract the characters and calculate the difference. |
| if (mirror:: kUseStringCompression) { |
| __ Bic(temp1, temp1, 0x7); |
| __ Bic(temp1, temp1, Operand(temp3.X(), LSL, 3u)); |
| } else { |
| __ Bic(temp1, temp1, 0xf); |
| } |
| __ Lsr(temp2, temp2, temp1); |
| __ Lsr(temp4, temp4, temp1); |
| if (mirror::kUseStringCompression) { |
| // Prioritize the case of compressed strings and calculate such result first. |
| __ Uxtb(temp1, temp4); |
| __ Sub(out, temp1.W(), Operand(temp2.W(), UXTB)); |
| __ Tbz(temp3, 0u, &end); // If actually compressed, we're done. |
| } |
| __ Uxth(temp4, temp4); |
| __ Sub(out, temp4.W(), Operand(temp2.W(), UXTH)); |
| |
| if (mirror::kUseStringCompression) { |
| __ B(&end); |
| __ Bind(&different_compression); |
| |
| // Comparison for different compression style. |
| const size_t c_char_size = DataType::Size(DataType::Type::kInt8); |
| DCHECK_EQ(c_char_size, 1u); |
| temp1 = temp1.W(); |
| temp2 = temp2.W(); |
| temp4 = temp4.W(); |
| |
| // `temp1` will hold the compressed data pointer, `temp2` the uncompressed data pointer. |
| // Note that flags have been set by the `str` compression flag extraction to `temp3` |
| // before branching to the `different_compression` label. |
| __ Csel(temp1, str, arg, eq); // Pointer to the compressed string. |
| __ Csel(temp2, str, arg, ne); // Pointer to the uncompressed string. |
| |
| // We want to free up the temp3, currently holding `str` compression flag, for comparison. |
| // So, we move it to the bottom bit of the iteration count `temp0` which we then need to treat |
| // as unsigned. Start by freeing the bit with a LSL and continue further down by a SUB which |
| // will allow `subs temp0, #2; bhi different_compression_loop` to serve as the loop condition. |
| __ Lsl(temp0, temp0, 1u); |
| |
| // Adjust temp1 and temp2 from string pointers to data pointers. |
| __ Add(temp1, temp1, Operand(value_offset)); |
| __ Add(temp2, temp2, Operand(value_offset)); |
| |
| // Complete the move of the compression flag. |
| __ Sub(temp0, temp0, Operand(temp3)); |
| |
| vixl::aarch64::Label different_compression_loop; |
| vixl::aarch64::Label different_compression_diff; |
| |
| __ Bind(&different_compression_loop); |
| __ Ldrb(temp4, MemOperand(temp1.X(), c_char_size, PostIndex)); |
| __ Ldrh(temp3, MemOperand(temp2.X(), char_size, PostIndex)); |
| __ Subs(temp4, temp4, Operand(temp3)); |
| __ B(&different_compression_diff, ne); |
| __ Subs(temp0, temp0, 2); |
| __ B(&different_compression_loop, hi); |
| __ B(&end); |
| |
| // Calculate the difference. |
| __ Bind(&different_compression_diff); |
| __ Tst(temp0, Operand(1)); |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ Cneg(out, temp4, ne); |
| } |
| |
| __ Bind(&end); |
| |
| if (can_slow_path) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| // The cut off for unrolling the loop in String.equals() intrinsic for const strings. |
| // The normal loop plus the pre-header is 9 instructions without string compression and 12 |
| // instructions with string compression. We can compare up to 8 bytes in 4 instructions |
| // (LDR+LDR+CMP+BNE) and up to 16 bytes in 5 instructions (LDP+LDP+CMP+CCMP+BNE). Allow up |
| // to 10 instructions for the unrolled loop. |
| constexpr size_t kShortConstStringEqualsCutoffInBytes = 32; |
| |
| static const char* GetConstString(HInstruction* candidate, uint32_t* utf16_length) { |
| if (candidate->IsLoadString()) { |
| HLoadString* load_string = candidate->AsLoadString(); |
| const DexFile& dex_file = load_string->GetDexFile(); |
| return dex_file.StringDataAndUtf16LengthByIdx(load_string->GetStringIndex(), utf16_length); |
| } |
| return nullptr; |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitStringEquals(HInvoke* invoke) { |
| if (kEmitCompilerReadBarrier && |
| !StringEqualsOptimizations(invoke).GetArgumentIsString() && |
| !StringEqualsOptimizations(invoke).GetNoReadBarrierForStringClass()) { |
| // No support for this odd case (String class is moveable, not in the boot image). |
| return; |
| } |
| |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| |
| // For the generic implementation and for long const strings we need a temporary. |
| // We do not need it for short const strings, up to 8 bytes, see code generation below. |
| uint32_t const_string_length = 0u; |
| const char* const_string = GetConstString(invoke->InputAt(0), &const_string_length); |
| if (const_string == nullptr) { |
| const_string = GetConstString(invoke->InputAt(1), &const_string_length); |
| } |
| bool is_compressed = |
| mirror::kUseStringCompression && |
| const_string != nullptr && |
| mirror::String::DexFileStringAllASCII(const_string, const_string_length); |
| if (const_string == nullptr || const_string_length > (is_compressed ? 8u : 4u)) { |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| // TODO: If the String.equals() is used only for an immediately following HIf, we can |
| // mark it as emitted-at-use-site and emit branches directly to the appropriate blocks. |
| // Then we shall need an extra temporary register instead of the output register. |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitStringEquals(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register str = WRegisterFrom(locations->InAt(0)); |
| Register arg = WRegisterFrom(locations->InAt(1)); |
| Register out = XRegisterFrom(locations->Out()); |
| |
| UseScratchRegisterScope scratch_scope(masm); |
| Register temp = scratch_scope.AcquireW(); |
| Register temp1 = scratch_scope.AcquireW(); |
| |
| vixl::aarch64::Label loop; |
| vixl::aarch64::Label end; |
| vixl::aarch64::Label return_true; |
| vixl::aarch64::Label return_false; |
| |
| // Get offsets of count, value, and class fields within a string object. |
| const int32_t count_offset = mirror::String::CountOffset().Int32Value(); |
| const int32_t value_offset = mirror::String::ValueOffset().Int32Value(); |
| const int32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| StringEqualsOptimizations optimizations(invoke); |
| if (!optimizations.GetArgumentNotNull()) { |
| // Check if input is null, return false if it is. |
| __ Cbz(arg, &return_false); |
| } |
| |
| // Reference equality check, return true if same reference. |
| __ Cmp(str, arg); |
| __ B(&return_true, eq); |
| |
| if (!optimizations.GetArgumentIsString()) { |
| // Instanceof check for the argument by comparing class fields. |
| // All string objects must have the same type since String cannot be subclassed. |
| // Receiver must be a string object, so its class field is equal to all strings' class fields. |
| // If the argument is a string object, its class field must be equal to receiver's class field. |
| __ Ldr(temp, MemOperand(str.X(), class_offset)); |
| __ Ldr(temp1, MemOperand(arg.X(), class_offset)); |
| __ Cmp(temp, temp1); |
| __ B(&return_false, ne); |
| } |
| |
| // Check if one of the inputs is a const string. Do not special-case both strings |
| // being const, such cases should be handled by constant folding if needed. |
| uint32_t const_string_length = 0u; |
| const char* const_string = GetConstString(invoke->InputAt(0), &const_string_length); |
| if (const_string == nullptr) { |
| const_string = GetConstString(invoke->InputAt(1), &const_string_length); |
| if (const_string != nullptr) { |
| std::swap(str, arg); // Make sure the const string is in `str`. |
| } |
| } |
