blob: 31cf29aa4ad126adf7a0b7e163e3155807b1d0f9 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "inliner.h"
#include "art_method-inl.h"
#include "base/enums.h"
#include "builder.h"
#include "class_linker.h"
#include "constant_folding.h"
#include "dead_code_elimination.h"
#include "dex/verified_method.h"
#include "dex/verification_results.h"
#include "driver/compiler_driver-inl.h"
#include "driver/compiler_options.h"
#include "driver/dex_compilation_unit.h"
#include "instruction_simplifier.h"
#include "intrinsics.h"
#include "jit/jit.h"
#include "jit/jit_code_cache.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache.h"
#include "nodes.h"
#include "optimizing_compiler.h"
#include "reference_type_propagation.h"
#include "register_allocator_linear_scan.h"
#include "quick/inline_method_analyser.h"
#include "sharpening.h"
#include "ssa_builder.h"
#include "ssa_phi_elimination.h"
#include "scoped_thread_state_change.h"
#include "thread.h"
namespace art {
static constexpr size_t kMaximumNumberOfHInstructions = 32;
// Limit the number of dex registers that we accumulate while inlining
// to avoid creating large amount of nested environments.
static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 64;
// Avoid inlining within a huge method due to memory pressure.
static constexpr size_t kMaximumCodeUnitSize = 4096;
void HInliner::Run() {
const CompilerOptions& compiler_options = compiler_driver_->GetCompilerOptions();
if ((compiler_options.GetInlineDepthLimit() == 0)
|| (compiler_options.GetInlineMaxCodeUnits() == 0)) {
return;
}
if (caller_compilation_unit_.GetCodeItem()->insns_size_in_code_units_ > kMaximumCodeUnitSize) {
return;
}
if (graph_->IsDebuggable()) {
// For simplicity, we currently never inline when the graph is debuggable. This avoids
// doing some logic in the runtime to discover if a method could have been inlined.
return;
}
const ArenaVector<HBasicBlock*>& blocks = graph_->GetReversePostOrder();
DCHECK(!blocks.empty());
HBasicBlock* next_block = blocks[0];
for (size_t i = 0; i < blocks.size(); ++i) {
// Because we are changing the graph when inlining, we need to remember the next block.
// This avoids doing the inlining work again on the inlined blocks.
if (blocks[i] != next_block) {
continue;
}
HBasicBlock* block = next_block;
next_block = (i == blocks.size() - 1) ? nullptr : blocks[i + 1];
for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) {
HInstruction* next = instruction->GetNext();
HInvoke* call = instruction->AsInvoke();
// As long as the call is not intrinsified, it is worth trying to inline.
if (call != nullptr && call->GetIntrinsic() == Intrinsics::kNone) {
// We use the original invoke type to ensure the resolution of the called method
// works properly.
if (!TryInline(call)) {
if (kIsDebugBuild && IsCompilingWithCoreImage()) {
std::string callee_name =
PrettyMethod(call->GetDexMethodIndex(), *outer_compilation_unit_.GetDexFile());
bool should_inline = callee_name.find("$inline$") != std::string::npos;
CHECK(!should_inline) << "Could not inline " << callee_name;
}
} else {
if (kIsDebugBuild && IsCompilingWithCoreImage()) {
std::string callee_name =
PrettyMethod(call->GetDexMethodIndex(), *outer_compilation_unit_.GetDexFile());
bool must_not_inline = callee_name.find("$noinline$") != std::string::npos;
CHECK(!must_not_inline) << "Should not have inlined " << callee_name;
}
}
}
instruction = next;
}
}
}
static bool IsMethodOrDeclaringClassFinal(ArtMethod* method)
SHARED_REQUIRES(Locks::mutator_lock_) {
return method->IsFinal() || method->GetDeclaringClass()->IsFinal();
}
/**
* Given the `resolved_method` looked up in the dex cache, try to find
* the actual runtime target of an interface or virtual call.
* Return nullptr if the runtime target cannot be proven.
*/
static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke, ArtMethod* resolved_method)
SHARED_REQUIRES(Locks::mutator_lock_) {
if (IsMethodOrDeclaringClassFinal(resolved_method)) {
// No need to lookup further, the resolved method will be the target.
return resolved_method;
}
HInstruction* receiver = invoke->InputAt(0);
if (receiver->IsNullCheck()) {
// Due to multiple levels of inlining within the same pass, it might be that
// null check does not have the reference type of the actual receiver.
receiver = receiver->InputAt(0);
}
ReferenceTypeInfo info = receiver->GetReferenceTypeInfo();
DCHECK(info.IsValid()) << "Invalid RTI for " << receiver->DebugName();
if (!info.IsExact()) {
// We currently only support inlining with known receivers.
// TODO: Remove this check, we should be able to inline final methods
// on unknown receivers.
return nullptr;
} else if (info.GetTypeHandle()->IsInterface()) {
// Statically knowing that the receiver has an interface type cannot
// help us find what is the target method.
return nullptr;
} else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) {
// The method that we're trying to call is not in the receiver's class or super classes.
return nullptr;
} else if (info.GetTypeHandle()->IsErroneous()) {
// If the type is erroneous, do not go further, as we are going to query the vtable or
// imt table, that we can only safely do on non-erroneous classes.
return nullptr;
}
ClassLinker* cl = Runtime::Current()->GetClassLinker();
PointerSize pointer_size = cl->GetImagePointerSize();
if (invoke->IsInvokeInterface()) {
resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface(
resolved_method, pointer_size);
} else {
DCHECK(invoke->IsInvokeVirtual());
resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual(
resolved_method, pointer_size);
}
if (resolved_method == nullptr) {
// The information we had on the receiver was not enough to find
// the target method. Since we check above the exact type of the receiver,
// the only reason this can happen is an IncompatibleClassChangeError.
return nullptr;
} else if (!resolved_method->IsInvokable()) {
// The information we had on the receiver was not enough to find
// the target method. Since we check above the exact type of the receiver,
// the only reason this can happen is an IncompatibleClassChangeError.
return nullptr;
} else if (IsMethodOrDeclaringClassFinal(resolved_method)) {
// A final method has to be the target method.
return resolved_method;
} else if (info.IsExact()) {
// If we found a method and the receiver's concrete type is statically
// known, we know for sure the target.
return resolved_method;
} else {
// Even if we did find a method, the receiver type was not enough to
// statically find the runtime target.
return nullptr;
}
}
static uint32_t FindMethodIndexIn(ArtMethod* method,
const DexFile& dex_file,
uint32_t name_and_signature_index)
SHARED_REQUIRES(Locks::mutator_lock_) {
if (IsSameDexFile(*method->GetDexFile(), dex_file)) {
return method->GetDexMethodIndex();
} else {
return method->FindDexMethodIndexInOtherDexFile(dex_file, name_and_signature_index);
}
}
static uint32_t FindClassIndexIn(mirror::Class* cls,
const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache)
SHARED_REQUIRES(Locks::mutator_lock_) {
uint32_t index = DexFile::kDexNoIndex;
if (cls->GetDexCache() == nullptr) {
DCHECK(cls->IsArrayClass()) << PrettyClass(cls);
index = cls->FindTypeIndexInOtherDexFile(dex_file);
} else if (cls->GetDexTypeIndex() == DexFile::kDexNoIndex16) {
DCHECK(cls->IsProxyClass()) << PrettyClass(cls);
// TODO: deal with proxy classes.
} else if (IsSameDexFile(cls->GetDexFile(), dex_file)) {
DCHECK_EQ(cls->GetDexCache(), dex_cache.Get());
index = cls->GetDexTypeIndex();
// Update the dex cache to ensure the class is in. The generated code will
// consider it is. We make it safe by updating the dex cache, as other
// dex files might also load the class, and there is no guarantee the dex
// cache of the dex file of the class will be updated.
if (dex_cache->GetResolvedType(index) == nullptr) {
dex_cache->SetResolvedType(index, cls);
}
} else {
index = cls->FindTypeIndexInOtherDexFile(dex_file);
// We cannot guarantee the entry in the dex cache will resolve to the same class,
// as there may be different class loaders. So only return the index if it's
// the right class in the dex cache already.
if (index != DexFile::kDexNoIndex && dex_cache->GetResolvedType(index) != cls) {
index = DexFile::kDexNoIndex;
}
}
return index;
}
class ScopedProfilingInfoInlineUse {
public:
explicit ScopedProfilingInfoInlineUse(ArtMethod* method, Thread* self)
: method_(method),
self_(self),
// Fetch the profiling info ahead of using it. If it's null when fetching,
// we should not call JitCodeCache::DoneInlining.
profiling_info_(
Runtime::Current()->GetJit()->GetCodeCache()->NotifyCompilerUse(method, self)) {
}
~ScopedProfilingInfoInlineUse() {
if (profiling_info_ != nullptr) {
PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
DCHECK_EQ(profiling_info_, method_->GetProfilingInfo(pointer_size));
Runtime::Current()->GetJit()->GetCodeCache()->DoneCompilerUse(method_, self_);
}
}
ProfilingInfo* GetProfilingInfo() const { return profiling_info_; }
private:
ArtMethod* const method_;
Thread* const self_;
ProfilingInfo* const profiling_info_;
};
bool HInliner::TryInline(HInvoke* invoke_instruction) {
if (invoke_instruction->IsInvokeUnresolved()) {
return false; // Don't bother to move further if we know the method is unresolved.
}
uint32_t method_index = invoke_instruction->GetDexMethodIndex();
ScopedObjectAccess soa(Thread::Current());
const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
VLOG(compiler) << "Try inlining " << PrettyMethod(method_index, caller_dex_file);
ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
// We can query the dex cache directly. The verifier has populated it already.
ArtMethod* resolved_method;
ArtMethod* actual_method = nullptr;
if (invoke_instruction->IsInvokeStaticOrDirect()) {
if (invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit()) {
VLOG(compiler) << "Not inlining a String.<init> method";
return false;
}
MethodReference ref = invoke_instruction->AsInvokeStaticOrDirect()->GetTargetMethod();
mirror::DexCache* const dex_cache = IsSameDexFile(caller_dex_file, *ref.dex_file)
? caller_compilation_unit_.GetDexCache().Get()
: class_linker->FindDexCache(soa.Self(), *ref.dex_file);
resolved_method = dex_cache->GetResolvedMethod(
ref.dex_method_index, class_linker->GetImagePointerSize());
// actual_method == resolved_method for direct or static calls.
actual_method = resolved_method;
} else {
resolved_method = caller_compilation_unit_.GetDexCache().Get()->GetResolvedMethod(
method_index, class_linker->GetImagePointerSize());
if (resolved_method != nullptr) {
// Check if we can statically find the method.
actual_method = FindVirtualOrInterfaceTarget(invoke_instruction, resolved_method);
}
}
if (resolved_method == nullptr) {
// TODO: Can this still happen?
// Method cannot be resolved if it is in another dex file we do not have access to.
VLOG(compiler) << "Method cannot be resolved " << PrettyMethod(method_index, caller_dex_file);
return false;
}
if (actual_method != nullptr) {
bool result = TryInlineAndReplace(invoke_instruction, actual_method, /* do_rtp */ true);
if (result && !invoke_instruction->IsInvokeStaticOrDirect()) {
MaybeRecordStat(kInlinedInvokeVirtualOrInterface);
}
return result;
}
DCHECK(!invoke_instruction->IsInvokeStaticOrDirect());
// Check if we can use an inline cache.
ArtMethod* caller = graph_->GetArtMethod();
if (Runtime::Current()->UseJitCompilation()) {
// Under JIT, we should always know the caller.
DCHECK(caller != nullptr);
ScopedProfilingInfoInlineUse spiis(caller, soa.Self());
ProfilingInfo* profiling_info = spiis.GetProfilingInfo();
if (profiling_info != nullptr) {
const InlineCache& ic = *profiling_info->GetInlineCache(invoke_instruction->GetDexPc());
if (ic.IsUninitialized()) {
VLOG(compiler) << "Interface or virtual call to "
<< PrettyMethod(method_index, caller_dex_file)
<< " is not hit and not inlined";
return false;
} else if (ic.IsMonomorphic()) {
MaybeRecordStat(kMonomorphicCall);
if (outermost_graph_->IsCompilingOsr()) {
// If we are compiling OSR, we pretend this call is polymorphic, as we may come from the
// interpreter and it may have seen different receiver types.
return TryInlinePolymorphicCall(invoke_instruction, resolved_method, ic);
} else {
return TryInlineMonomorphicCall(invoke_instruction, resolved_method, ic);
}
} else if (ic.IsPolymorphic()) {
MaybeRecordStat(kPolymorphicCall);
return TryInlinePolymorphicCall(invoke_instruction, resolved_method, ic);
} else {
DCHECK(ic.IsMegamorphic());
VLOG(compiler) << "Interface or virtual call to "
<< PrettyMethod(method_index, caller_dex_file)
<< " is megamorphic and not inlined";
MaybeRecordStat(kMegamorphicCall);
return false;
}
}
}
VLOG(compiler) << "Interface or virtual call to "
<< PrettyMethod(method_index, caller_dex_file)
<< " could not be statically determined";
return false;
}
HInstanceFieldGet* HInliner::BuildGetReceiverClass(ClassLinker* class_linker,
HInstruction* receiver,
uint32_t dex_pc) const {
ArtField* field = class_linker->GetClassRoot(ClassLinker::kJavaLangObject)->GetInstanceField(0);
DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
HInstanceFieldGet* result = new (graph_->GetArena()) HInstanceFieldGet(
receiver,
Primitive::kPrimNot,
field->GetOffset(),
field->IsVolatile(),
field->GetDexFieldIndex(),
field->GetDeclaringClass()->GetDexClassDefIndex(),
*field->GetDexFile(),
handles_->NewHandle(field->GetDexCache()),
dex_pc);
// The class of a field is effectively final, and does not have any memory dependencies.