| bool is_compressed = |
| mirror::kUseStringCompression && |
| const_string != nullptr && |
| mirror::String::DexFileStringAllASCII(const_string, const_string_length); |
| |
| if (const_string != nullptr) { |
| // Load `count` field of the argument string and check if it matches the const string. |
| // Also compares the compression style, if differs return false. |
| __ Ldr(temp, MemOperand(arg.X(), count_offset)); |
| // Temporarily release temp1 as we may not be able to embed the flagged count in CMP immediate. |
| scratch_scope.Release(temp1); |
| __ Cmp(temp, Operand(mirror::String::GetFlaggedCount(const_string_length, is_compressed))); |
| temp1 = scratch_scope.AcquireW(); |
| __ B(&return_false, ne); |
| } else { |
| // Load `count` fields of this and argument strings. |
| __ Ldr(temp, MemOperand(str.X(), count_offset)); |
| __ Ldr(temp1, MemOperand(arg.X(), count_offset)); |
| // Check if `count` fields are equal, return false if they're not. |
| // Also compares the compression style, if differs return false. |
| __ Cmp(temp, temp1); |
| __ B(&return_false, ne); |
| } |
| |
| // Assertions that must hold in order to compare strings 8 bytes at a time. |
| // Ok to do this because strings are zero-padded to kObjectAlignment. |
| DCHECK_ALIGNED(value_offset, 8); |
| static_assert(IsAligned<8>(kObjectAlignment), "String of odd length is not zero padded"); |
| |
| if (const_string != nullptr && |
| const_string_length <= (is_compressed ? kShortConstStringEqualsCutoffInBytes |
| : kShortConstStringEqualsCutoffInBytes / 2u)) { |
| // Load and compare the contents. Though we know the contents of the short const string |
| // at compile time, materializing constants may be more code than loading from memory. |
| int32_t offset = value_offset; |
| size_t remaining_bytes = |
| RoundUp(is_compressed ? const_string_length : const_string_length * 2u, 8u); |
| temp = temp.X(); |
| temp1 = temp1.X(); |
| while (remaining_bytes > sizeof(uint64_t)) { |
| Register temp2 = XRegisterFrom(locations->GetTemp(0)); |
| __ Ldp(temp, temp1, MemOperand(str.X(), offset)); |
| __ Ldp(temp2, out, MemOperand(arg.X(), offset)); |
| __ Cmp(temp, temp2); |
| __ Ccmp(temp1, out, NoFlag, eq); |
| __ B(&return_false, ne); |
| offset += 2u * sizeof(uint64_t); |
| remaining_bytes -= 2u * sizeof(uint64_t); |
| } |
| if (remaining_bytes != 0u) { |
| __ Ldr(temp, MemOperand(str.X(), offset)); |
| __ Ldr(temp1, MemOperand(arg.X(), offset)); |
| __ Cmp(temp, temp1); |
| __ B(&return_false, ne); |
| } |
| } else { |
| // Return true if both strings are empty. Even with string compression `count == 0` means empty. |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ Cbz(temp, &return_true); |
| |
| if (mirror::kUseStringCompression) { |
| // For string compression, calculate the number of bytes to compare (not chars). |
| // This could in theory exceed INT32_MAX, so treat temp as unsigned. |
| __ And(temp1, temp, Operand(1)); // Extract compression flag. |
| __ Lsr(temp, temp, 1u); // Extract length. |
| __ Lsl(temp, temp, temp1); // Calculate number of bytes to compare. |
| } |
| |
| // Store offset of string value in preparation for comparison loop |
| __ Mov(temp1, value_offset); |
| |
| temp1 = temp1.X(); |
| Register temp2 = XRegisterFrom(locations->GetTemp(0)); |
| // Loop to compare strings 8 bytes at a time starting at the front of the string. |
| __ Bind(&loop); |
| __ Ldr(out, MemOperand(str.X(), temp1)); |
| __ Ldr(temp2, MemOperand(arg.X(), temp1)); |
| __ Add(temp1, temp1, Operand(sizeof(uint64_t))); |
| __ Cmp(out, temp2); |
| __ B(&return_false, ne); |
| // With string compression, we have compared 8 bytes, otherwise 4 chars. |
| __ Sub(temp, temp, Operand(mirror::kUseStringCompression ? 8 : 4), SetFlags); |
| __ B(&loop, hi); |
| } |
| |
| // Return true and exit the function. |
| // If loop does not result in returning false, we return true. |
| __ Bind(&return_true); |
| __ Mov(out, 1); |
| __ B(&end); |
| |
| // Return false and exit the function. |
| __ Bind(&return_false); |
| __ Mov(out, 0); |
| __ Bind(&end); |
| } |
| |
| static void GenerateVisitStringIndexOf(HInvoke* invoke, |
| MacroAssembler* masm, |
| CodeGeneratorARM64* codegen, |
| bool start_at_zero) { |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, |
| // or directly dispatch for a large constant, or omit slow-path for a small constant or a char. |
| SlowPathCodeARM64* slow_path = nullptr; |
| HInstruction* code_point = invoke->InputAt(1); |
| if (code_point->IsIntConstant()) { |
| if (static_cast<uint32_t>(code_point->AsIntConstant()->GetValue()) > 0xFFFFU) { |
| // Always needs the slow-path. We could directly dispatch to it, but this case should be |
| // rare, so for simplicity just put the full slow-path down and branch unconditionally. |
| slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke); |
| codegen->AddSlowPath(slow_path); |
| __ B(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| return; |
| } |
| } else if (code_point->GetType() != DataType::Type::kUint16) { |
| Register char_reg = WRegisterFrom(locations->InAt(1)); |
| __ Tst(char_reg, 0xFFFF0000); |
| slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke); |
| codegen->AddSlowPath(slow_path); |
| __ B(ne, slow_path->GetEntryLabel()); |
| } |
| |
| if (start_at_zero) { |
| // Start-index = 0. |
| Register tmp_reg = WRegisterFrom(locations->GetTemp(0)); |
| __ Mov(tmp_reg, 0); |
| } |
| |
| codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path); |
| CheckEntrypointTypes<kQuickIndexOf, int32_t, void*, uint32_t, uint32_t>(); |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitStringIndexOf(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's |
| // best to align the inputs accordingly. |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kInt32)); |
| |
| // Need to send start_index=0. |
| locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2))); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitStringIndexOf(HInvoke* invoke) { |
| GenerateVisitStringIndexOf(invoke, GetVIXLAssembler(), codegen_, /* start_at_zero */ true); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitStringIndexOfAfter(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's |
| // best to align the inputs accordingly. |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2))); |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kInt32)); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitStringIndexOfAfter(HInvoke* invoke) { |
| GenerateVisitStringIndexOf(invoke, GetVIXLAssembler(), codegen_, /* start_at_zero */ false); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitStringNewStringFromBytes(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2))); |
| locations->SetInAt(3, LocationFrom(calling_convention.GetRegisterAt(3))); |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitStringNewStringFromBytes(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register byte_array = WRegisterFrom(locations->InAt(0)); |
| __ Cmp(byte_array, 0); |
| SlowPathCodeARM64* slow_path = |
| new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ B(eq, slow_path->GetEntryLabel()); |
| |
| codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path); |
| CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>(); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitStringNewStringFromChars(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2))); |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitStringNewStringFromChars(HInvoke* invoke) { |
| // No need to emit code checking whether `locations->InAt(2)` is a null |
| // pointer, as callers of the native method |
| // |
| // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) |
| // |
| // all include a null check on `data` before calling that method. |
| codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>(); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitStringNewStringFromString(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitStringNewStringFromString(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| Register string_to_copy = WRegisterFrom(locations->InAt(0)); |
| __ Cmp(string_to_copy, 0); |
| SlowPathCodeARM64* slow_path = |
| new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ B(eq, slow_path->GetEntryLabel()); |
| |
| codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc(), slow_path); |
| CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>(); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| DCHECK_EQ(invoke->GetNumberOfArguments(), 1U); |
| DCHECK(DataType::IsFloatingPointType(invoke->InputAt(0)->GetType())); |
| DCHECK(DataType::IsFloatingPointType(invoke->GetType())); |
| |
| LocationSummary* const locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| |
| locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetOut(calling_convention.GetReturnLocation(invoke->GetType())); |
| } |
| |
| static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| DCHECK_EQ(invoke->GetNumberOfArguments(), 2U); |
| DCHECK(DataType::IsFloatingPointType(invoke->InputAt(0)->GetType())); |
| DCHECK(DataType::IsFloatingPointType(invoke->InputAt(1)->GetType())); |
| DCHECK(DataType::IsFloatingPointType(invoke->GetType())); |
| |
| LocationSummary* const locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| |
| locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1))); |
| locations->SetOut(calling_convention.GetReturnLocation(invoke->GetType())); |
| } |
| |
| static void GenFPToFPCall(HInvoke* invoke, |
| CodeGeneratorARM64* codegen, |
| QuickEntrypointEnum entry) { |
| codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathCos(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathCos(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickCos); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathSin(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathSin(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickSin); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathAcos(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathAcos(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAcos); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathAsin(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathAsin(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAsin); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathAtan(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathAtan(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAtan); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathCbrt(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathCbrt(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickCbrt); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathCosh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathCosh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickCosh); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathExp(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathExp(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickExp); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathExpm1(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathExpm1(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickExpm1); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathLog(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathLog(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickLog); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathLog10(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathLog10(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickLog10); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathSinh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathSinh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickSinh); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathTan(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathTan(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickTan); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathTanh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathTanh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickTanh); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathAtan2(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathAtan2(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAtan2); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathPow(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathPow(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickPow); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathHypot(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathHypot(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickHypot); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitMathNextAfter(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitMathNextAfter(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickNextAfter); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitStringGetCharsNoCheck(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| locations->SetInAt(4, Location::RequiresRegister()); |
| |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitStringGetCharsNoCheck(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| // Check assumption that sizeof(Char) is 2 (used in scaling below). |
| const size_t char_size = DataType::Size(DataType::Type::kUint16); |
| DCHECK_EQ(char_size, 2u); |
| |
| // Location of data in char array buffer. |
| const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value(); |
| |
| // Location of char array data in string. |
| const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); |
| |
| // void getCharsNoCheck(int srcBegin, int srcEnd, char[] dst, int dstBegin); |
| // Since getChars() calls getCharsNoCheck() - we use registers rather than constants. |
| Register srcObj = XRegisterFrom(locations->InAt(0)); |
| Register srcBegin = XRegisterFrom(locations->InAt(1)); |
| Register srcEnd = XRegisterFrom(locations->InAt(2)); |
| Register dstObj = XRegisterFrom(locations->InAt(3)); |
| Register dstBegin = XRegisterFrom(locations->InAt(4)); |
| |
| Register src_ptr = XRegisterFrom(locations->GetTemp(0)); |
| Register num_chr = XRegisterFrom(locations->GetTemp(1)); |
| Register tmp1 = XRegisterFrom(locations->GetTemp(2)); |
| |
| UseScratchRegisterScope temps(masm); |
| Register dst_ptr = temps.AcquireX(); |
| Register tmp2 = temps.AcquireX(); |
| |
| vixl::aarch64::Label done; |
| vixl::aarch64::Label compressed_string_loop; |
| __ Sub(num_chr, srcEnd, srcBegin); |
| // Early out for valid zero-length retrievals. |
| __ Cbz(num_chr, &done); |
| |
| // dst address start to copy to. |
| __ Add(dst_ptr, dstObj, Operand(data_offset)); |
| __ Add(dst_ptr, dst_ptr, Operand(dstBegin, LSL, 1)); |
| |
| // src address to copy from. |