result->SetSideEffects(SideEffects::None());
return result;
}
bool HInliner::TryInlineMonomorphicCall(HInvoke* invoke_instruction,
ArtMethod* resolved_method,
const InlineCache& ic) {
DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
<< invoke_instruction->DebugName();
const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
uint32_t class_index = FindClassIndexIn(
ic.GetMonomorphicType(), caller_dex_file, caller_compilation_unit_.GetDexCache());
if (class_index == DexFile::kDexNoIndex) {
VLOG(compiler) << "Call to " << PrettyMethod(resolved_method)
<< " from inline cache is not inlined because its class is not"
<< " accessible to the caller";
return false;
}
ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
PointerSize pointer_size = class_linker->GetImagePointerSize();
if (invoke_instruction->IsInvokeInterface()) {
resolved_method = ic.GetMonomorphicType()->FindVirtualMethodForInterface(
resolved_method, pointer_size);
} else {
DCHECK(invoke_instruction->IsInvokeVirtual());
resolved_method = ic.GetMonomorphicType()->FindVirtualMethodForVirtual(
resolved_method, pointer_size);
}
DCHECK(resolved_method != nullptr);
HInstruction* receiver = invoke_instruction->InputAt(0);
HInstruction* cursor = invoke_instruction->GetPrevious();
HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
if (!TryInlineAndReplace(invoke_instruction, resolved_method, /* do_rtp */ false)) {
return false;
}
// We successfully inlined, now add a guard.
bool is_referrer =
(ic.GetMonomorphicType() == outermost_graph_->GetArtMethod()->GetDeclaringClass());
AddTypeGuard(receiver,
cursor,
bb_cursor,
class_index,
is_referrer,
invoke_instruction,
/* with_deoptimization */ true);
// Run type propagation to get the guard typed, and eventually propagate the
// type of the receiver.
ReferenceTypePropagation rtp_fixup(graph_,
outer_compilation_unit_.GetDexCache(),
handles_,
/* is_first_run */ false);
rtp_fixup.Run();
MaybeRecordStat(kInlinedMonomorphicCall);
return true;
}
HInstruction* HInliner::AddTypeGuard(HInstruction* receiver,
HInstruction* cursor,
HBasicBlock* bb_cursor,
uint32_t class_index,
bool is_referrer,
HInstruction* invoke_instruction,
bool with_deoptimization) {
ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
class_linker, receiver, invoke_instruction->GetDexPc());
const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
// Note that we will just compare the classes, so we don't need Java semantics access checks.
// Also, the caller of `AddTypeGuard` must have guaranteed that the class is in the dex cache.
HLoadClass* load_class = new (graph_->GetArena()) HLoadClass(graph_->GetCurrentMethod(),
class_index,
caller_dex_file,
is_referrer,
invoke_instruction->GetDexPc(),
/* needs_access_check */ false,
/* is_in_dex_cache */ true);
HNotEqual* compare = new (graph_->GetArena()) HNotEqual(load_class, receiver_class);
// TODO: Extend reference type propagation to understand the guard.
if (cursor != nullptr) {
bb_cursor->InsertInstructionAfter(receiver_class, cursor);
} else {
bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
}
bb_cursor->InsertInstructionAfter(load_class, receiver_class);
bb_cursor->InsertInstructionAfter(compare, load_class);
if (with_deoptimization) {
HDeoptimize* deoptimize = new (graph_->GetArena()) HDeoptimize(
compare, invoke_instruction->GetDexPc());
bb_cursor->InsertInstructionAfter(deoptimize, compare);
deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
}
return compare;
}
bool HInliner::TryInlinePolymorphicCall(HInvoke* invoke_instruction,
ArtMethod* resolved_method,
const InlineCache& ic) {
DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface())
<< invoke_instruction->DebugName();
if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, resolved_method, ic)) {
return true;
}
ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
PointerSize pointer_size = class_linker->GetImagePointerSize();
const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
bool all_targets_inlined = true;
bool one_target_inlined = false;
for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) {
if (ic.GetTypeAt(i) == nullptr) {
break;
}
ArtMethod* method = nullptr;
if (invoke_instruction->IsInvokeInterface()) {
method = ic.GetTypeAt(i)->FindVirtualMethodForInterface(
resolved_method, pointer_size);
} else {
DCHECK(invoke_instruction->IsInvokeVirtual());
method = ic.GetTypeAt(i)->FindVirtualMethodForVirtual(
resolved_method, pointer_size);
}
HInstruction* receiver = invoke_instruction->InputAt(0);
HInstruction* cursor = invoke_instruction->GetPrevious();
HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
uint32_t class_index = FindClassIndexIn(
ic.GetTypeAt(i), caller_dex_file, caller_compilation_unit_.GetDexCache());
HInstruction* return_replacement = nullptr;
if (class_index == DexFile::kDexNoIndex ||
!TryBuildAndInline(invoke_instruction, method, &return_replacement)) {
all_targets_inlined = false;
} else {
one_target_inlined = true;
bool is_referrer = (ic.GetTypeAt(i) == outermost_graph_->GetArtMethod()->GetDeclaringClass());
// If we have inlined all targets before, and this receiver is the last seen,
// we deoptimize instead of keeping the original invoke instruction.
bool deoptimize = all_targets_inlined &&
(i != InlineCache::kIndividualCacheSize - 1) &&
(ic.GetTypeAt(i + 1) == nullptr);
if (outermost_graph_->IsCompilingOsr()) {
// We do not support HDeoptimize in OSR methods.
deoptimize = false;
}
HInstruction* compare = AddTypeGuard(
receiver, cursor, bb_cursor, class_index, is_referrer, invoke_instruction, deoptimize);
if (deoptimize) {
if (return_replacement != nullptr) {
invoke_instruction->ReplaceWith(return_replacement);
}
invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
// Because the inline cache data can be populated concurrently, we force the end of the
// iteration. Otherhwise, we could see a new receiver type.
break;
} else {
CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
}
}
}
if (!one_target_inlined) {
VLOG(compiler) << "Call to " << PrettyMethod(resolved_method)
<< " from inline cache is not inlined because none"
<< " of its targets could be inlined";
return false;
}
MaybeRecordStat(kInlinedPolymorphicCall);
// Run type propagation to get the guards typed.