| __ Add(src_ptr, srcObj, Operand(value_offset)); |
| vixl::aarch64::Label compressed_string_preloop; |
| if (mirror::kUseStringCompression) { |
| // Location of count in string. |
| const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| // String's length. |
| __ Ldr(tmp2, MemOperand(srcObj, count_offset)); |
| __ Tbz(tmp2, 0, &compressed_string_preloop); |
| } |
| __ Add(src_ptr, src_ptr, Operand(srcBegin, LSL, 1)); |
| |
| // Do the copy. |
| vixl::aarch64::Label loop; |
| vixl::aarch64::Label remainder; |
| |
| // Save repairing the value of num_chr on the < 8 character path. |
| __ Subs(tmp1, num_chr, 8); |
| __ B(lt, &remainder); |
| |
| // Keep the result of the earlier subs, we are going to fetch at least 8 characters. |
| __ Mov(num_chr, tmp1); |
| |
| // Main loop used for longer fetches loads and stores 8x16-bit characters at a time. |
| // (Unaligned addresses are acceptable here and not worth inlining extra code to rectify.) |
| __ Bind(&loop); |
| __ Ldp(tmp1, tmp2, MemOperand(src_ptr, char_size * 8, PostIndex)); |
| __ Subs(num_chr, num_chr, 8); |
| __ Stp(tmp1, tmp2, MemOperand(dst_ptr, char_size * 8, PostIndex)); |
| __ B(ge, &loop); |
| |
| __ Adds(num_chr, num_chr, 8); |
| __ B(eq, &done); |
| |
| // Main loop for < 8 character case and remainder handling. Loads and stores one |
| // 16-bit Java character at a time. |
| __ Bind(&remainder); |
| __ Ldrh(tmp1, MemOperand(src_ptr, char_size, PostIndex)); |
| __ Subs(num_chr, num_chr, 1); |
| __ Strh(tmp1, MemOperand(dst_ptr, char_size, PostIndex)); |
| __ B(gt, &remainder); |
| __ B(&done); |
| |
| if (mirror::kUseStringCompression) { |
| const size_t c_char_size = DataType::Size(DataType::Type::kInt8); |
| DCHECK_EQ(c_char_size, 1u); |
| __ Bind(&compressed_string_preloop); |
| __ Add(src_ptr, src_ptr, Operand(srcBegin)); |
| // Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time. |
| __ Bind(&compressed_string_loop); |
| __ Ldrb(tmp1, MemOperand(src_ptr, c_char_size, PostIndex)); |
| __ Strh(tmp1, MemOperand(dst_ptr, char_size, PostIndex)); |
| __ Subs(num_chr, num_chr, Operand(1)); |
| __ B(gt, &compressed_string_loop); |
| } |
| |
| __ Bind(&done); |
| } |
| |
| // Mirrors ARRAYCOPY_SHORT_CHAR_ARRAY_THRESHOLD in libcore, so we can choose to use the native |
| // implementation there for longer copy lengths. |
| static constexpr int32_t kSystemArrayCopyCharThreshold = 32; |
| |
| static void SetSystemArrayCopyLocationRequires(LocationSummary* locations, |
| uint32_t at, |
| HInstruction* input) { |
| HIntConstant* const_input = input->AsIntConstant(); |
| if (const_input != nullptr && !vixl::aarch64::Assembler::IsImmAddSub(const_input->GetValue())) { |
| locations->SetInAt(at, Location::RequiresRegister()); |
| } else { |
| locations->SetInAt(at, Location::RegisterOrConstant(input)); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitSystemArrayCopyChar(HInvoke* invoke) { |
| // Check to see if we have known failures that will cause us to have to bail out |
| // to the runtime, and just generate the runtime call directly. |
| HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); |
| HIntConstant* dst_pos = invoke->InputAt(3)->AsIntConstant(); |
| |
| // The positions must be non-negative. |
| if ((src_pos != nullptr && src_pos->GetValue() < 0) || |
| (dst_pos != nullptr && dst_pos->GetValue() < 0)) { |
| // We will have to fail anyways. |
| return; |
| } |
| |
| // The length must be >= 0 and not so long that we would (currently) prefer libcore's |
| // native implementation. |
| HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); |
| if (length != nullptr) { |
| int32_t len = length->GetValue(); |
| if (len < 0 || len > kSystemArrayCopyCharThreshold) { |
| // Just call as normal. |
| return; |
| } |
| } |
| |
| ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); |
| // arraycopy(char[] src, int src_pos, char[] dst, int dst_pos, int length). |
| locations->SetInAt(0, Location::RequiresRegister()); |
| SetSystemArrayCopyLocationRequires(locations, 1, invoke->InputAt(1)); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| SetSystemArrayCopyLocationRequires(locations, 3, invoke->InputAt(3)); |
| SetSystemArrayCopyLocationRequires(locations, 4, invoke->InputAt(4)); |
| |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| static void CheckSystemArrayCopyPosition(MacroAssembler* masm, |
| const Location& pos, |
| const Register& input, |
| const Location& length, |
| SlowPathCodeARM64* slow_path, |
| const Register& temp, |
| bool length_is_input_length = false) { |
| const int32_t length_offset = mirror::Array::LengthOffset().Int32Value(); |
| if (pos.IsConstant()) { |
| int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue(); |
| if (pos_const == 0) { |
| if (!length_is_input_length) { |
| // Check that length(input) >= length. |
| __ Ldr(temp, MemOperand(input, length_offset)); |
| __ Cmp(temp, OperandFrom(length, DataType::Type::kInt32)); |
| __ B(slow_path->GetEntryLabel(), lt); |
| } |
| } else { |
| // Check that length(input) >= pos. |
| __ Ldr(temp, MemOperand(input, length_offset)); |
| __ Subs(temp, temp, pos_const); |
| __ B(slow_path->GetEntryLabel(), lt); |
| |
| // Check that (length(input) - pos) >= length. |
| __ Cmp(temp, OperandFrom(length, DataType::Type::kInt32)); |
| __ B(slow_path->GetEntryLabel(), lt); |
| } |
| } else if (length_is_input_length) { |
| // The only way the copy can succeed is if pos is zero. |
| __ Cbnz(WRegisterFrom(pos), slow_path->GetEntryLabel()); |
| } else { |
| // Check that pos >= 0. |
| Register pos_reg = WRegisterFrom(pos); |
| __ Tbnz(pos_reg, pos_reg.GetSizeInBits() - 1, slow_path->GetEntryLabel()); |
| |
| // Check that pos <= length(input) && (length(input) - pos) >= length. |
| __ Ldr(temp, MemOperand(input, length_offset)); |
| __ Subs(temp, temp, pos_reg); |
| // Ccmp if length(input) >= pos, else definitely bail to slow path (N!=V == lt). |
| __ Ccmp(temp, OperandFrom(length, DataType::Type::kInt32), NFlag, ge); |
| __ B(slow_path->GetEntryLabel(), lt); |
| } |
| } |
| |
| // Compute base source address, base destination address, and end |
| // source address for System.arraycopy* intrinsics in `src_base`, |
| // `dst_base` and `src_end` respectively. |
| static void GenSystemArrayCopyAddresses(MacroAssembler* masm, |
| DataType::Type type, |
| const Register& src, |
| const Location& src_pos, |
| const Register& dst, |
| const Location& dst_pos, |
| const Location& copy_length, |
| const Register& src_base, |
| const Register& dst_base, |
| const Register& src_end) { |
| // This routine is used by the SystemArrayCopy and the SystemArrayCopyChar intrinsics. |
| DCHECK(type == DataType::Type::kReference || type == DataType::Type::kUint16) |
| << "Unexpected element type: " << type; |
| const int32_t element_size = DataType::Size(type); |
| const int32_t element_size_shift = DataType::SizeShift(type); |
| const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value(); |
| |
| if (src_pos.IsConstant()) { |
| int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); |
| __ Add(src_base, src, element_size * constant + data_offset); |
| } else { |
| __ Add(src_base, src, data_offset); |
| __ Add(src_base, src_base, Operand(XRegisterFrom(src_pos), LSL, element_size_shift)); |
| } |
| |
| if (dst_pos.IsConstant()) { |
| int32_t constant = dst_pos.GetConstant()->AsIntConstant()->GetValue(); |
| __ Add(dst_base, dst, element_size * constant + data_offset); |
| } else { |
| __ Add(dst_base, dst, data_offset); |
| __ Add(dst_base, dst_base, Operand(XRegisterFrom(dst_pos), LSL, element_size_shift)); |
| } |
| |
| if (copy_length.IsConstant()) { |
| int32_t constant = copy_length.GetConstant()->AsIntConstant()->GetValue(); |
| __ Add(src_end, src_base, element_size * constant); |
| } else { |
| __ Add(src_end, src_base, Operand(XRegisterFrom(copy_length), LSL, element_size_shift)); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitSystemArrayCopyChar(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| Register src = XRegisterFrom(locations->InAt(0)); |
| Location src_pos = locations->InAt(1); |
| Register dst = XRegisterFrom(locations->InAt(2)); |
| Location dst_pos = locations->InAt(3); |
| Location length = locations->InAt(4); |
| |
| SlowPathCodeARM64* slow_path = |
| new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke); |
| codegen_->AddSlowPath(slow_path); |
| |
| // If source and destination are the same, take the slow path. Overlapping copy regions must be |
| // copied in reverse and we can't know in all cases if it's needed. |
| __ Cmp(src, dst); |
| __ B(slow_path->GetEntryLabel(), eq); |
| |
| // Bail out if the source is null. |
| __ Cbz(src, slow_path->GetEntryLabel()); |
| |
| // Bail out if the destination is null. |
| __ Cbz(dst, slow_path->GetEntryLabel()); |
| |
| if (!length.IsConstant()) { |
| // Merge the following two comparisons into one: |
| // If the length is negative, bail out (delegate to libcore's native implementation). |
| // If the length > 32 then (currently) prefer libcore's native implementation. |
| __ Cmp(WRegisterFrom(length), kSystemArrayCopyCharThreshold); |
| __ B(slow_path->GetEntryLabel(), hi); |
| } else { |
| // We have already checked in the LocationsBuilder for the constant case. |
| DCHECK_GE(length.GetConstant()->AsIntConstant()->GetValue(), 0); |
| DCHECK_LE(length.GetConstant()->AsIntConstant()->GetValue(), 32); |
| } |
| |
| Register src_curr_addr = WRegisterFrom(locations->GetTemp(0)); |
| Register dst_curr_addr = WRegisterFrom(locations->GetTemp(1)); |
| Register src_stop_addr = WRegisterFrom(locations->GetTemp(2)); |
| |
| CheckSystemArrayCopyPosition(masm, |
| src_pos, |
| src, |
| length, |
| slow_path, |
| src_curr_addr, |
| false); |
| |
| CheckSystemArrayCopyPosition(masm, |
| dst_pos, |
| dst, |
| length, |
| slow_path, |
| src_curr_addr, |
| false); |
| |
| src_curr_addr = src_curr_addr.X(); |
| dst_curr_addr = dst_curr_addr.X(); |
| src_stop_addr = src_stop_addr.X(); |
| |
| GenSystemArrayCopyAddresses(masm, |
| DataType::Type::kUint16, |
| src, |
| src_pos, |
| dst, |
| dst_pos, |
| length, |
| src_curr_addr, |
| dst_curr_addr, |
| src_stop_addr); |
| |
| // Iterate over the arrays and do a raw copy of the chars. |
| const int32_t char_size = DataType::Size(DataType::Type::kUint16); |
| UseScratchRegisterScope temps(masm); |
| Register tmp = temps.AcquireW(); |
| vixl::aarch64::Label loop, done; |
| __ Bind(&loop); |
| __ Cmp(src_curr_addr, src_stop_addr); |
| __ B(&done, eq); |
| __ Ldrh(tmp, MemOperand(src_curr_addr, char_size, PostIndex)); |
| __ Strh(tmp, MemOperand(dst_curr_addr, char_size, PostIndex)); |
| __ B(&loop); |
| __ Bind(&done); |
| |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| // We can choose to use the native implementation there for longer copy lengths. |
| static constexpr int32_t kSystemArrayCopyThreshold = 128; |
| |
| // CodeGenerator::CreateSystemArrayCopyLocationSummary use three temporary registers. |
| // We want to use two temporary registers in order to reduce the register pressure in arm64. |
| // So we don't use the CodeGenerator::CreateSystemArrayCopyLocationSummary. |
| void IntrinsicLocationsBuilderARM64::VisitSystemArrayCopy(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // SystemArrayCopy intrinsic is the Baker-style read barriers. |
| if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { |
| return; |
| } |
| |
| // Check to see if we have known failures that will cause us to have to bail out |
| // to the runtime, and just generate the runtime call directly. |
| HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); |
| HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); |
| |
| // The positions must be non-negative. |
| if ((src_pos != nullptr && src_pos->GetValue() < 0) || |
| (dest_pos != nullptr && dest_pos->GetValue() < 0)) { |
| // We will have to fail anyways. |
| return; |
| } |
| |
| // The length must be >= 0. |
| HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); |
| if (length != nullptr) { |
| int32_t len = length->GetValue(); |
| if (len < 0 || len >= kSystemArrayCopyThreshold) { |
| // Just call as normal. |
| return; |
| } |
| } |
| |
| SystemArrayCopyOptimizations optimizations(invoke); |
| |
| if (optimizations.GetDestinationIsSource()) { |
| if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) { |
| // We only support backward copying if source and destination are the same. |
| return; |
| } |
| } |
| |
| if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) { |
| // We currently don't intrinsify primitive copying. |
| return; |
| } |
| |
| ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator(); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); |
| // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length). |
| locations->SetInAt(0, Location::RequiresRegister()); |
| SetSystemArrayCopyLocationRequires(locations, 1, invoke->InputAt(1)); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| SetSystemArrayCopyLocationRequires(locations, 3, invoke->InputAt(3)); |
| SetSystemArrayCopyLocationRequires(locations, 4, invoke->InputAt(4)); |
| |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // Temporary register IP0, obtained from the VIXL scratch register |
| // pool, cannot be used in ReadBarrierSystemArrayCopySlowPathARM64 |
| // (because that register is clobbered by ReadBarrierMarkRegX |
| // entry points). It cannot be used in calls to |
| // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier |
| // either. For these reasons, get a third extra temporary register |
| // from the register allocator. |
| locations->AddTemp(Location::RequiresRegister()); |
| } else { |
| // Cases other than Baker read barriers: the third temporary will |
| // be acquired from the VIXL scratch register pool. |
| } |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitSystemArrayCopy(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // SystemArrayCopy intrinsic is the Baker-style read barriers. |
| DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); |
| |
| MacroAssembler* masm = GetVIXLAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| |
| Register src = XRegisterFrom(locations->InAt(0)); |
| Location src_pos = locations->InAt(1); |
| Register dest = XRegisterFrom(locations->InAt(2)); |
| Location dest_pos = locations->InAt(3); |
| Location length = locations->InAt(4); |
| Register temp1 = WRegisterFrom(locations->GetTemp(0)); |
| Location temp1_loc = LocationFrom(temp1); |
| Register temp2 = WRegisterFrom(locations->GetTemp(1)); |
| Location temp2_loc = LocationFrom(temp2); |
| |
| SlowPathCodeARM64* intrinsic_slow_path = |
| new (codegen_->GetScopedAllocator()) IntrinsicSlowPathARM64(invoke); |
| codegen_->AddSlowPath(intrinsic_slow_path); |
| |