ReferenceTypePropagation rtp_fixup(graph_,
outer_compilation_unit_.GetDexCache(),
handles_,
/* is_first_run */ false);
rtp_fixup.Run();
return true;
}
void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare,
HInstruction* return_replacement,
HInstruction* invoke_instruction) {
uint32_t dex_pc = invoke_instruction->GetDexPc();
HBasicBlock* cursor_block = compare->GetBlock();
HBasicBlock* original_invoke_block = invoke_instruction->GetBlock();
ArenaAllocator* allocator = graph_->GetArena();
// Spit the block after the compare: `cursor_block` will now be the start of the diamond,
// and the returned block is the start of the then branch (that could contain multiple blocks).
HBasicBlock* then = cursor_block->SplitAfterForInlining(compare);
// Split the block containing the invoke before and after the invoke. The returned block
// of the split before will contain the invoke and will be the otherwise branch of
// the diamond. The returned block of the split after will be the merge block
// of the diamond.
HBasicBlock* end_then = invoke_instruction->GetBlock();
HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction);
HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction);
// If the methods we are inlining return a value, we create a phi in the merge block
// that will have the `invoke_instruction and the `return_replacement` as inputs.
if (return_replacement != nullptr) {
HPhi* phi = new (allocator) HPhi(
allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc);
merge->AddPhi(phi);
invoke_instruction->ReplaceWith(phi);
phi->AddInput(return_replacement);
phi->AddInput(invoke_instruction);
}
// Add the control flow instructions.
otherwise->AddInstruction(new (allocator) HGoto(dex_pc));
end_then->AddInstruction(new (allocator) HGoto(dex_pc));
cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc));
// Add the newly created blocks to the graph.
graph_->AddBlock(then);
graph_->AddBlock(otherwise);
graph_->AddBlock(merge);
// Set up successor (and implictly predecessor) relations.
cursor_block->AddSuccessor(otherwise);
cursor_block->AddSuccessor(then);
end_then->AddSuccessor(merge);
otherwise->AddSuccessor(merge);
// Set up dominance information.
then->SetDominator(cursor_block);
cursor_block->AddDominatedBlock(then);
otherwise->SetDominator(cursor_block);
cursor_block->AddDominatedBlock(otherwise);
merge->SetDominator(cursor_block);
cursor_block->AddDominatedBlock(merge);
// Update the revert post order.
size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block);
MakeRoomFor(&graph_->reverse_post_order_, 1, index);
graph_->reverse_post_order_[++index] = then;
index = IndexOfElement(graph_->reverse_post_order_, end_then);
MakeRoomFor(&graph_->reverse_post_order_, 2, index);
graph_->reverse_post_order_[++index] = otherwise;
graph_->reverse_post_order_[++index] = merge;
graph_->UpdateLoopAndTryInformationOfNewBlock(
then, original_invoke_block, /* replace_if_back_edge */ false);
graph_->UpdateLoopAndTryInformationOfNewBlock(
otherwise, original_invoke_block, /* replace_if_back_edge */ false);
// In case the original invoke location was a back edge, we need to update
// the loop to now have the merge block as a back edge.
graph_->UpdateLoopAndTryInformationOfNewBlock(
merge, original_invoke_block, /* replace_if_back_edge */ true);
}
bool HInliner::TryInlinePolymorphicCallToSameTarget(HInvoke* invoke_instruction,
ArtMethod* resolved_method,
const InlineCache& ic) {
// This optimization only works under JIT for now.
DCHECK(Runtime::Current()->UseJitCompilation());
if (graph_->GetInstructionSet() == kMips64) {
// TODO: Support HClassTableGet for mips64.
return false;
}
ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
PointerSize pointer_size = class_linker->GetImagePointerSize();
DCHECK(resolved_method != nullptr);
ArtMethod* actual_method = nullptr;
size_t method_index = invoke_instruction->IsInvokeVirtual()
? invoke_instruction->AsInvokeVirtual()->GetVTableIndex()
: invoke_instruction->AsInvokeInterface()->GetImtIndex();
// Check whether we are actually calling the same method among
// the different types seen.
for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) {
if (ic.GetTypeAt(i) == nullptr) {
break;
}
ArtMethod* new_method = nullptr;
if (invoke_instruction->IsInvokeInterface()) {
new_method = ic.GetTypeAt(i)->GetImt(pointer_size)->Get(
method_index, pointer_size);
if (new_method->IsRuntimeMethod()) {
// Bail out as soon as we see a conflict trampoline in one of the target's
// interface table.
return false;
}
} else {
DCHECK(invoke_instruction->IsInvokeVirtual());
new_method = ic.GetTypeAt(i)->GetEmbeddedVTableEntry(method_index, pointer_size);
}
DCHECK(new_method != nullptr);
if (actual_method == nullptr) {
actual_method = new_method;
} else if (actual_method != new_method) {
// Different methods, bailout.
VLOG(compiler) << "Call to " << PrettyMethod(resolved_method)
<< " from inline cache is not inlined because it resolves"
<< " to different methods";
return false;
}
}
HInstruction* receiver = invoke_instruction->InputAt(0);
HInstruction* cursor = invoke_instruction->GetPrevious();
HBasicBlock* bb_cursor = invoke_instruction->GetBlock();
HInstruction* return_replacement = nullptr;
if (!TryBuildAndInline(invoke_instruction, actual_method, &return_replacement)) {
return false;
}
// We successfully inlined, now add a guard.
HInstanceFieldGet* receiver_class = BuildGetReceiverClass(
class_linker, receiver, invoke_instruction->GetDexPc());
Primitive::Type type = Is64BitInstructionSet(graph_->GetInstructionSet())
? Primitive::kPrimLong
: Primitive::kPrimInt;
HClassTableGet* class_table_get = new (graph_->GetArena()) HClassTableGet(
receiver_class,
type,
invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable
: HClassTableGet::TableKind::kIMTable,
method_index,
invoke_instruction->GetDexPc());
HConstant* constant;
if (type == Primitive::kPrimLong) {
constant = graph_->GetLongConstant(
reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc());
} else {
constant = graph_->GetIntConstant(
reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc());
}
HNotEqual* compare = new (graph_->GetArena()) HNotEqual(class_table_get, constant);
if (cursor != nullptr) {
bb_cursor->InsertInstructionAfter(receiver_class, cursor);
} else {
bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction());
}
bb_cursor->InsertInstructionAfter(class_table_get, receiver_class);
bb_cursor->InsertInstructionAfter(compare, class_table_get);
if (outermost_graph_->IsCompilingOsr()) {
CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction);
} else {
// TODO: Extend reference type propagation to understand the guard.
HDeoptimize* deoptimize = new (graph_->GetArena()) HDeoptimize(
compare, invoke_instruction->GetDexPc());
bb_cursor->InsertInstructionAfter(deoptimize, compare);
deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
if (return_replacement != nullptr) {
invoke_instruction->ReplaceWith(return_replacement);
}
invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
}
// Run type propagation to get the guard typed.
ReferenceTypePropagation rtp_fixup(graph_,
outer_compilation_unit_.GetDexCache(),
handles_,
/* is_first_run */ false);
rtp_fixup.Run();
MaybeRecordStat(kInlinedPolymorphicCall);
return true;
}
bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction, ArtMethod* method, bool do_rtp) {
HInstruction* return_replacement = nullptr;
if (!TryBuildAndInline(invoke_instruction, method, &return_replacement)) {
if (invoke_instruction->IsInvokeInterface()) {
// Turn an invoke-interface into an invoke-virtual. An invoke-virtual is always
// better than an invoke-interface because:
// 1) In the best case, the interface call has one more indirection (to fetch the IMT).
// 2) We will not go to the conflict trampoline with an invoke-virtual.
// TODO: Consider sharpening once it is not dependent on the compiler driver.
const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile();
uint32_t method_index = FindMethodIndexIn(
method, caller_dex_file, invoke_instruction->GetDexMethodIndex());
if (method_index == DexFile::kDexNoIndex) {
return false;
}
HInvokeVirtual* new_invoke = new (graph_->GetArena()) HInvokeVirtual(
graph_->GetArena(),
invoke_instruction->GetNumberOfArguments(),
invoke_instruction->GetType(),
invoke_instruction->GetDexPc(),
method_index,
method->GetMethodIndex());
HInputsRef inputs = invoke_instruction->GetInputs();
for (size_t index = 0; index != inputs.size(); ++index) {
new_invoke->SetArgumentAt(index, inputs[index]);
}
invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction);
new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment());
if (invoke_instruction->GetType() == Primitive::kPrimNot) {
new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo());
}
return_replacement = new_invoke;
} else {
// TODO: Consider sharpening an invoke virtual once it is not dependent on the
// compiler driver.
return false;
}
}
if (return_replacement != nullptr) {
invoke_instruction->ReplaceWith(return_replacement);
}
invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction);
FixUpReturnReferenceType(method, return_replacement);
if (do_rtp && ReturnTypeMoreSpecific(invoke_instruction, return_replacement)) {
// Actual return value has a more specific type than the method's declared
// return type. Run RTP again on the outer graph to propagate it.
ReferenceTypePropagation(graph_,
outer_compilation_unit_.GetDexCache(),
handles_,
/* is_first_run */ false).Run();
}
return true;
}
bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction,
ArtMethod* method,
HInstruction** return_replacement) {
if (method->IsProxyMethod()) {
VLOG(compiler) << "Method " << PrettyMethod(method)
<< " is not inlined because of unimplemented inline support for proxy methods.";
return false;
}
// Check whether we're allowed to inline. The outermost compilation unit is the relevant
// dex file here (though the transitivity of an inline chain would allow checking the calller).
if (!compiler_driver_->MayInline(method->GetDexFile(),
outer_compilation_unit_.GetDexFile())) {
if (TryPatternSubstitution(invoke_instruction, method, return_replacement)) {
VLOG(compiler) << "Successfully replaced pattern of invoke " << PrettyMethod(method);
MaybeRecordStat(kReplacedInvokeWithSimplePattern);
return true;
}
VLOG(compiler) << "Won't inline " << PrettyMethod(method) << " in "
<< outer_compilation_unit_.GetDexFile()->GetLocation() << " ("
<< caller_compilation_unit_.GetDexFile()->GetLocation() << ") from "
<< method->GetDexFile()->GetLocation();
return false;
}
bool same_dex_file = IsSameDexFile(*outer_compilation_unit_.GetDexFile(), *method->GetDexFile());
const DexFile::CodeItem* code_item = method->GetCodeItem();
if (code_item == nullptr) {
VLOG(compiler) << "Method " << PrettyMethod(method)
<< " is not inlined because it is native";
return false;
}
size_t inline_max_code_units = compiler_driver_->GetCompilerOptions().GetInlineMaxCodeUnits();
if (code_item->insns_size_in_code_units_ > inline_max_code_units) {
VLOG(compiler) << "Method " << PrettyMethod(method)
<< " is too big to inline: "
<< code_item->insns_size_in_code_units_
<< " > "
<< inline_max_code_units;
return false;
}
if (code_item->tries_size_ != 0) {
VLOG(compiler) << "Method " << PrettyMethod(method)
<< " is not inlined because of try block";
return false;
}
if (!method->IsCompilable()) {
VLOG(compiler) << "Method " << PrettyMethod(method)
<< " has soft failures un-handled by the compiler, so it cannot be inlined";
}
if (!method->GetDeclaringClass()->IsVerified()) {
uint16_t class_def_idx = method->GetDeclaringClass()->GetDexClassDefIndex();
if (Runtime::Current()->UseJitCompilation() ||
!compiler_driver_->IsMethodVerifiedWithoutFailures(
method->GetDexMethodIndex(), class_def_idx, *method->GetDexFile())) {
VLOG(compiler) << "Method " << PrettyMethod(method)
<< " couldn't be verified, so it cannot be inlined";
return false;
}
}
if (invoke_instruction->IsInvokeStaticOrDirect() &&
invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) {
// Case of a static method that cannot be inlined because it implicitly
// requires an initialization check of its declaring class.