| vixl::aarch64::Label conditions_on_positions_validated; |
| SystemArrayCopyOptimizations optimizations(invoke); |
| |
| // If source and destination are the same, we go to slow path if we need to do |
| // forward copying. |
| if (src_pos.IsConstant()) { |
| int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); |
| if (dest_pos.IsConstant()) { |
| int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); |
| if (optimizations.GetDestinationIsSource()) { |
| // Checked when building locations. |
| DCHECK_GE(src_pos_constant, dest_pos_constant); |
| } else if (src_pos_constant < dest_pos_constant) { |
| __ Cmp(src, dest); |
| __ B(intrinsic_slow_path->GetEntryLabel(), eq); |
| } |
| // Checked when building locations. |
| DCHECK(!optimizations.GetDestinationIsSource() |
| || (src_pos_constant >= dest_pos.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| if (!optimizations.GetDestinationIsSource()) { |
| __ Cmp(src, dest); |
| __ B(&conditions_on_positions_validated, ne); |
| } |
| __ Cmp(WRegisterFrom(dest_pos), src_pos_constant); |
| __ B(intrinsic_slow_path->GetEntryLabel(), gt); |
| } |
| } else { |
| if (!optimizations.GetDestinationIsSource()) { |
| __ Cmp(src, dest); |
| __ B(&conditions_on_positions_validated, ne); |
| } |
| __ Cmp(RegisterFrom(src_pos, invoke->InputAt(1)->GetType()), |
| OperandFrom(dest_pos, invoke->InputAt(3)->GetType())); |
| __ B(intrinsic_slow_path->GetEntryLabel(), lt); |
| } |
| |
| __ Bind(&conditions_on_positions_validated); |
| |
| if (!optimizations.GetSourceIsNotNull()) { |
| // Bail out if the source is null. |
| __ Cbz(src, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) { |
| // Bail out if the destination is null. |
| __ Cbz(dest, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| // We have already checked in the LocationsBuilder for the constant case. |
| if (!length.IsConstant() && |
| !optimizations.GetCountIsSourceLength() && |
| !optimizations.GetCountIsDestinationLength()) { |
| // Merge the following two comparisons into one: |
| // If the length is negative, bail out (delegate to libcore's native implementation). |
| // If the length >= 128 then (currently) prefer native implementation. |
| __ Cmp(WRegisterFrom(length), kSystemArrayCopyThreshold); |
| __ B(intrinsic_slow_path->GetEntryLabel(), hs); |
| } |
| // Validity checks: source. |
| CheckSystemArrayCopyPosition(masm, |
| src_pos, |
| src, |
| length, |
| intrinsic_slow_path, |
| temp1, |
| optimizations.GetCountIsSourceLength()); |
| |
| // Validity checks: dest. |
| CheckSystemArrayCopyPosition(masm, |
| dest_pos, |
| dest, |
| length, |
| intrinsic_slow_path, |
| temp1, |
| optimizations.GetCountIsDestinationLength()); |
| { |
| // We use a block to end the scratch scope before the write barrier, thus |
| // freeing the temporary registers so they can be used in `MarkGCCard`. |
| UseScratchRegisterScope temps(masm); |
| Location temp3_loc; // Used only for Baker read barrier. |
| Register temp3; |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| temp3_loc = locations->GetTemp(2); |
| temp3 = WRegisterFrom(temp3_loc); |
| } else { |
| temp3 = temps.AcquireW(); |
| } |
| |
| if (!optimizations.GetDoesNotNeedTypeCheck()) { |
| // Check whether all elements of the source array are assignable to the component |
| // type of the destination array. We do two checks: the classes are the same, |
| // or the destination is Object[]. If none of these checks succeed, we go to the |
| // slow path. |
| |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| if (!optimizations.GetSourceIsNonPrimitiveArray()) { |
| // /* HeapReference<Class> */ temp1 = src->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| temp1_loc, |
| src.W(), |
| class_offset, |
| temp3_loc, |
| /* needs_null_check */ false, |
| /* use_load_acquire */ false); |
| // Bail out if the source is not a non primitive array. |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| temp1_loc, |
| temp1, |
| component_offset, |
| temp3_loc, |
| /* needs_null_check */ false, |
| /* use_load_acquire */ false); |
| __ Cbz(temp1, intrinsic_slow_path->GetEntryLabel()); |
| // If heap poisoning is enabled, `temp1` has been unpoisoned |
| // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. |
| // /* uint16_t */ temp1 = static_cast<uint16>(temp1->primitive_type_); |
| __ Ldrh(temp1, HeapOperand(temp1, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Cbnz(temp1, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| // /* HeapReference<Class> */ temp1 = dest->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| temp1_loc, |
| dest.W(), |
| class_offset, |
| temp3_loc, |
| /* needs_null_check */ false, |
| /* use_load_acquire */ false); |
| |
| if (!optimizations.GetDestinationIsNonPrimitiveArray()) { |
| // Bail out if the destination is not a non primitive array. |
| // |
| // Register `temp1` is not trashed by the read barrier emitted |
| // by GenerateFieldLoadWithBakerReadBarrier below, as that |
| // method produces a call to a ReadBarrierMarkRegX entry point, |
| // which saves all potentially live registers, including |
| // temporaries such a `temp1`. |
| // /* HeapReference<Class> */ temp2 = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| temp2_loc, |
| temp1, |
| component_offset, |
| temp3_loc, |
| /* needs_null_check */ false, |
| /* use_load_acquire */ false); |
| __ Cbz(temp2, intrinsic_slow_path->GetEntryLabel()); |
| // If heap poisoning is enabled, `temp2` has been unpoisoned |
| // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. |
| // /* uint16_t */ temp2 = static_cast<uint16>(temp2->primitive_type_); |
| __ Ldrh(temp2, HeapOperand(temp2, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Cbnz(temp2, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| // For the same reason given earlier, `temp1` is not trashed by the |
| // read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below. |
| // /* HeapReference<Class> */ temp2 = src->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| temp2_loc, |
| src.W(), |
| class_offset, |
| temp3_loc, |
| /* needs_null_check */ false, |
| /* use_load_acquire */ false); |
| // Note: if heap poisoning is on, we are comparing two unpoisoned references here. |
| __ Cmp(temp1, temp2); |
| |
| if (optimizations.GetDestinationIsTypedObjectArray()) { |
| vixl::aarch64::Label do_copy; |
| __ B(&do_copy, eq); |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| temp1_loc, |
| temp1, |
| component_offset, |
| temp3_loc, |
| /* needs_null_check */ false, |
| /* use_load_acquire */ false); |
| // /* HeapReference<Class> */ temp1 = temp1->super_class_ |
| // We do not need to emit a read barrier for the following |
| // heap reference load, as `temp1` is only used in a |
| // comparison with null below, and this reference is not |
| // kept afterwards. |
| __ Ldr(temp1, HeapOperand(temp1, super_offset)); |
| __ Cbnz(temp1, intrinsic_slow_path->GetEntryLabel()); |
| __ Bind(&do_copy); |
| } else { |
| __ B(intrinsic_slow_path->GetEntryLabel(), ne); |
| } |
| } else { |
| // Non read barrier code. |
| |
| // /* HeapReference<Class> */ temp1 = dest->klass_ |
| __ Ldr(temp1, MemOperand(dest, class_offset)); |
| // /* HeapReference<Class> */ temp2 = src->klass_ |
| __ Ldr(temp2, MemOperand(src, class_offset)); |
| bool did_unpoison = false; |
| if (!optimizations.GetDestinationIsNonPrimitiveArray() || |