VLOG(compiler) << "Method " << PrettyMethod(method)
<< " is not inlined because it is static and requires a clinit"
<< " check that cannot be emitted due to Dex cache limitations";
return false;
}
if (!TryBuildAndInlineHelper(invoke_instruction, method, same_dex_file, return_replacement)) {
return false;
}
VLOG(compiler) << "Successfully inlined " << PrettyMethod(method);
MaybeRecordStat(kInlinedInvoke);
return true;
}
static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction,
size_t arg_vreg_index)
SHARED_REQUIRES(Locks::mutator_lock_) {
size_t input_index = 0;
for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) {
DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
if (Primitive::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) {
++i;
DCHECK_NE(i, arg_vreg_index);
}
}
DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments());
return invoke_instruction->InputAt(input_index);
}
// Try to recognize known simple patterns and replace invoke call with appropriate instructions.
bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction,
ArtMethod* resolved_method,
HInstruction** return_replacement) {
InlineMethod inline_method;
if (!InlineMethodAnalyser::AnalyseMethodCode(resolved_method, &inline_method)) {
return false;
}
switch (inline_method.opcode) {
case kInlineOpNop:
DCHECK_EQ(invoke_instruction->GetType(), Primitive::kPrimVoid);
*return_replacement = nullptr;
break;
case kInlineOpReturnArg:
*return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction,
inline_method.d.return_data.arg);
break;
case kInlineOpNonWideConst:
if (resolved_method->GetShorty()[0] == 'L') {
DCHECK_EQ(inline_method.d.data, 0u);
*return_replacement = graph_->GetNullConstant();
} else {
*return_replacement = graph_->GetIntConstant(static_cast<int32_t>(inline_method.d.data));
}
break;
case kInlineOpIGet: {
const InlineIGetIPutData& data = inline_method.d.ifield_data;
if (data.method_is_static || data.object_arg != 0u) {
// TODO: Needs null check.
return false;
}
Handle<mirror::DexCache> dex_cache(handles_->NewHandle(resolved_method->GetDexCache()));
HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
HInstanceFieldGet* iget = CreateInstanceFieldGet(dex_cache, data.field_idx, obj);
DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset);
DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile);
invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction);
*return_replacement = iget;
break;
}
case kInlineOpIPut: {
const InlineIGetIPutData& data = inline_method.d.ifield_data;
if (data.method_is_static || data.object_arg != 0u) {
// TODO: Needs null check.
return false;
}
Handle<mirror::DexCache> dex_cache(handles_->NewHandle(resolved_method->GetDexCache()));
HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg);
HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg);
HInstanceFieldSet* iput = CreateInstanceFieldSet(dex_cache, data.field_idx, obj, value);
DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset);
DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile);
invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
if (data.return_arg_plus1 != 0u) {
size_t return_arg = data.return_arg_plus1 - 1u;
*return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg);
}
break;
}
case kInlineOpConstructor: {
const InlineConstructorData& data = inline_method.d.constructor_data;
// Get the indexes to arrays for easier processing.
uint16_t iput_field_indexes[] = {
data.iput0_field_index, data.iput1_field_index, data.iput2_field_index
};
uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg };
static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch");
// Count valid field indexes.
size_t number_of_iputs = 0u;
while (number_of_iputs != arraysize(iput_field_indexes) &&
iput_field_indexes[number_of_iputs] != DexFile::kDexNoIndex16) {
// Check that there are no duplicate valid field indexes.
DCHECK_EQ(0, std::count(iput_field_indexes + number_of_iputs + 1,
iput_field_indexes + arraysize(iput_field_indexes),
iput_field_indexes[number_of_iputs]));
++number_of_iputs;
}
// Check that there are no valid field indexes in the rest of the array.
DCHECK_EQ(0, std::count_if(iput_field_indexes + number_of_iputs,
iput_field_indexes + arraysize(iput_field_indexes),
[](uint16_t index) { return index != DexFile::kDexNoIndex16; }));
// Create HInstanceFieldSet for each IPUT that stores non-zero data.
Handle<mirror::DexCache> dex_cache;
HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, /* this */ 0u);
bool needs_constructor_barrier = false;
for (size_t i = 0; i != number_of_iputs; ++i) {
HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]);
if (!value->IsConstant() || !value->AsConstant()->IsZeroBitPattern()) {
if (dex_cache.GetReference() == nullptr) {
dex_cache = handles_->NewHandle(resolved_method->GetDexCache());
}
uint16_t field_index = iput_field_indexes[i];
HInstanceFieldSet* iput = CreateInstanceFieldSet(dex_cache, field_index, obj, value);
invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction);
// Check whether the field is final. If it is, we need to add a barrier.
PointerSize pointer_size = InstructionSetPointerSize(codegen_->GetInstructionSet());
ArtField* resolved_field = dex_cache->GetResolvedField(field_index, pointer_size);
DCHECK(resolved_field != nullptr);
if (resolved_field->IsFinal()) {
needs_constructor_barrier = true;
}
}
}
if (needs_constructor_barrier) {
HMemoryBarrier* barrier = new (graph_->GetArena()) HMemoryBarrier(kStoreStore, kNoDexPc);
invoke_instruction->GetBlock()->InsertInstructionBefore(barrier, invoke_instruction);
}
*return_replacement = nullptr;
break;
}
default:
LOG(FATAL) << "UNREACHABLE";
UNREACHABLE();
}
return true;
}
HInstanceFieldGet* HInliner::CreateInstanceFieldGet(Handle<mirror::DexCache> dex_cache,
uint32_t field_index,
HInstruction* obj)
SHARED_REQUIRES(Locks::mutator_lock_) {
PointerSize pointer_size = InstructionSetPointerSize(codegen_->GetInstructionSet());
ArtField* resolved_field = dex_cache->GetResolvedField(field_index, pointer_size);
DCHECK(resolved_field != nullptr);
HInstanceFieldGet* iget = new (graph_->GetArena()) HInstanceFieldGet(
obj,
resolved_field->GetTypeAsPrimitiveType(),
resolved_field->GetOffset(),
resolved_field->IsVolatile(),
field_index,
resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
*dex_cache->GetDexFile(),
dex_cache,
// Read barrier generates a runtime call in slow path and we need a valid
// dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
/* dex_pc */ 0);
if (iget->GetType() == Primitive::kPrimNot) {
// Use the same dex_cache that we used for field lookup as the hint_dex_cache.
ReferenceTypePropagation rtp(graph_, dex_cache, handles_, /* is_first_run */ false);
rtp.Visit(iget);
}
return iget;
}
HInstanceFieldSet* HInliner::CreateInstanceFieldSet(Handle<mirror::DexCache> dex_cache,
uint32_t field_index,
HInstruction* obj,
HInstruction* value)
SHARED_REQUIRES(Locks::mutator_lock_) {
PointerSize pointer_size = InstructionSetPointerSize(codegen_->GetInstructionSet());
ArtField* resolved_field = dex_cache->GetResolvedField(field_index, pointer_size);
DCHECK(resolved_field != nullptr);
HInstanceFieldSet* iput = new (graph_->GetArena()) HInstanceFieldSet(
obj,
value,
resolved_field->GetTypeAsPrimitiveType(),
resolved_field->GetOffset(),
resolved_field->IsVolatile(),
field_index,
resolved_field->GetDeclaringClass()->GetDexClassDefIndex(),
*dex_cache->GetDexFile(),
dex_cache,
// Read barrier generates a runtime call in slow path and we need a valid
// dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537.