| !optimizations.GetSourceIsNonPrimitiveArray()) { |
| // One or two of the references need to be unpoisoned. Unpoison them |
| // both to make the identity check valid. |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp1); |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp2); |
| did_unpoison = true; |
| } |
| |
| if (!optimizations.GetDestinationIsNonPrimitiveArray()) { |
| // Bail out if the destination is not a non primitive array. |
| // /* HeapReference<Class> */ temp3 = temp1->component_type_ |
| __ Ldr(temp3, HeapOperand(temp1, component_offset)); |
| __ Cbz(temp3, intrinsic_slow_path->GetEntryLabel()); |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp3); |
| // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_); |
| __ Ldrh(temp3, HeapOperand(temp3, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Cbnz(temp3, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| if (!optimizations.GetSourceIsNonPrimitiveArray()) { |
| // Bail out if the source is not a non primitive array. |
| // /* HeapReference<Class> */ temp3 = temp2->component_type_ |
| __ Ldr(temp3, HeapOperand(temp2, component_offset)); |
| __ Cbz(temp3, intrinsic_slow_path->GetEntryLabel()); |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp3); |
| // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_); |
| __ Ldrh(temp3, HeapOperand(temp3, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Cbnz(temp3, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| __ Cmp(temp1, temp2); |
| |
| if (optimizations.GetDestinationIsTypedObjectArray()) { |
| vixl::aarch64::Label do_copy; |
| __ B(&do_copy, eq); |
| if (!did_unpoison) { |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp1); |
| } |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| __ Ldr(temp1, HeapOperand(temp1, component_offset)); |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp1); |
| // /* HeapReference<Class> */ temp1 = temp1->super_class_ |
| __ Ldr(temp1, HeapOperand(temp1, super_offset)); |
| // No need to unpoison the result, we're comparing against null. |
| __ Cbnz(temp1, intrinsic_slow_path->GetEntryLabel()); |
| __ Bind(&do_copy); |
| } else { |
| __ B(intrinsic_slow_path->GetEntryLabel(), ne); |
| } |
| } |
| } else if (!optimizations.GetSourceIsNonPrimitiveArray()) { |
| DCHECK(optimizations.GetDestinationIsNonPrimitiveArray()); |
| // Bail out if the source is not a non primitive array. |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // /* HeapReference<Class> */ temp1 = src->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| temp1_loc, |
| src.W(), |
| class_offset, |
| temp3_loc, |
| /* needs_null_check */ false, |
| /* use_load_acquire */ false); |
| // /* HeapReference<Class> */ temp2 = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke, |
| temp2_loc, |
| temp1, |
| component_offset, |
| temp3_loc, |
| /* needs_null_check */ false, |
| /* use_load_acquire */ false); |
| __ Cbz(temp2, intrinsic_slow_path->GetEntryLabel()); |
| // If heap poisoning is enabled, `temp2` has been unpoisoned |
| // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. |
| } else { |
| // /* HeapReference<Class> */ temp1 = src->klass_ |
| __ Ldr(temp1, HeapOperand(src.W(), class_offset)); |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp1); |
| // /* HeapReference<Class> */ temp2 = temp1->component_type_ |
| __ Ldr(temp2, HeapOperand(temp1, component_offset)); |
| __ Cbz(temp2, intrinsic_slow_path->GetEntryLabel()); |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp2); |
| } |
| // /* uint16_t */ temp2 = static_cast<uint16>(temp2->primitive_type_); |
| __ Ldrh(temp2, HeapOperand(temp2, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Cbnz(temp2, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| if (length.IsConstant() && length.GetConstant()->AsIntConstant()->GetValue() == 0) { |
| // Null constant length: not need to emit the loop code at all. |
| } else { |
| Register src_curr_addr = temp1.X(); |
| Register dst_curr_addr = temp2.X(); |
| Register src_stop_addr = temp3.X(); |
| vixl::aarch64::Label done; |
| const DataType::Type type = DataType::Type::kReference; |
| const int32_t element_size = DataType::Size(type); |
| |
| if (length.IsRegister()) { |
| // Don't enter the copy loop if the length is null. |
| __ Cbz(WRegisterFrom(length), &done); |
| } |
| |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // TODO: Also convert this intrinsic to the IsGcMarking strategy? |
| |
| // SystemArrayCopy implementation for Baker read barriers (see |
| // also CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier): |
| // |
| // uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // bool is_gray = (rb_state == ReadBarrier::GrayState()); |
| // if (is_gray) { |
| // // Slow-path copy. |
| // do { |
| // *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++))); |
| // } while (src_ptr != end_ptr) |
| // } else { |
| // // Fast-path copy. |
| // do { |
| // *dest_ptr++ = *src_ptr++; |
| // } while (src_ptr != end_ptr) |
| // } |
| |
| // Make sure `tmp` is not IP0, as it is clobbered by |
| // ReadBarrierMarkRegX entry points in |
| // ReadBarrierSystemArrayCopySlowPathARM64. |
| DCHECK(temps.IsAvailable(ip0)); |
| temps.Exclude(ip0); |
| Register tmp = temps.AcquireW(); |
| DCHECK_NE(LocationFrom(tmp).reg(), IP0); |
| // Put IP0 back in the pool so that VIXL has at least one |
| // scratch register available to emit macro-instructions (note |
| // that IP1 is already used for `tmp`). Indeed some |
| // macro-instructions used in GenSystemArrayCopyAddresses |
| // (invoked hereunder) may require a scratch register (for |
| // instance to emit a load with a large constant offset). |
| temps.Include(ip0); |
| |
| // /* int32_t */ monitor = src->monitor_ |
| __ Ldr(tmp, HeapOperand(src.W(), monitor_offset)); |
| // /* LockWord */ lock_word = LockWord(monitor) |
| static_assert(sizeof(LockWord) == sizeof(int32_t), |
| "art::LockWord and int32_t have different sizes."); |
| |
| // Introduce a dependency on the lock_word including rb_state, |
| // to prevent load-load reordering, and without using |
| // a memory barrier (which would be more expensive). |
| // `src` is unchanged by this operation, but its value now depends |
| // on `tmp`. |
| __ Add(src.X(), src.X(), Operand(tmp.X(), LSR, 32)); |
| |
| // Compute base source address, base destination address, and end |
| // source address for System.arraycopy* intrinsics in `src_base`, |
| // `dst_base` and `src_end` respectively. |
| // Note that `src_curr_addr` is computed from from `src` (and |
| // `src_pos`) here, and thus honors the artificial dependency |
| // of `src` on `tmp`. |
| GenSystemArrayCopyAddresses(masm, |
| type, |
| src, |
| src_pos, |
| dest, |
| dest_pos, |
| length, |
| src_curr_addr, |
| dst_curr_addr, |
| src_stop_addr); |
| |
| // Slow path used to copy array when `src` is gray. |
| SlowPathCodeARM64* read_barrier_slow_path = |
| new (codegen_->GetScopedAllocator()) ReadBarrierSystemArrayCopySlowPathARM64( |
| invoke, LocationFrom(tmp)); |
| codegen_->AddSlowPath(read_barrier_slow_path); |
| |
| // Given the numeric representation, it's enough to check the low bit of the rb_state. |
| static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0"); |
| static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); |
| __ Tbnz(tmp, LockWord::kReadBarrierStateShift, read_barrier_slow_path->GetEntryLabel()); |