/* dex_pc */ 0);
return iput;
}
bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction,
ArtMethod* resolved_method,
bool same_dex_file,
HInstruction** return_replacement) {
ScopedObjectAccess soa(Thread::Current());
const DexFile::CodeItem* code_item = resolved_method->GetCodeItem();
const DexFile& callee_dex_file = *resolved_method->GetDexFile();
uint32_t method_index = resolved_method->GetDexMethodIndex();
ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker();
Handle<mirror::DexCache> dex_cache(handles_->NewHandle(resolved_method->GetDexCache()));
DexCompilationUnit dex_compilation_unit(
caller_compilation_unit_.GetClassLoader(),
class_linker,
callee_dex_file,
code_item,
resolved_method->GetDeclaringClass()->GetDexClassDefIndex(),
method_index,
resolved_method->GetAccessFlags(),
/* verified_method */ nullptr,
dex_cache);
bool requires_ctor_barrier = false;
if (dex_compilation_unit.IsConstructor()) {
// If it's a super invocation and we already generate a barrier there's no need
// to generate another one.
// We identify super calls by looking at the "this" pointer. If its value is the
// same as the local "this" pointer then we must have a super invocation.
bool is_super_invocation = invoke_instruction->InputAt(0)->IsParameterValue()
&& invoke_instruction->InputAt(0)->AsParameterValue()->IsThis();
if (is_super_invocation && graph_->ShouldGenerateConstructorBarrier()) {
requires_ctor_barrier = false;
} else {
Thread* self = Thread::Current();
requires_ctor_barrier = compiler_driver_->RequiresConstructorBarrier(self,
dex_compilation_unit.GetDexFile(),
dex_compilation_unit.GetClassDefIndex());
}
}
InvokeType invoke_type = invoke_instruction->GetOriginalInvokeType();
if (invoke_type == kInterface) {
// We have statically resolved the dispatch. To please the class linker
// at runtime, we change this call as if it was a virtual call.
invoke_type = kVirtual;
}
const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId();
HGraph* callee_graph = new (graph_->GetArena()) HGraph(
graph_->GetArena(),
callee_dex_file,
method_index,
requires_ctor_barrier,
compiler_driver_->GetInstructionSet(),
invoke_type,
graph_->IsDebuggable(),
/* osr */ false,
caller_instruction_counter);
callee_graph->SetArtMethod(resolved_method);
// When they are needed, allocate `inline_stats` on the heap instead
// of on the stack, as Clang might produce a stack frame too large
// for this function, that would not fit the requirements of the
// `-Wframe-larger-than` option.
std::unique_ptr<OptimizingCompilerStats> inline_stats =
(stats_ == nullptr) ? nullptr : MakeUnique<OptimizingCompilerStats>();
HGraphBuilder builder(callee_graph,
&dex_compilation_unit,
&outer_compilation_unit_,
resolved_method->GetDexFile(),
*code_item,
compiler_driver_,
inline_stats.get(),
resolved_method->GetQuickenedInfo(),
dex_cache,
handles_);
if (builder.BuildGraph() != kAnalysisSuccess) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be built, so cannot be inlined";
return false;
}
if (!RegisterAllocator::CanAllocateRegistersFor(*callee_graph,
compiler_driver_->GetInstructionSet())) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " cannot be inlined because of the register allocator";
return false;
}
size_t parameter_index = 0;
for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions());
!instructions.Done();
instructions.Advance()) {
HInstruction* current = instructions.Current();
if (current->IsParameterValue()) {
HInstruction* argument = invoke_instruction->InputAt(parameter_index++);
if (argument->IsNullConstant()) {
current->ReplaceWith(callee_graph->GetNullConstant());
} else if (argument->IsIntConstant()) {
current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue()));
} else if (argument->IsLongConstant()) {
current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue()));
} else if (argument->IsFloatConstant()) {
current->ReplaceWith(
callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue()));
} else if (argument->IsDoubleConstant()) {
current->ReplaceWith(
callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue()));
} else if (argument->GetType() == Primitive::kPrimNot) {
current->SetReferenceTypeInfo(argument->GetReferenceTypeInfo());
current->AsParameterValue()->SetCanBeNull(argument->CanBeNull());
}
}
}
// We have replaced formal arguments with actual arguments. If actual types
// are more specific than the declared ones, run RTP again on the inner graph.
if (ArgumentTypesMoreSpecific(invoke_instruction, resolved_method)) {
ReferenceTypePropagation(callee_graph,
dex_compilation_unit.GetDexCache(),
handles_,
/* is_first_run */ false).Run();
}
size_t number_of_instructions_budget = kMaximumNumberOfHInstructions;
size_t number_of_inlined_instructions =
RunOptimizations(callee_graph, code_item, dex_compilation_unit);
number_of_instructions_budget += number_of_inlined_instructions;
// TODO: We should abort only if all predecessors throw. However,
// HGraph::InlineInto currently does not handle an exit block with
// a throw predecessor.
HBasicBlock* exit_block = callee_graph->GetExitBlock();
if (exit_block == nullptr) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be inlined because it has an infinite loop";
return false;
}
bool has_throw_predecessor = false;
for (HBasicBlock* predecessor : exit_block->GetPredecessors()) {
if (predecessor->GetLastInstruction()->IsThrow()) {
has_throw_predecessor = true;
break;
}
}
if (has_throw_predecessor) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be inlined because one branch always throws";
return false;
}
HReversePostOrderIterator it(*callee_graph);
it.Advance(); // Past the entry block, it does not contain instructions that prevent inlining.
size_t number_of_instructions = 0;
bool can_inline_environment =
total_number_of_dex_registers_ < kMaximumNumberOfCumulatedDexRegisters;
for (; !it.Done(); it.Advance()) {
HBasicBlock* block = it.Current();
if (block->IsLoopHeader() && block->GetLoopInformation()->IsIrreducible()) {
// Don't inline methods with irreducible loops, they could prevent some
// optimizations to run.