| |
| // Fast-path copy. |
| // Iterate over the arrays and do a raw copy of the objects. We don't need to |
| // poison/unpoison. |
| vixl::aarch64::Label loop; |
| __ Bind(&loop); |
| __ Ldr(tmp, MemOperand(src_curr_addr, element_size, PostIndex)); |
| __ Str(tmp, MemOperand(dst_curr_addr, element_size, PostIndex)); |
| __ Cmp(src_curr_addr, src_stop_addr); |
| __ B(&loop, ne); |
| |
| __ Bind(read_barrier_slow_path->GetExitLabel()); |
| } else { |
| // Non read barrier code. |
| // Compute base source address, base destination address, and end |
| // source address for System.arraycopy* intrinsics in `src_base`, |
| // `dst_base` and `src_end` respectively. |
| GenSystemArrayCopyAddresses(masm, |
| type, |
| src, |
| src_pos, |
| dest, |
| dest_pos, |
| length, |
| src_curr_addr, |
| dst_curr_addr, |
| src_stop_addr); |
| // Iterate over the arrays and do a raw copy of the objects. We don't need to |
| // poison/unpoison. |
| vixl::aarch64::Label loop; |
| __ Bind(&loop); |
| { |
| Register tmp = temps.AcquireW(); |
| __ Ldr(tmp, MemOperand(src_curr_addr, element_size, PostIndex)); |
| __ Str(tmp, MemOperand(dst_curr_addr, element_size, PostIndex)); |
| } |
| __ Cmp(src_curr_addr, src_stop_addr); |
| __ B(&loop, ne); |
| } |
| __ Bind(&done); |
| } |
| } |
| |
| // We only need one card marking on the destination array. |
| codegen_->MarkGCCard(dest.W(), Register(), /* value_can_be_null */ false); |
| |
| __ Bind(intrinsic_slow_path->GetExitLabel()); |
| } |
| |
| static void GenIsInfinite(LocationSummary* locations, |
| bool is64bit, |
| MacroAssembler* masm) { |
| Operand infinity; |
| Register out; |
| |
| if (is64bit) { |
| infinity = kPositiveInfinityDouble; |
| out = XRegisterFrom(locations->Out()); |
| } else { |
| infinity = kPositiveInfinityFloat; |
| out = WRegisterFrom(locations->Out()); |
| } |
| |
| const Register zero = vixl::aarch64::Assembler::AppropriateZeroRegFor(out); |
| |
| MoveFPToInt(locations, is64bit, masm); |
| __ Eor(out, out, infinity); |
| // We don't care about the sign bit, so shift left. |
| __ Cmp(zero, Operand(out, LSL, 1)); |
| __ Cset(out, eq); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitFloatIsInfinite(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitFloatIsInfinite(HInvoke* invoke) { |
| GenIsInfinite(invoke->GetLocations(), /* is64bit */ false, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitDoubleIsInfinite(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitDoubleIsInfinite(HInvoke* invoke) { |
| GenIsInfinite(invoke->GetLocations(), /* is64bit */ true, GetVIXLAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitIntegerValueOf(HInvoke* invoke) { |
| InvokeRuntimeCallingConvention calling_convention; |
| IntrinsicVisitor::ComputeIntegerValueOfLocations( |
| invoke, |
| codegen_, |
| calling_convention.GetReturnLocation(DataType::Type::kReference), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode())); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitIntegerValueOf(HInvoke* invoke) { |
| IntrinsicVisitor::IntegerValueOfInfo info = |
| IntrinsicVisitor::ComputeIntegerValueOfInfo(invoke, codegen_->GetCompilerOptions()); |
| LocationSummary* locations = invoke->GetLocations(); |
| MacroAssembler* masm = GetVIXLAssembler(); |
| |
| Register out = RegisterFrom(locations->Out(), DataType::Type::kReference); |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireW(); |
| if (invoke->InputAt(0)->IsConstant()) { |
| int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue(); |
| if (static_cast<uint32_t>(value - info.low) < info.length) { |
| // Just embed the j.l.Integer in the code. |
| DCHECK_NE(info.value_boot_image_reference, IntegerValueOfInfo::kInvalidReference); |
| codegen_->LoadBootImageAddress(out, info.value_boot_image_reference); |
| } else { |
| DCHECK(locations->CanCall()); |
| // Allocate and initialize a new j.l.Integer. |
| // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the |
| // JIT object table. |
| codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(), |
| info.integer_boot_image_offset); |
| __ Mov(temp.W(), value); |
| __ Str(temp.W(), HeapOperand(out.W(), info.value_offset)); |
| // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation |
| // one. |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); |
| } |
| } else { |
| DCHECK(locations->CanCall()); |
| Register in = RegisterFrom(locations->InAt(0), DataType::Type::kInt32); |
| // Check bounds of our cache. |
| __ Add(out.W(), in.W(), -info.low); |
| __ Cmp(out.W(), info.length); |
| vixl::aarch64::Label allocate, done; |
| __ B(&allocate, hs); |
| // If the value is within the bounds, load the j.l.Integer directly from the array. |
| codegen_->LoadBootImageAddress(temp, info.array_data_boot_image_reference); |
| MemOperand source = HeapOperand( |
| temp, out.X(), LSL, DataType::SizeShift(DataType::Type::kReference)); |
| codegen_->Load(DataType::Type::kReference, out, source); |
| codegen_->GetAssembler()->MaybeUnpoisonHeapReference(out); |
| __ B(&done); |
| __ Bind(&allocate); |
| // Otherwise allocate and initialize a new j.l.Integer. |
| codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(), |
| info.integer_boot_image_offset); |
| __ Str(in.W(), HeapOperand(out.W(), info.value_offset)); |
| // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation |
| // one. |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); |
| __ Bind(&done); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitThreadInterrupted(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitThreadInterrupted(HInvoke* invoke) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| Register out = RegisterFrom(invoke->GetLocations()->Out(), DataType::Type::kInt32); |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireX(); |
| |
| __ Add(temp, tr, Thread::InterruptedOffset<kArm64PointerSize>().Int32Value()); |
| __ Ldar(out.W(), MemOperand(temp)); |
| |
| vixl::aarch64::Label done; |
| __ Cbz(out.W(), &done); |
| __ Stlr(wzr, MemOperand(temp)); |
| __ Bind(&done); |
| } |
| |
| void IntrinsicLocationsBuilderARM64::VisitReachabilityFence(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::Any()); |
| } |
| |
| void IntrinsicCodeGeneratorARM64::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { } |
| |
| UNIMPLEMENTED_INTRINSIC(ARM64, ReferenceGetReferent) |
| |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringStringIndexOf); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringStringIndexOfAfter); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBufferAppend); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBufferLength); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBufferToString); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppend); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderLength); |
| UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderToString); |
| |
| // 1.8. |
| UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndAddInt) |
| UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndAddLong) |
| UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndSetInt) |
| UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndSetLong) |
| UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndSetObject) |
| |
| UNREACHABLE_INTRINSICS(ARM64) |
| |
| #undef __ |
| |
| } // namespace arm64 |
| } // namespace art |