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be inlined because it contains an irreducible loop";
return false;
}
for (HInstructionIterator instr_it(block->GetInstructions());
!instr_it.Done();
instr_it.Advance()) {
if (number_of_instructions++ == number_of_instructions_budget) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " is not inlined because its caller has reached"
<< " its instruction budget limit.";
return false;
}
HInstruction* current = instr_it.Current();
if (!can_inline_environment && current->NeedsEnvironment()) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " is not inlined because its caller has reached"
<< " its environment budget limit.";
return false;
}
if (!same_dex_file && current->NeedsEnvironment()) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be inlined because " << current->DebugName()
<< " needs an environment and is in a different dex file";
return false;
}
if (!same_dex_file && current->NeedsDexCacheOfDeclaringClass()) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be inlined because " << current->DebugName()
<< " it is in a different dex file and requires access to the dex cache";
return false;
}
if (current->IsNewInstance() &&
(current->AsNewInstance()->GetEntrypoint() == kQuickAllocObjectWithAccessCheck)) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be inlined because it is using an entrypoint"
<< " with access checks";
// Allocation entrypoint does not handle inlined frames.
return false;
}
if (current->IsNewArray() &&
(current->AsNewArray()->GetEntrypoint() == kQuickAllocArrayWithAccessCheck)) {
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be inlined because it is using an entrypoint"
<< " with access checks";
// Allocation entrypoint does not handle inlined frames.
return false;
}
if (current->IsUnresolvedStaticFieldGet() ||
current->IsUnresolvedInstanceFieldGet() ||
current->IsUnresolvedStaticFieldSet() ||
current->IsUnresolvedInstanceFieldSet()) {
// Entrypoint for unresolved fields does not handle inlined frames.
VLOG(compiler) << "Method " << PrettyMethod(method_index, callee_dex_file)
<< " could not be inlined because it is using an unresolved"
<< " entrypoint";
return false;
}
}
}
number_of_inlined_instructions_ += number_of_instructions;
DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId())
<< "No instructions can be added to the outer graph while inner graph is being built";
const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId();
graph_->SetCurrentInstructionId(callee_instruction_counter);
*return_replacement = callee_graph->InlineInto(graph_, invoke_instruction);
DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId())
<< "No instructions can be added to the inner graph during inlining into the outer graph";
return true;
}
size_t HInliner::RunOptimizations(HGraph* callee_graph,
const DexFile::CodeItem* code_item,
const DexCompilationUnit& dex_compilation_unit) {
// Note: if the outermost_graph_ is being compiled OSR, we should not run any
// optimization that could lead to a HDeoptimize. The following optimizations do not.
HDeadCodeElimination dce(callee_graph, stats_);
HConstantFolding fold(callee_graph);
HSharpening sharpening(callee_graph, codegen_, dex_compilation_unit, compiler_driver_);
InstructionSimplifier simplify(callee_graph, stats_);
IntrinsicsRecognizer intrinsics(callee_graph, compiler_driver_, stats_);
HOptimization* optimizations[] = {
&intrinsics,
&sharpening,
&simplify,
&fold,
&dce,
};
for (size_t i = 0; i < arraysize(optimizations); ++i) {
HOptimization* optimization = optimizations[i];
optimization->Run();
}
size_t number_of_inlined_instructions = 0u;
if (depth_ + 1 < compiler_driver_->GetCompilerOptions().GetInlineDepthLimit()) {
HInliner inliner(callee_graph,
outermost_graph_,
codegen_,
outer_compilation_unit_,
dex_compilation_unit,
compiler_driver_,
handles_,
stats_,
total_number_of_dex_registers_ + code_item->registers_size_,
depth_ + 1);
inliner.Run();
number_of_inlined_instructions += inliner.number_of_inlined_instructions_;
}
return number_of_inlined_instructions;
}
static bool IsReferenceTypeRefinement(ReferenceTypeInfo declared_rti,
bool declared_can_be_null,
HInstruction* actual_obj)
SHARED_REQUIRES(Locks::mutator_lock_) {
if (declared_can_be_null && !actual_obj->CanBeNull()) {
return true;
}
ReferenceTypeInfo actual_rti = actual_obj->GetReferenceTypeInfo();
return (actual_rti.IsExact() && !declared_rti.IsExact()) ||
declared_rti.IsStrictSupertypeOf(actual_rti);
}
ReferenceTypeInfo HInliner::GetClassRTI(mirror::Class* klass) {
return ReferenceTypePropagation::IsAdmissible(klass)
? ReferenceTypeInfo::Create(handles_->NewHandle(klass))
: graph_->GetInexactObjectRti();
}
bool HInliner::ArgumentTypesMoreSpecific(HInvoke* invoke_instruction, ArtMethod* resolved_method) {
// If this is an instance call, test whether the type of the `this` argument
// is more specific than the class which declares the method.
if (!resolved_method->IsStatic()) {
if (IsReferenceTypeRefinement(GetClassRTI(resolved_method->GetDeclaringClass()),
/* declared_can_be_null */ false,
invoke_instruction->InputAt(0u))) {
return true;
}
}
PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
// Iterate over the list of parameter types and test whether any of the
// actual inputs has a more specific reference type than the type declared in
// the signature.
const DexFile::TypeList* param_list = resolved_method->GetParameterTypeList();
for (size_t param_idx = 0,
input_idx = resolved_method->IsStatic() ? 0 : 1,
e = (param_list == nullptr ? 0 : param_list->Size());
param_idx < e;
++param_idx, ++input_idx) {
HInstruction* input = invoke_instruction->InputAt(input_idx);
if (input->GetType() == Primitive::kPrimNot) {
mirror::Class* param_cls = resolved_method->GetDexCacheResolvedType(
param_list->GetTypeItem(param_idx).type_idx_,
pointer_size);
if (IsReferenceTypeRefinement(GetClassRTI(param_cls),
/* declared_can_be_null */ true,
input)) {
return true;
}
}
}
return false;
}
bool HInliner::ReturnTypeMoreSpecific(HInvoke* invoke_instruction,
HInstruction* return_replacement) {
// Check the integrity of reference types and run another type propagation if needed.
if (return_replacement != nullptr) {
if (return_replacement->GetType() == Primitive::kPrimNot) {
// Test if the return type is a refinement of the declared return type.
if (IsReferenceTypeRefinement(invoke_instruction->GetReferenceTypeInfo(),
/* declared_can_be_null */ true,
return_replacement)) {
return true;
}
} else if (return_replacement->IsInstanceOf()) {
// Inlining InstanceOf into an If may put a tighter bound on reference types.
return true;
}
}
return false;
}
void HInliner::FixUpReturnReferenceType(ArtMethod* resolved_method,
HInstruction* return_replacement) {
if (return_replacement != nullptr) {
if (return_replacement->GetType() == Primitive::kPrimNot) {
if (!return_replacement->GetReferenceTypeInfo().IsValid()) {
// Make sure that we have a valid type for the return. We may get an invalid one when
// we inline invokes with multiple branches and create a Phi for the result.
// TODO: we could be more precise by merging the phi inputs but that requires
// some functionality from the reference type propagation.
DCHECK(return_replacement->IsPhi());
PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
mirror::Class* cls = resolved_method->GetReturnType(false /* resolve */, pointer_size);
return_replacement->SetReferenceTypeInfo(GetClassRTI(cls));
}
}
}
}
} // namespace art